
waLBerla: A block-structured high-performance
framework for multiphysics simulations

Martin Bauera, Sebastian Eibla, Christian Godenschwagera, Nils Kohla,
Michael Kuronc, Christoph Rettingera, Florian Schornbauma,

Christoph Schwarzmeiera, Dominik Thönnesa, Harald Köstlera, Ulrich Rüdea,b

aChair for System Simulation, Friedrich–Alexander–Universität Erlangen–Nürnberg,
Cauerstraße 11, 91058 Erlangen, Germany

bCERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 1, France
cInstitute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart,

Germany

Abstract

Programming current supercomputers efficiently is a challenging task. Multiple
levels of parallelism on the core, on the compute node, and between nodes need to
be exploited to make full use of the system. Heterogeneous hardware architectures
with accelerators further complicate the development process. waLBerla
addresses these challenges by providing the user with highly efficient building
blocks for developing simulations on block-structured grids. The block-structured
domain partitioning is flexible enough to handle complex geometries, while the
structured grid within each block allows for highly efficient implementations
of stencil-based algorithms. We present several example applications realized
with waLBerla, ranging from lattice Boltzmann methods to rigid particle
simulations. Most importantly, these methods can be coupled together, enabling
multiphysics simulations. The framework uses meta-programming techniques
to generate highly efficient code for CPUs and GPUs from a symbolic method
formulation. To ensure software quality and performance portability, a continuous
integration toolchain automatically runs an extensive test suite encompassing
multiple compilers, hardware architectures, and software configurations.

Keywords: high-performance computing, multiphysics, lattice Boltzmann, rigid
particle dynamics, adaptive mesh refinement, code generation

1. Introduction

Complex phenomena in the natural and engineering sciences are increasingly
being studied with the help of simulations. A drastic increase in available
computational power over the last few years now allows for large, highly resolved
simulations. Thus, Computational Sciences and Engineering (CSE) is emerging
as a third fundamental pillar to complement theory and experiment [1, 2]. CSE
as a new discipline aims at designing, analyzing, and implementing new efficient
simulation methods on current high-performance computing (HPC) systems such
that they can be applied to a wide variety of scientific and engineering problems
in a robust, user-friendly, and reliable fashion. This requires software tailored to
these particular needs.

Preprint submitted to Elsevier October 1, 2019

ar
X

iv
:1

90
9.

13
77

2v
1 

 [
cs

.D
C

] 
 3

0 
Se

p 
20

19



waLBerla is a modern open-source software framework that supports
complex multiphysics simulations, and that is specifically designed to address
the performance challenge in CSE: exploiting the full power of the largest
supercomputers for a wide class of scientific research questions.

Here, performance and efficiency are crucial since simulation-based science
often requires very fine spatial and temporal resolution to resolve all relevant
physical effects. waLBerla is carefully designed as a framework for massively
parallel HPC systems, employing only fully distributed data structures [3, 4].
Every process holds information only about local and adjacent data. Thus, the
memory usage of a process does not depend on the total size of the simulation,
making perfect scalability possible. Offering both pure Message Passing Interface
(MPI) [5] and hybrid MPI/OpenMP parallelization, the underlying hardware can
be used to its fullest potential. Besides scalability, another major design goal of
waLBerla is a high node-level performance for all its compute kernels. A careful
performance engineering process, together with automated performance tests,
ensure sustainable performance across different compilers, operating systems,
and hardware architectures.

HPC software usually has to be modified extensively in order to make full
use of new hardware architectures. This portability typically involves a lot of
code duplication or at least similar code structure. To increase productivity by
reducing duplication, waLBerla employs code generation techniques to generate
time-critical numerical kernels from a high-level, domain-specific formulation.

waLBerla’s main focus are computational fluid dynamics simulations with
the lattice Boltzmann method (LBM). It therefore offers a wide range of state-of-
the-art LBM models, together with a variety of utility and usability functionality.
In this regard, it is comparable to other LBM frameworks such as OpenLB [6, 7],
Palabos [8, 9], elbe [10, 11], LB3D [12, 13, 14], HemeLB [15], and Sailfish [16].
Other LBM codes focus on HPC implementations of the method targeted at spe-
cific hardware architectures or a particular collision operator, like SunwayLB [17]
or the LBM benchmark kernel suite [18].

Additionally, waLBerla includes a rigid particle dynamics module to simu-
late particulate systems with the discrete element method (DEM) or hard-contact
models. This makes it comparable to particle frameworks like LIGGGHTS [19],
GranOO [20], YADE [21], PROJECTCHRONO [22], and MercuryDPM [23].

Similar to more general frameworks like AMROC [24, 25], p4est [26] and
Peano [27], however, waLBerla has an explicit focus on HPC and also provides
flexible adaptive mesh refinement and load balancing routines.

As a multiphysics framework, waLBerla also enables efficient simulations of
large-scale coupled fluid-particle systems in a monolithic way since both the fluid
solver and particle modules are part of the same code and well interconnected.

The first prototype for waLBerla was developed in 2007. The framework
has seen two architectural overhauls since, with the current iteration continuously
developed since 2012 [3] and released open-source as version 3.1 in 2017. It
is published under the GNU GPLv3 license [28] together with tutorials and
documentation [29]. Since the publication of Ref. 3, major new features like the
rigid body dynamics module, adaptive mesh refinement, and code generation
have been introduced as described below and are mostly included in version 4.2,
the latest release. Version 5.0 is currently in development.

In this paper, we present the waLBerla framework. Its software architecture
and components are briefly outlined and explained in Section 2. This is followed

2



coreMPI config timing math ...

block
forestrefinement load balancing buffer checkpointing

block data
and kernelsfields GPU geometry

numerical
methodsLBM RPD fluid-particle coupling PDE su

pp
or
tin

g
in
fr
as
tr
uc
tu
re

Figure 1: Overview of the framework’s software architecture and components.

by a more detailed presentation of its individual components. This includes the
domain partitioning with the block forest in Section 3, and the discussion of
data structures and kernels in Section 4. In Section 5, the numerical methods
and some respective applications are given. Section 6 explains the applied code
generation techniques. The supporting infrastructure of waLBerla that assists
developers and users is shown in Section 7. Finally, in Section 8, several projects
that successfully build on and extend waLBerla’s functionalities are highlighted.
Section 9 concludes the paper.

2. Framework overview

The waLBerla framework is designed with a focus on modularity to enhance
productivity, reusability, and maintainability. An illustration of the software
architecture is provided in Figure 1. waLBerla is implemented largely in
C++(14) with Python extensions for enhanced usability.

The core part contains the fundamental building blocks that are required for
a parallel numerics framework. This includes high-level abstractions around the
MPI library and implementations of fundamental mathematical concepts, such as
three-dimensional vectors or matrices. Additionally, it contains functionality for
handling configuration files that can be used to define simulation parameters in
a convenient way. Extensive time measurement options are available, providing
the prerequisite for detailed performance testing and code optimizations.

The block forest manages the domain partitioning into blocks, independent of
data structures required for the actual simulation, and is described in Section 3
in more detail. It provides functionality to statically or dynamically refine
the partitioning, essentially splitting or merging blocks. Determining optimal
distributions of the blocks among the available processes in a parallel setup is a
non-trivial task, and various load balancing techniques are available. waLBerla
also provides components for checkpointing, i.e., to write and read a snapshot
of a simulation such that it can be stopped and restarted or recovered after a
hardware failure. Finally, as information between the blocks has to be exchanged,
versatile data buffers for sending and receiving data are implemented.

One major part of waLBerla are kernels, i.e., algorithms that work on
structured fields. For this reason, much effort has been put into the careful design
of efficient data structures and kernels, as is explained in detail in Section 4. This

3



includes support for shared-memory parallelization and vectorization, as well as
for specialized hardware like graphical processing units (GPUs). For convenient
handling of complex domains and boundary setups, we provide various functions
to define geometries and to work with mesh files. The most prominent example
of a numerical method available in waLBerla that makes extensive use of
all those functionalities is the lattice Boltzmann method (LBM). It is briefly
explained in Section 5.1, also stating our achievements in terms of performance
and scaling on various supercomputers.

Moreover, waLBerla also offers a highly efficient rigid particle dynamics
(RPD) module that uses the same domain partitioning concepts as LBM, however,
working on completely different data structures. The available algorithms for
particle simulations and the corresponding recent accomplishments are presented
in Section 5.2.

By coupling the LBM with the RPD module, multiphysics simulations can be
realized on a large scale and without compromising on performance or scalability.
The available fluid-particle coupling strategies are highlighted in Section 5.3,
together with information on a number of physical problems that they have been
applied to.

Code generation has been demonstrated to be a viable tool for rapid develop-
ment of efficient compute kernels. With these techniques, zero-cost abstractions
can be realized. When using pure C++, optimizations and method description
can oftentimes not be cleanly separated without sacrificing performance. In Sec-
tion 6, we present our recently added code generation strategies for kernels that
work on field and particle data structures.

All these parts are backed by an extensive testing environment that ensures
ongoing correctness of the implementation, a well-structured collaborative de-
velopment environment, and support of a wide range of compilers and software
systems. Furthermore, a graphical user interface (GUI) is available to facilitate
rapid development of new functionality. A powerful Python interface supports
the user by providing efficient ways for pre- and postprocessing of the simulations.
A detailed description of these components is given in Section 7.

Due to its flexible and generic software design, waLBerla has been applied
successfully in several projects as a potent basis for various extensions. Those
range from finite-difference phase-field simulations to finite-element earth-mantle
dynamics simulations, and are briefly summarized in Section 8.

3. Block-structured domain partitioning

The core data structure of the waLBerla framework is the BlockForest.
It is responsible for the domain partitioning and acts as a container for all
data needed by the simulation. In this section, we give an overview of its
implementation and functionalities. More information can be found in Refs. 3,
30, 31.

3.1. Overview
The starting point for the domain partitioning is a cuboidal simulation

domain. This domain is partitioned in a regular fashion into equally sized
subdomains. These intermediate subdomains, subsequently, act as root nodes for
an octree, effectively forming a forest of octrees. These individual octrees can be

4



process P1

process P2

process P3

process P4

Figure 2: Illustration of the domain partitioning in waLBerla. The whole computational
domain is subdivided into cuboidal subdomains (blocks) that can differ in size but have to
maintain a 2:1 size ratio with direct neighbors. These blocks are then distributed among the
available (here four) processes.

refined independently of each other as explained in Section 3.2. The leaf nodes
of the octrees make up the final subdomains of the simulation domain. The only
restriction on the octree structure is a 2:1 size ratio, as illustrated in Figure 2,
which is maintained between neighboring subdomains at all times. Due to their
shape, these subdomains are called blocks in the context of the waLBerla
framework. In a parallel environment, every process is assigned one or more of
these blocks. However, each block can only be assigned to exactly one process.
The strict structure of the forest of octrees allows for an efficient distributed
implementation which guarantees high scalability on large supercomputers.
Every process only knows about blocks which got assigned to itself and has
some information about neighboring blocks. All other blocks are unknown to a
process. This particular detail ensures that the memory requirements needed
per process to store the domain partitioning information does not increase with
the number of processes [30]. However, the blocks are not only used to represent
the domain partitioning, they are also data containers for arbitrary data. To
use this storage, one has to implement the BlockDataHandling interface. This
interface takes care of the creation, destruction, serialization, and deserialization
of data allocated on every block. There are no restrictions on the data type and
also no restrictions on the size, as long as it fits into the available memory. After
registering the BlockDataHandling implementation with the BlockForest, the
BlockForest creates an instance of the data for every block. This mechanism is
used for all data required by the simulation, as described in Section 4.

3.2. Adaptive refinement and load balancing
The capability to adaptively alter the domain partitioning is particularly

useful for many engineering applications and thus a commonly sought feature in
frameworks for numerical simulations [32]. When working on Eulerian grids, it
allows maintaining a fine resolution wherever necessary, while at the same time
coarsening the grid in less interesting regions, which often drastically reduces the
computational cost and memory consumption of the simulation. In waLBerla,
we fully support static and dynamic domain repartitioning. The procedure that
updates the BlockForest is carried out in four stages [31]. At first, blocks are
marked for coarsening or refinement. This is done based on application-specific
criteria that are registered as callback functions and therefore offer a maximum

5



of flexibility. Examples include the vorticity magnitude of the flow in fluid
simulations and the number of particles in particle simulations. In the second
step, a proxy data structure is created from this refinement information. This data
structure can be regarded as a lightweight version of the current BlockForest.
It only contains the new topological information without the memory-intensive
simulation data and allows to specify the expected workload per block. Based on
this information, the proxy data structure can be load-balanced by redistributing
the proxy blocks accordingly between all available processes. For load balancing,
commonly applied space-filling curves like Morton and Hilbert but also wrappers
to libraries like ParMETIS [33, 34] are available. Due to the lightweight nature
of the proxy blocks, even diffusive load balancing schemes, which require several
internal iterations, can be carried out efficiently [31]. Finally, in the fourth step,
the actual BlockForest is adapted according to the proxy data structure, which
includes refinement and coarsening, as well as redistribution of the simulation
data.

3.3. Distributed memory parallelization
One central building block of the waLBerla framework is its communication

infrastructure. All of the distributed memory parallelization strategies are imple-
mented on top of the Message Passing Interface [5] (MPI). The communication
module is organized in a layered structure (cf. Figure 3), going from low-level
MPI functions up to classes that implement communication strategies. Only
the topmost layer of the communication stack is specific to the block structure.
The lower levels comprise a modular MPI serialization library that can be used
independently of the BlockForest. Here, we describe the communication ar-
chitecture from bottom to top. At the lowest layer, waLBerla provides thin
abstractions on top of MPI. This layer is a C++ interface that integrates C++’s
standard template library (STL) containers and basic waLBerla data types like
vectors and matrices with the MPI C interface. Additionally, it offers functions
to broadcast input and geometry files to participating processes. Small files are
read only once by the root process and are broadcast to all other processes to
reduce the file system load.

