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Abstract

In this paper we present a new adaptive two-stage algorithm for solving elliptic partial differential
equations via a radial basis function collocation method. Our adaptive meshless scheme is based at first
on the use of a leave-one-out cross validation technique, and then on a residual subsampling method. Each
of phases is characterized by different error indicators and refinement strategies. The combination of these
computational approaches allows us to detect the areas that need to be refined, also including the chance
to further add or remove adaptively any points. The resulting algorithm turns out to be flexible and
effective through a good interaction between error indicators and refinement procedures. Several numerical
experiments support our study by illustrating the performance of our two-stage scheme. Finally, the latter
is also compared with an efficient adaptive finite element method.

Keywords: meshfree approximation, adaptive algorithms, radial basis functions, collocation methods,
partial differential equations
2010 MSC: 65D15, 65M70

1. Introduction

Radial basis function (RBF) methods are powerful and effective meshless techniques, which are commonly
used for solving interpolation and approximation problems or modeling differential problems such as partial
differential equations (PDEs). Meshless RBF methods have many remarkable advantages, since they allow
us to get high convergence orders and great flexibility with respect to geometric problems. In addition,
numerical algorithms are usually rather simple to implement, even when one works with complex geometries
or in higher dimensions (see [2, 15, 18]).

In this paper we propose a new two-stage adaptive scheme for solving 2D elliptic PDEs. In order to
test our adaptive algorithm, we consider the nonsymmetric RBF collocation method, also known as Kansa’s
method [24]. This collocation method was originally based on the use of multiquadric basis functions, but
later it was applied more in general to different RBFs. We also observe that Kansa’s method has spawned
a large number of works, mainly by scientists from several different areas of science and engineering (see
e.g. [1, 6, 15, 35] and references therein). Here, we construct an adaptive refinement scheme applied to
RBF collocation, which consists basically of two computational phases. The first stage is dependent from a
leave-one-out cross validation (LOOCV) method. This approach was proposed by Rippa [32] in the context
of scattered data interpolation with RBFs. Nevertheless, as far as we know, Rippa’s algorithm and some
of its modifications have been used so far for choosing an optimal value of the RBF shape parameter (see
e.g. [5, 16, 20, 33, 36]). On the contrary, here we use the LOOCV technique as an error indicator within an
adaptive RBF collocation method. This choice allows us to detect which areas need to be refined by adding
new discretization points. The second stage is instead based on an adaptive residual subsampling (ARS)
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scheme, which is used to further refine some parts of the domain or coarsen such regions if an excessive
number of points is present. In particular, we observe that in general the combination of these two phases
results in an improvement of the method accuracy compared to when each method is used on its own. In the
extensive numerical experiments we show the performance and the efficacy of our LOOCV-ARS algorithm,
comparing it also with an efficient implementation of the adaptive finite element method, called P1-FEM
[19]. Note that similar approaches consisting in the addition/removal of points can also be found in the
works [3, 12]. In particular, in some previous papers we proposed the use of the RBF partition of unity (PU)
collocation method [3, 4]. This approach provides in general good results but in dealing with PDE problems
with solutions that present quite steep variations the RBF-PU method is not always able to achieve the
expected accuracy. This fact motivated us to enhance further the current state of the art by proposing in this
paper the LOOCV-ARS scheme, which is here presented for solving 2D elliptic PDE problems. However, it
is important to remark that this method is not limited to two dimensions, but with suitable changes it could
also be applied for solving PDE problems in higher dimensions. Finally, we observe that in literature other
adaptive techniques have been studied for meshless RBF methods involving for instance weak form and finite
difference methods, wavelet schemes and collocation multiscale methods (see e.g. [8, 10, 11, 13, 25, 29, 31]).

The paper is organized as follows. In Section 2 we recall the nonsymmetric Kansa’s method, introducing
some basic notions on the theory of RBFs. Section 3 describes the LOOCV technique applied to a RBF
collocation method as an error indicator. In Section 4 we explain in detail the two stages of our adaptive
refinement algorithm. In Section 5 we show numerical experiments devoted to illustrate the performance of
our adaptive scheme on various types of elliptic PDE problems. Finally, Section 6 contains conclusions and
future work.

2. Nonsymmetric RBF collocation

Given a domain Ω ⊂ R
d, we define a (time independent) elliptic PDE of the form

Lu(x) = f(x), x ∈ Ω, (1)

with boundary conditions (BC)

Bu(x) = g(x), x ∈ ∂Ω, (2)

where L is a linear elliptic partial differential operator and B is a linear boundary operator.
For Kansa’s collocation method we choose to represent the approximate solution û by a RBF expansion

analogous to that used in the field of RBF interpolation (see e.g. [2, 14]), i.e. û is expressed as a linear
combination of basis functions

û(x) =

N
∑

j=1

cjφε(||x− zj ||2), (3)

where cj is an unknown real coefficient, || · ||2 denotes the Euclidean norm, and φε : R≥0 → R is some RBF
depending on a shape parameter ε > 0 such that

φε(||x− z||2) = φ(ε||x− z||2), ∀x, z ∈ Ω.

In Table 1 we list some examples of globally and compactly supported RBFs with their smoothness degrees
(see [37] for details). These radial functions are commonly used for solving PDEs.

In (3) we distinguish between centers ZN = {z1, . . . , zN} and collocation points XN = {x1, . . . ,xN} ⊂ Ω.
Even though such sets of points can formally be distinct, they can also coincide. As we will see in Section
4, both scenarios will be used in the construction of our adaptive refinement scheme. Further, in this
discussion the set XN is split into a set XNI

of interior points and a set XNB
of boundary points, so that

XN = XNI
∪XNB

, where NI and NB denote the number of interior and boundary points, respectively.
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RBF φε(r)

Gaussian C∞ (GA) exp(−ε2r2)
Inverse MultiQuadric C∞ (IMQ) (1 + ε2r2)−1/2

MultiQuadric C∞ (MQ) (1 + ε2r2)1/2

Matérn C6 (M6) exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15)
Matérn C4 (M4) exp(−εr)(ε2r2 + 3εr + 3)

Wendland C6 (W6) max (1− εr, 0)
8
(32ε3r3 + 25ε2r2 + 8εr + 1)

Wendland C4 (W4) max (1− εr, 0)
6
(35ε2r2 + 18εr + 3)

Table 1: Some examples of commonly used RBFs.

