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Abstract

In this work, we consider an optimal control problem subject to a nonlinear PDE constraint and

apply it to the regularized p-Laplace equation. To this end, a reduced unconstrained optimization

problem in terms of the control variable is formulated. Based on the reduced approach, we then

derive an a posteriori error representation and mesh adaptivity for multiple quantities of interest.

All quantities are combined to one, and then the dual-weighted residual (DWR) method is applied

to this combined functional. Furthermore, the estimator allows for balancing the discretization

error and the nonlinear iteration error. These developments allow us to formulate an adaptive

solution strategy, which is finally substantiated via several numerical examples.

1 Introduction

Optimal control problems with nonlinear PDE constraints have been studied for a long time in many

works. In particular, employing the (regularized) p-Laplacian (see e.g., [29, 22, 34, 46]) as a nonlinear

constraint of an optimal control problem was considered for instance in [17].

In many applications, however, not the entire solution is of interest, but only parts or certain

quantities of interest, so-called goal functionals. In the past, often a single goal functional was analyzed.

However, it may be of interest to control multiple goal functionals simultaneously [33, 32, 48, 28, 35, 42].

In this paper, these three topics are combined: optimal control, the regularized p-Laplacian as a
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numerical example of a quasi-linear PDE constraint, and multiple goal-oriented a posteriori error

estimation.

In the following, we briefly refer to studies that treat parts of the three topics. Optimal control prob-

lems (specifically, a priori estimates and optimality conditions) with quasi-linear (as the p-Laplacian

can be classified) elliptic PDE constraints were considered in [16, 18, 15]. More recently, the extension

to optimal control with parabolic PDEs was discussed in [9] and [14].

Optimal control problems with (single) goal functionals were investigated in [6, 40, 5, 50, 52,

43]. The p-Laplacian and a posteriori error estimates were considered in [36, 12, 20, 13], and, more

specifically, for goal functional evaluations, we refer to [34, 44, 25]. To estimate goal functionals, we

adopt the dual-weighted residual (DWR) method [7, 8] in which an adjoint problem is solved to obtain

(local) sensitivity measures that are used for mesh refinement. As is well-known, using a gradient-

based approach for the numerical solution of optimal control problems, the same adjoint problem as

for the DWR error estimator can be employed. For this reason, it is natural to combine gradient-based

optimization with adjoint-based error estimation.

We are specifically interested in an extended DWR version in which the discretization and (lin-

ear/nonlinear) iteration error are balanced [39, 44, 37]. As localization technique we employ integration

by parts as done in [8] or, for residual based error estimates, in [49]. The extension of [44] to multiple

goal functionals was recently undertaken in [25].

Three major aims constitute the main contents of this paper: first, the design of a framework

for goal-oriented error estimation for optimal control subject to a nonlinear PDE and balancing the

discretization and nonlinear iteration error (Section 3). From the optimization point of view, we

carefully revisit the important elements for the DWR estimator for optimization problems. The main

result in this respect is the a posteriori error representation for the reduced optimal control system

for an abstract problem formulation. The second aim is the extension to the simultaneous control

of multiple goal functionals (Section 4). As a third goal, based on our theoretical developments, we

carefully design an adaptive solution algorithm (Section 5). The performance of our algorithms are

investigated in terms of the usual quality measures of convergence behavior and effectivity indices

in Section 6. The latter one measures the quality of our proposed error estimator in comparison to

(known) true errors, which are computed on sufficiently refined meshes.

We summarize the outline of this work as follows: In Section 2, the problem setting is introduced.

Next, in Section 3, the dual-weighted residual method for the reduced optimization problem is for-

mulated. The multi-goal approach is then introduced in Section 4. Our algorithmic developments to

solve the multiple goal-functional optimal control problem are derived in Section 5. In Section 6, we

present several numerical examples that demonstrate the performance of our approach. Therein, we

study different Tikhonov regularization parameters, we perform mesh refinement studies, and consider

different goal functionals. In Section 7, we summarize the key outcomes of this work.
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2 The Optimal Control Problem

In this section, we define an abstract problem formulation and collect some properties that we will rely

on when deriving the a posteriori error estimates.

2.1 The Abstract Problem Formulation

Let U and Q be Banach spaces. We would like to find a control q ∈ Q and an associated state u ∈ U
such that the pair (u, q) is a local minimizer of some given cost functional J(u, q) : U ×Q→ R, where

u and q have to fulfill the so called state equation A(u, q) = 0 with nonlinear differential operator

A acting between Sobolev spaces. More precisely, the arising PDE-constrained optimization problem

reads as follows:

min
(u,q)

J(u, q) u ∈ U, q ∈ Q,

s.t. A(u, q) = 0 in V ∗,
(1)

for some operator A : U × Q 7→ V ∗, where V ∗ denotes the dual space of some Banach space V . For

the theoretical findings in this paper, we assume that, for each q ∈ Q, the PDE is uniquely solvable.

More precisely, we assume the following:

Assumption 1. Let there exist a unique mapping S : Q 7→ U which is implicitly defined by

(2) A(S(q), q) = 0, ∀q ∈ Q.

Moreover, we assume that S is twice continuously Fréchet differentiable.

Without further mention, we also assume the existence of a at least one global minimizer for

Problem (1). For instance, we refer to [47] for general theorems on existence of solutions for problems

with linear and semilinear state equations. Moreover, let A and J be smooth enough for all operations

occurring in the next Section.

With the help of the so called control-to-state mapping S, we reformulate (1) as an unconstrained

optimization problem

min
q
j(q), q ∈ Q,

where j(q) := J(S(q), q). Here, we will also assume sufficient smoothness in order to derive all further

estimates.

2.2 First Order Necessary Optimality Conditions

It is clear, that under our implicit smoothness assumptions, the first order necessary optimality con-

ditions for a locally optimal control q̄ ∈ Q for Problem (3) are given by

(3) j′(q)(δq) = 0 ∀δq ∈ Q.
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For completeness and further use, we rewrite these conditions for the non-reduced formulation with

the help of the well-known Lagrange approach. We define the Lagrangian L : U ×Q× V 7→ R for this

problem as follows

L(u, q, z) := J(u, q)−A(u, q)(z), ∀u ∈ U, q ∈ Q, z ∈ V.(4)

To shorten notation, we consider the abbreviation B′ζ := ∂
∂ζB for the partial derivatives of some

operator B. The first order necessary optimality conditions for (1) are then given by

(5)

J ′u(ū, q̄)(δu)−A′u(ū, q̄)(z)(δu) = L′u(ū, q̄, z̄)(δu) = 0 ∀δu ∈ U,

J ′q(ū, q̄)(δq)−A′q(ū, q̄)(z̄)(δq) = L′q(ū, q̄, z̄)(δq) = 0 ∀δq ∈ Q,

−A(ū, q̄)(δz) = L′z(ū, q̄, z̄)(δz) = 0 ∀δz ∈ V.