The “buffered MPI” layer offers flexible message serialization and deserializa-
tion capabilities. In many communication scenarios, data has to be packed into
a contiguous buffer from where it can be sent as a single message. C++ provides
a powerful input/output (I/O) stream library in its STL. Similarly, waLBerla
introduces buffer classes that can act as sources or sinks for serialization op-
erations. By overloading the relevant operators, packing and unpacking is as
simple for the user as interacting with the standard I/O streams. In this way,
native C++ types, STL containers, and waLBerla-specific types can be serial-
ized. Error-prone, low-level data reinterpretations and address computations are
encapsulated in this buffer layer and abstracted away from the user. The send
buffer internally holds a contiguous chunk of memory that can grow dynamically
and can be transferred easily between processes via MPI functions. When a
message is received, it is stored in a receive buffer object from where it can
conveniently be deserialized. Our buffer abstractions enable us to transparently
add metadata to the buffer. This allows us to detect incorrect usage of the
buffers. For instance, for type checking, the metadata specifies the data type of
the buffer. This metadata is then validated on the receiving side when the buffer
is unpacked. Through this approach, type information is conserved even during

6



block-to-block
buffered schemes

PackInfos

direct schemes

custom MPI data types

buffered MPI
buffer system
efficient n-to-n communication
fixed & variable message sizes

type-safe buffers

MPI

Figure 3: waLBerla’s distributed memory parallelization architecture.

the serialization and communication process. For release builds, the metadata is
omitted to keep the messages as small as possible.

Also part of the “buffered MPI” layer is the BufferSystem. It contains
functionality for several forms of MPI point-to-point communication by keeping
track of all communication partners of a process. It assumes that between these
processes, a similar communication pattern is executed multiple times, which is,
for example, the case for time-stepping algorithms. The user specifies a set of
processes to which messages should be sent to. For each communication partner,
a buffer is allocated and reused in all the following communication steps. To
receive MPI messages, the buffer system needs to know the set of processes from
which messages are expected. The sizes of these messages may either be known
beforehand by the receiver or only known to the sender of the message. The
message size may either stay constant through multiple communication steps
or vary over time. All cases are covered by the BufferSystem abstraction layer.
Communication of messages with previously unknown size can be realized either
by using MPI_IProbe calls or by sending an additional message that contains
the size of the following message(s). Depending on the cluster interconnect and
MPI implementation, one or the other realization may give better performance.
A communication step is divided into several phases: First, for all expected
messages, a non-blocking receive (MPI_IRecv) is scheduled. This is done even
before any messages are sent or packed such that the MPI system can already
prepare for the expected messages, for example, by allocating buffers. The
next step is to fill and send the outgoing buffers, again using non-blocking MPI
functions. Note that the possibly time-consuming operation of serialization can
be done after the receives have been scheduled. After the asynchronous sends
and receives, computation on data that does not depend on the communication
may be conducted. The last wait step finally receives and unpacks incoming
messages. Internally, this phase is realized by calling a MPI_Waitany function,
that waits for any of the previously scheduled sends or receives to finish. If
this function returns with a finished receive operation, the message is given to

7



the user for deserialization while further messages can be received. Usually,
the received message can also be handled in a thread-parallel way. The user
can register unpack functions (or functors) that are called asynchronously using
OpenMP [35] parallelism as soon as a message arrives. The splitting into phases
enables easy integration of the communication process into a task-parallel run
time system such that computation and communication overlap.

Up to this stage, all abstractions are independent of waLBerla’s block
structure. The main interfaces the framework user interacts with are the block-
to-block communication interfaces. There are two approaches, one “direct”
approach based on MPI data types and one “buffered” approach that builds
on the “buffered MPI” subsystem. We first describe the buffered part, shown
on the top left in Figure 3, where the data is serialized into buffers to reduce
the number of MPI messages and thus costs due to network latency. The user
implements a PackInfo interface, where, given a local and a remote block, the
user has to pack/unpack parts of data that is stored inside the block into buffers.
To illustrate this, consider the common case where each block stores parts of
a large distributed array, a case described in more detail in Section 4.2. Using
information about the neighboring block, the PackInfo decides which ghost
region to pack or unpack. In adaptive mesh refinement (AMR) setups, the block
also knows its own refinement level, such that grid transfer operations can be
done during the packing/unpacking step. If the neighboring block stores a coarser
grid, the data coarsening is already done on the sending side to reduce message
sizes. Optionally, PackInfos can implement a method to transfer data efficiently
between two locally stored blocks without intermediate buffers. In scenarios
where blocks differ in their computational load and waLBerla balances the load
by putting multiple blocks on a single process, this optimization is particularly
useful. waLBerla provides PackInfos for common block data, e.g., for the
structured grid case described above, or the case of particle data. However, the
user can store arbitrary data inside blocks. Additionally, by defining custom
PackInfos, the user can specify how these blocks are synchronized.

The top-most layer consists of communication schemes that encode the
algorithmic structure of the communication. These objects use the layers below
to provide a simple interface to conduct the communication either in a single
call or use asynchronous constructs to hide communication behind computation.
PackInfos are registered with buffered schemes to define what is communicated,
while the scheme defines how the communication is done.

Besides the buffered communication schemes that pack data into buffers to
reduce the number of MPI messages, a separate “direct” approach is available,
shown on the right of Figure 3. Instead of packing messages into buffers, the
data to be communicated is described with custom MPI data types. For example,
there are MPI data type definitions describing the array slices to realize ghost
layer synchronization. This MPI data type approach does not explicitly serialize
and copy data and thus can be more efficient. However, the buffered approach
is easier to implement for custom block data and allows to send different data in
a single message. For example, when simulating particulate flows, ghost layer
information of a structured grid can be easily sent together with particle data.
Therefore waLBerla offers both options, letting the users choose whichever
approach is best suited for their application.

8



3.4. Checkpointing and resilience
Systems with hundreds of thousands of compute cores are likely to fail from

time to time due to both hardware and software errors. Especially future peta-
and exascale systems are naturally expected to have a lower mean time between
failures due to their rapidly increasing size and complexity. This trend can be
observed for example when comparing the supercomputers Intrepid (installed
2008) and Sequoia (installed 2013), that were both initially ranked in the Top 5
of the TOP500 [36] list. Here, the reported mean time of interruption due to
hardware failures decreased from 7.5 days on Intrepid [37] to only 1.25 days on
Sequoia [38]. Applications in computational science and engineering typically
require the vast amount of resources that only extremely parallel systems can
offer. With run times that are in the order of hours or even days, simulation
software is especially affected by the increased frequency of failing system
components. Restarting such simulations consumes an unnecessary amount of
time and resources. Therefore, we regard resilience as a central research topic to
prepare for the next generation of parallel computers. There are two categories of
errors to be addressed: soft errors — such as bit flips that may remain unnoticed
by the system — and hard errors like single node failures. Two approaches
to handle such errors at the software level are algorithm-based fault tolerance
(ABFT) [39] and checkpoint-rollback recovery [40].

ABFT aims to recompute lost data through carefully designed algorithms
that are in general tailored to the individual application. While such techniques
have been successfully employed in scalable applications [41], they are not easy
to apply in a general purpose simulation environment.

Checkpoint-rollback recovery is a straightforward and popular black-box
solution to recover from faults in simulation software [42, 43, 44]. During run time,
the software regularly creates snapshots of the simulation data. Upon failure,
the application is restarted from the last available checkpoint and the lost data is
recomputed. Checkpoint-based fault-tolerance techniques must be implemented
carefully as the checkpoint-creation may suffer from bad performance due to
the massive memory traffic or slow disk I/O, as well as from massive memory
requirements. In Ref. 44 we implement a distributed, in-memory checkpointing
scheme that is especially tailored to extreme-scale simulations like those that are
performed with the waLBerla framework. We entirely refrain from writing to
disk but distribute the checkpoints in the main memory of the parallel processes.
We define small groups of processes, e.g., pairs of processes that store a snapshot
of their own simulation data and of the simulation data of the other group
members. This has two advantages: the memory footprint is only dependent of
the size of the process group and, therefore, constant and independent of the
number of involved processes. Second, the checkpoint can be created and loaded
much faster in/from memory than on/from disk. This technique guards the
simulation very effectively against single-node failures under the requirement
that the process groups contain processes from different nodes. We use an
extension to the MPI standard called User-Level Failure Mitigation (ULFM)
[45] that allows the user to detect and exclude failed MPI processes during run
time and to continue the running application. In case of a process failure, all
remaining processes load the last snapshot of their own subdomain and, if their
partner process failed, also the data of the failed process. Afterwards, the load
balancer redistributes the data using the concepts described in Section 3.2. Our
implementation scales to parallel applications with more than 260 000 processes.

9



Figure 4: Block-structured domain setup. From left to right: defining domain using a surface
mesh, decomposition into coarse blocks, allocation of cells in blocks, block refinement

In all scenarios, the checkpoint creation scales independently of the number of
involved processes.

4. Stencil codes on structured grids

As shown in Section 3, waLBerla provides a domain partitioning abstraction
based on blocks. In general, the framework user can store arbitrary data inside
these blocks. The framework additionally needs serialization information for
this data in order to migrate blocks for load balancing. Also, the user has to
define which parts of the data have to be communicated with neighboring blocks
as ghost layers to arrive at a consistent state after the data has been updated
locally.

There are two important distributed data structures that are built on this
interface and already come with the framework: a distributed structured grid
implementation and a distributed particle data structure for rigid body dynamics.
In this section, we focus on the distributed grid infrastructure of waLBerla,
while the particle data structure is covered in Section 5.2.

4.1. Structured grids
Originally, waLBerla was designed to run stencil codes on structured

grids, specifically simulations with the lattice Boltzmann method. For these
applications, waLBerla provides a distributed array implementation in which
parts of the grid are stored locally in each block. These blocks are synchronized
using ghost layers. Building on the generic BlockForest implementation that
makes no assumptions about the data stored inside each block, waLBerla also
provides a specialized interface, called StructuredBlockForest. This interface
offers the user all necessary functions to translate block-local coordinates, i.e.,
indices in locally stored arrays, to global coordinates and vice versa. The
StructuredBlockForest assumes that each block itself is subdivided uniformly
into grid cells and that every block has the same number of cells. These seemingly
restrictive assumptions still allow for considerable geometric flexibility. Consider,
for example, the scenario shown in Figure 4. A lattice Boltzmann fluid simulation
is set up in a domain defined by a surface mesh. First, the domain is partitioned
into equally sized coarse blocks. Blocks that have no overlap with the domain

10



are discarded. The blocks are then distributed to MPI processes during an initial
load balancing step. After this, the actual simulation data is allocated inside each
block. In this example, this is the field of probability density functions for the
lattice Boltzmann simulation and a flag field marking fluid and boundary cells.
The grid can either be refined statically during simulation setup or dynamically,
as is shown in the last step of Figure 4. Refinement is done on the block
level, meaning that every block still has the same number of grid cells. The
grid inside each block is extended by one or more ghost layers for distributed
memory synchronization. While the framework user could provide a custom
grid implementation, waLBerla already comes with an array module, called
Field, that provides a structured grid implementation together with all necessary
integrations with other waLBerla modules, most importantly, the PackInfo
that links to the communication module, as described in Section 3.3. This
PackInfo supports the exchange of one or more ghost layers with neighboring
blocks, as well as interpolation and restriction operations to handle neighboring
blocks with different resolution.

4.2. Fields and sweeps
A central concept of waLBerla is the separation of data and numerical

kernels that operate on this data. Kernels, called Sweeps in waLBerla, are
separate entities that can be optimized individually and adapted to special
hardware architectures. Sweeps can also be selected based on properties of the
processed block. It is possible, for example, to process some blocks on the GPU
while others are handled by the CPU. To implement a stencil algorithm on
waLBerla’s distributed grid, one only has to implement a serial or OpenMP-
parallel numerical kernel operating on a Field. A ghost layer exchange before
or after the kernel call propagates the updated data to neighboring blocks.

The framework comes with several common sweeps that handle, for example,
analysis and post-processing steps. Additionally, physics modules offer kernels
for specific numerical methods as described in Section 5. Most prominently, the
framework comes with highly optimized kernels for various lattice Boltzmann
methods.

These kernels operate on a four dimensional array structure, the Field.
Three dimensions are used to index the three spatial Cartesian coordinates,
while the fourth dimension is used to store multiple values per cell, for example
the components of a velocity vector or the distribution functions of a lattice
Boltzmann grid. The memory layout of a Field is configurable through the use
of allocators. The user can transparently switch between an array-of-structure
(AoS) and a structure-of-arrays (SoA) layout. The field layout is typically chosen
to maximize the performance of the compute kernel. Thus, less time-critical parts
of the framework such as set up and post-processing routines have to work with
both memory layouts. Accessor functions hide this implementation detail and
iteration constructs ensure that the field is traversed in linear order, independently
of the chosen memory layout. The iteration constructs provided by waLBerla
also allow for easy-to-use OpenMP-based shared-memory parallelization. The
framework user can mark iterations over one or multiple fields for parallel
execution. When OpenMP is activated, these loops are then processed in
parallel.

To fully exploit single instruction, multiple data (SIMD) capabilities of
modern CPUs, the memory layout has to be chosen accordingly and alignment

11



restrictions have to be ensured. Vectorized load and store operations benefit
from, or even require, sufficient data alignment. For example, AVX vector
instructions allow streaming (non-temporal) stores, which are crucial for the
efficient implementation of lattice Boltzmann methods, but they can only be
issued on aligned memory addresses. At the end of each coordinate, a variable
amount of extra padding elements is added, to ensure correct alignment of the
following line. waLBerla comes with a SIMD module to vectorize numerical
kernels manually. A thin abstraction layer on top of SIMD intrinsics for QPX,
SSE, AVX and AVX2 allows the user to highly optimize a compute kernel with
very close control over the hardware.