Matching the PDE (1) and the BCs (2) at the collocation points XN , we get

Lû(xi) =

N
∑

j=1

cjLφε(||xi − zj ||2) = f(xi), xi ∈ Ω,

Bû(xi) =

N
∑

j=1

cjBφε(||xi − zj ||2) = g(xi), xi ∈ ∂Ω,

(4)

resulting in a linear system of equations

Ac = v, (5)

where v is the vector of entries

vi =

{

f(xi), xi ∈ XNI
,

g(xi), xi ∈ XNB
.

and A is the collocation matrix

A =

[

AL

AB

]

. (6)

The two blocks in (6) are thus defined as

(AL)ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZN ,

(AB)ij = Bφε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZN .

(7)

Since the collocation matrix (6) may be singular for certain (rare) configurations of the centers zj , it
follows that the nonsymmetric collocation method cannot be well-posed for arbitrary center locations (see e.g.
[14, 23]). However, it is possible to find sufficient conditions on the centers so that invertibility of Kansa’s
matrix is ensured. Hence, based on theoretical convergence analysis of Kansa’s collocation method (and
some variations thereof derived from applications) in [28, 34], this nonsymmetric approach has gained much
popularity in spite of its potential failure when applied in its most straightforward and naive implementation
[23].

3. LOOCV strategy for RBF collocation

A common strategy for selecting an optimal RBF shape parameter is to use a cross validation approach
[7, 21]. The formula and the associated algorithm proposed by Rippa in [32] corresponds to one of its possible
variants. The LOOCV technique is rather popular in statistical literature and, recently, it has also been
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successful in the field of RBF approximation (see e.g. [5, 15, 33, 36, 39]). However, while in previous works
the main focus is to find an optimal value of ε, here we apply the LOOCV strategy as an error indicator
within an adaptive RBF collocation scheme. Indeed, as we will see in Section 4, this approach enables us
to identify in which area of the domain we have to add some points by applying a local refinement. Notice
that in this case the shape parameter ε is kept fixed.

3.1. Description of LOOCV

The idea behind LOOCV for the nonsymmetric RBF collocation can thus be described as follows. First
of all, we split the data into two different sets:

– a training set {v(x1), . . . , v(xk−1), v(xk+1), . . . , v(xN )},

– a validation set consisting of only the single value v(xk) which was left out when creating the training
set.

For a given k ∈ {1, . . . , N} and fixed ε, we define the partial RBF approximant

û[k](x) =
N
∑

j=1, j 6=k

c
[k]
j φε(||x− zj ||2),

whose coefficients c
[k]
j are determined by collocating the training data, i.e.

Lû[k](xi) = v(xi), xi ∈ XNI
,

Bû[k](xi) = v(xi), xi ∈ XNB
,

for i = 1, . . . , k − 1, k + 1, . . . , N.

This is equivalent to solving the (N − 1)× (N − 1) linear system

A[k]c[k] = v[k], (8)

where A[k] is obtained from A by removing the k-th row and the k-th column, while c[k] = (c
[k]
1 , . . . , c

[k]
k−1,

c
[k]
k+1, . . . , c

[k]
N )T and v[k] = (v

[k]
1 , . . . , v

[k]
k−1, v

[k]
k+1, . . . , v

[k]
N )T .

Then, to have a measure of the quality of this attempt, we define the absolute error

ek = |v(xk)− û[k](xk)|, (9)

at the one validation point xk not used to determine the approximant. Hence, computing the error in (9),
for all k = 1, . . . , N , we obtain a vector e = (e1, . . . , eN )T , which can be used as an error indicator to identify
the regions that need a refinement, i.e. the addition of points, in the neighborhood of a collocation point.

However, the computational cost to find the error term (9) requires O(N4) operations, which is quite
expensive even for problems of modest size.

3.2. Construction of LOOCV as an error indicator

In order to reduce the complexity toO(N3), a formula for computing the term ek is derived to significantly
speep up the computation process. This approach has originally been developed for the interpolation [32],
while here we deal with the case of RBF collocation as follows:

i) If t = (t1, . . . , tN )T ∈ R
N is such that tk = 0, then we have At = w for some w, which implies that

A[k](t1, . . . , tk−1, tk+1, . . . , tN )T = (w1, . . . , wk−1, wk+1, . . . , wN )T . (10)
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ii) Denoting by x(k) the solution to the system

Ax(k) = e(k), (11)

where e(k) is the k-th column of the N × N identity matrix, we deduce that x
(k)
k 6= 0. In fact, if

x
(k)
k = 0, from (10) and (11) we get

A[k](x
(k)
1 , . . . , x

(k)
k−1, x

(k)
k+1, . . . , x

(k)
N )T = 0. (12)

This leads to x(k) = 0, which is impossible since x
(k)
k is the solution of (11).

iii) Defining the vector b(k) ∈ R
N such that

b(k) = c− ck

x
(k)
k

x(k),

we obtain by (11)

Ab(k) = Ac− ck

x
(k)
k

Ax(k) = v − ck

x
(k)
k

e(k) =

(

v1, . . . , vk−1, vk − ck

x
(k)
k

, vk+1, . . . , vN

)T

,

and, since b
(k)
k = 0, we use (10) once again to get

c[k] = (b
(k)
1 , . . . , b

(k)
k−1, b

(k)
k+1, . . . , , b

(k)
N )T .

iv) Accordingly, we conclude that

û[k](xk) =

N
∑

j=1, j 6=k

c
[k]
j φε(||xk − zj ||2) =

N
∑

j=1, j 6=k

b
(k)
j φε(||xk − zj ||2)

=
N
∑

j=1

b
(k)
j φε(||xk − zj ||2) = (Ab(k))k = vk − ck

x
(k)
k

,

v) The absolute error term ek in (9) is thus given by

ek = |vk − û[k](xk)| =
∣

∣

∣

∣

∣

ck

x
(k)
k

∣

∣

∣

∣

∣

. (13)

Therefore, instead of solving N collocation problems by inverting the matrix A[k] given in (8), it is evi-
dent that we can determine more easily the error component ek. Finally, the rule (13) shows us that the
computation of ek can simply be rewritten as

ek =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N, (14)

where ck is the k-th coefficient of the full approximate solution (3) and A−1
kk is the k-th diagonal element

of the inverse of the corresponding N × N collocation matrix A in (6). Note that the term x
(k)
k in (13) is

exactly the diagonal element A−1
kk in (14).

