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Abstract

We present a FEM-BEM coupling strategy for time-harmonic acoustic scattering in media with
variable sound speed. The coupling is realized with the aid of a mortar variable that is an
impedance trace on the coupling boundary. The resulting sesquilinear form is shown to satisfy a
G̊arding inequality. Quasi-optimal convergence is shown for sufficiently fine meshes. Numerical
examples confirm the theoretical convergence results.
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1 Introduction

We analyze a numerical method for acoustic scattering in media with variable sound speed. The speed
of sound may be variable in a bounded domain Ω whereas it is assumed to be constant in Ω+ := R3\Ω.
Mathematically, in the time-harmonic setting under consideration here, this problem is described by
the Helmholtz equation

− div(a∇u)− (kn)2u = f̃ in R3, (1.1)

where a is a smooth diffusion parameter such that the support of 1 − a is contained in Ω, f̃ is a
function with support contained in Ω, k ≥ k0 > 0 is the wavenumber, and the function n ∈ L∞(R3) is
the ratio of the local sound speed to the speed of sound in the homogeneous part Ω+. In particular,
n ≡ 1 in Ω+. We also assume the medium is fully penetrable, i.e., |n(x)| ≥ c0 > 0 a.e. in R3.

One computational challenge for this problem class is that the problem is posed in the full space R3.
Since the medium is assumed homogeneous in the unbounded domain Ω+, boundary integral equations
techniques can be employed to reduce the problem in Ω+ to ∂Ω and subsequently use a boundary
element method (BEM) for the discretization. In the bounded region Ω, the physical situation may
be more complex and a description by partial differential equations and a numerical treatment by the
finite element method (FEM) is more appropriate. These considerations make a FEM-BEM coupling
attractive. In the present work, we analyze a FEM-BEM coupling that is based on three fields: the
solution u in Ω, the exterior Dirichlet trace uext of the solution on ∂Ω, and a mortar variable m on ∂Ω,
which is the Robin trace m = ∂nu+ i ku of the solution u on ∂Ω.

For symmetric positive definite problems, various FEM-BEM coupling techniques have been pre-
sented and analyzed in the past such as the so-called symmetric coupling of Costabel, [21], which uses
both equations of the Calderón system, and so-called one-equation couplings that employ only one of
the two equations of the Calderón system, [3, 57, 63]. Also so-called three-field techniques, which are
similar to the coupling strategy pursued here, have been analyzed in, e.g., [11, 24] in the symmetric
setting.

While coupling is reasonably well-understood for symmetric positive definite problems, the situa-
tion is less developed for Helmholtz problems.

One strategy to solve (1.1) is to rely on the exterior Dirichlet-to-Neumann (DtN) operator; see,
e.g., the analysis in [50]. Numerically, the resulting system has a fully populated sub-block arising
from the DtN operator, and the full system matrix has no easily identifiable invertible sub-blocks.
From a computational point of view, however, methods that have identifiable invertible subproblems

∗Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria
E-mail: lorenzo.mascotto@univie.ac.at, ilaria.perugia@univie.ac.at, alexander.rieder@univie.ac.at
†Institut für Analysis und Scientific Computing, TU Wien, 1040 Vienna, Austria

E-mail: melenk@tuwien.ac.at

1

ar
X

iv
:2

00
4.

03
52

3v
1 

 [
m

at
h.

N
A

] 
 7

 A
pr

 2
02

0



are of interest. In the present work, therefore, we study a coupling strategy where the subproblem
for the unknown u (the solution on Ω) is a well-posed problem. Such a strategy cannot rely on the
interior DtN or Neumann-to-Dirichlet (NtD) maps if k is an eigenvalue of the interior Dirichlet or
Neumann problem; see, e.g., [28] and the discussion in [64, Sec. 2, 3]. One technique to overcome this
deficiency of the interior DtN or NtD operator is to employ—explicitly or implicitly—a subproblem
that corresponds to a Helmholtz problem with Robin boundary conditions. This route is taken
in [27,35,36,41–43,64,65]. It is also the approach taken in our formulation in which, once the Robin
trace m is known, the subproblems for the solution u on Ω and the exterior Dirichlet trace uext are
well-posed.

Several coupling techniques and approaches for solving full-space problems such as (1.1) are avail-
able in the literature. The coupling techniques mentioned above fall in the class of single-trace-
formulations (STF). More generally, multi-trace-formulations (MTF) are also possible. Here one
works with separate approximations u and uext on Ω and Ω+ and enforces continuity of both the val-
ues and the normal derivatives across ∂Ω; see [15–17]. The coupling methodologies discussed so far are
nonoverlapping, in the sense that problems on two disjoint domains Ω and Ω+ are considered and the
coupling is performed on the common interface ∂Ω. Recent alternatives are overlapping techniques,
where for two bounded domains Ω1 ⊂ Ω2 with Ω+

1 ∪Ω2 = R3, two approximations u1 (defined on Ω+
1 )

and u2 (defined on Ω2) are sought and coupled by the condition that u1 − u2 be small on Ω+
1 ∩ Ω2.