Moreover, ū = Sq̄ denotes the optimal state associated with q̄, and z̄ = (S′(q̄))∗J ′u(ū, q̄) the associated

adjoint state. In order for the Newton algorithm to work, and for the error estimator we need the

following assumption.

Assumption 2. We assume that A′u = L′′uz is invertible.

2.3 An Example: the Regularized p-Laplacian and Tracking-type Cost Functional

Let us finish this section by defining A for a concrete example (i.e., a PDE) that motivates our numerical

studies. To this end, a (regularized) p-Laplace equation for p 6= 2 is considered, even though, it does

not necessarily fit into the theory setting. For details, we refer to [22, 34, 46] and the references therein

regarding the (regularization of) the p-Laplace equation. We consider the following setting: Let Ω ⊂ Rd

be open and bounded with C1 boundary, and let p ∈ ( 2d
2+d ,∞). Then we define

Ap : W 1,p
0 (Ω)× (W 1,p

0 (Ω))∗ 7→ (W 1,p
0 (Ω))∗,

by the identity

Ap(u, q)(v) :=〈(ε2 + |∇u|2)
p−2
2 ∇u,∇v〉(Lp(Ω))∗×Lp(Ω) − 〈f + q, v〉

(W 1,p
0 (Ω))∗×W 1,p

0 (Ω)
,

for u, v ∈ U := W 1,p
0 (Ω), f ∈ V ∗, where 〈·, ·〉 is the usual notation for duality pairings. Note that in

this example, we have U = V . Let u ∈ U be the state, and q ∈ Q, e.g., Q = L2(Ω), be the control

variable. Then our optimal control problem is given by

min
(u,q)

J(q, u) u ∈ U, q ∈ Q(6)

s.t. Ap(u, q)(v) = 0,

with the tracking-type cost functional

J(q, u) =
1

2
‖u− ūd‖2L2(Ω) +

α

2
‖q − q̄d‖2L2(Ω),

with α > 0 and given f ∈ U∗, ūd ∈ L2(Ω) and q̄d ∈ L2(Ω).
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3 The Dual Weighted Residual Method for the Reduced System

We now formulate the DWR method for the reduced optimal control system and develop a posteriori

error estimators. The presentation is kept as general as possible so that the extension to multiple goal

functionals outlined in Section 4 can easily be incorporated. Firstly, we briefly outline the important

elements of the discretization.

3.1 Discretization

The method of choice, which will be used in the numerical examples, is the finite element method [19,

11, 31]. However, the algorithms presented in this work can also be adapted to other discretization tech-

niques where adaptivity can be accomplished, like isogeometric analysis, the virtual element method,

or finite cell methods. For the spaces Uh = Vh, we use continuous tensor product finite elements Qrc
;see, for instance, [19]. For Qh we use discontinuous tensor product finite elements QrDG. Let Th be a

subdivision (triangulation) of the domain Ω into quadrilateral elements such that
⋃
K∈Th K = Ω and

K ∩K ′ = ∅ for all K,K ′ ∈ Th where K 6= K ′. Furthermore, let ψK be a multilinear mapping from the

reference element K̂ = (0, 1)d to the element K ∈ Th. We define the space QrDG as

QrDG := {vh ∈ L∞(Ω) : vh|K ∈ Qr(K), ∀K ∈ Th},

with Qr(K) := {v|K̂ ◦ ψ
−1
K : v(x̂) =

∏d
i=1(

∑r
β=0 cβ,ix̂

β
i ), cβ,i ∈ R}. The use of these finite dimen-

sional spaces leads to a conforming discretization for Example 2.3. We point out that the conforming

discretization is needed in order to keep Theorem 3.5 valid. The discretized abstract model problem

reads as follows: Find uh ∈ Uh and qh ∈ Qh such that they are a local solution pair of

min
(uh,qh)

J(uh, qh) uh ∈ Uh, qh ∈ Qh,

s.t A(uh, qh) = 0 in V ∗h .
(7)

Assumption 3. There exists a unique discrete mapping Sh : Qh 7→ Uh, which is implicitly defined by

(8) A(Sh(qh), qh) = 0 ∀qh ∈ Qh.

As for its continuous counterpart, we assume that it is twice continuously Fréchet differentiable.

Using the discrete mapping Sh, we can reformulate Problem (7) as the unconstrained optimization

problem: Find qh ∈ Qh such that it solves

min
qh

jh(qh) qh ∈ Qh.

Similar to Section 2.2, we also provide the discrete version of the first order necessary optimality

conditions. If q̄h ∈ Qh is a local solution, then these conditions are given by

(9) j′h(q̄h)(δqh) = 0 ∀δqh ∈ Qh.

We will also use the non-reduced formulation with the help of the Lagrange-approach, with

L(uh, qh, zh) := J(uh, qh)−A(uh, qh)(zh), ∀uh ∈ Uh, qh ∈ Qh, zh ∈ Vh.
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The discrete first order necessary optimality conditions for (7) are then given by

J ′u(ūh, q̄h)(δuh)−A′u(ūh, q̄h)(z̄h)(δuh) = L′u(ūh, q̄h, z̄h)(δuh) = 0 ∀δuh ∈ Uh,

J ′q(ūh, q̄h)(δqh)−A′q(ūh, q̄h)(z̄h)(δqh) = L′q(ūh, q̄h, z̄h)(δqh) = 0 ∀δqh ∈ Qh,

−A(ūh, q̄h)(δzh) = L′z(ūh, q̄h, z̄h)(δzh) = 0 ∀δzh ∈ Vh,

(10)

where ūh = Sh(q̄h) and z̄h = (S′h(q̄h))∗J ′u(ūh, q̄h).

3.2 Error Representation for the Reduced System

We are now interested in an error estimator for a quantity of interest I : U × Q 7→ R. Let q be an

optimal control of Problem (3) with associated optimal state ū = S(̄q). While we are interested in

I(u, q), we can only compute an approximation I(ũh, q̃h) of this value. Note that we assume, for most

of what follows, that ũh := Sh(q̃h) is exactly solved by means of the solution operator Sh for the

discrete state equation, cf. Section 3.1. To estimate this error, we apply the previously mentioned

DWR method (e.g., [8]) to the first order optimality conditions of our reduced system.

Defining i(q) := I(S(q), q) as well as ih(q) := I(Sh(q), q), the error between I(S(q̄), q̄) and

I(Sh(q̃h), q̃h) can be split into

I(S(q̄), q̄)− I(Sh(q̃h), q̃h) = i(q̄)− i(q̃h) + i(q̃h)− ih(q̃h).

Therefore, ih still corresponds to our "true" quantity of interest, but computed with the discrete

solutions q̃h and Sh(q̃h). We start by estimating the first part of the error, which actually has a practical

relevance: if some approximate control q̃h is computed and applied in a practical situation, then the

corresponding physical system will produce a "true" state ũ := S(q̃h) instead of an approximation

ũh = Sh(q̃h).