4. Two-stage adaptive scheme

In this section we describe in detail our new adaptive algorithm, which is based on two computational
phases. The first stage consists in refining the areas of the domain Ω that have been identified to be not
accurate enough by applying the LOOCV as an error indicator; the second stage is a further adaptive
technique where the computational procedure based on ARS provides an error estimate, which allows us to
refine or coarsen the distribution of collocation points.
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4.1. Stage 1: Refinement technique based on LOOCV

First of all, we consider two initial sets X1
N(1) ≡ XN = {x(1)

1 , . . . ,x
(1)

N(1)} and Z1
N(1) ≡ ZN = {z(1)

1 , . . . ,

z
(1)

N(1)} of collocation points and centers, respectively. Each of these sets are composed of two subsets which,
in an adaptive scheme, for j = 1, 2, . . ., can iteratively be defined as follows:

• X1

N
(j)
I

= {x(j)
1 , . . . ,x

(j)

N
(j)
I

} and X1

N
(j)
B

= {x(j)
1 , . . . ,x

(j)

N
(j)
B

}

are sets of interior and boundary collocation points, respectively;

• Z1

N
(j)
I

= {z(j)
1 , . . . ,z

(j)

N
(j)
I

} and Z1

N
(j)
B

= {z(j)
1 , . . . , z

(j)

N
(j)
B

}

are sets of interior and additional boundary centers, respectively.

Here, we assume that Z1

N
(j)
I

= X1

N
(j)
I

while the set Z1

N
(j)
B

of centers is taken outside the domain Ω as suggested

in [17] (see also [14, Chapter 39]). Note that using this technique the number of external centers, whose we
refer to as additional boundary centers, is the same as boundary collocation points. For example, when the
domain is given by Ω = [0, 1]2, we assume

N
(j)
B = 4

⌈
√

N
(j)
I + 2

⌉

− 4.

This choice provides a uniform distribution of interior and boundary points, supposing the iterative algorithm
starts from gridded points. Since we are designing an adaptive algorithm, it turns out to be particularly
convenient to begin with a grid of interior and boundary points. This allows us to uniformly cover the
domain Ω detecting in a better way which areas of Ω have to be refined. However, other choices of points
could be considered. Note that in the above-mentioned sets the symbol 1 refers to the first stage of the
adaptive scheme, while the index N(j) denotes the number of points in the j-th iteration of that same stage.

At the first iteration, fixed a tolerance τ > 0, from (14) we can define an error indicator via LOOCV as

e
(1)
k =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N (1), (15)

where in the absolute value argument any reference to the iteration is omitted to avoid confusion in the

notation. If the error indicator (15) is such that e
(1)
k > τ , then a refinement is applied in the neighborhood

of xk (and accordingly zk). In Figure 1 (top) we show some possible refinement strategies that consist in
adding four or eight points located in different positions. However, when the point xk is on or close to the
boundary, the number of involved points is obviously reduced, as shown in Figure 1 (bottom). In doing
that, to refine the data point distribution, we first compute the so-called separation distance

qX1

N(1)
=

1

2
min
u6=v

||x(1)
u − x(1)

v ||2, x(1)
u ,x(1)

v ∈ X1
N(1) , (16)

and then we sum up or subtract the quantity in (16) to one (both) coordinate(s) of the point xk. Notice
that here xk represents the point to be refined and it is marked by a blue dot in Figure 1, whereas the
four/eight points in red denote the added ones. In particular, we remark that the refinement strategy is
applied to both sets X1

N(1) and Z1
N(1) .

Acting in this way, we can iterate the adaptive process for j = 2, 3, . . ., thus determining new refined
sets X1

N(j) and Z1
N(j) of collocation points and centers, respectively. These sets are then validated by simply

updating the indicator (15) as

e
(j)
k =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N (j), (17)
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Figure 1: Examples of possible refinement strategies applied in the neighborhood of an interior (top) or
a boundary (bottom) point xk (blue dots) by adding points in different ways (red dots) when the error

indicator e
(j)
k > τ , with j = 1, 2, . . . and tolerance τ > 0.

and accordingly renewing the value of the separation distance in (16) for the set X1
N(j) , for j = 2, 3, . . ..

Here, it is relevant to stress that the computation of vector e(j) = {e(j)1 , . . . , e
(j)

N(j)} requires the inversion
of a matrix of the form (6) after each refinement (or iteration). The refinement procedure stops when all
components of error terms in (17) are lower or equal to the tolerance τ . Finally, the computational procedure
returns the sets X1

N(j∗) and Z1
N(j∗) , where j∗ denotes the final iteration of this first stage. A pseudo-code of

this first phase is outlined in Algorithm 1.

4.2. Stage 2: Computational procedure based on ARS

In this second phase of the adaptive algorithm we present a computational technique that enables us to
carry out a further refinement, adding or removing collocation points based on the information derived from
a new error indicator. Albeit differently devised, the original idea of this adaptive meshless refinement is
based on the residual subsampling method proposed in [12], which has suitably been modified for RBF-PU
collocation [3, 9]. Here we further extend this procedure by applying a different error indicator. This process
follows the common paradigm to solve, estimate and refine/coarsen till a stopping criterion is satisfied.
Moreover, we observe that the ARS scheme can be used to solve PDE problems in science and engineering
applications, since unlike [9] our indicator does not depend on information coming from the exact solution
that in real-life situations is often not available.

In this stage, we begin by taking the initial sets X2
N(1) and Z2

N(1) obtained from the output of Algorithm
1, i.e. assuming that X2

N(1) = X1
N(j∗) and Z2

N(1) = Z1
N(j∗) , where X1

N(j∗) = X1

N
(j∗)
I

∪ X1

N
(j∗)
B

and Z1
N(j∗) =

Z1

N
(j∗)
I

∪ Z1

N
(j∗)
B

. In terms of notation, the symbol 2 in the sets X2
N(1) and Z2

N(1) indicates the second stage

of the adaptive process, whereas the index N(1) is the number of points in the first iteration. Then we
compute the two collocation solutions û and ûA of the form (3). More precisely, the two RBF approximants
û and ûA are obtained by solving two linear systems of the form (5). In particular, the first system
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Algorithm 1: LOOCV based refinement procedure

Step 1 Generate two sets X1
N(1) and Z1

N(1) of (interior and boundary) collocation points

and centers, assuming X1
N(1) = XN and Z1

N(1) = ZN

Step 2 Fix a tolerance τ > 0

Step 3 Compute the error term e
(1)
k in (15) via LOOCV and use it as an error indicator

Step 4 If the error indicator (15) is such that e
(1)
k > τ , for any k

then a refinement is applied in the neighborhood of xk as shown in Figure 1

else return X1
N(1) and Z1

N(1)

Step 5 Iterate the Steps 3-4, defining new sets X1
N(j) and Z1

N(j) till e
(j)
k > τ , for any k

where j = 2, 3, . . . denotes the iteration

Step 6 Return the refined sets X1
N(j∗) and Z1

N(j∗) (j∗ is the last iteration)

associated with û is constructed on coincident sets of collocation points and centers. In other words, the sets
X2

N(1) = X2

N
(1)
I

∪X2

N
(1)
B

of collocation points and Z2
N(1) = Z2

N
(1)
I

∪Z2

N
(1)
B

of centers are such that Z2
N(1) = X2

N(1) .