An attractive feature of this coupling approach is the freedom in the choice of Ω1 and Ω2. While Ω2

may be chosen to accommodate a convenient FEM discretization, the exterior problem for u1 can be
attacked by boundary integral equation techniques and, for smooth ∂Ω1, rapidly convergent methods;
we refer to [12, 23] and the references therein. Another class of methods for (1.1) is based on the
Lippmann-Schwinger equation volume-integral equation; we refer to [45] and references therein. For
convex Ω, methods based on absorption such as the PML method of Bérenger [5] can be employed,
and have the attractive feature of being formulated in terms of differential operators, thus avoiding
integral operators altogether; we refer to [7,18] and references therein. A last class of methods worth
mentioning is that based on “infinite elements” where the discretization of the unbounded domain
is realized by nonpolynomial functions; we mention [22] and in particular the method based on the
so-called “pole condition”, [37–40,60].

As already underlined, the Galerkin formulation analyzed in the present paper employs three
fields, the solution u in Ω, the exterior trace uext to represent the solution in Ω+ and the Robin
trace m = ∂nu + iku. For smooth ∂Ω, we show coercivity of the sesquilinear form up to a compact
perturbation so that we are able to show (asymptotic) quasi-optimality of the Galerkin method under
the usual resolution condition that the discretization be sufficiently fine. Our FEM-BEM coupling
is related to earlier 2D FEM-BEM coupling approaches in [27, 41, 42], where the coupling is also
realized through the same Robin trace m. Differently from our approach, [41] restricts to circular
coupling boundaries so that the exterior Impedance-to-Dirichlet operator PItD (see Proposition 3.2)
is explicitly available and the use of the extra variable uext is obviated. References [27,42] also avoid
the explicit use of uext by realizing the operator PItD by a rapidly convergent Nyström method.

The novelty of the present approach is in the choice of the coupling variable m. Choosing it as an
impedance trace leads to a system that has block structure with invertible subblocks for u and uext.
Computationally established FEM or BEM tools could be used for these subproblems. Stability (i.e.,
G̊arding inequality) of the method is inherited from the stability assumption (2.4) irrespective of the
choice of coupling boundary Γ. This flexibility in the choice of Γ can be exploited to facilitate the
meshing or the realization of relevant boundary integral operators.

The present work refrains from a sharp wavenumber-explicit theory as was done in [48, 50, 52] for
high order FEM, and in [44] for high order BEM. First steps towards such a goal are achieved in the
appendix by presenting a k-explicit G̊arding inequality. However, a sharp k-explicit analysis would
require a more elaborate regularity theory of various dual problems than what is done in Section 3.2.
Then, it would have to follow the path taken in [44] for scattering problems and in [51] for Maxwell’s
equations.

Notation. We employ standard Sobolev spaces as introduced in, e.g., [46]. For s ∈ N0 and bounded
Lipschitz domains D ⊂ R3, we define the norms ‖v‖s,D for complex-valued functions v by ‖v‖2s,D =∑
α : |α|≤s ‖Dαv‖20,D, and seminorms |v|2s,D =

∑
α : |α|=s ‖Dαv‖20,D. The Sobolev spaces Hs(D) are
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defined as the closure of C∞(D) under the norm ‖·‖s,D; H0(D) =: L2(D). The Sobolev spaces Hs
0(D)

are defined as the closure of C∞0 (D) under this norm. For positive noninteger s, the spaces Hs(D)
are defined by interpolation between Hbsc(D) and Hdse(D), and the spaces Hs

0(D) by interpolation

between H
bsc
0 (D) and H

dse
0 (D). For s > 0, the space H−s(D) is defined as the dual of Hs

0(D) with
norm

‖v‖−s,D = sup
w∈Hs

0 (D)

|〈w, v〉|
‖w‖s,D

.

Here and in the following, 〈·, ·〉 denotes the duality pairing, which is taken to to be linear in the first
argument and antilinear in the second argument; thus, it coincides with the L2(D) inner product in
case both v and w ∈ L2(D). The Sobolev spaces Hs(D) are Hilbert spaces, and we write (·, ·)s,D for
the corresponding inner product.

For closed, connected smooth 2-dimensional surfaces Γ ⊂ R3 and s ≥ 0, we define the Sobolev
spaces Hs(Γ) in terms of the eigenfunctions of the Laplace-Beltrami operator. To this end, let
{ϕn, λn}n∈N0 be a sequence of eigenpairs of the Laplace-Beltrami operator on Γ, which we as-
sume to be normalized so that they form an L2(Γ)-orthonormal basis. For s ≥ 0, we define the
norm ‖v‖2s,Γ :=

∑
n |vn|2(1 + λn)s, where v =

∑
n vnϕn is expanded in the L2(Γ)-orthogonal basis

{ϕn}n∈N0
. This norm is equivalent to the one obtained by using local charts as described in [46]; see,

e.g., [55, Sec. 5.4]. Negative order Sobolev spaces are defined by duality and equipped with the norm

‖v‖−s,Γ = sup
w∈Hs(Γ)

|〈w, v〉|
‖w‖s,Γ

. (1.2)

Again, 〈·, ·〉 is the duality pairing, with the understanding to coincide with the L2(Γ) inner product
if both arguments are in L2(Γ). The mapping v 7→ (vn)n∈N0