As a first result, we formulate a theoretical error estimator, where we need the adjoint problem to

the first order optimality conditions, which is given by: Find p ∈ Q such that

(11) j′′(q)(δq, p) = −i′(q)(δq) ∀δq ∈ Q.

Assumption 4. We assume that (11) has a unique solution.

Theorem 3.1 (Error Representation for Reduced System). Let us assume that j ∈ C4(Q,R) and

i ∈ C3(Q,R). If q solves (3) and p solves (11) for q ∈ Q, then, for arbitrary fixed q̃h ∈ Q and p̃h ∈ Q,
we find:

i(q)− i(q̃h) =
1

2
ρ(q̃h)(p− p̃h) +

1

2
ρ∗(q̃h, p̃h)(q − q̃h) + ρ(q̃h)(p̃h) +R(3),

where

ρ(q̃h)(·) := j′(q̃h)(·),(12)

ρ∗(q̃h, p̃h)(·) := i′(q̃h)(·) + j′′(q̃h)(·, p̃h),

and the remainder term satisfies

R(3) :=
1

2

∫ 1

0
[i′′′(q̃h + se)(e, e, e) + j′′′′(q̃h + se)(e, e, e, p̃h + se∗) + 3j′′′(q̃h + se)(e, e, e∗)]s(s− 1) ds,

with e := q − q̃h and e∗ := p− p̃h.
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Proof. The proof follows the same idea as in [44, 25] but is stated for completeness of presentation.

Define e and e∗ as above and let x, x, x̃h be defined as x := (q, p), x := (q, p), x̃h := (q̃h, p̃h), as well

as m(x) := i(q) + j′(q)(p). Furthermore, let ex be defined ex := x− x̃h. By the fundamental theorem

of calculus as well as the trapezoidal rule, we observe that

(13)

m(x)−m(x̃h) =

1∫
0

m′(x̃h + sex)(ex) ds

=
1

2

(
m′(x̃h)(ex)ds+m′(x)(ex)

)
+

1

2

1∫
0

m′′′(x̃h + sex)(ex, ex, ex)s(s− 1) ds.

By carefully inspecting 1
2

1∫
0

m′′′(x̃h + sex)(ex, ex, ex)s(s − 1) ds, it follows that it coincides with R(3).

Additionally, we can deduce that

(14) m′(x)(ex) = i′(q) + j′′(q)(e, p) + j′(q)(e∗) = 0

due to (3) and (11). Combining (13) and (14) results in the following identity

(15) m(x)−m(x̃h) =
1

2
m′(x̃h)(ex) +R(3).

Therefore, using again (3) as well as (12), we get

i(q)− i(q̃h) =m(x)− j′(q)(q)−m(x̃h) + j′(q̃h)(p̃h)

=m(x̄)−m(x̃h) + ρ(q̃h)(p̃h)

=
1

2
m′(x̃h)(ex) +R(3) + ρ(q̃h)(p̃h),

where we have applied (15). This proves the theorem after verifying that m′(x̃h)(ex) = ρ(q̃h)(p− p̃h) +

ρ∗(q̃h, p̃h)(q − q̃h).

Remark 3.2. One objective of this representation, in addition to the fact that for instance ũ = S(q̃h)

is not readily available exactly, is to obtain indicators for local adaptivity. By inspecting the primal

part of the error estimator ρ(q̃h)(p− p̃h), we observe that

ρ(q̃h)(p− p̃h) = −j′(q̃h)(p− p̃h) = −J ′q(S(q̃h), q̃h)(p− p̃h)− J ′u(S(q̃h), q̃h)(S′(q̃h)(p− p̃h)).

Since it is not clear how to localize S′(q̃h)(p − p̃h), we do not follow this path to compute the error

indicators, but prove a localizable error estimator in a similar fashion in Theorem 3.5, which makes

use of (5) as well.

For another idea, we consider the adjoint problem to the first order optimality conditions for the

Lagrangian defined in (4): Find (v, p2, y) ∈ U ×Q× V such that
L′′uu L′′uq L′′uz
L′′qu L′′qq L′′qz
L′′zu L′′zq 0



v

p2

y

 = −


I ′u

I ′q

0

 in U∗ ×Q∗ × V ∗,(16)

where the argument in the partial derivatives is always given by (u, q, z).
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Assumption 5. We assume that (16) has a unique solution.

In order to obtain the variables v and y with the help of the solution of the reduced adjoint

problem (11), the following lemma is useful.

Lemma 3.3. If q̄ ∈ Q with associated state ū = S(q̄) is a local solution of (3), and p̄ solves (11), then

v̄ = S′(q̄)p̄, p̄2 = p̄, and ȳ given by (21) solve (16).

Proof. Let p ∈ Q be arbitrary. Using the definition of the reduced functionals, we obtain

j′′(q)(p) = J ′′uu(S(q), q)(S′(q)p) ◦ S′(q) + J ′′uq(S(q), q)(p) ◦ S′(q)

+ J ′′qu(S(q), q)(S′(q)p) + J ′′qq(S(q), q)(p) + J ′u(S(q), q) ◦ S′′(q)(p),
(17)

and

i′(q) = I ′u(S(q), q)S′(q) + I ′q(S(q), q).

Furthermore, with the definition of the solution operator, we obtain from (2) that

0 = A′u(S(q), q)(S′(q)p) +A′q(S(q), q)(p) = L′′zu(S(q), q, z)(S′(q)p) + L′′zq(S(q), q, z)(p)(18)

and

0 = A′′uu(S(q), q)(S′(q)p) ◦ S′(q) +A′′uq(S(q), q)(p) ◦ S′(q)

+A′′qu(S(q), q)(S′(q)p) +A′′qq(S(q), q)(p) +A′u(S(q), q) ◦ S′′(q)(p).
(19)

By subtracting (19) from (17), it follows that

j′′(q)(p) = j′′(q)(p)− 0

= L′′uu(S(q), q, z)(S′(q)p) ◦ S′(q) + L′′uq(S(q), q, z)(p) ◦ S′(q)

+ L′′qu(S(q), q, z)(S′(q)p) + L′′qq(S(q), q, z)(p) + L′u(S(q), q, z) ◦ S′′(q)(p).

Further, from (18) we get

S′(q) = −[L′′zu(S(q), q)]−1L′′zq(S(q), q)).

Thus p2 = p and v = S′(q)p satisfy the third line in (16).

To proceed, we note that q, u = S(q) and z solves (5), thus we have that L′u(S(q), q, z) = 0. This

leads to

j′′(q)(p2) = L′′uu(S(q), q, z)(v) ◦ S′(q) + L′′uq(S(q), q, z)(p2) ◦ S′(q)

+ L′′qu(S(q), q, z)(v) + L′′qq(S(q), q, z)(p2)
(20)

Now, we define y by the first line of (16), we get

L′′uz(S(q), q))(y) = −
(
L′′uu(S(q), q, z)(v) + L′′qu(S(q), q, z)(p2) + I ′u(S(q), q)

)
.(21)

With this, we can rewrite (20) as

j′′(q)(p2) =
(
L′′uu(S(q), q, z)(v) + L′′uq(S(q), q, z)(p2)

)
◦ S′(q)

+ L′′qu(S(q), q, z)(v) + L′′qq(S(q), q, z)(p2)

= −
(
L′′uz(S(q), q))(y) + I ′u(S(q), q)

)
◦ S′(q)

+ L′′qu(S(q), q, z)(v) + L′′qq(S(q), q, z)(p2).