Thus, the collocation matrix A in (6) is defined as

A =

[

AL

AB

]

=

[

ALII
ALIB

ABBI
ABBB

]

, (18)

where

(ALII
)ij = Lφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
I

, z
(1)
j ∈ Z2

N
(1)
I

,

(ALIB
)ij = Lφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
I

, z
(1)
j ∈ Z2

N
(1)
B

,

(ABBI
)ij = Bφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
B

, z
(1)
j ∈ Z2

N
(1)
I

(ABBB
)ij = Bφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
B

, z
(1)
j ∈ Z2

N
(1)
B

.

(19)

The second system associated with ûA is characterized by the same set X2
N(1) = X2

N
(1)
I

∪X2

N
(1)
B

of collocation

points as the first system while the set of centers is split as Z2
N(1) = Z2

N
(1)
I

∪ Z
2,A

N
(1)
B

, with Z
2,A

N
(1)
B

defining

additional boundary centers taken outside the domain as in Stage 1. It follows that the resulting collocation
matrix assumes the same form as in (18). However, while the matrix blocks (ALII

)ij and (ABBI
)ij are

defined as in (19), the two remaining blocks (ALIB
)ij and (ABBB

)ij are given by

(ALIB
)ij = Lφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
I

, z
(1)
j ∈ Z

2,A

N
(1)
B

,

(ABBB
)ij = Bφε(||x(1)

i − z
(1)
j ||2), x

(1)
i ∈ X2

N
(1)
B

, z
(1)
j ∈ Z

2,A

N
(1)
B

.

Therefore, we observe that the solutions û and ûA are computed by considering the same sets of collocation
points, whereas the sets of centers differ. Indeed, though the interior collocation points and interior centers
coincide for both systems, in the first system we take a set Z2

N
(1)
B

of boundary centers located on the

boundary of Ω while in the second one we consider a set Z
2,A

N
(1)
B

of (additional) boundary centers lying
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outside the domain. However, note that the number of additional boundary points used to compute ûA is
the same as boundary ones considered to determine û. In Figure 2 we show an example of these two sets of
centers, which are used for finding the solutions û and ûA. Both sets are overlapped with the corresponding
sets of collocation points. It refers to the wave front problem that we will discuss later in Subsection 5.2.
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Figure 2: Example of a set Z2
N(1) = Z2

N
(1)
I

∪ Z2

N
(1)
B

of interior and boundary centers (left) and a set Z2
N(1) =

Z2

N
(1)
I

∪Z2,A

N
(1)
B

of interior and additional boundary centers outside the domain (right). Both sets are overlapped

with the related sets of collocation points. Interior points are blue dots, boundary points are red crosses
and additional boundary points are black crosses.

After defining a set Y (1) = {y(1)
1 , . . . ,y

(1)

N(1)} of test points, we can thus evaluate the error via the indicator

E
(1)
i = |û(y(1)

i )− ûA(y
(1)
i )|, y

(1)
i ∈ Y (1). (20)

At the moment we fix two positive tolerances (or thresholds) τlow and τupp, such that τlow < τupp. Such
thresholds allow us to refine the set of collocation points when the error indicator (20) does not predict an
accurate enough result, or coarsen the set of collocation points if the level of precision achieved is excessive.
In brief, this process results in an addition or removal of points, thus making this second phase of the scheme
adaptive. Acting in this way, we can therefore define the sets X2

N(2) and Z2
N(2) , and then iteratively the

successive ones. Further details on the manner of addition/removal are given in Step 6 of Algorithm 2.

The whole technique can then be iterated for k = 2, 3, . . . by updating the set Y (k) = {y(k)
1 , . . . ,y

(k)

N(k)} of
test points and validating the results through the error indicator defined by

E
(k)
i = |û(y(k)

i )− ûA(y
(k)
i )|, y

(k)
i ∈ Y (k), (21)

where û is the collocation solution computed on the set Z2
N(k) = Z2

N
(k)
I

∪ Z2

N
(k)
B

of interior and boundary

centers, and ûA is the collocation solution computed on the set Z2
N(k) = Z2

N
(k)
I

∪ Z
2,A

N
(k)
B

of interior centers

with additional boundary points outside the domain Ω. The ARS concludes once the process of addition
and/or removal was completed, returning the final sets X2

N(k∗) and Z2
N(k∗) (associated with ûA), where k∗

denotes the last iteration of the second phase. A pseudo-code of this second stage is sketched in Algorithm
2.

In Section 5 we will show how the two-stage adaptive scheme works. As an example, in order to provide
some final configurations of discretization points returned by the algorithm, we can refer to Figure 4 and
Figures 5–7 (right) contained in the next numerical section.

Remark 4.1. Note that in general in a refinement strategy it could happen that duplicated points are
included. However, in our technique a check is done in order to exclude multiple points.
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Algorithm 2: ARS based procedure

Step 1 Take the sets X1
N(j∗) and Z1

N(j∗) of (interior and boundary) collocation points

and centers from Algorithm 1, assuming X2
N(1) = X1

N(j∗) and Z2
N(1) = Z1

N(j∗)

Step 2 Fix two tolerances τlow and τupp, such that 0 < τlow < τupp

Step 3 Compute the approximate collocation solutions û and ûA

Step 4 Define a set Y (1) of test points

Step 5 Evaluate at the test points the error via indicator (20)

Step 6 Construct the refined set

X2
N(2) = X2

N
(2)
I

∪X2

N
(2)
B

, with X2

N
(2)
I

= (X2

N
(1)
I

∪ S
T

(1)
upp

)\S
T

(1)
low

where

S
T

(1)
upp

= {y(1)
i ∈ Y (1) : E

(1)
i > τupp, i = 1, . . . , T

(1)
upp}

S
T

(1)
low

= {x̄(1)
i ∈ X2

N(1) : E
(1)
i < τlow, i = 1, . . . , T

(1)
low}

and x̄
(1)
i is the nearest point to y

(1)
i ; then, update the set Z2

N(2)

Step 7 Repeat the Steps 3-6, and for k = 2, 3, . . . define the new sets Y (k),

X2
N(k+1) , Z

2
N(k+1) , ST

(k)
upp

and S
T

(k)
low

by using the error indicator (21)

Step 8 Stop when the set S
T

(k)
low

is empty

Step 9 Return the final sets X2
N(k∗) and Z2

N(k∗) associated with ûA (k∗ is the last iteration)

Remark 4.2. In this work we present an adaptive two-stage scheme, called LOOCV-ARS, which consists in
the combination of LOOCV (Stage 1) and ARS (Stage 2). It is however possible that both adaptive refinement
schemes can be used independently. Basically, the first stage is particularly useful to detect the areas that
need to be refined via LOOCV indicator, while the second stage allows us to further refine the results of the
previous phase via addition/removal of points. This approach produces in general an improvement in terms
of accuracy. Nevertheless, our LOOCV-ARS algorithm also considers the chance of applying only the first
stage without the second one intervenes. This fact generally occurs when a prescribed level of precision via
LOOCV based refinement is achieved.