, with vn = (v, ϕn)L2(Γ), is an isometric
isomorphism betweenHs(Γ) and the sequence space {(vn)n∈N0

|
∑
n |vn|2(1+λn)s <∞}. Likewise, the

dual spaceH−s(Γ) ofHs(Γ) can be identified with the sequence space {(vn)n∈N0
|
∑
n |vn|2(1+λn)−s <

∞}, and the norm (1.2) is given by ‖v‖2−s,Γ =
∑
n |vn|2(1+λn)−s. When identifying the spaces Hs(Γ)

and H−s(Γ) with sequence spaces in this way, the duality pairing 〈w, v〉 takes the form

〈w, v〉 =
∑
n∈N0

wnvn. (1.3)

For s ∈ R, the spaces Hs(Γ) are Hilbert spaces endowed with the inner product (·, ·)s,Γ, which takes
the form

(w, v)s,Γ =
∑
n∈N0

wnvn(1 + λn)s, (1.4)

when the elements of Hs(Γ) are characterized by sequences through the above mentioned isometric

isomorphisms. The seminorm | · | 1
2 ,Γ

in H
1
2 (Γ) is defined by factoring out constant functions: |v| 1

2 ,Γ
=

infc∈C ‖v − c‖ 1
2 ,Γ

.

For bounded linear operators K : Hs(Γ) → Hs′(Γ), we will require the adjoint K∗ : H−s
′
(Γ) →

H−s(Γ) defined by 〈K∗w, v〉 = 〈w,Kv〉, where the duality pairings are between the appropriate spaces.
By taging the conjugate, this also implies 〈Kv,w〉 = 〈v,K∗w〉.

Given two positive quantities a and b, we write a . b and a & b whenever there exists a positive
constant c such that a ≤ c b and a ≥ c b, respectively (the dependence of the constant is specified at
each occurrence).

Outline of the paper. In Section 2, we introduce the problem we are interested in, and we recall
basic tools from the theory of boundary integral operators. This problem is formulated in variational
formulation in Section 3. Here, the auxiliary mortar variable is introduced. The well-posedness and
the regularity of the solution to the dual problem, including the proof of a G̊arding inequality, are
investigated as well. Section 4 is devoted to the construction of a FEM-BEM mortar coupling for
the discretization of the continuous problem. Quasi-optimality of the Galerkin method is established
under a resolution condition on the approximation spaces. Numerical results and comments on the
implementation of the method are presented in Section 5. Finally, conclusions are drawn in Section 6.
In the appendix, we present wavenumber-explicit continuity estimates and a G̊arding inequality for
the case of an analytic coupling surface Γ.
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2 The continuous problem and the functional setting

In the present section we introduce the target problem, the functional setting, some notation, and
recall useful definitions and properties of boundary integral potentials and operators.

Given Ω a bounded domain in R3, we define Ω+ := R3 \ Ω and Γ := Ω ∩ Ω+, and we associate
with Γ the normal vector nΓ pointing outwards Ω. Let a = a(x) be a diffusion parameter in C∞(R3)
such that 0 < α∗ ≤ a ≤ α∗ in R3, for two constants α∗ and α∗. The forthcoming analysis extends
also to the case of a positive definite diffusion tensor a. For the sake of exposition, we stick to the
scalar case. Consider the wavenumber function kn(x), where k ∈ R, k ≥ k0 > 0, denotes the angular
frequency, and the function n ∈ L∞(R3,C) such that |n(x)| ≥ c0 > 0 denotes the material refraction
index. We assume that

a ≡ 1 and n ≡ 1 a.e. on Ω+ ∪N (Γ) and N (Γ) = an open neighborhood of Γ. (2.1)

For source terms of the form

f̃(x) =

{
f(x) in Ω,

0 elsewhere,

with f ∈ L2(Ω) with compact support, we consider the three dimensional Helmholtz problem: find
u : R3 → C such that −div(a∇u)− (kn)2u = f̃ in R3,

lim
|x|→+∞

|x|
(
∂|x|u− iku

)
= 0, (2.2)

which can be also rewritten as a transmission problem. To this end, we introduce the jumps of
functions and of their normal derivatives across the interface Γ. Given ϕ ∈ H1(R3 \ Γ), we denote
by γint0 (ϕ) and γext0 (ϕ) the Dirichlet traces over Γ of the restrictions of ϕ over Ω and Ω+, respectively,
whereas, we denote by γint1 (ϕ) and γext1 (ϕ) the Neumann traces over Γ of the restrictions of ϕ to Ω
and Ω+, respectively. For any v ∈ H1(R3 \ Γ), we set

JvKΓ := γint0 (v)− γext0 (v), J∂nΓ
vKΓ := γint1 (v)− γext1 (v).

The transmission problem equivalent to (2.2) consists in finding u : R3 → C such that
− div(a∇u)− (kn)2u = f in Ω,

−∆u− k2u = 0 in Ω+,

JuKΓ = 0, J∂nΓuKΓ = 0,

lim
|x|→+∞

|x|
(
∂|x|u− iku

)
= 0.

(2.3)

In Section 3, we introduce an additional formulation based on adding a mortar variable, which is
investigated numerically in Section 4. The remainder of this section is devoted to recall definitions
and tools stemming from the theory of boundary integral operators.