8



Now, we can use the definition of p, L′′uz = (L′′zu)∗,L′′zq = (L′′qz)∗, the formula for S′(q) and the

representation of i′(q) to get

−I ′u(S(q), q)S′(q)− I ′q(S(q), q) = −i′(q)

= j′′(q)(p2)

= −I ′u(S(q), q) ◦ S′(q)− S′(q)∗L′′uz(S(q), q))(y)

+ L′′qu(S(q), q, z)(v) + L′′qq(S(q), q, z)(p2)

= −I ′u(S(q), q) ◦ S′(q) + L′′qz(S(q), q))(y)

+ L′′qu(S(q), q, z)(v) + L′′qq(S(q), q, z)(p2)

and the second line in (16) follows.

Lemma 3.3 allows to obtain p = p̄2 by solving the reduced adjoint equation (11). Then, v can be

computed by solving the tangent equation

L′′zu(u, q, z)(·, v)+L′′zq(u, q, z)(·, p) = 0,

which is the last row of (16). Using this solution, we can deduce y from the first row of (16).

An analogue to (16) on the discrete level is given by: Find (ṽh, p̃h, ỹh) ∈ Uh ×Qh × Vh such that
L′′uu L′′uq L′′uz
L′′qu L′′qq L′′qz
L′′zu L′′zq 0



ṽh

p̃h

ỹh

 = −


I ′u

I ′q

0

 ,(22)

where the arguments in the partial derivatives are given by (ũh, q̃h, z̃h).

Remark 3.4. If (22) is considered at the linearization point q̄h, ūh, z̄h, then Lemma 3.3 holds also

true for the discrete problem, i.e. if ph ∈ Qh solves

(23) j′′h(qh)(δqh, ph) = −i′h(qh)(δqh) ∀δqh ∈ Qh,

then p̃h = p̄h. This can be shown by the same proof replacing S by Sh.

Similar as explained above, the variables ṽh and ỹh can be deduced from the knowledge of p̄h and

the discrete version of Lemma 3.3.

Theorem 3.5 (Localizable Error Representation for Reduced System). Let us assume that j ∈
C4(Q,R) and i ∈ C3(Q,R). Let q be a local solution of (3), with ξ = (u, q, z) the corresponding KKT-

triplet given by (5), and let the triple ξ∗ = (v̄, p, ȳ) ∈ U ×Q× V solve (16). Moreover, let q̃h ∈ Qh be

an arbitrary fixed discrete control, and let ξ̃∗h = (p̃h, ṽh, ỹh) be the solution to (10) and the first and last

row of (22) at the linearization point ξ̃h = (ũh, q̃h, z̃h) with ũh = Sh(q̃h) and z̃h = S′h(q̃h)∗J ′u(ũh, q̃h).

Then we have the error representation

i(q)− ih(q̃h) =
1

2

[
ρu(ξ̃h, ξ̃

∗
h)(y − ỹh) + ρz(ξ̃h, ξ̃

∗
h)(v − ṽh) + ρq(ξ̃h, ξ̃

∗
h)(p− p̃h)

+ ρv(ξ̃h, ξ̃
∗
h)(z − z̃h) + ρy(ξ̃h, ξ̃

∗
h)(u− ũh) + ρp(ξ̃h, ξ̃

∗
h)(q − q̃h)

]
− j′h(q̃h)(p̃h) + R̃(3),

(24)
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where

ρu(ξ̃h, ξ̃
∗
h)(·) :=L′z(ξ̃h)(·),

ρq(ξ̃h, ξ̃
∗
h)(·) :=L′q(ξ̃h)(·),

ρz(ξ̃h, ξ̃
∗
h)(·) :=L′u(ξ̃h)(·),

ρv(ξ̃h, ξ̃
∗
h)(·) :=L′′zu(ξ̃h)(·, ṽh) + L′′zq(ξ̃h)(·, p̃h),

ρp(ξ̃h, ξ̃
∗
h)(·) :=I ′q(ũh, q̃h)(·) + L′′uq(ξ̃h)(ṽh, ·) + L′′qq(ξ̃h)(p̃h, ·) + L′′zq(ξ̃h)(ỹh, ·),

ρy(ξ̃h, ξ̃
∗
h)(·) :=I ′u(ũh, q̃h)(·) + L′′uu(ξ̃h)(ṽh, ·) + L′′qu(ξ̃h)(p̃h, ·) + L′′zu(ξ̃h)(ỹh, ·),

and the remainder term

R̃(3) =
1

2

1∫
0

[I ′′′(ξ̃+sẽξ)(ẽξ, ẽξ, ẽξ)+L′′′′(ξ̃+sẽξ)(ẽξ, ẽξ, ẽξ, p̃+sẽ∗ξ)+3L′′′(ξ̃+sẽξ)(ẽξ, ẽξ, ẽ
∗
ξ)]s(s−1) ds,

with ẽξ = ξ − ξ̃h, ẽ∗ξ = ξ
∗ − ξ̃∗h.

Proof. The proof follows a similar structure as the proof of Theorem 3.1. Let x := (ξ, ξ
∗
), x̃h := (ξ̃h, ξ̃

∗
h).

For x = (ξ, ξ∗) = (u, q, z, ξ∗) we defineM(x) := I(ξ) + L′(ξ)(ξ∗) = I(u, q) + L′(ξ)(ξ∗). It holds that

M(x)−M(x̃h) =

1∫
0

M′(x̃h + sex)(ex) ds

=
1

2

(
M′(x̃h)(ex)ds+M′(x)(ex)

)
+

1

2

1∫
0

M′′′(x̃h + sex)(ex, ex, ex)s(s− 1) ds

(25)

where ex = x− x̃h. By carefully inspectingM′′′(x̃h + sex)(ex, ex, ex) it follows that

M′′′(x̃h + sex)(ex, ex, ex) = (M′′′ξξξ + 3M′′′ξξξ∗ + 3M′′′ξξ∗ξ∗ +M′′′ξ∗ξ∗ξ∗)(x̃h + sex)(ex, ex, ex)

= I ′′′(ξ̃h + sẽξ)(ẽξ, ẽξ, ẽξ) + L′′′′(ξ̃h + sẽξ)(ẽξ, ẽξ, ẽξ, ξ̃
∗
h + sẽ∗ξ)

+ 3L′′′(ξ̃h + s(ẽξ))(ẽξ, ẽξ, ẽ
∗
ξ)

sinceM′′ξ∗ξ∗ = 0 andM′ξ∗(x̃h + sex)(ex) = L′(ξ̃h + s(ẽξ))(ẽ
∗
ξ). Thus, (25) gives

M(x)−M(x̃h) =
1

2

(
M′(x̃h)(ex)ds+M′(x)(ex)

)
+ R̃(3).