Remark 4.3. Another important aspect concerns the choice of test points to be used in the error indicator
(20) (or (21)) of the second stage of the algorithm. Though the selection of such points is arbitrary, it is
however advisable to use specific sets of points that can be generated sequentially, so that at each iteration
the algorithm can be validated on different test points but, at the same time, every numerical experiment can
be repeated. An example of sequence that meets the above-mentioned requirements is given by the van der
Corput sequence, which is used to create the so-called Halton points [22, 38]. This is the choice we will do
later in Section 5.

4.3. Complexity analysis

In the first stage of our algorithm the computational cost is due to the iterated use of LOOCV technique
as an error indicator. This implies that an inversion of collocation matrix in (6) needs to be done so as
to compute all components of error terms in (15). The result is a O(N3) computational complexity. This
process is initially applied on the sets XN = X1

N(1) and ZN = Z1
N(1) , but it have then to be iterated on the

refined sets X1
N(j) and Z1

N(j) , for j = 2, 3, . . ., till the stop criterion is satisfied for all terms of error indicator
(17).
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The second stage of the scheme is characterized by the ARS procedure, which follows the paradigm to
solve, estimate and refine or coarsen the discretization points. Also this process is an iterative approach, so
the computational technique we are considering is generally repeated a few times by updating iteration-by-
iteration the sets X2

N(k) and Z2
N(k) , with k = 1, 2, . . .. However, in this case the error indicator (20)–(21)

is obtained by solving two collocation problems (i.e. with and without additional boundary points). This
choice needs to invert two matrices of the form (18), thus requiring a complexity cost of O(M3). Note that
here, for an iteration k fixed, M denotes in both cases the generic number of discretization points.

Once the final discretization points were found, the two-stage algorithm stops and the approximate
collocation solution can be evaluated on a set of evaluation points. This phase requires a vector-vector
multiplication (for each evaluation point) with vectors of the same size of the final set of centers.

5. Numerical experiments and discussion

In this section we analyze the performance of the two-stage adaptive scheme described in Section 4. All
the procedures are implemented in Matlab, while the results are carried out on a laptop with an Intel(R)
Core(TM) i7-4500U CPU 1.80 GHz processor and 4GB RAM.

In the following we focus on a large number of experiments, which consist in the solution of some
2D elliptic PDE problems via Kansa’s method. More precisely, we deal with some types of benchmark
Poisson problems with Dirichlet BCs. This offers the chance to show both flexibility and efficacy of our
adaptive refinement strategies. Therefore, we discuss the numerical results aiming to test our two-stage
scheme, which first is based on a LOOCV procedure used as error indicator (Stage 1) and then on the ARS
technique (Stage 2). As regards the mode of point addition presented in Subsection 4.1, we choose to use the
four-point approach shown in Figure 1 (left). In fact, after carrying out many experiments, that refinement
strategy associated with the indicator (15) (or (17)) has turned out to be the most effective because it allows
us to cover more uniformly the regions that need to be refined and further does not result in an excessive
increase of collocation points. Moreover, we remark that in the second stage of the algorithm we used Halton
points [14] as test points. As said in Remark 4.3, it is however obvious that the choice of these validation
points is absolutely arbitrary and other possible distribution of test points can be used. In particular, we
analyzed in some test examples the behavior of the algorithm when the sets Y (k) of test points are not
Halton points, but for instance pseudorandom points generated by the Matlab rand command. Basically,
the use of different test points influences the algorithm performances. However, in general we obtained
similar results (e.g. in terms of accuracy) to the Halton-based ones, so in this section we will only focus on
the latter case.

In our tests we consider the nonsymmetric RBF collocation method by using basis functions of different
smoothness as IMQ, M6 or M4 (see Table 1). The shape parameter ε is taken fixed, but in this work we
also study the behavior of the numerical algorithm when ε varies. From a computational standpoint it is
indeed relevant to analyze what is the effect on the code performance due to a change of ε. Although the
main focus of this paper is devoted to see how the new adaptive scheme works (and therefore not to seek
the best possible accuracy), from literature we know that the selection of the RBF associated with its shape
parameter is a remarkable issue because this choice can influence (even significantly) the accuracy of the
numerical method (see e.g. [14, 15]).

To investigate the accuracy of the adaptive scheme, we compute the Root Mean Square Error (RMSE)
whose formula is given by

RMSE =

√

√

√

√

1

Neval

Neval
∑

i=1

|u(ξi)− û(ξi)|2 =
1√

Neval

||u− û||2,

where the ξi, i = 1, . . . , Neval, are a grid of evaluation points and Neval = 40× 40. Note that this value of
Neval refers to the case in which the considered domain is a square, while it is obviously reduced in case of a
domain of generic (regular or irregular) shape because the latter can always be included in a square. Then,
in order to analyze the stability of the numerical method, we evaluate the Condition Number (CN) of the
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collocation matrix A in (6) by using the Matlab command cond. As to the efficiency of our algorithm, we
report the CPU times computed in seconds.

5.1. Poisson problem with Dirichlet BCs

In this subsection we show numerical results acquired from experiments by solving some elliptic PDE
problems via the nonsymmetric RBF collocation. In particular, we consider Poisson type problems, i.e. the
elliptic operator in (1) is given by L = −∆, assuming Dirichlet BCs in (2). Hence, the PDE problem in
(1)-(2) can be defined as follows:

−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(22)

To analyze the performance of the two-stage adaptive algorithm, we take two test problems of the form
(22) defined on the domain Ω = [0, 1]2. The exact solutions of such Poisson problems are given by

P1 : u1(x1, x2) =
1

25(4x1 − 2)2 + 25(4x2 − 2)2 + 1
,

P2 : u2(x1, x2) = exp(−1000((x1 − 0.5)2 + (x2 − 0.2)2)).

In Figure 3 we show a graphical representation of such analytic solutions. Note that these problems are
also studied in recent works (see e.g. [27, 30]), and they turn to be good examples for testing new adaptive
refinement algorithms.

u1(x1, x2) u2(x1, x2)

Figure 3: Exact solutions of problems studied in Subsection 5.1.