4.3. GPU support
Hardware accelerators, in particular, GPUs, are getting more and more

important in HPC as some of the largest clusters in the world get the bulk of their
compute power from GPUs. Thus, it is crucial for an HPC framework to enable
its users to port their simulations to GPUs without much effort. waLBerla
uses the Nvidia CUDA toolkit, as currently all GPU-enabled supercomputing
systems are based on Nvidia hardware. waLBerla comes with a GPU array
implementation that closely mirrors its CPU counterpart, supporting different
memory layouts and padding to ensure alignment. Our implementation of GPU
fields makes use of CUDA’s support for two and three dimensional arrays, e.g.,
by using cudaMalloc3D and cudaMemcpy3D. Choosing the same memory layout
for CPU and GPU fields allows fast field transfers with a single memcpy call. A
typical GPU simulation in waLBerla has mirror fields on CPU for each GPU
field. These mirror fields are used for the initialization of the simulation data
on CPU and are then transferred to the GPU. The compute kernel is executed
fully on the GPU, including boundary treatment. Only after simulating many
time steps, the data is written back to the corresponding CPU fields, where
post-processing steps are executed and result files are written out. With this
approach, the geometry setup, post-processing, and I/O functionalities do not
need to be ported to GPU.

GPU fields of waLBerla come with an indexing abstraction layer. When
manually developing a stencil kernel, the user has to decide how to map CUDA
blocks and threads to array elements. A common approach is to map each
thread to an array cell. CUDA threads are grouped into blocks. The block size
influences the kernel performance in intricate ways, affecting register usage and
occupancy. It is a tuning parameter that may be chosen differently on different
GPU architectures. waLBerla comes with various indexing strategies that
simplify this task.

The communication stack of waLBerla is extended to handle GPU data
as well. When using CUDA-aware MPI implementations, data stored in GPU
memory can be directly passed to MPI routines. Thus, the “direct” communi-
cation approach based on MPI data types can be fully reused, as described in
Section 3.3. Since fields are mirrored to the GPU, the same MPI data type can
be used to describe their ghost layers. The “buffered” approach is adapted to
support GPU buffers and their efficient transfer to pinned CPU memory.

4.4. Geometry handling
Handling parallel data structures poses problems to framework users that are

not familiar with parallel computing. The complexity can be hidden from the

12



user as long as only local operations on the data are required. The user writes
local operations by defining sweeps over the full computational domain where
values in a small neighborhood can be accessed. Ghost layer synchronization
between sweeps ensures that each process has the necessary data of neighboring
processes. For evaluation, however, often non-local data accesses are required.
Consider, for example, the analysis of a velocity profile along a line through
the domain. For convenience, waLBerla provides functionalities to gather
a user-defined subset of the simulation data on a single process. Although
gathering of data should be avoided wherever possible, it can simplify the in-situ
evaluation and steering of the simulation considerably.

For large scale simulations, I/O operations on simulation data can pose a
significant bottleneck. While waLBerla can read and write the full state of
the simulation to disk efficiently with the help of MPI-I/O, the user can also
post-process the data directly in the waLBerla application to reduce output
size. For example, instead of dumping voxel data to disk, isosurfaces can be
written out as a triangle surface mesh. This technique is useful especially for
multi-phase simulations where the interface between fluids is of interest. An
integrated, custom marching cubes algorithm based on Ref. 46 builds meshes
locally on each block. The algorithm also takes ghost layers into account, such
that local meshes can be stitched together to a single mesh covering the full
domain [47]. Triangles produced by the marching cubes algorithm have edge
lengths in the order of the grid spacing, which is unnecessarily fine. They can
be adaptively coarsened with an edge collapse simplification algorithm [48].
A hierarchical tree-based gathering step collects local mesh pieces, runs the
coarsening, and fuses them together to a single mesh.

To simplify the setup of the simulation and to define boundary conditions,
waLBerla comes with a geometry submodule. Boundary conditions are usually
encoded in flag fields, where the cell type is encoded into bitmasks. Cells can
be marked using geometric primitives like spheres, boxes, ellipsoids, or any
geometric body obtained by boolean operators on these bodies. Additionally,
2D image files can be loaded and extruded to set up boundaries. However, the
most common and practical way to set up the simulation domain is through
surface meshes. To handle surface meshes, we use the OpenMesh library [49].
It can load and store a variety of different polygonal mesh file formats. It is
highly extensible, for example, by letting the user attach custom data to mesh
elements.

Determining whether a block or lattice cell is covered by the mesh, is done
by computing signed distances to the surface [50, 51]. waLBerla contains an
octree data structure to speed up distance computations of points to the surface
mesh [52]. The surface mesh is used at various stages during a simulation setup.
First, it is used to set up the block structure by defining which blocks should
be allocated and which regions should be refined (cf. Figure 4). Secondly, the
mesh is used on the cell-level to define boundary conditions. Boundary type
and boundary parameters, like velocity or pressure values, can be attached to
vertices or faces of the mesh.

The setup routines store the geometry and boundary information in fields.
The straightforward way of handling boundaries is to iterate over all cells, extract
the cell type from the flag field, and apply boundary treatment where necessary.
In the common case where the geometry is static and boundary treatment is
only necessary for a small fraction of cells, a more efficient strategy is available.

13



A pre-processing step stores the indices of boundary cells in a list, optionally
together with boundary information. For each boundary condition, a separate
list is created such that each boundary can be treated by a separate kernel.

5. Numerical methods and applications

To illustrate the flexibility and extensibility of the multiphysics framework,
we show various problems that waLBerla has been applied to. We begin this
section with a description of lattice Boltzmann simulations. This is the method
waLBerla was initially designed for, as is reflected in its acronym “widely
applicable lattice Boltzmann from Erlangen”. Next, the methods contained inside
the rigid particle dynamics module are presented, together with application
examples. Finally, the monolithic coupling of both, fluid and particles, for the
simulation of particulate flows is discussed.

5.1. Lattice Boltzmann method
We first briefly review the theory of the lattice Boltzmann method (LBM),

then discuss performance aspects of the method, and report scaling results of
lattice Boltzmann simulations. Finally, we show some application examples
where waLBerla has been used successfully for the simulation of fluid flow.

5.1.1. Overview
The lattice Boltzmann method is a rather recent technique to simulate

fluid flow based on a mesoscopic description. A comprehensive introduction
to the concepts of LBM can be found in Ref. 53. In LBM, the computational
domain is discretized using a regular, evenly spaced grid described by a stencil
as DdQq. This notation defines a d-dimensional domain where each cell contains
q probability density functions (PDFs) labeled fi(x, t), i ∈ {1, . . . , q}. The PDF
fi represents the probability density of fluid particles moving from position x
to x + ci with particle velocity ci. Common stencil choices are D2Q9, D3Q15,
D3Q19, and D3Q27, which are all supported by waLBerla. In the following
description, we use lattice units where the cell positions x and the time step
are integers. In each lattice cell, macroscopic fluid properties like density and
momentum density are obtained as moments of the PDFs:

ρ =
∑

i

fi, ρu =
∑

i

cifi. (1)

The lattice Boltzmann update rule

fi(x + ci, t+ 1) = fi(x, t) + Ωi (f1(x, t), ..., fq(x, t)) (2)

evolves the system from time t to t+ 1. It consists of a collision step, described
by a collision operator Ωi, and a subsequent streaming step where PDFs are
propagated to neighboring cells. Collision operators of methods considered here
first transform the set of PDFs {fi} into a collision space. In this collision space,
the components are relaxed towards equilibrium using convex combinations with
rates that may vary for each of the q PDFs. The most prominent collision space
is the space of moments, yielding the formalism of multiple relaxation time
(MRT) methods [54]. The resulting collision operator is

ΩMRT [f ] = −M−1S
[
M f −m(eq)

]
, (3)

14



where the transformation to moment space is represented by an invertible moment
matrix M. The relaxation operation is expressed through a diagonal matrix S.
Special choices for S yield the widely known single-relaxation-time (SRT) and
two-relaxation-time (TRT) methods [55]. The equilibrium distribution enters
the equation through the vector of equilibrium moments m(eq). waLBerla
contains highly optimized compute kernels for SRT, TRT, and various MRT
methods. Additionally, cumulant methods are supported where cumulants
instead of moments are relaxed to their respective equilibria [56].

Another large class of lattice Boltzmann methods can be derived by taking one
of the methods presented above and locally varying relaxation parameters based
on some local fluid property like e.g., shear rates. This relaxation parameter
adaptation is used to formulate turbulence models [57] or methods using entropic
stabilization [58]. Several of these methods are available directly in waLBerla.
Since waLBerla permits to vary relaxation rates locally by reading them from
a separate field, methods of this type can be easily implemented and customized.

Furthermore, a large variety of boundary conditions for in- and outflow,
pressure, velocity, and no-slip boundaries are available and can easily be used [59,
55]. Alternatively, many applications can be more naturally represented by a
periodic setup where the flow is driven by a body force. In literature, various
approaches to incorporate body forces into the simulation have been proposed [60,
53] and are implemented in waLBerla. The user has the possibility to choose
the most appropriate force model for the application at hand.

For many practical cases, employing a uniform grid throughout the whole
computational domain can be prohibitive due to the huge amount of computa-
tional cost or memory that would be required. In those cases, adaptive mesh
refinement becomes a necessity. For that reason, lattice Boltzmann methods
for non-uniform grids have been developed where only in certain regions of
interest the finest grid resolution is applied, and coarser grids are permitted
elsewhere. In waLBerla, the method by Ref. 61 is implemented, which yields
a mass-conserving scheme for local grid refinement.

5.1.2. Performance and scaling
To achieve high node-level performance, the LBM compute kernels make use

of various node-level optimization techniques [62, 63, 64]. As an HPC framework,
waLBerla aims to provide compute kernels that are highly optimized on the
one hand, and on the other hand, are maintainable, flexible, and extensible.
Using compile time polymorphism through template metaprogramming can be
a reasonable trade-off between these somewhat conflicting goals. To get the
best possible node-level performance, however, the compute kernel has to be
specialized to a specific stencil and a set of manual optimization steps have to be
applied. The single node scaling results in Figure 5a report the performance of a
LBM D3Q19 TRT kernel on one node of the JUQUEEN supercomputing system.
While the generic implementation, that uses static polymorphism to work for
arbitrary LBM stencils, scales perfectly across one node, its overall performance
is very low. The performance can be improved significantly by unrolling the
loop that iterates over the distribution functions and thus specializing the
implementation to a specific stencil. In this implementation, the stream and
collision step is fused and the number of floating-point operations is reduced
by manual common subexpression elimination. Explicit SIMD vectorization via
intrinsics and further hardware-specific optimizations lead to the fastest kernel

15



version that saturates the available memory bandwidth already at 8 from 16
available cores. For a detailed description of the optimization strategies and a
performance model, we refer to Ref. 3.

1 2 4 6 8 10 12 14 16

cores

0

10

20

30

40

50

60

70

M
L

U
P

S generic

stencil-specific

stencil-specific, SIMD

(a) Performance comparison of LBM ker-
nels with different optimization levels on
one node of JUQUEEN BlueGene/Q sys-
tem.

26 28 210 212 214 216 218

cores

0

1

2

3

4

5

M
L

U
P

S
p

er
co

re

hybrid

MPI only

(b) Full machine weak scaling on
JUQUEEN using pure MPI and hybrid
(OpenMP+MPI) parallelization.

Figure 5: Performance and scaling experiments on JUQUEEN [3] using a D3Q19 TRT collision
model. Performance is reported in million lattice updates per second (MLUPS).

In Germany, all current Tier-0 HPC systems — SuperMUC-NG (Munich),
Hazel Hen (Stuttgart) and JUWELS (Jülich) — are supported by waLBerla.
The framework was also one of the first members of Jülich’s High-Q club [65]
of highest scaling codes on Jülich’s supercomputing system. Figure 5b shows a
weak scaling scenario on the JUQUEEN supercomputer to all 458 752 cores of
the full machine, using a pure MPI and a hybrid OpenMP+MPI parallelization
approach. Perfect scalability is obtained even on these high core counts, due to
waLBerla’s fully distributed data structures and algorithms. Table 1 shows
that we support not only CPU-based clusters but can utilize GPU-based systems
like the PizDaint supercomputer (Lugano, Switzerland) as well. waLBerla
utilizes advanced technologies, such as communication hiding with multiple
CUDA streams and GPUDirect for asynchronous memory transfer from the
GPU to the network adapter, to make full use of the capabilities available on
PizDaint.

Supercomputer Scale Cells Performance Details
(billion) (GLUPS)

JUQUEEN 458 752 cores 1033 1937 artery tree [3]
JUQUEEN 458 752 cores 886 890 non-uniform grid [30]
SuperMUC 32 768 cores 110 156 non-uniform grid [30]
PizDaint 2048 P100 GPUs 34 2978 uniform grid

Table 1: Summary of scaling experiments of waLBerla on various supercomputers for uniform
and non-uniform grids.

16



(a) Adaptive grid refinement for turbulent
flow inside a vocal fold [31].

(b) Fluid flow through a porous crystal
geometry [66].

Figure 6: Example applications of waLBerla’s lattice Boltzmann solver for fluid simulations.

5.1.3. Example applications
The waLBerla framework has demonstrated its applicability to a wide

range of fluid flow problems. In Ref. 3, the flow through a coronary artery tree
is computed on a massively parallel scale. The difficulty of this setup arises due
to the complex, sparse structure of the artery tree, covering only 0.3% of the
volume of the enclosing axis-aligned bounding box. This leads to blocks that
are only partially covered by the geometry and thus load balancing has been
applied when setting up the simulation to reduce workload peaks.

Furthermore, the turbulent flow through a vocal fold, shown in Figure 6a,
has been simulated to study the voice generation within the human throat. In
Ref. 30, a static grid refinement approach inside the narrow channel of the fold
has been applied to reduce the computational cost drastically. This has been
further improved in Ref. 31 by applying adaptive grid refinement techniques to
maintain a fine resolution only in regions of turbulent vortices.

Since LBM is well-suited to simulate flow through complex geometries, it
is commonly applied to study the flow through and above porous media. This
has been used in Refs. 67, 68 and 69 to derive new empirical models and
interface conditions for laminar and turbulent flow in the vicinity of a porous
bed, consisting of regularly or randomly arranged spheres. These arrangements
are created with waLBerla’s rigid particle dynamics module that is presented
in Section 5.2.