We assume henceforth the following uniqueness assertion:
−div(a∇u)− (kn)2u = 0 in Ω ∪ Ω+,

JuKΓ = 0, J∂nΓuKΓ = 0,

lim
|x|→+∞

|x|
(
∂|x|u− iku

)
= 0

implies u = 0. (2.4)

Note that this assumption corresponds to the uniqueness of the solution to problem (2.3), and is used
in the following to apply the Fredholm theory.

Remark 2.1. It is well-known that the uniqueness assertion (2.4) holds true for a = 1 and n = 1.
Indeed, in this case a solution u is smooth (in fact, analytic) and then it follows from [19, (2.10)]
(by letting the set D shrink to a point there) that u ≡ 0. The solution is then given by the Newton

potential u = Ñkf defined in (2.7). For Helmholtz problems with variable coefficients we refer to the
recent works [9, 14, 33, 34, 54] and the references therein for discussions regarding uniqueness as well
as the dependence of the solution operator on the wavenumber k.
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2.1 Boundary integral operators for the 3D Helmholtz problem in a nut-
shell

In this section, we define integral operators for functions on Γ, and recall some of their properties. As
we assume that the refraction index n ≡ 1 in a neighborhood of Γ, the wavenumber that enters these
definitions is simply k.

Given

Gk(x,y) =
eik|x−y|

4π|x− y|
the fundamental solution to the 3D Helmholtz problem, we define the single and double layer potentials
by

Ṽkϕ(x) =

∫
Γ

Gk(x− y)ϕ(y)ds(y) ∀x ∈ R3 \ Γ, ∀ϕ ∈ H− 1
2 (Γ), (2.5)

K̃kϕ(x) =

∫
Γ

∂nΓ(y)Gk(x− y)ϕ(y)ds(y) ∀x ∈ R3 \ Γ, ∀ϕ ∈ H 1
2 (Γ). (2.6)

These two potentials satisfy the Helmholtz equation with wavenumber k in Ω ∪ Ω+. We also define
the Newton potential by

Ñkg(x) :=

∫
Ω

Gk(x− y)g(y)dy ∀x ∈ R3, ∀g ∈ L2(Ω). (2.7)

Starting from (2.5) and (2.6), we define the four boundary integral operators. The properties of such
operators are detailed in several textbooks and papers; we refer here for instance to [20,46,56,62].

Firstly, we introduce the single layer operator Vk : H−
1
2 (Γ)→ H

1
2 (Γ):

Vkϕ := γint0 (Ṽkϕ) ∀ϕ ∈ H− 1
2 (Γ). (2.8)

This operator extends to an operator Vk : H−1+s(Γ) → Hs(Γ) for all s ∈ [0, 1] on Lipschitz bound-

aries Γ. Besides, Ṽk satisfies the jump relation

γext0 (Ṽkϕ) = γint0 (Ṽkϕ) ∀ϕ ∈ H− 1
2 (Γ) and JṼkϕKΓ = 0 ∀ϕ ∈ H− 1

2 (Γ). (2.9)

Next, we define the double layer operator Kk : H
1
2 (Γ)→ H

1
2 (Γ):(

−1

2
+Kk

)
ϕ := γint0 (K̃kϕ) ∀ϕ ∈ H 1

2 (Γ). (2.10)

This operator extends to an operator Kk : Hs(Γ)→ Hs(Γ) for all s ∈ [0, 1] on Lipschitz boundaries Γ.
Moreover, the following jump condition holds true:

JK̃kϕKΓ = −ϕ ∀ϕ ∈ H 1
2 (Γ) and γext0 (K̃kϕ) =

(
1

2
+Kk

)
ϕ ∀ϕ ∈ H 1

2 (Γ). (2.11)

The so-called adjoint double layer operator K′k : H−
1
2 (Γ)→ H−

1
2 (Γ) is specified by(

1

2
+K′k

)
ϕ := γint1 (Ṽkϕ) ∀ϕ ∈ H− 1

2 (Γ). (2.12)

This operator extends to an operator K′k : H−s(Γ) → H−s(Γ) for all s ∈ [0, 1] on Lipschitz bound-
aries Γ. Moreover, the following jump condition holds true

J∂nΓ
ṼkϕKΓ = ϕ ∀ϕ ∈ H− 1

2 (Γ) and γext1 (Ṽkϕ) =

(
−1

2
+K′k

)
ϕ ∀ϕ ∈ H− 1

2 (Γ). (2.13)

The hypersingular boundary integral operator Wk : H
1
2 (Γ)→ H−

1
2 (Γ) is given by

−Wkϕ := γint1 (K̃kϕ) ∀ϕ ∈ H 1
2 (Γ). (2.14)
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This operator extends to an operator Wk : Hs(Γ) → H−1+s(Γ) for all s ∈ [0, 1] on Lipschitz bound-
aries Γ. The following jump condition holds true:

J∂nΓK̃kϕKΓ = 0 ∀ϕ ∈ H 1
2 (Γ) and γext1 (K̃kϕ) = −Wkϕ ∀ϕ ∈ H− 1

2 (Γ). (2.15)