The main scope of this analysis is therefore to point out the performance of our two-stage adaptive
scheme. In this series of numerical tests we begin the iterative process by taking N = 225 grid collocation
points, consisting of NI = 169 interior points and NB = 56 boundary points. In Table 2 we show a summary
of all results obtained by using M6 with ε = 4, also indicating the total number Nfin of collocation points
obtained to achieve the final result. Moreover, in Table 3 we provide the results derived from the use of
IMQ with ε = 12, but starting from N = 625 grid collocation points (i.e., with NI = 529 and NB = 96).
Note that the value of τ regarding the LOOCV is provided case-by-case, while the thresholds associated
with ARS are given by (τlow, τupp) = (10−8, 10−4). We further observe that in these examples the level of
precision achieved by means of LOOCV is very accurate, so the ARS phase does not intervene. Then, in
Figure 4 we plot the final discretization point sets in case of M6.

12



Problem Nfin RMSE CN time τ

P1 1114 7.98e−7 9.25e+12 3.8 0.5

P2 1342 7.66e−7 1.30e+13 5.3 0.9

Table 2: Results for problems studied in Subsection 5.1 by starting from N = 225 using M6 with ε = 4 and
(τlow, τupp) = (10−8, 10−4).

Problem Nfin RMSE CN time τ

P1 1285 1.29e−5 4.44e+17 5.3 0.5

P2 1221 1.11e−6 2.93e+09 2.6 0.9

Table 3: Results for problems studied in Subsection 5.1 by starting from N = 625 using IMQ with ε = 12
and (τlow, τupp) = (10−8, 10−4).

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

P1: final discretization points
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P2: final discretization points

Figure 4: Final discretization point configurations for problems studied in Subsection 5.1 using M6 with
ε = 4.

Analyzing the numerical results, we can observe that the adaptive algorithm works well in both of
different situations. It allows us to detect the regions of Ω characterized by significant variations, increasing
the number of points only in those areas where the accuracy is not enough. In general, also considering the
values of tolerances used, the two-stage adaptive scheme provides accurate results. In fact, when solving
the problems P1 and P2, we get remarkable errors with a relatively small number of points. In this case,
we further remark that the latter problems are quite hard examples to handle, since often – as happens for
instance in [3, 4] – an adaptive algorithm can undersample the peak present in the domain making quite
difficult or impossible to get a high level of precision. From Figure 4 it is however evident that our adaptive
scheme identifies very clearly what are the areas that need to be refined. Then, focusing on the stability,
we report the CN that in all problems faced has a order of magnitude around 10+12–10+13. Though the
nature of RBF methods influences in terms of conditioning these results, we consider worthwhile to note as
a good refinement strategy enables us to keep under control even the ill-conditioning avoiding the number
of collocation points excessively grows. As to efficiency Table 2 highlights that the two-stage algorithm
completes the refinement process in few seconds only. For both problems we have then analyzed what
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happens if the LOOCV is applied with values of τ smaller than 0.5 for P1 and 0.9 for P2 (cf. Tables 2–3),
trying to obtain higher accuracy. Basically, the algorithm behavior is similar even if we have to distinguish
the two studied cases. For problem P1 we can get similar errors till τ ≈ 0.2 for both M6 and IMQ, but
then for τ < 0.15 the method does not converge anymore. For problem P2, instead, with M6 numerical
convergence is achieved till τ = 0.5 (without being remarkable changes in terms of accuracy), while with
IMQ we observe an accuracy improvement (and so convergence) till τ = 0.01 that is results in a RMSE
= 1.65e−7, with Nfin = 2728 points and CN around 10+16. Moreover, in order to demonstrate that our
adaptive scheme is helpful, in Table 4 we report the results obtained by applying the non-adaptive Kansa
method [17] on uniform/gridded point sets. From a comparison with Table 2, on the one hand we can
observe that for both problems P1 and P2 a similar level of accuracy can be achieved only when we use
about 7000 collocation points, even if this leads to significantly higher condition numbers (around 10+17).
On the other hand, we remark as with a similar number of points the accuracy shown in Table 4 is much
lower than the one obtained by using our adaptive scheme (cf. Table 2).

Problem N RMSE CN

1089 4.73e−3 3.68e+13
1156 3.52e−3 4.85e+13

P1 3600 1.68e−5 9.14e+15
7056 8.84e−7 2.43e+17
7225 6.75e−7 2.59e+17

1296 1.57e−3 8.26e+13
1369 1.31e−3 1.07e+14

P2 3600 2.02e−5 9.14e+15
6889 8.28e−7 2.02e+17
7056 6.35e−7 2.43e+17

Table 4: Results for problems studied in Subsection 5.1 obtained by applying the non-adaptive Kansa
method [17] on uniform/gridded points and using M6 with ε = 4.

Finally, as a comparison, we conclude this subsection by reporting the results obtained with the adaptive
P1-FEM algorithm, which is efficiently implemented in Matlab and can be freely online downloaded (see
[19]). Although a reliable comparison between conceptually different methods is quite difficult to do, in
Table 5 we show the numerical results obtained by applying the P1-FEM with θ = 0.25 and nEmax = 10+5.
Notice that the parameter θ can assume values in the interval (0, 1): θ → 1 corresponds to almost uniform
mesh-refinement, whereas θ → 0 leads to highly adapted meshes (see [19] for details). In particular, from
Tables 2–3 and 5 we can observe as our adaptive scheme is more accurate than P1-FEM. Additionally, even
though CPU times of two algorithms are similar, the P1-FEM scheme needs to generate a (final) number of
discretization points that is considerably larger than those of our algorithm.

Problem Nfin RMSE time

P1 63248 3.77e−5 2.7

P2 59042 5.70e−4 2.5

Table 5: Results for problems studied in Subsection 5.1 and obtained via P1-FEM [19] with θ = 0.25 and
nEmax = 1.0e+5.
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5.2. Modeling a wave front problem

In this subsection we consider a wave front problem [30] involving a Poisson problem with Dirichlet BCs
of the form (22). This problem is solved on two different domains:

(a) the square domain Ω = [0, 1]2;

(b) the starfish like shape domain Ω ⊂ [0, 1]2 bounded by the parametric curve [26]

r(θ) = 0.8 + 0.1(sin(6θ) + sin(3θ)), θ ∈ [0, 2π).

The exact solution is given by

u(x1, x2) = arctan(α(
√

(x1 − x̃1)2 + (x2 − x̃2)2 − r0)), (23)

where parameters in (23) are defined as follows:

• (x̃1, x̃2) = (−0.05,−0.05) is the center of the circular wave front;

• r0 = 0.7 is the distance from the wave front to the center of the circle;

• α = 20 gives the steepness of the wave front.