The capability to generate boundaries from complicated meshes (cf. Sec-
tion 4.4) together with grid refinement has been used in Ref. 66 to study a
chaotic crystal structure that acts as a diesel particulate filter. The resulting
fluid flow and the porous structure are shown in Figure 6b.

5.2. Rigid particle dynamics
The domain partitioning provided by the waLBerla framework can also be

used to implement a parallel rigid particle dynamics (RPD) simulation. Together
the framework’s math library, MPI wrapper, and load balancing capabilities
provide a powerful foundation. In the following sections, the basic data structures
and algorithms needed for particle simulations are introduced.

17



5.2.1. Data structures
The central piece of data for particle simulations is the particle data struc-

ture. All general information about particles such as position, rotation, and
acting forces are collected in the RigidBody base class. Shape dependent prop-
erties like the radius for spheres and the edge lengths for boxes are added
using inheritance from the RigidBody class. All particles are managed by the
BodyStorage class that is responsible for the memory management of all parti-
cles. A BodyStorageDataHandling allows the user to add this new data type to
the BlockForest (cf. Section 3.1). This way, all blocks automatically contain a
BodyStorage data structure that stores all particles belonging to the subdomain
that is covered by the corresponding block. Bodies with infinite extension, e.g.,
planes, are not stored on a block but in an additional global data structure.
With this basic data structure in place, the simulation loop is able to update all
particles continuously.

For parallel simulations, an approach similar to the ghost layer concept for
grid-based simulations is used. All particles which belong to the subdomain of
a block are stored on that block. These particles are called local particles. To
enable parallel execution, one also needs to have information about particles that
overlap the subdomain to identify possible interactions correctly. To achieve this,
particles which belong to a different subdomain but overlap with another are
copied to the overlapped subdomain. These particles are called ghost particles.
Ghost particles cannot be manipulated directly as they are only copies of a local
particle. Therefore, a synchronization algorithm is needed. The algorithm not
only needs to keep all ghost particles synchronized with their corresponding
local particle but also creates and destroys ghost particles as required. This
synchronization algorithm is run at the end of every simulation time step.

Since the data structure needed for particle simulations, i.e., the BodyStorage,
is implemented via the BodyStorageDataHandling, particle simulations with
waLBerla support all advanced capabilities based on serialization and deseri-
alization of data. In particular, also load balancing can be used in the context
of particle simulations. Therefore, the load balancing algorithms have been
carefully adapted to particle simulations [70]. run time load balancing can be
done either based on the number of contacts per process or based on the number
of particles per process. In load balancing algorithms that additionally take the
load on the network into account, the number of ghost particles is used as an
estimate for the communication costs.

5.2.2. Algorithms
A basic RPD simulation consists of four parts which are repeated in a

simulation loop. In each loop iteration, the time is advanced by dt. The
first part is the collision detection phase. The waLBerla framework provides
different algorithms for both the broad and narrow phase collision detection. For
the broad phase, the user can choose between linked lists [71, 72] and hierarchical
hash grids [73, 74]. The narrow phase can be either done analytically or by using
a combination of the GJK [75, 76] and EPA [77] algorithms. After successfully
detecting all contacts, the interaction model tries to resolve these contacts.
Soft contact models [78, 79] and hard contact models [80, 81] are available.
After that, the simulation is integrated in time using Euler or Velocity Verlet
integration schemes. For distributed memory parallel simulations, an additional

18



synchronization algorithm has to be called. The framework provides efficient
communication schemes for regular [82] and strongly polydisperse settings [83].

5.2.3. Performance and scaling
In the following, we will show the performance of the RPD module in a

parallel environment by conducting weak and strong scaling experiments on
the JUQUEEN supercomputer. This cluster is comprised of 16 cores per node
with 4-way simultaneous multithreading (SMT). The full SMT capability is used
to achieve maximal performance. The largest simulations carried out involve
458 752 cores and 1 835 008 processes. For the simulation, spherical particles
are generated on a hexagonal close packing lattice. The simulation domain is
periodic in x- and y-direction. The z-direction is confined by solid walls. The
gravity is applied under a 30◦ angle. This setup resembles a particle ensemble
that is sliding down an inclined plate. The simulations are carried out with a
different number of parallel processes, while the number of particles is scaled
accordingly. Figure 7 shows the results.

1024 4096 16384

nodes

0.0

0.2

0.4

0.6

0.8

1.0

p
ar

al
le

l
effi

ci
en

cy

4000 4000 4000
particles per process

(a) weak scaling

1024 4096 16384

nodes

0.0

0.2

0.4

0.6

0.8

1.0

p
ar

al
le

l
effi

ci
en

cy

20480 5120 1280
particles per process

(b) strong scaling

Figure 7: Weak and strong scaling experiments for the rigid particle dynamics module. The
simulation setup is an ensemble of particles that slide down a ramp.

One can observe perfect weak scaling for up to 1 835 008 parallel processes
which are the maximum number of processes available on that machine. The
strong scaling is also carried out until the full machine is used. Good strong
scalability is seen until 1280 particles per process. If the size of the simulation
becomes too small, the communication overhead and the maintenance of all
internal data structures exceeds the performance gain of adding additional cores.
A detailed analysis of the scaling behavior can be found in Ref. 83.

The simulation of large particle ensembles often results in a very inhomo-
geneous distribution of particles over the simulation domain. Therefore, the
framework also provides run time load balancing strategies to reassign subdo-
mains to different processes dynamically. With this strategy, a more homogeneous
workload over all processes is achieved. Only with run time load balancing en-
abled, highly inhomogeneous setups can be simulated efficiently. Figure 8 shows
an example with a reduced number of particles for better visualization. Three
stages of a hopper discharge simulation are shown with run time load balancing
enabled. As the particles move from the upper part to the lower part, the domain
partitioning has to continuously adapt to the simulation environment in order
to guarantee an equal utilization of all available resources.

19



Figure 8: Hopper discharge simulation with 27 processes at three different points in time
during the simulation. The subdomains are shown in wireframe. The subdomains as well as
the particles are colored according to their process assignment.

For performance measurements, the hopper discharge simulation was run
on the JUWELS supercomputer located in Jülich, Germany. The simulation
size was increased to 8 million particles, and the simulation was run on 1296
processes in parallel. The time needed to advance the simulation by one time
step is shown in Figure 9. For the unbalanced simulation one can see that in
the beginning, and in the end, the simulation performance decreases. In the
middle, when half of the particles have fallen through the orifice, the simulation
performance is best. However, by using load balancing, not only this deviation
can be compensated but also the overall run time needed per time step can be
drastically reduced by approximately a factor of 8. A detailed analysis of the
load balancing capabilities of the waLBerla framework for particle dynamics
can be found in Ref. 70.

5000 10000 15000

time step

0.5

1.0

1.5

2.0

2.5

ti
m

e
p

er
ti

m
e

st
ep

s
/

s

without run time load balancing

with run time load balancing

Figure 9: Hopper discharge simulation on the JUWELS supercomputer using 1296 cores. The
computation time per time step without load balancing (blue) is considerably higher than for
a simulation with run time load balancing enabled (orange).

5.2.4. Applications
The rigid particle dynamics module is used to gain insight into different phys-

ical processes. One area of research conducted with the waLBerla framework
is the analysis of random dense packings. With these simulations, information
about the structural properties of granular materials can be extracted. Investi-
gations of gravitational random dense packings of polydisperse spheres, together
with validation against experimental results, are published in Ref. 84.

By introducing attractive forces between particles, larger non-rigid particles
can be composed out of smaller rigid particles. This approach has been used to

20



study the behavior of carbon nanotubes under in-plane loading in Refs. 85, 86.

5.3. Fluid-particle coupling
By coupling our LBM fluid solver from Section 5.1 to our particle simulation

module from Section 5.2, we can efficiently simulate particle-laden flows at large
scale. The key aspect of this monolithic coupling is that we can directly access
and update all underlying data structures since both solvers and the coupling are
implemented inside the same framework. This avoids possibly costly interfaces or
abstraction layers, which would be needed if two separate frameworks had been
coupled together. In this section, we briefly outline the features of waLBerla’s
fluid-particle coupling and highlight several applications and extensions.

5.3.1. Geometrically fully resolved simulations

Figure 10: Simulation of the settling behavior of several geometrically resolved spheres with
adaptive mesh refinement. The outline of the blocks, each containing 243 cells, is shown with
white lines. The inset also depicts the fluid cells around a sphere. The interaction between the
particles is computed by our rigid particle dynamics module. The flow field, shown as a slice
through the velocity field, is obtained via the LBM.

The interaction between a fluid and suspended particles is governed by the
momentum exchange between these two components. In literature, several
modeling approaches exist that establish the coupling between fluid and particles.
Many interesting physical phenomena can only be correctly reproduced by
coupling mechanisms where the geometric shape of the particles is fully resolved
by the Eulerian fluid grid yielding highly accurate and thus predictive simulation
results. These so-called direct numerical simulation (DNS) approaches aim at
representing the underlying physics from first principles. In waLBerla, we
support the so-called momentum-exchange method of Refs. 87, 88, and the
partially saturated cells method from Ref. 89. Both are well-established and
commonly applied DNS coupling algorithms in the context of LBM. These

21



methods and their algorithmic details are thoroughly explained in Ref. 90, where
a detailed comparison between them is presented. Based on these results, we
primarily employ the momentum-exchange method for geometrically resolved
simulations of particulate flows and thus focus on this for the remainder of this
section. In this approach, the particles are explicitly mapped onto the Eulerian
fluid grid by flagging cells inside the particle as solid, whereas on fluid cells the
LBM is carried out. The response of the particle to the fluid is established by
computing the hydrodynamic interaction force acting on the individual particles
via the momentum-exchange approach [88]. This force is then used in the
rigid particle simulation module to update the particle position and velocity
accordingly. The other part of this two-way coupling, the response of the fluid
to the particle’s presence, is described by no-slip boundary conditions [91] along
the surface of the particle, which are applied in the LBM fluid solver. We can
also use higher-order boundary conditions that increase the accuracy of the
boundary treatment significantly [90]. Due to the explicit mapping onto the grid,
a re-initialization of newly uncovered cells is required where different techniques
[88, 92] are available in waLBerla. As shown in Fig. 10, it is also possible
to use our fluid-particle coupling together with adaptively refined grids that
maintain a high resolution around the particles, employing the AMR concepts
explained in Section 3.2. Those regions that do not require a fine resolution
are coarsened to increase the efficiency of the overall simulation. However, the
presence of particles on a block of the domain partitioning alters the block’s
resulting workload — both in time and in space — significantly. Thus, to avoid
unnecessary idle times of some MPI processes, we developed novel load balancing
techniques to further increase the performance of these coupled simulations in
Ref. 93.

5.3.2. Simulated scenarios

(a) Simulation of particle dynamics
in a riverbed. The particle shapes
are randomly generated polygonal
meshes.

(b) Simulation of a microfluidic particle-
separation device. Higher velocity magnitudes
are displayed in red, while lower velocities are
colored in blue. The streamlines are only visu-
alized in the proximity of the moving particle.

Figure 11: Examples of simulations with waLBerla’s fluid-particle coupling.

The previously presented coupling functionalities, combined with our efficient
fluid and particle simulation methods, allow us to investigate large particulate

22



systems numerically on a massively parallel scale. With such simulations, a
more detailed insight into physical processes can be obtained than with classical
laboratory experiments as information about forces on individual particles and
the flow conditions around them are readily accessible. In Ref. 94, we studied the
formation of dunes in riverbeds. As this necessitates a large number of particles,
we applied static grid refinement above the bed to reduce the computational costs.
With this setup, we could show excellent scalability of our coupled simulations on
the SuperMUC Phase2 supercomputer. One of our simulations featured 16.2 ·109

fluid cells and 7.7 · 106 spherical particles, making it one of the largest DNS
of particulate riverbed flows carried out until now. Since the applied coupling
technique is also able to cope with different particle shapes, we are able to
simulate particles described by mesh geometries. This is shown in Figure 11a,
where the sediment bed features particles of different shape given by randomly
generated polygonal meshes.

The fluid-particle coupling implemented in waLBerla is also utilized to
simulate microfluidic particle-separation devices [95] that are e.g., used in medical
applications to separate red and white blood cells [96]. As shown in Figure 11b, a
particle follows the fluid flow in between certain obstacles, such as pillars. While
these pillars are arranged equidistantly, they are laterally displaced perpendicular
to the flow direction. Due to this displacement, the fluid flows not only in
horizontal direction, but also in vertical direction, as indicated by the streamlines
in Figure 11b. This effect can be used to separate particles based on their size.
While larger particles follow the flow horizontally, smaller particles follow the
streamlines in vertical direction. Our simulations allow us a detailed investigation
of the underlying physical effects and the optimization of such particle-separation
devices.

waLBerla has also been employed to study the motion of microswim-
mers and their interaction with obstacles and with each other [97, 98]. Mi-
croswimmers [99], also referred to as self-propelled particles or active matter, are
micrometer-scale particles that propel themselves, converting fuel into directed
motion. Biological examples include microorganisms like bacteria and algae,
while artificial realizations have, among others, been made from catalytic mate-
rials. Microswimmers can interact with each other and with their surroundings
not only hydrodynamically, but also electrostatically and phoretically. The
latter term refers to interactions mediated by chemical concentration gradients,
such as fuel depletion. To incorporate the latter two interaction mechanisms,
one can employ the method discussed for electrokinetic flows in Section 5.4. If
one is only interested in swimmers’ hydrodynamic interactions, one can resort
to effective propulsion models like the squirmer model [100, 101], which has
been implemented in waLBerla using the momentum-exchange method of
Section 5.3.1.