Additionally, we highlight a feature of the single layer and the hypersingular operators for zero
wavenumber, namely, there exist constants c1, c2, c3, c4 > 0 depending on Ω such that

c1‖ϕ‖2− 1
2 ,Γ
≤ 〈ϕ,V0ϕ〉 ≤ c2‖ϕ‖2− 1

2 ,Γ
∀ϕ ∈ H− 1

2 (Γ),

c3|ψ|21
2 ,Γ
≤ 〈W0ψ,ψ〉 ≤ c4|ψ|21

2 ,Γ
∀ψ ∈ H 1

2 (Γ)/C.
(2.16)

Moreover,

V∗0 = V0, K∗0 = K′0, W∗0 =W0. (2.17)

Assuming sufficient smoothness of the interface Γ, the range of the parameter s in the mapping prop-
erties of the four boundary operators that are recalled after formulas (2.8), (2.10), (2.12), and (2.14),
can be arbitrarily enlarged.

Proposition 2.2. Let Γ be C∞ and let Vk, Kk, K′k, and Wk be defined in (2.8), (2.10), (2.12),
and (2.14), respectively. Then, for all s ∈ R, the following maps are bounded linear operators:

Vk : H−1+s(Γ)→ Hs(Γ), Kk : Hs(Γ)→ Hs(Γ),

K′k : H−s(Γ)→ H−s(Γ), Wk : Hs(Γ)→ H−1+s(Γ).
(2.18)

Moreover, for s ≥ 0, the operators

Vk − V0 : H−
1
2 +s(Γ)→ H

5
2 +s(Γ), Kk −K0 : H

1
2 +s(Γ)→ H

5
2 +s(Γ),

K′k −K′0 : H−
1
2 +s(Γ)→ H

3
2 +s(Γ), Wk −W0 : H

1
2 +s(Γ)→ H

3
2 +s(Γ),

(2.19)

are bounded linear operators.

Proof. For the proof of (2.18), we refer to [46, Thm. 7.2]. The enhanced shift properties of the
differences in (2.19) as compared to the individual terms expresses a compactness property, which is
well-known; see, e.g., [8,35,56,62]. For analytic Γ, the mapping properties of (2.19) could be extracted
from the potential estimates in [47, Thms. 5.3–5.4] by taking appropriate traces; cf. Appendix A. In
the interest of readability and to be able to connect with Remark 3.7 below, we sketch the argument.
For ϕ ∈ H−1/2+s(Γ), the function u := Ṽkϕ− Ṽ0ϕ satisfies

−∆u− k2u = −k2Ṽ0ϕ in R3 \ Γ, JuKΓ = 0, J∂nΓ
uKΓ = 0. (2.20)

We note that Ṽ0ϕ ∈ H1+s(Ω)∩H1+s(Ω+∩BR(0)) (for a sufficiently large ball BR(0)) by the mapping

properties of Ṽ0, [46, Thm. 6.13]. Since the interface is smooth, elliptic regularity for transmission
problems gives u ∈ Hs+3(Ω) ∩Hs+3(Ω+ ∩ BR(0)). Taking the trace and the conormal derivative on
Γ proves the mapping properties for Vk − V0 and K′k − K′0. The mapping properties of Kk − K0 and

Wk −W0 are seen similarly by studying the potential u := K̃kψ − K̃0ψ for ψ ∈ H1/2+s(Γ).

Remark 2.3. The continuity constants of the mappings in (2.18) and (2.19) depend on the wavenum-
ber k. Some wavenumber-explicit control of the constants in (2.19) is possible using the refined
k-explicit regularity given in [47, Thms. 5.1–5.4]; cf. also Appendix A. While this kind of regularity is
a key ingredient of a k-explicit analysis of high order method, a sharp k-explicit analysis as done for
acoustic scattering problems in [44] or for Maxwell problems in [51] is beyond the scope of the present
work as it requires a much more elaborate analysis of various dual problems than what is done in
Section 3.2.

Some k-explicit bounds for integral operators are available in the literature: besides [47], we
mention the bounds for the operators Vk, Kk, K′k, Wk in [32, Sec. 1.2.3], [26, Thm. 6.4] and [13,
Sec. 5], [4] for the combined field operators.
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Let u be a (near Γ sufficiently regular) solution to the Helmholtz equation −∆u − k2u = 0 in
Ω+ satisfying the Sommerfeld radiation condition at infinity. Then, we have the following represen-
tation [46,56]:

u(x) = −Ṽk∂nu(x) + K̃ku(x) ∀x ∈ Ω+.

Taking the trace and the trace of the normal derivative yields the following two equations, known as
the exterior Calderón system for homogeneous Helmholtz problems with solution u:{

γext0 u =
(

1
2 +Kk

)
(γext0 u)− Vk(γext1 u)

γext1 u = −Wk(γext0 u) +
(

1
2 −K

′
k

)
(γext1 u).

(2.21)

3 Mortar coupling and analysis

The aim of the present section is to rewrite the transmission problem (2.3) by adding an additional
“intermediate” unknown called mortar variable, which is the impedance trace of the solution on the
interface Γ. This new formulation is analyzed in the remainder of the section, and is the target of the
numerical analysis of Section 4.