For the partM′(x)(ex) of (25), we can deduce that

M′(x)(ex) = I ′(ξ) + L′′(ξ)(ẽξ, ξ
∗
) + L′(ξ)(ẽ∗ξ) = 0,

since ξ∗ solves (16) and ξ solves (5). Finally, relation (25) reduces to the following identity

M(x)−M(x̃h) =
1

2
M′(x̃h)(ex) + R̃(3).

Therefore, we get

I(ξ)− I(ξ̃h) =M(x)− L′(ξ)(ξ)−M(x̃h) + L′(ξ̃h)(ξ̃∗h) =
1

2
M′(x̃h)(ex) + R̃(3) + L′(ξ̃h)(ξ̃∗h).
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Furthermore, we can deduce thatM′(x̃h)(ex) = L′(ξ̃h)(ẽ∗ξ)+ I ′(ξ̃h)(ẽξ)+L′′(ξ̃h)(ẽξ, ξ̃
∗
h). Gathering the

results from above, we obtain, noting that ξ̃h = (ũh, q̃h, z̃h) = (Sh(q̃h), q̃h, z̃h)

i(q)− ih(q̃h) = I(u, q)− I(ũh, q̃h)

=
1

2

[
L′(ξ̃h)(ẽ∗) + I ′(ξ̃h)(ẽξ) + L′′(ξ̃h)(ẽξ, ξ̃

∗
h)
]

+ L′(ξ̃h)(ξ̃∗h) + R̃(3).
(26)

Straightforward calculations show

(27) L′(ξ̃h)(ẽ∗) = ρu(ξ̃h, ξ̃
∗
h)(y − ỹh) + ρz(ξ̃h, ξ̃

∗
h)(v − ṽh) + ρq(ξ̃h, ξ̃

∗
h)(p− p̃h),

and

(28) I ′(ξ̃h)(ẽξ) + L′′(ξ̃h)(ẽξ, ξ̃
∗
h) = ρv(ξ̃h, ξ̃

∗
h)(z − z̃h) + ρy(ξ̃h, ξ̃

∗
h)(u− ũh) + ρp(ξ̃h, ξ̃

∗
h)(q − q̃h).

Let us end this section with some further observations.

Remark 3.6. Note that if q̃h = q̄h, then (ṽh, p̃h = p̄h, ỹh) in fact solve (10), cf. Remark 3.4, and

consequently j′h(q̃h)(p̃h) = 0.

Remark 3.7. From numerical experiments for the regularized p-Laplacian computed in [27], we can

deduce that R(3) can be neglected on sufficiently refined meshes.

An identity also observed in [51], is the following:

Proposition 3.1. If I = J and j′′(q) is injective, then we have (v, p, y) = (0, 0, z).

Proof. Since J is the cost functional and (u, q) is a local minimizer of our optimization problem the

first order necessary condition is given by j′(q) = 0. Therefore the adjoint equation reads as

j′′(q)p = −i′(q) = −j′(q) = 0.

If j′′(q) is injective, then p = 0. From the tangent equation

L′′zu(u, q, z)(·, v) + L′′zq(u, q, z)(·, p) = 0,

we can deduce that v = 0. Finally the optimality system reduces to

L′′zu(u, q, z)(y, ·) + I ′u(·) = 0, and L′′zq(u, q, z)(y, ·) + I ′q(·) = 0.

From this follows that y = z, which completes the proof.

3.3 The Parts of the Error Estimator

We now briefly discuss the two main parts of the error estimator:

η
(2)
h,k := ηk + η

(2)
h ,

where the first part refers to the iteration error, and the second term denotes the discretization error

to be defined in the following. We recall that η(2)
h,k is designed to estimate i(q)− ih(q̃h) given in (24).
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The iteration error estimator The iteration error estimator

ηk := −j′h(q̃h)(p̃h)

can be used as stopping rule for the nonlinear solver like for Newton’s method as in [44, 25, 25] and

Algorithm 1 presented in Section 5.

The discretization error estimator Of course the exact solution of the optimal control problem

in formula (24) are not known. They can either be replaced by a (patch-wise) higher order polynomial

interpolation or by approximations on enriched spaces [8, 4].

The discretization error estimator using the solutions (u
(2)
h , q

(2)
h , z

(2)
h ) and (v

(2)
h , p

(2)
h , y

(2)
h ) on enriched

spaces reads as

η
(2)
h :=

1

2

[
ρu(ξ̃h, ξ̃

∗
h)(y

(2)
h − ỹh) + ρz(ξ̃h, ξ̃

∗
h)(v

(2)
h − ṽh) + ρq(ξ̃h, ξ̃

∗
h)(p

(2)
h − p̃h)(29)

+ρv(ξ̃h, ξ̃
∗
h)(z

(2)
h − z̃h) + ρy(ξ̃h, ξ̃

∗
h)(u

(2)
h − ũh) + ρp(ξ̃h, ξ̃

∗
h)(q

(2)
h − q̃h)

]
.

The replacement is justified if a strengthened saturation assumption is fulfilled as shown in [27] for

both the nonlinear state equation and the goal functionals.

We briefly recall that the localization can be performed in three ways: classical integration by

parts yielding the strong problem formulation [8], a filtering approach employing the weak problem

formulation [10], or a partition-of-unity using again the weak form of the problem [45]. All three

techniques are analyzed (theoretically and computationally) with respect to their effectivity in [45]. In

the theoretical analysis, a discrete version of Lemma 3.3 is necessary to justify that (v
(2)
h , p

(2)
h , y

(2)
h ) is

indeed a solution in the enriched spaces.

4 Extension to Multiple Goal Functionals

In Section 3, we discussed how the DWRmethod works for one functional. However, for some problems,

several functional evaluations would be of interest. Let us consider N goal functionals I1, I2, . . . , IN

for some N ∈ N. One possibility would be to compute the error estimators separately as described in

Section 3. However, we would have to solve the adjoint problem N times, leading to high computational

cost. There are several ways to tackle this problem as for example discussed in [33, 32, 42, 1] and more

recently in [35, 28, 25, 26, 27].

Adopting the techniques presented in [25], we try to combine the functionals to one, and apply

the DWR method for one functional to it. In the following section, we consider u, q as the solution

of (1), and ũh, q̃h as some approximations. To construct the combination, we introduce a so called

error weighting function:

Definition 4.1 (Error weighting function [25]). Let M ⊆ RN . We say that E : (R+
0 )N ×M 7→ R+

0

is an error-weighting function if E(·,m) ∈ C1((R+
0 )N ,R+

0 ) is strictly monotonically increasing in each

component and E(0,m) = 0 for all m ∈M .
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As in [25], let ~I(·) := (I1(·), I2(·), . . . , IN (·)) mapping from
⋂N
i=1D(Ii) ⊂ U × Q 7→ RN . Further-

more, we define | · |N : RN 7→ (R+
0 )N as the component-wise absolute value. This allows us to construct

the error function IE as follows:

ĨE(·) := E(|~I(u, q)− ~I(·)|N , ~I(ũh, q̃h)).(30)

Remark 4.2. The error functional ĨE is constructed in a way, that avoids error cancellation between

two or more functionals. For a more detailed discussion, we refer the reader to [25, 27].