5.3.3. Volumetric coupling method
These fully resolved simulations, although highly accurate, are computation-

ally very expensive and are thus often not usable for simulations of particulate
systems of industrial scale, like large fluidization reactors. Therefore, we also
developed and implemented algorithms that establish a coupling between the
fluid and particles that are smaller than a fluid cell [102]. For this unresolved
coupling approach, empirical models for the fluid interaction like drag and lift
forces have to be incorporated as they can only be obtained directly from a fluid

23



simulation with sufficient resolution. This reduces the required computational
amount drastically and allows to simulate systems that are not accessible to fully
resolved simulations. A similar approach has also been used in Ref. 103 to study
the infiltration of fine sediments into a porous sediment bed. For that purpose,
a deposition model has been implemented as the fine sediments gradually fill
the holes inside the porous media.

5.4. Coupling to non-hydrodynamic fields
Multiphysics applications typically concern themselves with more than just

the hydrodynamic fields and suspended particles discussed up to this point.
waLBerla is capable of solving partial differential equations (PDEs), like the
Poisson equation for electrostatics, using standard iterative solvers like Jacobi,
Gauß-Seidel, successive over-relaxation (SOR), or conjugate gradient (CG). A
spectral solver using the parallel fast Fourier transform library PFFT [104] is also
available. The iterative PDE solvers can also be combined to form a multigrid
solver [105].

waLBerla has been used to simulate electrokinetic flows using the method
of Capuani et al. [106, 107], which solves the diffusion of multiple solutes using
a finite difference scheme, electrostatics by one of the solvers mentioned above,
and hydrodynamics via LBM. This method has been extended to incorporate
particles via the momentum exchange method of Section 5.3.1 [108]. The other
fields typically cause a force acting on the fluid, while the opposite component
of coupling is due to the advection of the solute with the fluid.

6. Code generation

There are multiple ways code generation can help in the development of
a highly performant and portable code base. For example, as discussed in
Section 5.1.2, there is a tension between performance and maintainability. When
developing high performance compute kernels, optimization oftentimes means
specialization to a particular setup or hardware architecture. Highly optimized
kernels are hard to read, extend, and maintain, while their performance is not
portable. Traditionally, this problem has been tackled in waLBerla by a strict
separation of numerical kernels from the simulation data they operate on. The
framework offers various kernel versions, fast specialized kernels for specific
hardware and generic versions that are easy to extend and can be used for model
development. But still, each model has to be optimized separately for each
target hardware. Consider, for example, the large number of different lattice
Boltzmann variants, including different collision operators, stencils, force models,
and storage patterns. Manually implementing and optimizing all variants leads
to very large costs in terms of development time and effort. Thus, we aim to
automate the process of kernel development and optimization through a code
generation process. This process is described in Section 6.1.

But not only kernels can be generated; data structures also offer a huge
potential for code generation. If data structures are generated, they can be
adapted to the current needs of the simulation, resulting in data structures
as lightweight as possible. Besides, writing data structures by hand usually
involves a huge amount of boilerplate code which is tedious and error-prone to
write. With the newly designed Modular and Extensible Software Architecture

24



for Particle Dynamcis (MESA-PD), we try to tackle this problem. A description
of the concepts applied in this project is given in Section 6.2.

6.1. Pystencils
The pystencils metaprogramming project [109] can generate highly efficient

stencil codes for CPUs and GPUs based on a common high-level, symbolic
description. On the symbolic level, the stencil formulation is derived from a
continuous formulation of the PDE or the LBM collision operator. This symbolic
environment is based on the SymPy computer algebra system [110] and allows
the manipulation of the kernel by modifying expressions and assignments that
are stored as syntax trees. A set of common optimization techniques, like
loop transformations and common subexpression elimination, are formulated as
transformation on these trees. Backends then generate C/C++ code, CUDA code,
OpenCL code or LLVM IR from this representation. pystencils creates framework-
agnostic code such that the kernel can easily be called from any environment
that can interface with a C application binary interface (ABI). To simplify the
interoperability with waLBerla, the pystencils_walberla package [111] offers a
convenient integration of the code generation process into the C++ framework
through the CMake build infrastructure.

Kernel code generation has already been applied successfully to waLBerla-
based LBM simulations and phase-field simulations of alloy solidification [112]
on CPUs and GPUs.

6.2. MESA-PD
The Modular and Extensible Software Architecture for Particle Dynamics

(MESA-PD) is an evolution of the current rigid particle dynamics module of the
waLBerla framework. It introduces a strict separation of data and algorithms
and at the same time uses code generation techniques to automatically create
parts of the software architecture. The main goals of the code generation are to
free the programmer from writing most of the boiler plate code and to make all
algorithms and data structures adaptable to the current simulation demands.

The underlying technique of the MESA-PD project is the usage of Jinja [113]
templates to produce the C++ source files of the framework. First, the raw
C++ source files are annotated with Jinja template instructions. And second, a
high-level Python library is written to collect information about the simulation
in a human readable way. This information is then processed and passed to the
Jinja template engine, which uses this information to generate the final C++
source files. Although this approach is used throughout multiple places in the
software framework, the most impactful place is the generation of the particle
data structure. For this data structure, the Python library collects all properties
the particle should have for the simulation. This ranges from position over
applied forces to the temperature the particle currently has. This information is
collected on a per-simulation basis, so the set of particle properties can be different
between different simulations. The properties are also annotated with their data
type as well as whether this property should be synchronized in a distributed
memory parallel simulation. From this information, the Python library together
with the Jinja template engine produces a data structure exactly tailored for
the current simulation. But not only the data structure is adjusted. Also, all
algorithms which rely on the data structure like synchronization, VTK output,

25



serialization, etc. are automatically rewritten to support this new property set.
This approach results in an overall optimized simulation which leads to better
performance. At the same time, the generated C++ code still remains readable.
It is also easier for domain specialists to adjust the framework without deeper
knowledge about the inner details of the framework. An extended introduction
into the techniques used in this project together with some code examples can
be found in Ref. 114.

7. Supporting infrastructure

As waLBerla is developed by many different contributors, it is crucial
to support developers by providing a high quality development infrastructure,
as is outlined in the first part of this section. Additionally, we present our
graphical user interface that assists developers in working with waLBerla’s
data structures. We conclude this section with a description of our Python
interface that can be used to setup, steer, evaluate and visualize simulations
with waLBerla.

7.1. Development infrastructure
A fundamental basis for sustainable software development is the use of a

version control system (VCS). In the case of waLBerla, a central Git [115]
repository is used. It is hosted on our own GitLab [116] instance and is mirrored
to GitHub [117]. Another important feature to maintain usability and to ensure
correctness of a software framework is continuous, thoughtful, and automated
testing. This process is referred to as continuous integration (CI) and can also be
followed by continuous delivery or deployment (CD). In our case, the capabilities
of GitLab are used for these mechanisms. Every time a change is checked into
the VCS, a pipeline consisting of several jobs is started where each job compiles
and tests the software with different hardware and software configurations. This
means different build options for the waLBerla framework, e.g., building in
release or debug mode, are tested together with different compilers and versions.
At the time of this writing, tests are executed for different versions of the
Clang [118], GCC [119], Intel [120], and Microsoft Visual C++ [121] compilers.
Of these different setups, 39 are currently tested at each commit and 121 at the
extended nightly builds. This ensures that waLBerla is compatible with a wide
range of software stacks and also utilizes the fact that different compilers are
capable of identifying different potential problems, i.e., display different warnings.
After the framework has been compiled successfully, a wide variety of tests are
executed to assure correctness. These include unit tests of single functions,
integration tests of some components and full-framework tests executing some
of the applications presented in Section 5. Additional tasks are integrated into
the pipeline like static code analysis with Clang-Tidy [122] or automated tools
to find untested parts of the code, i.e., to measure test coverage. Extensive
code documentation using Doxygen [123] is also automatically created and
deployed to our website. Finally, performance tests are executed on a specific
benchmarking machine to retrieve reproducible results, which are visualized
on a Grafana [124] instance. This mechanism is useful to track the impact of
performance optimization over time and to identify problems as they arise.

To handle the large amount of configurations used for building and testing,
Docker [125] containers are utilized. Therefore each job of the CI pipeline is

26



started in a newly created instance of a Docker container, which is essential for
reproducible testing. For our Windows-based tests, we similarly set up virtual
machines which are automatically started on the build servers as needed.

7.2. Graphical user interface
Scientific codes are often shipped without a graphical user interface (GUI).

This has several reasons. First, the user base is expected to be comfortable with
writing text-based configuration and script files. Secondly, the high development
effort for graphical user interfaces is often not worth their benefits, since powerful
visualization software like Paraview [126] and VisIt [127] satisfies most of the
requirements of a typical scientific simulation code. While waLBerla is usually
used to write out simulation data in VTK format for these visualization tools, it
additionally does offer a graphical user interface. Its GUI is not written to assist
post-processing or simulation setup, but mainly aims to provide visualization of
internal data structures to assist a developer who writes a custom application.
Consider, for example, the implementation of a new lattice Boltzmann boundary
condition. There, a detailed view of the LBM probability density functions
(PDF) near the boundary is extremely helpful. Simulation data is shown in-situ,
letting the user proceed through the simulation step by step. In this way, the
state after each time step can be inspected. Additionally, the developer can set
so-called GUI breakpoints. These are constructs that call the GUI event loop at
arbitrary points in the code, such that the program state at arbitrary points in
the control flow can be visualized.

Figure 12: Screenshot of waLBerla’s graphical user interface. Exemplary display of a free
surface LBM simulation, as described in Section 8.2, showing field data like interface normals,
curvature, and cell classification. Widget at the top right shows block partitioning, the data
view on the left shows content of a single block.

Since the types of data to be displayed varies from application to application,
the GUI is implemented in a modular fashion. One main widget displays the
geometric layout of all allocated blocks in a 3D view. All other widgets are specific
to data types that may be stored in each block. Each widget shows only the
data of one user-selected block. waLBerla comes with a set of these specialized
widgets, which can display commonly used data types such as scalar, vector,

27



flag and PDF fields. Additionally, the modular structure and the templates for
structured and hierarchical data allow the developer to easily write new widgets
for custom data if necessary.

7.3. Python interface
While the GUI’s main goal is to assist the developer during debugging through

visualization of internal data structures, it is not targeted at the user of the
final simulation application. Instead, waLBerla provides a powerful Python
interface for simulation setup, computational steering, as well as result evaluation
and visualization [128].

Initially, the Python interface was intended as a replacement for the text-
based configuration file. In a pure text-based file format, there is no possibility
to use mathematical expressions for parameter values, or define one parameter
as a function of other parameters. Switching from text-based to Python files
as configuration files increases the expressiveness and flexibility for simulation
setup drastically. Technically, this is realized by embedding a Python interpreter
into the waLBerla application. Additionally, we export central C++ data
structures, like blocks and grids, to Python. This is done using the boost::python
library [129]. The locally-stored part of the grid can be accessed from Python as a
NumPy ndarray [130], making it compatible with the large scientific ecosystem of
Python. Thus, not only the setup process is simplified, but the entire simulation
pipeline (cf. Figure 13). Python callbacks can be registered to handle in-situ
data evaluation tasks. At run time, the simulation data can be analyzed and
results can be extracted. Instead of writing out large VTK files that contain the
full simulation state, only relevant results are stored, for example in SQLite or
non-relational databases that can be easily accessed from Python. This approach
extends the traditional C++ application that uses the waLBerla framework,
where the program flow is driven from C++. Alternatively, waLBerla can also
be compiled into a Python module, such that a simulation application can be
fully developed in Python.

Figure 13: Simulation workflow without usage (left) and with usage (right) of Python Inter-
face [128].

28



8. waLBerla extensions

The waLBerla framework has been used in several projects as a basis for
massively parallel simulations. In this section, we briefly outline some of these
developed extensions that are not included in the official waLBerla repository
to highlight the flexibility and generality of our framework.

8.1. HyTeG
One software package that already utilized concepts and functionalities of

waLBerla is the Hybrid Tetrahedral Grids (HyTeG) framework [131] which
aims at extreme scale simulations of Earth mantle convection. It uses the
concept of strict separation between data structures and actual compute data
and transfers this to unstructured triangle and tetrahedral meshes. On these
so-called primitives, a hierarchy of structured fields is created which is well suited
for geometric multigrid methods. In addition, parts of the waLBerla codebase
are used, like the CMake build system and a variety of functionalities from the
core module. This includes the advanced buffer system explained in Section 3.3,
as well as basic math operations and the logging functionality.

8.2. Free surface lattice Boltzmann method
The free surface lattice Boltzmann method (FSLBM) presented in [132] is

designed for simulating two-phase flow scenarios which are assumed to be only
driven by the flow dynamics of one fluid phase. For instance, in foaming processes
with a liquid and gas phase, the phases’ viscosities and densities differ by orders
of magnitude. Thus, the influence of the flow in gas phase is considered negligible
such that the problem can be treated as a one-phase flow scenario. The FSLBM
extension of waLBerla has been optimized for parallel computing [133, 134]
and was validated thoroughly [135]. The simulations performed with the FSLBM
have already provided new insights into a wide variety of physical applications.
For instance, waLBerla’s FSLBM extension was used to investigate complicated
foaming processes that occur in the food industry [136, 137] (cf. Figure 14a).
Furthermore, together with an advection-diffusion LBM implementation, it has
been used to simulate an electron beam that melts a powder bed in additive
manufacturing [138, 139], as shown in Figure 14b.

8.3. Phase-field methods
waLBerla is used to simulate microstructure formation in metal alloys based

on an advanced, thermodynamically consistent phase-field model of Allen-Cahn
type [140]. These microstructures influence the macroscopic properties of the
material significantly. Because very large domain sizes are required to observe
the formation of microstructural patterns, a HPC implementation is crucial to
get physically meaningful results for the considered scenarios.

In Ref. 141, we manually optimize and parallelize a basic implementation
of the model using waLBerla’s infrastructure. Buffering techniques, explicit
SIMD vectorization, and communication hiding result in a single-node speedup
of a factor of 80 compared to a basic C implementation of this model. With
code generation techniques and an abstract problem formulation in terms of a
continuous free energy functional, we can automate these optimizations such that
they can be applied to a wide range of different phase-field models [112]. These
phase-field application make full use of waLBerla’s parallelization infrastructure
for CPU and GPU clusters.