The problem with mortar coupling we are interested in reads as follows: Find the functions u :
Ω→ C, m : Γ→ C, and uext : Γ→ C such that{

−div(a∇u)− (kn)2u = f in Ω,

∂nΓ
u+ iku−m = 0 on Γ,

(3.1){
uext = PItDm on Γ , (3.2){
u−

[(
1
2 +Kk

)
uext − Vk(m− ikuext)

]
= 0 on Γ. (3.3)

In the boundary conditions in problem (3.1), the term ∂nΓ is indeed equal to a ∂nΓ , as we have assumed
that a is equal to 1 in a neighborhood of the interface Γ.

The operator PItD : H−
1
2 (Γ)→ H

1
2 (Γ) appearing in (3.2) maps the impedance mortar variable m

to the Dirichlet trace uext of the solution to the exterior problem. A description of such operator can
be found in [13, pag. 124–126].

Equation (3.1) represents the problem in the interior domain Ω, i.e., a Helmholtz problem en-
dowed with impedance boundary condition provided by the mortar variable. On the other hand,
equation (3.2) relates the Dirichlet trace of the solution in the exterior domain Ω+ with the mortar
variable. Finally, equation (3.3) couples the three unknowns altogether, i.e., connects the mortar
variable m with the Dirichlet traces of u and uext, the solutions in the interior and exterior domains,
respectively.

Equations (3.2) and (3.3) follow from the exterior Calderón system (2.21) and the coupling condi-
tion JuKΓ = 0 in (2.3).

Remark 3.1. The mortar formulation (3.1)-(3.2)-(3.3) is equivalent to a transmission formulation.
This can be easily seen by inverting the operator PItD formally, solving (3.2) in terms of m as

m = P−1
ItDu

ext,

and inserting m in (3.1) and (3.3). The counterpart of this in the discrete setting is discussed in
Remark 5.1.

For ease of reading, we recall and prove the following equivalent formulation of (3.2).

Proposition 3.2. Equation (3.2) is equivalent to

Bkuext + ikA′k(uext)−A′km = 0, (3.4)

where

Bk := −Wk − ik
(

1

2
−Kk

)
, A′k :=

1

2
+K′k + ikVk, (3.5)

are combined integral operators.
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Proof. The exterior Calderón system (2.21) also reads{
(Kk − 1

2 )(γext0 u)− Vk(γext1 u) = 0

Wk(γext0 u) + (K′k + 1
2 )(γext1 u) = 0.

Owing to the second equation of (3.1) and to the transmission conditions in (2.3), we get{
(Kk − 1

2 )(uext) + ikVk(uext)− Vk(m) = 0

−Wk(uext) + ik(K′k + 1
2 )(uext)− (K′k + 1

2 )m = 0.
(3.6)

Multiplying the first equation in (3.6) by ik, we deduce{
−ik( 1

2 −Kk)(uext) + i(ikVk)(kuext)− ikVk(m) = 0

−Wk(uext) + ik(K′k + 1
2 )(uext)− (K′k + 1

2 )m = 0.
(3.7)

We obtain (3.4) by summing the two equations in (3.7), whence the name combined for the operators
in (3.5). To conclude the proof, it suffices to show that (3.4) implies (3.2). To this aim, we use that
the operator Bk + iA′k is invertible; see [13, Theorem 2.27].

Remark 3.3. The operators Bk, A′k, Bk + iA′k are invertible by [13, Thm. 2.27]. Wavenumber-explicit
estimates for the operator A′k and the exterior Dirichlet-to-Neumann operators are available in [4]
for so-called nontrapping domains Ω. The use of so-called combined field integral equations that are
well-posed for all wavenumbers k goes back at least to [6, 10]; we refer to [13] for a more detailed
discussion.

Next, having at our disposal Proposition 3.2, we write the mortar coupling of the interior and
exterior Helmholtz problems in weak form, which reads

find (u,m, uext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ) such that

(a∇u,∇v)0,Ω − ((kn)2 u, v)0,Ω + ik(u, v)0,Γ − 〈m, v〉 = (f, v)0,Ω ∀v ∈ H1(Ω)

〈(Bk + ikA′k)uext −A′km, vext〉 = 0 ∀vext ∈ H 1
2 (Γ)

〈u, λ〉 − 〈( 1
2 +Kk)uext − Vk(m− ikuext), λ〉 = 0 ∀λ ∈ H− 1

2 (Γ).

(3.8)

Problem (3.8) is equivalent to the following problem:{
find (u,m, uext) ∈ H1(Ω)×H− 1

2 (Γ)×H 1
2 (Γ) such that

T ((u,m, uext), (v, λ, vext)) = (f, v)0,Ω ∀(v, λ, vext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ),
(3.9)

where we have set, by a proper linear combination of the three equations in (3.8),

T ((u,m, uext),(v, λ, vext)) = (a∇u,∇v)0,Ω − ((kn)2u, v)0,Ω + ik(u, v)0,Γ − 〈m, v〉

− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′k + ikVk))uext − (

1

2
+K′k + ikVk)m, vext〉

+ 〈u, λ〉 − 〈(1

2
+Kk)uext − Vk(m− ikuext), λ〉.