Remark 4.3. The quantity (30) is not computable, since it depends on ~I(u, q), which is not known.

However, we can use a higher order polynomial approximation to approximate this quantity, as done

in [33, 25, 27], where consequences of the replacement are discussed in [27].

The resulting error weighting functional is given by

(31) IE(·) := E(|~I(u
(2)
h , q

(2)
h )− ~I(·)|N , ~I(ũh, q̃h)),

where u(2)
h , q(2)

h denote the solutions on enriched finite element spaces.

Remark 4.4. We notice that, for the choice E(x,m) :=
∑N

`=1
x`
|m`| , we obtain the same combined

functional as in [28] up to sign. The same holds for [33, 32] in the case of linear problems. This choice

is used in our numerical examples.

Remark 4.5. Finally, the method explained in Section 3 is applied to IE instead of I to achieve a

control of the errors in all functionals at once, as algorithmically illustrated in Section 5.

5 Algorithmic Details

In this section, we briefly recapitulate the algorithmic techniques to solve the optimal control problem

with multiple goal functionals that we have outlined in the previous sections. The algorithms for the

forward problem including multiple goal functionals evaluations were derived in [25]. Therein, the goal

functionals were estimated using the DWR method (thus an adjoint approach). Hence, the extension

to optimal control using a gradient-based approach is straightforward. The implementation of the

following algorithms is done in the open-source library DOpElib [23, 30]. For a general overview of

optimization algorithms, we refer to [41, 38]. First, we present the reduced Newton method described

in Algorithm 1.
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Algorithm 1 Reduced Newton algorithm for multiple-goal functionals with adaptive stopping rule on

level l

1: Start with some initial guess ql,0h ∈ Q
l
h and k = 0.

2: For pl,0h , solve

j′′h(ql,0h )(vh, p
l,0
h ) = (i

(0)
E,h)′(ql,0h )(vh) ∀vh ∈ V l

h,

with (i
(0)
E,h)′ constructed with ql,(2)

h and ql,0h .

3: while |j′h(ql,kh )(pl,kh )| > γη
l−1,(2)
h do

4: For δql,kh , solve

j′′h(ql,kh )(δql,kh , vh) = −j′h(ql,kh )(vh) ∀vh ∈ V l
h.

5: Update : ul,k+1
h = ql,kh + αkδql,kh for some good choice αk ∈ (0, 1].

6: k = k + 1.

7: For pl,kh , solve

j′′h(ql,kh )(vh, p
l,k
h ) = (i

(k)
E,h)′(ql,kh )(vh) ∀vh ∈ U lh,

with (i
(k)
E,h)′ constructed with ql,(2)

h and ql,kh .

Remark 5.1. The parameter γ is chosen as 10−2 in the numerical experiments.

Remark 5.2. In [30], we specifically used DOpE::ReducedNewtonAlgorithm::ReducedNewtonLineSearch

to obtain the line search parameter αk.

Remark 5.3. The arising linear problems j′′h(ql,kh )(vh, p
l,k
h ) = j′h(ql,kh )(vh) and

j′′h(ql,kh )(vh, p
l,k
h ) = (i

(k)
E,h)′(ql,kh )(vh) were solved by using the algorithm

DOpE::ReducedNewtonAlgorithm::SolveReducedLinearSystem implemented in [30].

With the help of Algorithm 1, we can now state the final Algorithm 2 used in this paper.

Algorithm 2 The final algorithm

1: Start with some initial guess q0,(2)
h ,q0

h, set l = 1 and set TOLdis > 0.

2: Solve j′h(q
l,(2)
h ) = 0 for ql,(2)

h using Newton Algorithm with the initial guess ql−1,(2)
h on the discrete

space Ql,(2)
h .

3: Solve j′h(qlh) = 0 and j′′h(qlh)(·, plh) = (iE,h)′(qlh)(·) using Reduced Adaptive Newton algorithm with

the initial guess ql−1
h on the discrete space Qlh .

4: Construct the combined functional iE,h.

5: Solve the adjoint problem j′′h(q
l−1,(2)
h )(·, pl,(2)

h ) = (i
(k)
E,h)′(q

l,(2)
h )(·) on V l,(2)

h .

6: Recover vl,(2)
h and yl,(2)

h using the first an last row in (22) for the enriched spaces U l,(2)
h and Ql,(2)

h .

7: Compute the local error estimator ηh,K from element and face contributions following Section 3.3.

8: Mark elements with some refinement strategy.

9: Refine marked elements: T lh 7→ T
l+1
h and l = l + 1.

10: If |ηh| < TOLdis stop, else go to 2.

Remark 5.4. In Algorithm 2 in Step 8, we use Dörfler marking with θ = 0.5 as marking strategy [24].
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Remark 5.5. The reduced discrete cost functional jh on the space Ql,(2)
h is constructed by means of

the corresponding discrete solution operator on the enriched space.

Remark 5.6. To solve the linear systems arising form the forward state equation, we use the sparse

direct solver UMFPACK [21].

6 Numerical examples

In the current section, we provide some numerical examples demonstrating the performance of the theo-

retical arguments and algorithms developed previously. The implementation is done in DOpElib [23, 30]

using the finite elements from deal.II [3, 2]. However, large parts of the programming are new . For

this reason, we first present a linear example with a single goal functional, which has been already

studied in the literature. In the second example, we then consider the p-Laplacian and again the

case of a single goal functional. In Example 3, we study several nonlinear goal functionals that are

simultaneously controlled. The quality of our results will be measured by effectivity index which is

given by

Ieff :=
η

(2)
h

I(u, q)− I(ũh, q̃h)
,

whereas the primal and adjoint effectivity indices are defined by

Ieffp :=
ρu(ξ̃h, ξ̃

∗
h)(y

(2)
h − ỹh) + ρz(ξ̃h, ξ̃

∗
h)(v

(2)
h − ṽh) + ρq(ξ̃h, ξ̃

∗
h)(p

(2)
h − p̃h)

I(u, q)− I(ũh, q̃h)
,

and

Ieffa :=
ρv(ξ̃h, ξ̃

∗
h)(z

(2)
h − z̃h) + ρy(ξ̃h, ξ̃

∗
h)(u

(2)
h − ũh) + ρp(ξ̃h, ξ̃

∗
h)(q

(2)
h − q̃h)

I(u, q)− I(ũh, q̃h)
.

Notice that we do not apply the absolute value to the contributions. Hence, we also estimate the sign

of the error.