29



(a) Simulation of foaming processes in the
food industry.

(b) Simulation of an electron beam that
melts a powder bed in additive manufac-
turing.

Figure 14: Example of simulations performed using waLBerla’s free surface lattice Boltzmann
extension.

Figure 15: Three dimensional simulation of directional solidification of ternary eutectic system
Ag-Al-Cu on Hornet supercomputer using 2420 × 2420 × 1474 cells.

9. Conclusion

In this work, we have presented the waLBerla multiphysics simulation
framework. Initially, the framework has been designed as a computational fluid
dynamics (CFD) framework based on the lattice Boltzmann method. Over time,
it has become a modular HPC toolkit that forms the basis of simulations for
a variety of different applications, ranging from carbon nanotubes to additive
manufacturing. A block-structured domain partitioning approach allows for
the flexible treatment of complex geometries and can fully exploit modern
hardware by utilizing various levels of parallelism. Its explicit focus on scalability
and performance enables efficient usage of HPC systems which grants detailed
insight into physical processes of various fluid, particle, and coupled fluid-particle
applications.

To ensure a sustainable software development process, waLBerla uses a
continuous integration workflow with extensive unit, integration, and performance
tests. This guarantees feature and performance stability for its users while
encouraging developers to make changes.

To achieve high node-level performance, compute-intensive parts of the

30



framework can be automatically generated: A high-level description is processed
by a set of optimizing transformations and transformed into highly efficient
CPU or GPU code. This approach makes waLBerla ready for future HPC
architectures, and permits easy integration of new physical models.

Acknowledgements

The authors thank Daniela Anderl, Dominik Bartuschat, Silke Bergler, Simon
Bogner, Paulo Carvalho, Regina Degenhardt, Frank Deserno, Sagar Dolas, Stefan
Donath, Ehsan Fattahi, Christian Feichtinger, Jan Götz, Johannes Habich,
Lorenz Hufnagel, Klaus Iglberger, Sunil Kontham, Tobias Leemann, Matthias
Markl, Arash Partow, Kristina Pickl, Thomas Pohl, Tobias Preclik, João Victor
Tozatti Risso, Daniel Ritter, Tobias Scharpff, Tobias Schruff, Dominik Schuster,
David Staubach, Cameron Stewart, Nils Thürey, Rudolf Weeber, Lukas Werner
and Felix Winterhalter for their contributions that led to the current version of
waLBerla.

As waLBerla is designed for massively parallel high performance computing,
access to supercomputing facilities is of essential importance. For providing
compute time on such systems, the authors are grateful to the Global Scientific
Information and Computing Center in Tokyo, the Höchstleistungsrechenzentrum
Stuttgart, the Jülich Supercomputing Centre, the Leibniz-Rechenzentrum in
Garching, the Regionales Rechenzentrum Erlangen and the Swiss National
Supercomputing Centre in Lugano.

The authors are also grateful for their funding received through various
projects, such as project KONWIHR-IV from the Bayerisches Staatsministerium
für Wissenschaft und Kunst; projects HPC2SE (01ICH16003D) and SKAMPY
(01IH15003A) from the Bundesministerium für Bildung und Forschung (BMBF);
projects RU 422/16-2, RU 422/27-1, and SPP 1726 (HO 1108/24-2) from the
Deutsche Forschungsgemeinschaft (DFG); and project AiF 17125 from the Ar-
beitsgemeinschaft industrieller Forschungsvereinigungen (AiF) funded by the
Bundesministerium für Wirtschaft und Energie (BMWi).

References

References

[1] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Per-
nice, J. Bell, J. Brown, A. Clo, J. Connors, et al., Multiphysics sim-
ulations: Challenges and opportunities, The International Journal of
High Performance Computing Applications 27 (1) (2013) 4–83. doi:
10.1177/1094342012468181.

[2] U. Rüde, K. Willcox, L. McInnes, H. Sterck, Research and education
in computational science and engineering, SIAM Review 60 (3) (2018)
707–754. doi:10.1137/16M1096840.

[3] C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, U. Rüde, A
framework for hybrid parallel flow simulations with a trillion cells in
complex geometries, in: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ACM
Press, 2013, pp. 1–12. doi:10.1145/2503210.2503273.

31

http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1177/1094342012468181
http://dx.doi.org/10.1137/16M1096840
http://dx.doi.org/10.1145/2503210.2503273


[4] C. Feichtinger, S. Donath, H. Köstler, J. Götz, U. Rüde, Walberla: HPC
software design for computational engineering simulations, Journal of
Computational Science 2 (2) (2011) 105 – 112. doi:10.1016/j.jocs.
2011.01.004.

[5] Message Passing Interface, https://www.mpi-forum.org/, accessed on
2019-09-30.

[6] V. Heuveline, J. Latt, The OpenLB project: An open source and ob-
ject oriented implementation of lattice boltzmann methods, Interna-
tional Journal of Modern Physics C 18 (04) (2007) 627–634. doi:
10.1142/S0129183107010875.

[7] OpenLB, https://www.openlb.net/, accessed on 2019-09-30.

[8] D. Lagrava, O. Malaspinas, J. Latt, B. Chopard, Advances in multi-domain
lattice boltzmann grid refinement, Journal of Computational Physics
231 (14) (2012) 4808 – 4822. doi:10.1016/j.jcp.2012.03.015.

[9] Palabos, http://www.palabos.org/, accessed on 2019-09-30.

[10] D. Mierke, C. Janßen, T. Rung, An efficient algorithm for the calculation
of sub-grid distances for higher-order lbm boundary conditions in a gpu
simulation environment, Computers & Mathematics with Applicationsdoi:
10.1016/j.camwa.2018.04.022.

[11] elbe, https://www.tuhh.de/elbe/home.html, accessed on 2019-09-30.

[12] D. Groen, O. Henrich, F. Janoschek, P. Coveney, J. Harting, Lattice-
boltzmann methods in fluid dynamics: Turbulence and complex colloidal
fluids, in: Jülich Blue Gene/P Extreme Scaling Workshop, 2011, p. 17.

[13] S. Schmieschek, L. Shamardin, S. Frijters, T. Krüger, U. D. Schiller,
J. Harting, P. V. Coveney, LB3D: A parallel implementation of the lattice-
boltzmann method for simulation of interacting amphiphilic fluids, Com-
puter Physics Communications 217 (2017) 149–161. doi:10.1016/j.cpc.
2017.03.013.

[14] LB3D, http://ccs.chem.ucl.ac.uk/lb3d, accessed on 2019-09-30.

[15] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bernabeu, P. V.
Coveney, Analysing and modelling the performance of the hemelb lattice-
boltzmann simulation environment, Journal of Computational Science 4 (5)
(2013) 412 – 422. doi:10.1016/j.jocs.2013.03.002.

[16] Sailfish, https://github.com/sailfish-team/sailfish, accessed on
2019-09-30.

[17] Z. Liu, X. Chu, X. Lv, H. Meng, S. Shi, W. Han, J. Xu, H. Fu, G. Yang,
Sunwaylb: Enabling extreme-scale lattice boltzmann method based com-
puting fluid dynamics simulations on sunway taihulight, in: 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2019, pp. 557–566. doi:10.1109/IPDPS.2019.00065.

32

http://dx.doi.org/10.1016/j.jocs.2011.01.004
http://dx.doi.org/10.1016/j.jocs.2011.01.004
https://www.mpi-forum.org/
http://dx.doi.org/10.1142/S0129183107010875
http://dx.doi.org/10.1142/S0129183107010875
https://www.openlb.net/
http://dx.doi.org/10.1016/j.jcp.2012.03.015
http://www.palabos.org/
http://dx.doi.org/10.1016/j.camwa.2018.04.022
http://dx.doi.org/10.1016/j.camwa.2018.04.022
https://www.tuhh.de/elbe/home.html
http://dx.doi.org/10.1016/j.cpc.2017.03.013
http://dx.doi.org/10.1016/j.cpc.2017.03.013
http://ccs.chem.ucl.ac.uk/lb3d
http://dx.doi.org/10.1016/j.jocs.2013.03.002
https://github.com/sailfish-team/sailfish
http://dx.doi.org/10.1109/IPDPS.2019.00065


[18] M. Wittmann, V. Haag, T. Zeiser, H. Köstler, G. Wellein, Lattice Boltz-
mann benchmark kernels as a testbed for performance analysis, Computers
& Fluids 172 (2018) 582 – 592. doi:10.1016/j.compfluid.2018.03.030.

[19] LIGGGHTS, https://www.cfdem.com/, accessed on 2019-09-30.

[20] GranOO, https://www.yakuru.fr/granoo/index.html, accessed on
2019-09-30.

[21] YADE, https://yade-dev.gitlab.io/trunk/, accessed on 2019-09-30.

[22] PROJECTCHRONO, https://projectchrono.org/, accessed on 2019-
09-30.

[23] MercuryDPM, http://www.mercurydpm.org/, accessed on 2019-09-30.

[24] R. Deiterding, S. L. Wood, Predictive wind turbine simulation with an adap-
tive lattice boltzmann method for moving boundaries, Journal of Physics:
Conference Series 753 (8) (2016) 082005. doi:10.1088/1742-6596/753/
8/082005.

[25] AMROC, https://amroc.sourceforge.net/, accessed on 2019-09-30.

[26] C. Burstedde, L. Wilcox, O. Ghattas, p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific
Computing 33 (3) (2011) 1103–1133. doi:10.1137/100791634.

[27] M. Mehl, T. Neckel, P. Neumann, Navier–stokes and lattice–boltzmann
on octree-like grids in the peano framework, International Journal for
Numerical Methods in Fluids 65 (1–3) (2011) 67–86. doi:10.1002/fld.
2469.

[28] Walberla Gitlab, https://i10git.cs.fau.de/walberla/walberla/, ac-
cessed on 2019-09-30.

[29] waLBerla, https://www.walberla.net, accessed on 2019-09-30.

[30] F. Schornbaum, U. Rüde, Massively parallel algorithms for the lattice
boltzmann method on NonUniform grids, SIAM Journal on Scientific
Computing 38 (2) (2016) 96–126. doi:10.1137/15M1035240.

[31] F. Schornbaum, U. Rüde, Extreme-scale block-structured adaptive mesh
refinement, SIAM Journal on Scientific Computing 40 (3) (2018) 358–387.
doi:10.1137/17m1128411.

[32] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella,
D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter, B. V. Straalen,
K. Weide, A survey of high level frameworks in block-structured adaptive
mesh refinement packages, Journal of Parallel and Distributed Computing
74 (12) (2014) 3217 – 3227. doi:10.1016/j.jpdc.2014.07.001.

[33] K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic multi-
constraint graph partitioning, Concurrency and Computation: Practice
and Experience 14 (3) (2002) 219–240. doi:10.1002/cpe.605.

33

http://dx.doi.org/10.1016/j.compfluid.2018.03.030
https://www.cfdem.com/
https://www.yakuru.fr/granoo/index.html
https://yade-dev.gitlab.io/trunk/
https://projectchrono.org/
http://www.mercurydpm.org/
http://dx.doi.org/10.1088/1742-6596/753/8/082005
http://dx.doi.org/10.1088/1742-6596/753/8/082005
https://amroc.sourceforge.net/
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1002/fld.2469
http://dx.doi.org/10.1002/fld.2469
https://i10git.cs.fau.de/walberla/walberla/
https://www.walberla.net
http://dx.doi.org/10.1137/15M1035240
http://dx.doi.org/10.1137/17m1128411
http://dx.doi.org/10.1016/j.jpdc.2014.07.001
http://dx.doi.org/10.1002/cpe.605


[34] ParMETIS, http://glaros.dtc.umn.edu/gkhome/views/metis/, ac-
cessed on 2019-09-30.

[35] OpenMP, https://www.openmp.org/, accessed on 2019-09-30.

[36] TOP500, https://www.top500.org/, accessed on 2019-09-30.

[37] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Bal-
aji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus,
N. A. DeBardeleben, P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari,
A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyffer, D. Lib-
erty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, E. V. Hensber-
gen, Addressing failures in exascale computing, The International Jour-
nal of High Performance Computing Applications 28 (2) (2014) 129–173.
doi:10.1177/1094342014522573.

[38] J. Dongarra, Emerging heterogeneous technologies for high performance
computing, http://www.netlib.org/utk/people/JackDongarra/
SLIDES/hcw-0513.pdf, accessed on 2019-09-30.

[39] Kuang-Hua Huang, J. A. Abraham, Algorithm-based fault tolerance for
matrix operations, IEEE Transactions on Computers C-33 (6) (1984)
518–528. doi:10.1109/TC.1984.1676475.

[40] B. Randell, System structure for software fault tolerance, IEEE Transac-
tions on Software Engineering SE-1 (2) (1975) 220–232. doi:10.1109/
TSE.1975.6312842.

[41] M. Huber, B. Gmeiner, U. Rüde, B. Wohlmuth, Resilience for massively
parallel multigrid solvers, SIAM J. Sci. Comp. 38 (5) (2016) S217–S239.
doi:10.1137/15M1026122.

[42] G. Zheng, X. Ni, L. V. Kalé, A scalable double in-memory checkpoint and
restart scheme towards exascale, in: IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN 2012), IEEE, 2012,
pp. 1–6. doi:10.1109/DSNW.2012.6264677.

[43] T. Herault, Y. Robert, Fault-tolerance techniques for high-performance
computing, Springer, 2015. doi:10.1007/978-3-319-20943-2.

[44] N. Kohl, J. Hötzer, F. Schornbaum, M. Bauer, C. Godenschwager,
H. Köstler, B. Nestler, U. Rüde, A scalable and extensible checkpoint-
ing scheme for massively parallel simulations, The International Jour-
nal of High Performance Computing Applications 33 (4) (2019) 571–589.
doi:10.1177/1094342018767736.

[45] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure
recovery of MPI communication capability: Design and rationale, Inter-
national Journal of High Performance Computing Applications 27 (2013)
244 – 254. doi:10.1177/1094342013488238.