(3.10)

Remark 3.4. For the special case k = 0, the sesquilinear form T reduces to the one that is used
in the “three-field” coupling strategy for Poisson problems; see, e.g., [24, Def. 4.2]. A direct cal-

culation using (2.17) shows that, for k = 0, one has T
(
(u,m, uext), (u,m, uext)

)
= ‖a 1

2∇u‖2L2(Ω) +

〈W0u
ext, uext〉+ 〈V0m,m〉, which is nonnegative.

In Theorem 3.6 below, we prove that T (·, ·) satisfies a G̊arding inequality, which then allows us to
prove the following existence and uniqueness result:

Theorem 3.5. Assuming (2.4) and that the interface Γ is smooth, problem (3.8) and, consequently,
problem (3.9), admit a unique solution. In particular, the sesquilinear form T (·, ·) satisfies a positive
inf-sup condition with a wavenumber-dependent constant.

Proof. By Fredholm theory, the assertion follows from a combination of Theorem 3.6, i.e., the G̊arding
inequality, and the uniqueness assumption (2.4).
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3.1 G̊arding inequality

In this section, we prove a G̊arding inequality for T (·, ·) defined in (3.10). Such an inequality is one
of the two lynchpins for the proof of Theorem 3.5, as well as for the analysis of the convergence of the
method carried out in Section 4.

Theorem 3.6 (G̊arding inequality). Let T (·, ·) be defined as in (3.10), and assume that the interface Γ
is smooth. Fix k0 > 0. There there is c > 0 (depending only on k0 and Ω) and, for each k ≥ k0, there is

a positive constant cG(k) depending on k and Ω such that for all (v, λ, vext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ)

RE(T ((v, λ, vext), (v, λ, vext)))

≥ c
{
‖a 1

2∇v‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ

}
−
{
k2‖n v‖20,Ω + cG(k)

(
‖λ‖2− 5

2 ,Γ
+ ‖vext‖2− 3

2 ,Γ

)}
.

(3.11)

Proof. The estimate (3.11) is not k-explicit since the constant cG(k) depends on k. Notwithstanding,
we highlight all the occurrences where the estimates depend on the wavenumber k.

Given the positivity results for k = 0 in (2.16), see also Remark 3.4, we write Vk = V0 + (Vk−V0),
Kk = K0 + (Kk −K0), K′k = K′0 + (K′k −K′0), Wk =W0 + (Wk −W0), and split the sesquilinear form
T (·, ·) accordingly:

T ((u,m, uext), (v, λ, vext))

=(a∇u,∇v)0,Ω − ((kn)2u, v)0,Ω + ik(u, v)0,Γ − 〈m, v〉

− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′k + ikVk))uext − (

1

2
+K′k + ikVk)m, vext〉

+ 〈u, λ〉 − 〈(1

2
+Kk)uext − Vk(m− ikuext), λ〉

=
{

(a∇u,∇v)0,Ω + 〈W0u
ext, vext〉+ k2〈V0u

ext, vext〉+ 〈V0m,λ〉
}

+
{
ik(u, v)0,Γ − ik〈K0u

ext, vext〉 − ik〈K′0uext, vext〉+ 〈(1

2
+K′0)m, vext〉

+ ik〈V0m, v
ext〉 − ik〈V0u

ext, λ〉 − 〈(1

2
+K0)uext, λ〉 − 〈m, v〉+ 〈u, λ〉

}
+
{
〈(Wk −W0)uext, vext〉 − ik〈(Kk −K0)uext, vext〉 − ik〈(K′k −K′0)uext, vext〉

+ k2〈(Vk − V0)uext, vext〉+ 〈(K′k −K′0)m, vext〉+ ik〈(Vk − V0)m, vext〉

− 〈(Kk −K0)uext, λ〉+ 〈(Vk − V0)m,λ〉 − ik〈(Vk − V0)uext, λ〉 − ((kn)2u, v)0,Ω

}
=:T1(·, ·) + T2(·, ·) + T3(·, ·), (3.12)

where the sesquilinear forms T1, T2, T3 correspond to the three expressions in {· · · }.
1. step: We show that

RE
(
T1

(
(v, λ, vext), (v, λ, vext)

))
= T1

(
(v, λ, vext), (v, λ, vext)

)
& ‖a 1

2∇v‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ
,

(3.13)
with implied constant dependent on k0 but independent of k. In view of the positivity assertions for
V0 and W0 (cf. (2.16)), in order to prove (3.13), it suffices to ascertain that

|vext|21
2 ,Γ

+ k2‖vext‖2− 1
2 ,Γ

& ‖vext‖21
2 ,Γ
, (3.14)

with implied constant dependent on k0 but independent of k. Let v := |Γ|−1(vext, 1)0,Γ be the L2(Γ)-
projection of vext onto C. We note that |vext|21

2 ,Γ
∼ infc∈C ‖vext − c‖21

2 ,Γ
= ‖vext − v‖21

2 ,Γ
. Next,

|Γ||v| = |(vext, 1)0,Γ| = |〈vext, 1〉| ≤ ‖vext‖− 1
2 ,Γ
‖1‖ 1

2 ,Γ
. ‖vext‖− 1

2 ,Γ
. Hence,

‖vext‖21
2 ,Γ
≤ ‖vext − v‖21

2 ,Γ
+ ‖v‖21

2 ,Γ
= ‖vext − v‖21

2 ,Γ
+ |v|2‖1‖ 1

2 ,Γ
. |vext|21

2 ,Γ
+ ‖vext‖2− 1

2 ,Γ
.