6.1 Example 1: linear Laplacian, single goal functional

In this first numerical test, we consider a standard linear example, which is implemented, for instance,

in DOpElib[23, 30][OPT/StatPDE/Example1, Section 6.1.1]. The main purpose is to validate our novel

programming code against known findings. The domain is Ω := (0, 1)2. The right-hand side forces of

the PDE are f(x, y) :=
(
20π2sin(4πx) − α−1sin(πx)

)
sin(2πy). The given control is qd := 0, and the

desired state is ud :=
(
5π2sin(πx) + sin(4πx)

)
sin(2πy). The regularization is chosen as α = 10−2.

The problem statement is as follows: Find (u, q) ∈ H1
0 (Ω)× L2(Ω) such that it is a minimizer of

min
(u,q)∈H1

0 (Ω)×L2(Ω)
J(u, q) :=

1

2
‖u− ud‖2L2(Ω) +

α

2
‖q − qd‖2L2(Ω),

with the constraints

−∆u = f + q in Ω,

u = 0 on ∂Ω.
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The exact minimizer of the problem is known, and given by u(x, y) = sin(4πx)sin(2πy) and

q(x, y) = α−1sin(πx)sin(2πy). First of all, we use I = J , so the cost functional as quantity of in-

terest. Here, the exact value is given by J(u, q) = 1
8

(
25π4 + α−1

)
.

In the Figures 1 and 2, the effectivity index Ieff and the error are both shown against the number

of degrees of freedom (DOFs). For the single error parts, primal and adjoint estimators, the effectivity

indices show significant differences from the asymptotically expected value. Combining both parts,

then yields an optimal Ieff = 1. Convergence of adaptive and uniform mesh refinement are shown in

Figure 2.
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Figure 1: Example 1. Ieff vs DOFs for the

linear model problem.
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Figure 2: Example 1. Error vs DOFs for the

linear model problem.

In this second part of the example, we apply the method to a quantity that is different to the cost

functional. We are interested in I(u, q) := ‖u‖L1(Ω). The exact value is given by I(u, q) = 4π−2. The

corresponding numerical findings are displayed in the Figures 3 and 4. We observe excellent effectivity

indices in Figure 3. Optimal convergence rates also in comparison with uniform mesh refinement are

observed in Figure 4.
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Figure 3: Example 1. Ieff vs DOFs for the

linear model problem.
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Figure 4: Example 1. Error vs DOFs for the

linear model problem.
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6.2 Example 2: p-Laplacian, single goal functional

We now proceed to nonlinear state equations and consider the example PDE provided in Section 2.3.

Here, Ω (and the initial mesh) and ud are given in Figure 5. Furthermore, qd = 1, p = 4, ε = 1 and

f = 0. In particular, we investigate various regularization parameters α. The goal functional I(u, q) is

given by I(u, q) :=
∫

Ω u(x)2q(x)2dx.

ud = −1

ud = 0

(0, 0)

(7, 5)

Figure 5: Example 2: The domain Ω with initial mesh and values of ud.

Table 1: Example 1: Ieffs for I(u, q) :=
∫

Ω u(x)2q(x)2dx.

α 0.01 0.1 1 10

l Ieff DOFs Ieff DOFs Ieff DOFs Ieff DOFs

0 0.88 275 0.69 275 0.89 275 0.90 275

1 0.94 326 0.79 506 0.91 565 0.93 568

2 0.94 381 0.68 759 0.91 832 0.92 845

3 0.99 561 0.66 1 266 0.92 1 367 0.93 1 451

4 1.05 719 0.63 2 084 0.91 2 246 0.93 2 385

5 1.06 1 151 0.50 3 013 0.89 3 115 0.93 3 263

6 1.13 1 856 0.59 5 031 0.92 5 072 0.95 5 444

7 1.05 2 419 0.55 8 137 0.94 8 367 0.97 8 865

8 1.11 3 363 0.36 12 498 0.94 11 880 0.97 12 479

9 1.12 5 691 0.56 20 690 0.95 17 591 0.98 19 357

10 1.15 7 852 0.47 33 247 0.95 31 035 0.99 32 970

11 1.13 10 752 0.38 50 864 0.95 45 721 0.99 47 850

12 1.14 17 094 0.56 84 368 0.96 72 636 0.99 78 502

13 1.19 25 916 0.44 135 166 0.96 126 711 0.99 133 541

14 1.14 35 482 0.39 207 466 0.96 184 754 1.00 192 946

I(u, q) DOFs I(u, q) DOFs I(u, q) DOFs I(u, q) DOFs

∞ 0.2316036 1 326 503 0.07069658 2 127 499 0.1502366 1 996 755 0.1635741 2 107 007
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In Table 1, we obtain, for α = 0.01, . . . , 10, effectivity indices in the range of 0.88 to 1.30, which are

excellent findings in view of the nonlinear behavior of the state equation and the geometric singularities

introduced by the domain. In the case of α = 0.1, we obtain a Ieff in the range of 0.36 to 0.79, which

might be affected by cancellation effects from adding the different contributions to the error estimator.

The exact value of the functionals was approximated by one additional p and h refinement, and is

given in the last line of Table 1 corresponding to l = ∞, with additional information on the number

of DOFs used to compute this values.

In the Figures 6 and 7, the final meshes for different α are shown. For α = 10−2, we observe

very localized mesh refinement, while, for larger α, the mesh is still locally refined, but in a somewhat

uniform behavior. The states and controls on these final meshes are displayed in the Figures 8 and 9.

Figure 6: Example 2: Final meshes for α = 10−2 and α = 10−1.

Figure 7: Example 2: Final meshes for α = 10−0 and α = 101.
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Figure 8: Example 2: State on finest grid for α = 10−2 and α = 101.

Figure 9: Example 2: Control on finest grid for α = 10−2 and α = 101.

6.3 Example 3: p-Laplacian, multiple goal functionals

In this third example, we proceed to multiple goal functionals. The setup is the same as in Example

2, but with a single α = 0.01 and multiple goal functionals:

• I1(u, q) = 1
2

∫
Ω(u− ud)2dx ≈ 1.15760,

• I2(u, q) = 1
2

∫
Ω(q − qd)2dx ≈ 21.3305 ,

• I3(u, q) =
∫

([4,5]×R)∩Ω udx ≈ −0.236288 ,

• I4(u, q) =
∫

[1, 25
4

]×[2, 5
2

] qdx ≈ 0.328042 ,

• I5(u, q) = 1
2

∫
Ω u

2q2dx ≈ 0.231615.