[46] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface
construction algorithm, in: ACM siggraph computer graphics, Vol. 21,
ACM, 1987, pp. 163–169. doi:10.1145/37402.37422.

34

http://glaros.dtc.umn.edu/gkhome/views/metis/
https://www.openmp.org/
https://www.top500.org/
http://dx.doi.org/10.1177/1094342014522573
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/hcw-0513.pdf
http://dx.doi.org/10.1109/TC.1984.1676475
http://dx.doi.org/10.1109/TSE.1975.6312842
http://dx.doi.org/10.1109/TSE.1975.6312842
http://dx.doi.org/10.1137/15M1026122
http://dx.doi.org/10.1109/DSNW.2012.6264677
http://dx.doi.org/10.1007/978-3-319-20943-2
http://dx.doi.org/10.1177/1094342018767736
http://dx.doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1145/37402.37422


[47] M. Bauer, J. Hötzer, M. Jainta, P. Steinmetz, M. Berghoff, F. Schornbaum,
C. Godenschwager, H. Köstler, B. Nestler, U. Rüde, Massively parallel
phase-field simulations for ternary eutectic directional solidification, in:
SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2015, pp. 1–12.
doi:10.1145/2807591.2807662.

[48] M. Garland, P. S. Heckbert, Surface simplification using quadric error met-
rics, in: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Publishing Co.,
1997, pp. 209–216. doi:10.1145/258734.258849.

[49] OpenMesh, https://www.openmesh.org/, accessed on 2019-09-30.

[50] M. W. Jones, 3D distance from a point to a triangle, Tech. rep., Department
of Computer Science, University of Wales (1995).

[51] J. Bærentzen, H. Aanæs, Signed distance computation using the angle
weighted pseudonormal, Visualization and Computer Graphics, IEEE
Transactions on 11 (3) (2005) 243–253. doi:10.1109/TVCG.2005.49.

[52] B. Payne, A. Toga, Distance field manipulation of surface models, Com-
puter Graphics and Applications, IEEE 12 (1) (1992) 65–71. doi:
10.1109/38.135885.

[53] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. M.
Viggen, The lattice Boltzmann method, Springer, 2017. doi:10.1007/
978-3-319-44649-3.

[54] D. d’Humieres, Multiple–relaxation–time lattice boltzmann models in three
dimensions, Philosophical Transactions of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 360 (1792)
(2002) 437–451. doi:10.1098/rsta.2001.0955.

[55] I. Ginzburg, F. Verhaeghe, D. d’Humieres, Two-relaxation-time lattice
Boltzmann scheme: About parametrization, velocity, pressure and mixed
boundary conditions, Communications in Computational Physics 3 (2)
(2008) 427–478.

[56] M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, The cumulant lat-
tice boltzmann equation in three dimensions: Theory and validation,
Computers & Mathematics with Applications 70 (4) (2015) 507 – 547.
doi:10.1016/j.camwa.2015.05.001.

[57] H. Yu, S. S. Girimaji, L.-S. Luo, Dns and les of decaying isotropic turbulence
with and without frame rotation using lattice boltzmann method, Journal
of Computational Physics 209 (2) (2005) 599 – 616. doi:10.1016/j.jcp.
2005.03.022.

[58] F. Bösch, S. S. Chikatamarla, I. V. Karlin, Entropic multirelaxation lattice
boltzmann models for turbulent flows, Phys. Rev. E 92 (2015) 043309.
doi:10.1103/PhysRevE.92.043309.

35

http://dx.doi.org/10.1145/2807591.2807662
http://dx.doi.org/10.1145/258734.258849
https://www.openmesh.org/
http://dx.doi.org/10.1109/TVCG.2005.49
http://dx.doi.org/10.1109/38.135885
http://dx.doi.org/10.1109/38.135885
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1007/978-3-319-44649-3
http://dx.doi.org/10.1098/rsta.2001.0955
http://dx.doi.org/10.1016/j.camwa.2015.05.001
http://dx.doi.org/10.1016/j.jcp.2005.03.022
http://dx.doi.org/10.1016/j.jcp.2005.03.022
http://dx.doi.org/10.1103/PhysRevE.92.043309


[59] M. Junk, Z. Yang, Outflow boundary conditions for the lattice boltzmann
method, Progress in Computational Fluid Dynamics, an International
Journal 8 (1-4) (2008) 38–48. doi:10.1504/PCFD.2008.018077.

[60] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term
in the lattice boltzmann method, Phys. Rev. E 65 (2002) 046308. doi:
10.1103/PhysRevE.65.046308.

[61] M. Rohde, D. Kandhai, J. J. Derksen, H. E. A. van den Akker, A generic,
mass conservative local grid refinement technique for lattice-boltzmann
schemes, International Journal for Numerical Methods in Fluids 51 (4)
(2006) 439–468. doi:10.1002/fld.1140.

[62] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rüde, G. Hager, Introduc-
ing a parallel cache oblivious blocking approach for the lattice boltzmann
method, Progress in Computational Fluid Dynamics, an International
Journal 8 (1-4) (2008) 179–188. doi:10.1504/PCFD.2008.018088.

[63] S. Donath, K. Iglberger, G. Wellein, T. Zeiser, A. Nitsure, U. Rüde,
Performance comparison of different parallel lattice boltzmann imple-
mentations on multi-core multi-socket systems, International Journal
of Computational Science and Engineering 4 (1) (2008) 3–11. doi:
10.1504/IJCSE.2008.021107.

[64] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor
performance of simple lattice boltzmann kernels, Computers & Fluids
35 (8-9) (2006) 910–919. doi:10.1016/j.compfluid.2005.02.008.

[65] High-Q Club Jülich, http://www.fz-juelich.de/ias/jsc/EN/
Expertise/High-Q-Club/_node.html, accessed on 2019-09-30.

[66] A. Gil, J. Galache, C. Godenschwager, U. Rüde, Optimum configuration
for accurate simulations of chaotic porous media with lattice boltzmann
methods considering boundary conditions, lattice spacing and domain size,
Computers & Mathematics with Applications 73 (12) (2017) 2515 – 2528.
doi:10.1016/j.camwa.2017.03.017.

[67] E. Fattahi, C. Waluga, B. Wohlmuth, U. Rüde, Large scale lattice
Boltzmann simulation for the coupling of free and porous media flow,
in: Proceedings of the International Conference on High Performance
Computing in Science and Engineering, Springer, 2016, pp. 1–18. doi:
10.1007/978-3-319-40361-8_1.

[68] E. Fattahi, C. Waluga, B. Wohlmuth, U. Rüde, M. Manhart, R. Helmig,
Lattice Boltzmann methods in porous media simulations: From laminar
to turbulent flow, Computers & Fluids 140 (2016) 247–259. doi:10.1016/
j.compfluid.2016.10.007.

[69] I. Rybak, C. Schwarzmeier, E. Eggenweiler, U. Rüde, Validation and
calibration of coupled porous-medium and free-flow problems using pore-
scale resolved models, submitted manuscript: https://arxiv.org/abs/
1906.06884 (2019).

36

http://dx.doi.org/10.1504/PCFD.2008.018077
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1103/PhysRevE.65.046308
http://dx.doi.org/10.1002/fld.1140
http://dx.doi.org/10.1504/PCFD.2008.018088
http://dx.doi.org/10.1504/IJCSE.2008.021107
http://dx.doi.org/10.1504/IJCSE.2008.021107
http://dx.doi.org/10.1016/j.compfluid.2005.02.008
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
http://dx.doi.org/10.1016/j.camwa.2017.03.017
http://dx.doi.org/10.1007/978-3-319-40361-8_1
http://dx.doi.org/10.1007/978-3-319-40361-8_1
http://dx.doi.org/10.1016/j.compfluid.2016.10.007
http://dx.doi.org/10.1016/j.compfluid.2016.10.007
https://arxiv.org/abs/1906.06884
https://arxiv.org/abs/1906.06884


[70] S. Eibl, U. Rüde, A systematic comparison of runtime load balancing
algorithms for massively parallel rigid particle dynamics, Computer Physics
Communications 244 (2019) 76–85. doi:10.1016/j.cpc.2019.06.020.

[71] R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models
of a plasma, Journal of Computational Physics 14 (2) (1974) 148–158.
doi:10.1016/0021-9991(74)90010-2.

[72] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford
university press, 2017.

[73] C. Ericson, Real-time collision detection, CRC Press, 2004.

[74] K. Erleben, J. Sporring, K. Henriksen, K. Dohlman, Physics-based anima-
tion (graphics series) (2005).

[75] E. Gilbert, D. Johnson, S. Keerthi, A fast procedure for computing the
distance between complex objects in three-dimensional space, IEEE Journal
on Robotics and Automation 4 (2) (1988) 193–203. doi:10.1109/56.2083.

[76] E. G. Gilbert, C.-P. Foo, Computing the distance between general convex
objects in three-dimensional space, IEEE Transactions on Robotics and
Automation 6 (1) (1990) 53–61. doi:10.1109/70.88117.

[77] G. V. D. Bergen, Collision Detection in Interactive 3D Environments,
FOCAL PR, 2003.

[78] P. A. Cundall, A computer model for simulating progressive, large-scale
movements in blocky rock systems, Proc. Int. Symp. on Rock Fracture
(1971) 11–8.

[79] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular
assemblies, Géotechnique 29 (1) (1979) 47–65. doi:10.1680/geot.1979.
29.1.47.

[80] T. Preclik, U. Rüde, Ultrascale simulations of non-smooth granular dy-
namics, Computational Particle Mechanics 2 (2) (2015) 173–196. doi:
10.1007/s40571-015-0047-6.

[81] T. Preclik, S. Eibl, U. Rüde, The maximum dissipation principle in rigid-
body dynamics with inelastic impacts, Computational Mechanics 62 (1)
(2017) 1–16. doi:10.1007/s00466-017-1486-0.

[82] D. Rapaport, Multi-million particle molecular dynamics: Ii. design con-
siderations for distributed processing, Computer Physics Communications
62 (2-3) (1991) 217–228. doi:10.1016/0010-4655(91)90096-4.

[83] S. Eibl, U. Rüde, A local parallel communication algorithm for polydisperse
rigid body dynamics, Parallel Computing 80 (2018) 36–48. doi:10.1016/
j.parco.2018.10.002.

[84] T. Schruff, R. Liang, U. Rüde, H. Schüttrumpf, R. M. Frings, Generation of
dense granular deposits for porosity analysis: assessment and application
of large-scale non-smooth granular dynamics, Computational Particle
Mechanics 5 (1) (2016) 1–12. doi:10.1007/s40571-016-0153-0.

37

http://dx.doi.org/10.1016/j.cpc.2019.06.020
http://dx.doi.org/10.1016/0021-9991(74)90010-2
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1109/70.88117
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1007/s40571-015-0047-6
http://dx.doi.org/10.1007/s40571-015-0047-6
http://dx.doi.org/10.1007/s00466-017-1486-0
http://dx.doi.org/10.1016/0010-4655(91)90096-4
http://dx.doi.org/10.1016/j.parco.2018.10.002
http://dx.doi.org/10.1016/j.parco.2018.10.002
http://dx.doi.org/10.1007/s40571-016-0153-0


[85] I. A. Ostanin, P. Zhilyaev, V. Petrov, T. Dumitrica, S. Eibl, U. Rüde,
V. A. Kuzkin, Toward large scale modeling of carbon nanotube systems
with the mesoscopic distinct element method, Letters on Materials 8 (3)
(2018) 240–245. doi:10.22226/2410-3535-2018-3-240-245.

[86] I. Ostanin, T. Dumitrica, S. Eibl, U. Rüde, Size-independent mechanical
response of ultrathin CNT films in mesoscopic distinct element method
simulations, Journal of Applied Mechanics (2019) 1–17doi:10.1115/1.
4044413.

[87] A. J. C. Ladd, Numerical simulations of particulate suspensions via a
discretized boltzmann equation. part 1. theoretical foundation, Journal of
Fluid Mechanics 271 (1994) 285–309. doi:10.1017/S0022112094001771.

[88] C. K. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspen-
sions with inertia using the discrete boltzmann equation, Journal of Fluid
Mechanics 373 (1998) 287–311. doi:10.1017/S0022112098002493.

[89] D. R. Noble, J. R. Torczynski, A Lattice-Boltzmann Method for Partially
Saturated Computational Cells, International Journal of Modern Physics
C 09 (08) (1998) 1189–1201. doi:10.1142/S0129183198001084.

[90] C. Rettinger, U. Rüde, A comparative study of fluid-particle coupling
methods for fully resolved lattice boltzmann simulations, Computers &
Fluids 154 (2017) 74 – 89. doi:10.1016/j.compfluid.2017.05.033.

[91] Q. Zou, X. He, On pressure and velocity boundary conditions for the
lattice boltzmann bgk model, Physics of Fluids 9 (6) (1997) 1591–1598.
doi:10.1063/1.869307.

[92] C. Peng, Y. Teng, B. Hwang, Z. Guo, L.-P. Wang, Implementation issues
and benchmarking of lattice boltzmann method for moving rigid particle
simulations in a viscous flow, Computers & Mathematics with Applications
72 (2) (2016) 349 – 374. doi:10.1016/j.camwa.2015.08.027.

[93] C. Rettinger, U. Rüde, Dynamic load balancing techniques for particulate
flow simulations, Computation 7 (1). doi:10.3390/computation7010009.

[94] C. Rettinger, C. Godenschwager, S. Eibl, T. Preclik, T. Schruff, R. Frings,
U. Rüde, Fully resolved simulations of dune formation in riverbeds, in:
J. M. Kunkel, R. Yokota, P. Balaji, D. Keyes (Eds.), High Performance
Computing, Springer International Publishing, Cham, 2017, pp. 3–21.
doi:10.1007/978-3-319-58667-0_1.

[95] L. R. Huang, E. C. Cox, R. H. Austin, J. C. Sturm, Continuous particle
separation through deterministic lateral displacement, Science 304 (5673)
(2004) 987–990. doi:10.1126/science.1094567.