Such parameters determine the steepness and location of the wave front. We observe that the presence
of the arctangent in (23) generates a mild singularity at the center of the circle. However, we choose the
center of the circle to be outside the domain so as to examine the performance on the wave front, not the
singularity. The solution is thus characterized by a mild wave front that is not symmetric around the origin
[30].

In the tests we compute the approximate solution by applying our two-stage adaptive scheme. The plots
of exact solution (23) given in both cases (a) and (b) are reported in Figures 5–6 (left). To analyze the
behavior of the algorithm, we use the functions M4, M6 and IMQ with various values of ε. Therefore, in
Tables 6–7 we show the output of the LOOCV-ARS algorithm (in comparison with the use of the LOOCV
one alone described in Algorithm 1) obtained by starting in case (a) of the square domain from N = 529
grid points, with NI = 441 and NB = 88, and in case (b) of the starfish domain from N = 305 points,
with NI = 245 and NB = 60. Note that the value NI = 245 has been obtained by reducing the NI = 441
grid interior points contained in the square domain. Moreover, in both situations we fix the same tolerances
as follows: (τ ; τlow, τupp) = (4; 10−8, 10−4). Finally, from results in Tables 6–7 we can observe relatively
small variations in terms of accuracy (RMSE), stability (CN) and efficiency (time). In particular, from a
comparison between Table 6 and Table 7 we can only observe a reduction of CPU time for the starfish
example (while RMSE and CN are rather similar to the square domain case), but that is essentially due
to the smaller number of points present in the starfish like shape domain. Nevertheless, while for M6 the
number of final discretization points is similar, for M4 and IMQ the increase of ε results in a larger number
of collocation points in the final configuration. This can be attributable to the greater effort required to
M4 and IMQ to achieve the prefixed thresholds. Furthermore, from the comparison between LOOCV and
LOOCV-ARS we can remark a general improvement in terms of accuracy when the two-stage algorithm
is applied except for the case of M4 with ε = 4 in Table 6, where the ARS phase does not intervene. An
example of final discretization point configuration for LOOCV-ARS is given in Figures 5–6 (right).

Then, in order to illustrate that combining LOOCV and ARS is advantageous, in Tables 8–9 we compare
the three approaches, i.e. the LOOCV alone (Stage 1), the ARS alone (Stage 2) and the LOOCV-ARS
scheme (Stage 1 + Stage 2). In doing that, we consider both cases (a) and (b) above discussed but now we
show the results by starting from N = 441 grid points, with NI = 361 and NB = 80, for case (a) and from
N = 261 points, with NI = 201 and NB = 60, for case (b). The parameters used in these tests are τ = 3 and
(τlow, τupp) = (10−8, 10−4). From these experiments we can observe as the LOOCV scheme generally yields
more accurate results than the ARS one. However, the two-stage method (LOOCV-ARS) outperforms both
LOOCV and ARS applied alone. Additionally, although the LOOCV appears to be more effective in terms
of accuracy than the ARS technique, the latter applied as second stage of the algorithm turns out to be
useful to further reduce the computational error.
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u(x1, x2) on square domain
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Figure 5: Exact solution of wave front problem in (a) defined on the square domain (left) and final dis-
cretization point configuration for LOOCV-ARS using M6 with ε = 4 (right).

u(x1, x2) on starfish domain
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Figure 6: Exact solution of wave front problem in (b) defined on the starfish like shape domain (left) and
final discretization point configuration for LOOCV-ARS using M6 with ε = 4 (right).

Finally, we show the results obtained by using the adaptive P1-FEM scheme [19], which is applied by
taking the parameters θ = 0.25 and nEmax = 10+5. Comparing the numerical results given in Tables 6
and 10 we can remark that our adaptive algorithm is comparable in terms of accurate with the adaptive
P1-FEM scheme. However, the P1-FEM needs a much larger amount of points than LOOCV-ARS.

5.3. Approximation of a boundary layer problem

In this subsection we deal with a boundary layer problem [29] involving a Poisson type PDE along with
Dirichlet BCs in (22) defined in the domain Ω = [0, 1]2. The solution of this problem is

u(x1, x2) = exp(−200x2
1) + exp(−200x2

2).

As shown in Figure 7 (left), we observe that there are two sharp regions near the boundaries x1 = 0
and x2 = 0 [29]. The point distribution must be refined near the boundaries with the sharp gradient so
that the localized features can be captured properly. From a graphical inspection of Figure 7 (right) this
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LOOCV LOOCV-ARS

RBF ε Nfin RMSE CN time Nfin RMSE CN time

4 1469 3.24e−4 1.54e+10 7.1 1469 3.24e−4 1.54e+10 7.1

M4 5 1464 3.90e−4 6.18e+09 8.0 1553 3.22e−4 6.29e+09 10.9

6 1461 3.95e−4 2.88e+09 8.9 1688 3.33e−4 3.00e+09 11.7

4 1399 1.83e−4 5.23e+13 10.1 1420 1.59e−4 5.25e+13 13.0

M6 5 1401 1.86e−4 2.79e+13 12.0 1425 1.61e−4 2.80e+13 16.2

6 1395 1.88e−4 1.42e+12 10.2 1411 1.63e−4 1.54e+12 16.9

10 1475 1.57e−3 7.60e+09 9.4 1954 5.93e−4 2.41e+11 15.1

IMQ 11 1345 1.63e−3 6.04e+09 8.6 1831 7.16e−4 1.47e+10 13.9

12 1283 1.39e−3 1.42e+08 5.8 1778 4.50e−4 5.37e+09 9.9

Table 6: Comparison between results obtained by applying the LOOCV scheme (Algorithm 1 only) with
τ = 4 and the LOOCV-ARS scheme (Algorithm 1 + 2) with (τ ; τlow, τupp) = (4; 10−8, 10−4). Tests have
been carried out by starting from N = 529 for wave front problem in (a) defined on the square domain.