The geometry alongside with the goal functionals I3 and I4 is illustrated in Figure 10.
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Figure 10: Example 3: The domain Ω with initial mesh and the domains of Integration for I3 and I4 .
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Figure 11: Example 3. Ieff vs DOFs for p = 4,

ε = 10−0.
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Figure 12: Example 3. Error vs DOFs for p =

4, ε = 10−0.
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Figure 13: Example 3. Relative error vs DOFs

for p = 4, ε = 10−0.
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Figure 14: Example 3. All error estimator

parts for p = 4, ε = 10−0.
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The reference values are computed on a fine grid (716 792 DOFs for q + 730 199 DOFs for u) ,

which is obtained by 12 adaptive refinements for JE followed by two uniform h-refinements and one

uniform p-refinement. Our findings are displayed in the Figures 11, 12, 13 and 14. In Figure 11 the

calculated effectivity indices are excellent in view of the nonlinearities of the domain, state equation

and multiple goal functionals. Curves of the errors and estimators are shown in the Figures 12, 13

and 14. Here, the combined functional (as expected) bounds all single functionals. In Figure 12, we

observe that adaptive refinement pays off in delivering the same error as uniform mesh refinement,

but with a lower computational cost. The convergence rates are the same, which lies in the fact that

the control is chosen in such a way that a sufficiently smooth final solution is obtained. Finally, we

compare the adaptive stopping rule used in Algorithm 1 with the standard stopping rule, which is

used in the DOpElib [23, 30] algorithm DOpE::ReducedNewtonAlgorithm::Solve with the absolute

residual nonlinear_global_tol = 1.e-7 and relative residual nonlinear_tol= 8.e-5. Since the

discretization error estimate is not given for l = 0 in Algorithm 1, we use ηl−1
h = 10−5.

We abbreviate the first algorithm with AN (Adaptive Newton) and the second algorithm with FN

(Full Newton). In Table 2, we monitor that the Ieff show a pretty similar behavior even for the adaptive

stopping rule. Even though we need 1− 3 iterations in case of the adaptive stopping rule compared to

2 − 17 iterations for the standard stopping rule, which is illustrated in Table 2 as well. Furthermore,

we want to notice that the refined meshes for both algorithms coincide exactly up to l = 7. For l = 8,

it is exactly one element, which is refined additionally in the case of FN. If we compare the corrected

effectivity indices

Ieff,c :=
η

(2)
h + ηk

I(u, q)− I(ũh, q̃h)

for the two stopping rules, we observe that they coincide even more after the correction.

In Table 3, the comparison between the estimated iteration error and the real error in the combined

functional is shown. The ratio between ηk and the error mimics the choice of γ in Algorithm 1 for our

adaptive stopping rule, whereas there is almost no correlation for the standard stopping rule.
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Table 2: Example 3: Comparison of Newton’s Method with adaptive stopping rule (AN) and the

classical, non-adaptive, Newton method (FN); ItF : number of iterations for FN, ItA: number of

iterations for AN, |Th,F |: number of elements in the adaptive mesh resulting from using FN, |Th,A|:
number of elements in the adaptive mesh resulting from using AN, Ieff,F: Ieff for FN, Ieff,A: Ieff for AN,

Ieff,c,F: Ieff,c for FN, Ieff,c,A: Ieff,c for AN

l ItF ItA |Th,F | |Th,A| Ieff,F Ieff,A Ieff,c,F Ieff,c,A

0 4 3 116 116 0.882 0.882 0.882 0.882

1 5 3 137 137 0.829 0.830 0.829 0.830

2 5 1 158 158 0.942 0.933 0.942 0.941

3 6 2 215 215 0.918 0.912 0.918 0.918

4 6 2 347 347 1.023 1.019 1.023 1.022

5 6 2 494 494 1.078 1.068 1.078 1.076

6 7 2 800 800 1.069 1.067 1.069 1.069

7 12 2 1 283 1 283 1.091 1.087 1.091 1.090

8 17 2 1 898 1 895 1.089 1.093 1.089 1.090

9 6 2 2 966 2 957 1.089 1.090 1.090 1.090

10 9 2 4 802 4 790 1.085 1.088 1.085 1.083

11 5 2 7 097 7 091 1.089 1.077 1.089 1.093

12 4 2 11 153 11 099 1.096 1.088 1.097 1.095

13 2 2 18 206 18 140 1.128 1.129 1.122 1.123

14 2 2 27 341 27 269 1.151 1.152 1.136 1.137
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Table 3: Example 3: Comparison of Newton’s Method with adaptive stopping rule (AN) and the

classical, non-adaptive, Newton method (FN); ηk,F : iteration error estimate for FN, ηk,F : iteration

error estimate for AN.

l Error in IE,F Error in IE,A ηk,F ηk,A

0 5.98 · 100 5.98 · 100 −1.99 · 10−5 −3.2 · 10−6

1 2.93 · 102 2.75 · 102 1.22 · 10−2 −4.19 · 10−2

2 2.92 · 100 2.98 · 100 −5.18 · 10−5 2.46 · 10−2

3 1.23 · 100 1.24 · 100 6.72 · 10−5 7.71 · 10−3

4 4.70 · 10−1 4.73 · 10−1 9.75 · 10−6 1.67 · 10−3

5 2.93 · 10−1 2.96 · 10−1 4.44 · 10−6 2.59 · 10−3

6 2.40 · 10−1 2.40 · 10−1 1.99 · 10−6 3.48 · 10−4

7 1.35 · 10−1 1.36 · 10−1 −2.41 · 10−6 5.21 · 10−4

8 8.13 · 10−2 8.09 · 10−2 −3.38 · 10−6 −2.73 · 10−4

9 6.00 · 10−2 6.00 · 10−2 1.94 · 10−5 −2.64 · 10−5

10 3.77 · 10−2 3.77 · 10−2 3.65 · 10−6 −2.03 · 10−4

11 2.07 · 10−2 2.11 · 10−2 −8.56 · 10−7 3.45 · 10−4

12 1.57 · 10−2 1.58 · 10−2 2.61 · 10−5 1.17 · 10−4

13 9.41 · 10−3 9.45 · 10−3 −5.67 · 10−5 −5.96 · 10−5

14 5.09 · 10−3 5.11 · 10−3 −7.89 · 10−5 −7.85 · 10−5

7 Conclusions

In this work, we developed a novel a posteriori multiple goal-oriented error estimation for optimal

control problems subject to a nonlinear state equation. The error estimator also serves for balanc-

ing the discretization and nonlinear iteration error. The overall optimization problem is solved via

a reduced approach in which the state equation is eliminated by a control-to-state solution operator.

In Section 3.2, the theoretical results yield an a posteriori estimate for a single goal functional. The

extension to multiple goal functionals was made in Section 4. Based on these theoretical aspects, the

algorithmic details were worked out in the following section. Three numerical examples were investi-

gated. In the first example, our approach was tested against configurations known in the literature.

The Examples 2 and 3 are more advanced by considering the regularized p-Laplacian as nonlinear state

equation. The main criterion whether the proposed error estimator works sufficiently well is given by

the effectivity index. In the numerical examples, values around one were obtained. These are excellent

findings in view of the challenging nature of the underlying problem configuration; namely domain

23



(corner) singularities, quasi-linear state equations within an optimal control setting, and finally multi-

ple nonlinear goal functionals. Ongoing work considers the extension to elasticity and more practical

applications.
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