[96] J. McGrath, M. Jimenez, H. Bridle, Deterministic lateral displacement
for particle separation: a review, Lab Chip 14 (2014) 4139–4158. doi:
10.1039/C4LC00939H.

[97] M. Kuron, P. Stärk, C. Burkard, J. de Graaf, C. Holm, A lattice boltzmann
model for squirmers, The Journal of Chemical Physics 150 (14) (2019)
144110. doi:10.1063/1.5085765.

38

http://dx.doi.org/10.22226/2410-3535-2018-3-240-245
http://dx.doi.org/10.1115/1.4044413
http://dx.doi.org/10.1115/1.4044413
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112098002493
http://dx.doi.org/10.1142/S0129183198001084
http://dx.doi.org/10.1016/j.compfluid.2017.05.033
http://dx.doi.org/10.1063/1.869307
http://dx.doi.org/10.1016/j.camwa.2015.08.027
http://dx.doi.org/10.3390/computation7010009
http://dx.doi.org/10.1007/978-3-319-58667-0_1
http://dx.doi.org/10.1126/science.1094567
http://dx.doi.org/10.1039/C4LC00939H
http://dx.doi.org/10.1039/C4LC00939H
http://dx.doi.org/10.1063/1.5085765


[98] M. Kuron, P. Stärk, C. Holm, J. de Graaf, Hydrodynamic mobility reversal
of squirmers near flat and curved surfaces, Soft Matter 15 (2019) 5908–5920.
doi:10.1039/C9SM00692C.

[99] J. Elgeti, R. G. Winkler, G. Gompper, Physics of microswimmers—single
particle motion and collective behavior: a review, Reports on Progress in
Physics 78 (5) (2015) 056601. doi:10.1088/0034-4885/78/5/056601.

[100] J. R. Blake, A spherical envelope approach to ciliary propulsion,
Journal of Fluid Mechanics 46 (1) (1971) 199–208. doi:10.1017/
S002211207100048X.

[101] M. Lighthill, On the squirming motion of nearly spherical deformable
bodies through liquids at very small reynolds numbers, Communications
on Pure and Applied Mathematics 5 (2) (1952) 109–118. doi:10.1002/
cpa.3160050201.

[102] C. Rettinger, U. Rüde, A coupled lattice boltzmann method and discrete
element method for discrete particle simulations of particulate flows, Com-
puters & Fluids 172 (2018) 706 – 719. doi:10.1016/j.compfluid.2018.
01.023.

[103] T. Schruff, F. Schornbaum, C. Godenschwager, U. Rüde, R. M. Frings,
H. Schüttrumpf, Numerical simulation of pore fluid flow and fine sedi-
ment infiltration into the riverbed, in: 11th International Conference on
Hydroinformatics, CUNY Academic Works, 2014.

[104] M. Pippig, PFFT: An extension of fftw to massively parallel architectures,
SIAM Journal on Scientific Computing 35 (3) (2013) C213–C236. doi:
10.1137/120885887.

[105] D. Bartuschat, U. Rüde, Parallel multiphysics simulations of charged
particles in microfluidic flows, Journal of Computational Science 8 (2015)
1–19. doi:10.1016/j.jocs.2015.02.006.

[106] F. Capuani, I. Pagonabarraga, D. Frenkel, Discrete solution of the electroki-
netic equations, The Journal of Chemical Physics 121 (2) (2004) 973–986.
doi:10.1063/1.1760739.

[107] G. Rempfer, G. B. Davies, C. Holm, J. de Graaf, Reducing spurious flow in
simulations of electrokinetic phenomena, The Journal of Chemical Physics
145 (4) (2016) 044901. doi:10.1063/1.4958950.

[108] M. Kuron, G. Rempfer, F. Schornbaum, M. Bauer, C. Godenschwager,
C. Holm, J. de Graaf, Moving charged particles in lattice boltzmann-based
electrokinetics, The Journal of Chemical Physics 145 (21) (2016) 214102.
doi:10.1063/1.4968596.

[109] pystencils, https://i10git.cs.fau.de/pycodegen/pystencils, ac-
cessed on 2019-09-30.

[110] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rock-
lin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig,
B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson,

39

http://dx.doi.org/10.1039/C9SM00692C
http://dx.doi.org/10.1088/0034-4885/78/5/056601
http://dx.doi.org/10.1017/S002211207100048X
http://dx.doi.org/10.1017/S002211207100048X
http://dx.doi.org/10.1002/cpa.3160050201
http://dx.doi.org/10.1002/cpa.3160050201
http://dx.doi.org/10.1016/j.compfluid.2018.01.023
http://dx.doi.org/10.1016/j.compfluid.2018.01.023
http://dx.doi.org/10.1137/120885887
http://dx.doi.org/10.1137/120885887
http://dx.doi.org/10.1016/j.jocs.2015.02.006
http://dx.doi.org/10.1063/1.1760739
http://dx.doi.org/10.1063/1.4958950
http://dx.doi.org/10.1063/1.4968596
https://i10git.cs.fau.de/pycodegen/pystencils


F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando,
S. Kulal, R. Cimrman, A. Scopatz, Sympy: symbolic computing in python,
PeerJ Computer Science 3 (2017) e103. doi:10.7717/peerj-cs.103.

[111] pystencils waLBerla interface, https://i10git.cs.fau.de/pycodegen/
pystencils_walberla, accessed on 2019-09-30.

[112] M. Bauer, J. Hötzer, D. Ernst, J. Hammer, M. Seitz, H. Hierl, J. Hönig,
H. Köstler, G. Wellein, B. Nestler, U. Rüde, Code generation for mas-
sively parallel phase-field simulations, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (accepted, in press), ACM, 2019.

[113] Jinja Template Language, https://jinja.palletsprojects.com/, ac-
cessed on 2019-09-30.

[114] S. Eibl, U. Rüde, A modular and extensible software architecture for
particle dynamics, Proceedings of the 8th International Conference on
Discrete Element Methods (DEM8).
URL http://arxiv.org/abs/1906.10963

[115] Git, https://git-scm.com/, accessed on 2019-09-30.

[116] Gitlab, https://gitlab.com/, accessed on 2019-09-30.

[117] GitHub, https://github.com/, accessed on 2019-09-30.

[118] Clang, https://clang.llvm.org, accessed on 2019-09-30.

[119] GNU Compiler Collection, https://gcc.gnu.org, accessed on 2019-09-30.

[120] Intel C++ Compiler, https://software.intel.com, accessed on 2019-
09-30.

[121] Microsoft Visual C++, https://docs.microsoft.com/cpp, accessed on
2019-09-30.

[122] Clang-Tidy, https://clang.llvm.org/extra/clang-tidy, accessed on
2019-09-30.

[123] Doxygen, http://www.doxygen.nl/, accessed on 2019-09-30.

[124] Grafana, https://grafana.com/, accessed on 2019-09-30.

[125] Docker, https://www.docker.com/, accessed on 2019-09-30.

[126] ParaView, https://www.paraview.org/, accessed on 2019-09-30.

[127] VisIt, https://wci.llnl.gov/simulation/computer-codes/visit/,
accessed on 2019-09-30.

[128] M. Bauer, F. Schornbaum, C. Godenschwager, M. Markl, D. Anderl,
H. Köstler, U. Rüde, A python extension for the massively parallel
multiphysics simulation framework walberla, International Journal of
Parallel, Emergent and Distributed Systems 31 (6) (2016) 529–542.
doi:10.1080/17445760.2015.1118478.

40

http://dx.doi.org/10.7717/peerj-cs.103
https://i10git.cs.fau.de/pycodegen/pystencils_walberla
https://i10git.cs.fau.de/pycodegen/pystencils_walberla
https://jinja.palletsprojects.com/
http://arxiv.org/abs/1906.10963
http://arxiv.org/abs/1906.10963
http://arxiv.org/abs/1906.10963
https://git-scm.com/
https://gitlab.com/
https://github.com/
https://clang.llvm.org
https://gcc.gnu.org
https://software.intel.com
https://docs.microsoft.com/cpp
https://clang.llvm.org/extra/clang-tidy
http://www.doxygen.nl/
https://grafana.com/
https://www.docker.com/
https://www.paraview.org/
https://wci.llnl.gov/simulation/computer-codes/visit/
http://dx.doi.org/10.1080/17445760.2015.1118478


[129] Boost.Python, https://www.boost.org/doc/libs/1_66_0/libs/
python/, accessed on 2019-09-30.

[130] NumPy, https://numpy.org/, accessed on 2019-09-30.

[131] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, U. Rüde, The HyTeG
finite-element software framework for scalable multigrid solvers, Interna-
tional Journal of Parallel, Emergent and Distributed Systems 34 (5) (2019)
477–496. doi:10.1080/17445760.2018.1506453.

[132] C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice boltzmann
model for free surface flow for modeling foaming, Journal of Statistical
Physics 121 (1) (2005) 179–196. doi:10.1007/s10955-005-8879-8.

[133] S. Donath, C. Feichtinger, T. Pohl, J. Götz, U. Rüde, Localized parallel
algorithm for bubble coalescence in free surface lattice-boltzmann method,
in: H. Sips, D. Epema, H. Lin (Eds.), Euro-Par 2009 Parallel Processing,
Lecture Notes in Computer Science, vol 5704, Springer, Berlin, Heidelberg,
Cham, 2009, pp. 735–746. doi:10.1007/978-3-642-03869-3_69.

[134] D. Anderl, S. Bogner, C. Rauh, U. Rüde, A. Delgado, Free surface lattice
Boltzmann with enhanced bubble model, Computers & Mathematics with
Applications 67 (2) (2014) 331–339. doi:10.1016/j.camwa.2013.06.007.

[135] S. Donath, K. Mecke, S. Rabha, V. Buwa, U. Rüde, Verification of surface
tension in the parallel free surface lattice Boltzmann method in waLBerla,
Computers & Fluids 45 (1) (2011) 177–186. doi:10.1016/j.compfluid.
2010.12.027.

[136] D. Anderl, M. Bauer, C. Rauh, U. Rüde, A. Delgado, Numerical simulation
of adsorption and bubble interaction in protein foams using a lattice
boltzmann method, Food & Function 5 (2014) 755–763. doi:10.1039/
C3FO60374A.

[137] D. Anderl, M. Bauer, C. Rauh, U. Rüde, A. Delgado, Numerical simulation
of bubbles in shear flow, PAMM 14 (1) (2014) 667–668. doi:10.1002/
pamm.201410317.

[138] R. Ammer, M. Markl, U. Ljungblad, C. Körner, U. Rüde, Simulating
fast electron beam melting with a parallel thermal free surface lattice
Boltzmann method, Computers and Mathematics with Applications 67
(2014) 318–330. doi:10.1016/j.camwa.2013.10.001.

[139] M. Markl, R. Ammer, U. Rüde, C. Körner, Numerical investigations
on hatching process strategies for powder-bed-based additive manufac-
turing using an electron beam, The International Journal of Advanced
Manufacturing Technology 78 (1-4) (2015) 239–247. doi:10.1007/
s00170-014-6594-9.

[140] J. Hötzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, A. Genau,
M. Bauer, H. Köstler, U. Rüde, Large scale phase-field simulations of
directional ternary eutectic solidification, Acta Materialia 93 (2015) 194 –
204. doi:10.1016/j.actamat.2015.03.051.

41

https://www.boost.org/doc/libs/1_66_0/libs/python/
https://www.boost.org/doc/libs/1_66_0/libs/python/
https://numpy.org/
http://dx.doi.org/10.1080/17445760.2018.1506453
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1007/978-3-642-03869-3_69
http://dx.doi.org/10.1016/j.camwa.2013.06.007
http://dx.doi.org/10.1016/j.compfluid.2010.12.027
http://dx.doi.org/10.1016/j.compfluid.2010.12.027
http://dx.doi.org/10.1039/C3FO60374A
http://dx.doi.org/10.1039/C3FO60374A
http://dx.doi.org/10.1002/pamm.201410317
http://dx.doi.org/10.1002/pamm.201410317
http://dx.doi.org/10.1016/j.camwa.2013.10.001
http://dx.doi.org/10.1007/s00170-014-6594-9
http://dx.doi.org/10.1007/s00170-014-6594-9
http://dx.doi.org/10.1016/j.actamat.2015.03.051


[141] M. Bauer, J. Hötzer, M. Jainta, P. Steinmetz, M. Berghoff, F. Schorn-
baum, C. Godenschwager, H. Köstler, B. Nestler, U. Rüde, Massively
parallel phase-field simulations for ternary eutectic directional solidifica-
tion, in: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ACM, 2015, p. 8.
doi:10.1145/2807591.2807662.

42

http://dx.doi.org/10.1145/2807591.2807662

	1 Introduction
	2 Framework overview
	3 Block-structured domain partitioning
	3.1 Overview
	3.2 Adaptive refinement and load balancing
	3.3 Distributed memory parallelization
	3.4 Checkpointing and resilience

	4 Stencil codes on structured grids
	4.1 Structured grids
	4.2 Fields and sweeps
	4.3 GPU support
	4.4 Geometry handling

	5 Numerical methods and applications
	5.1 Lattice Boltzmann method
	5.1.1 Overview
	5.1.2 Performance and scaling
	5.1.3 Example applications

	5.2 Rigid particle dynamics
	5.2.1 Data structures
	5.2.2 Algorithms
	5.2.3 Performance and scaling
	5.2.4 Applications

	5.3 Fluid-particle coupling
	5.3.1 Geometrically fully resolved simulations
	5.3.2 Simulated scenarios
	5.3.3 Volumetric coupling method

	5.4 Coupling to non-hydrodynamic fields

	6 Code generation
	6.1 Pystencils
	6.2 MESA-PD

	7 Supporting infrastructure
	7.1 Development infrastructure
	7.2 Graphical user interface
	7.3 Python interface

	8 waLBerla extensions
	8.1 HyTeG
	8.2 Free surface lattice Boltzmann method
	8.3 Phase-field methods

	9 Conclusion