LOOCV LOOCV-ARS

RBF ε Nfin RMSE CN time Nfin RMSE CN time

4 1031 3.27e−4 3.38e+10 2.7 1038 3.26e−4 3.41e+10 3.0

M4 5 1024 3.27e−4 1.40e+10 2.8 1032 3.26e−4 1.41e+10 3.0

6 1022 3.28e−4 6.69e+09 2.8 1030 3.27e−4 6.74e+09 2.9

4 996 1.97e−4 4.45e+13 4.4 1003 1.96e−4 4.63e+13 5.0

M6 5 989 2.20e−4 8.09e+12 3.3 995 1.99e−4 8.12e+12 3.6

6 983 2.21e−4 2.71e+12 3.0 989 2.00e−4 2.72e+12 3.5

10 1157 2.53e−4 1.26e+10 5.1 1402 1.94e−4 4.84e+11 9.0

IMQ 11 1174 3.10e−4 6.27e+09 5.0 1407 2.35e−4 1.78e+11 8.9

12 1137 4.15e−4 3.61e+08 4.8 1369 3.43e−4 3.75e+09 7.6

Table 7: Comparison between results obtained by applying the LOOCV scheme (Algorithm 1 only) with
τ = 4 and the LOOCV-ARS scheme (Algorithm 1 + 2) with (τ ; τlow, τupp) = (4; 10−8, 10−4). Tests have
been carried out by starting N = 305 for wave front problem in (b) defined on the starfish like shape domain.

target is achieved since our adaptive algorithm refine exactly the areas close to above-mentioned boundaries.
Moreover, in Table 11 we summarize all essential information about the performance of our LOOCV-ARS
algorithm in comparison with the use of the LOOCV scheme only, i.e. applying the first stage described
in Algorithm 1. Both codes were performed by starting from a grid of N = 625 collocation points with
NI = 529 and NB = 96 and using the IMQ-RBF. These results confirm once more the efficacy of our
two-stage refinement scheme.

Finally, to conclude this subsection, we compare the previous results with the ones obtained with the
adaptive P1-FEM algorithm [19]. In particular, in Table 12 we report the numerical results given by the
P1-FEM with θ = 0.25 and nEmax = 10+5. Also in this situation we see as our LOOCV-ARS scheme is at
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LOOCV ARS LOOCV-ARS

RBF ε Nfin RMSE time Nfin RMSE time Nfin RMSE time

M4 4 1677 3.83e−4 11.3 1304 7.65e−3 6.1 1713 3.67e−4 14.5

M6 4 1399 2.79e−4 9.8 1291 2.13e−3 9.4 1490 2.53e−4 14.4

IMQ 10 1451 1.57e−3 8.7 1839 1.49e−3 15.1 1939 6.46e−4 16.1

Table 8: Comparison between results obtained by applying the LOOCV only with τ = 3, the ARS only with
(τlow, τupp) = (10−8, 10−4) and the LOOCV-ARS with (τ ; τlow, τupp) = (3; 10−8, 10−4). Tests have been
carried out by starting from N = 441 for wave front problem in (a) defined on the square domain.

LOOCV ARS LOOCV-ARS

RBF ε Nfin RMSE time Nfin RMSE time Nfin RMSE time

M4 4 1277 1.88e−4 5.4 949 2.29e−3 2.5 1512 1.86e−4 7.3

M6 4 998 1.76e−4 5.6 812 4.89e−3 3.8 1145 1.68e−4 8.2

IMQ 10 1197 2.33e−4 6.1 1022 3.95e−3 4.6 1446 1.95e−4 9.8

Table 9: Comparison between results obtained by applying the LOOCV only with τ = 3, the ARS only with
(τlow, τupp) = (10−8, 10−4) and the LOOCV-ARS with (τ ; τlow, τupp) = (3; 10−8, 10−4). Tests have been
carried out by starting N = 261 for wave front problem in (b) defined on the starfish like shape domain.

Nfin RMSE time

63847 1.44e−4 3.0

Table 10: Results for problem studied in Subsection 5.2 on the square domain and obtained via P1-FEM
[19] with θ = 0.25 and nEmax = 1.0e+5.

LOOCV LOOCV-ARS

ε Nfin RMSE CN time Nfin RMSE CN time

4.0 915 2.04e−4 2.02e+18 2.4 984 6.76e−5 3.98e+18 4.3

4.5 733 1.10e−3 4.80e+17 1.7 1025 3.18e−4 1.97e+17 3.6

5.0 781 2.27e−3 2.53e+14 1.9 1083 6.22e−4 3.24e+14 4.1

5.5 939 1.09e−4 3.06e+13 3.7 1129 1.68e−4 1.61e+14 5.5

6.0 979 2.90e−4 2.16e+10 3.2 1108 1.33e−4 1.01e+11 5.1

Table 11: Comparison between results obtained by applying the LOOCV scheme (Algorithm 1 only) with
τ = 2 and the LOOCV-ARS scheme (Algorithm 1 + 2) with (τ ; τlow, τupp) = (2; 10−8, 10−4). Tests have
been carried out by starting from N = 625 and using IMQ for boundary layer problem.

least comparable in terms of accurate and efficiency with the P1-FEM, but the latter requires a considerably
larger number of points than LOOCV-ARS.

18



u(x1, x2)

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

final discretization points

Figure 7: Exact solution of boundary layer problem (left) and final discretization point configuration for
LOOCV-ARS using IMQ with ε = 6 (right).

Nfin RMSE time

72750 3.49e−4 4.4

Table 12: Results for problem studied in Subsection 5.3 and obtained via P1-FEM [19] with θ = 0.25 and
nEmax = 1.0e+5.

Remark 5.1. The role of the parameters τ , τlow and τupp is important for the algorithm performances. In
a preliminary study, we analysed the problem of how to choose such parameters. In particular, in Stage 2
τupp defines the accuracy expected on all domain, while τlow is used to reduce the number of points when the
precision is excessive. In this phase the role of τupp highly influences the performance: for instance, a larger
(smaller) value of τupp reduces (improves) the entire accuracy of the adaptive method. On the contrary, τlow
is used for the removal of points and influences less the final result. It is however important that the two
tolerances are not too close, in order to avoid a simultaneous effect of addition and removal of points in
the same iteration. The choice of τ in Stage 1 turned out to be more difficult to do, since it seems to be
influenced by several aspects depending on the PDE problem, the RBF used, the value of ε taken etc. For
this reason the selection of τ was done experimentally.

6. Conclusions and future work

In this paper we proposed an adaptive algorithm for solving elliptic PDEs via Kansa’s method. The
scheme is based on two computational phases, which involve the LOOCV technique used as an error indicator
and the ARS procedure applied as a further refinement strategy. This two-stage approach enabled us to
identify via LOOCV the domain regions that need to be refined, then giving the possibility of an adaptive
addition/removal of points via ARS. Extensive numerical results showed the good performance of our new
LOOCV-ARS scheme on different PDE problems.

As future work we propose to extend our adaptive algorithm for solving other types of differential
equations. This could include the modeling of both time-independent and time-dependent PDEs. Another
important aspect to investigate concerns then the study of new refinement techniques that could be tailored
on the PDE model. Moreover, as the method has a computational cost of O(N3), which makes its use
prohibitive in large scale applications, additional investigations are needed to reduce it. Finally, we are
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interested in further analyzing how this adaptive method behaves when the problem solution is not isotropic,
since in such cases the use of non-uniform points could be useful to improve the refinement process.
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