Since k ≥ k0 > 0, we get |vext|21
2 ,Γ

+ ‖vext‖2− 1
2 ,Γ

. |vext|21
2 ,Γ

+ k2‖vext‖2− 1
2 ,Γ

(with hidden constant

depending on k0 but independent of k), and (3.14) follows.
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2. step: Using RE(z) = RE(z) for all z ∈ C and (2.17), we see that

RE
(
T2

(
(v, λ, vext), (v, λ, vext)

))
= 0. (3.15)

3. step: Using the continuity of the operators in (2.19), we bound each of the first nine terms in
T3

(
v, λ, vext), (v, λ, vext)

)
as follows:

|〈λ, (Vk − V0)λ〉| ≤ ‖λ‖− 5
2 ,Γ
‖(Vk − V0)λ‖ 5

2 ,Γ
. ‖λ‖− 5

2 ,Γ
‖λ‖− 1

2 ,Γ
,

|〈vext, (Wk −W0)vext〉| ≤ ‖vext‖− 3
2 ,Γ
‖(Wk −W0)vext‖ 3

2 ,Γ
. ‖vext‖− 3

2 ,Γ
‖vext‖ 1

2 ,Γ
,

|〈(Vk − V0)vext, vext〉| ≤ ‖(Vk − V0)vext‖ 7
2 ,Γ
‖vext‖− 7

2 ,Γ
. ‖vext‖ 1

2 ,Γ
‖vext‖− 7

2 ,Γ
,

|〈(K′k −K′0)λ, vext〉| ≤ ‖(K′k −K′0)λ‖ 3
2 ,Γ
‖vext‖− 3

2 ,Γ
. ‖λ‖− 1

2 ,Γ
‖vext‖− 3

2 ,Γ
,

|〈(λ, (Kk −K0)vext〉| ≤ ‖λ‖− 5
2 ,Γ
‖(Kk −K0)vext‖ 5

2 ,Γ
. ‖λ‖− 5

2 ,Γ
‖vext‖ 1

2 ,Γ
,

|〈((Vk − V0)λ, vext〉| ≤ ‖(Vk − V0)λ‖ 5
2 ,Γ
‖vext‖− 5

2 ,Γ
. ‖λ‖− 1

2 ,Γ
‖vext‖− 5

2 ,Γ
,

|〈λ, (Vk − V0)vext〉| ≤ ‖λ‖− 7
2 ,Γ
‖(Vk − V0)vext‖ 7

2 ,Γ
. ‖λ‖− 7

2 ,Γ
‖vext‖ 1

2 ,Γ
,

|〈(K′k −K′0)vext, vext〉| ≤ ‖(K′k −K′0)vext‖ 5
2 ,Γ
‖vext‖− 5

2 ,Γ
. ‖vext‖ 1

2 ,Γ
‖vext‖− 5

2 ,Γ
,

|〈vext, (Kk −K0)vext, vext〉| ≤ ‖vext‖− 5
2 ,Γ
‖(Kk −K0)vext‖ 5

2 ,Γ
. ‖vext‖− 5

2 ,Γ
‖vext‖ 1

2 ,Γ
,

(3.16)

where the hidden constants depend on k. The last term is simply

((kn)2v, v)0,Ω = k2‖n v‖20,Ω. (3.17)

Collecting (3.13), (3.15), (3.17), and (3.16), and using Young’s inequality show the claim.

Remark 3.7. The G̊arding inequality in Theorem 3.6 relies on the compactness properties of Vk −V0,
Kk − K0, K′k − K′0, and Wk −W0 as employed in (3.16). Such compactness properties are still valid
for Lipschitz domains. For Lipschitz domains, the spaces Hs(Γ), |s| ≤ 1, can be defined using local
(Lipschitz) charts; see, e.g., [46]. We claim that, for ε ∈ (0, 1),

Vk − V0 : H−1/2(Γ)→ H1−ε(Γ), K′k −K′0 : H−1/2(Γ)→ L2(Γ), (3.18a)

Kk −K0 : H1/2(Γ)→ H1−ε(Γ), Wk −W0 : H1/2(Γ)→ L2(Γ). (3.18b)

To see (3.18a), consider for ϕ ∈ H−1/2(Γ) the potential u = Ṽkϕ−Ṽ0ϕ. It is in H1(Ω)∩H1(Ω+∩BR(0))

and satisfies (2.20). We note that k2Ṽ0ϕ ∈ H1(Ω)∩H1(Ω+ ∩BR(0)) by [20, Thm. 1]. Therefore, Ṽ0ϕ
is in L2(BR(0)), and then (2.20) implies u ∈ H2

loc(R3). For Lipschitz domains, the trace operator is
continuous Hs(Ω)→ Hs−1/2(Γ) for 1/2 < s < 3/2, [46, Thm. 3.38]. This implies that γ0u ∈ H1−ε(Γ)
for any ε ∈ (0, 1], and this gives the first mapping property in (3.18a). The conormal derivative of
u on Γ is ∂nΓ

u = ∇u · nΓ. Since ∇u ∈ H1(Ω) and nΓ ∈ L∞(Γ), we infer ∂nΓ
u ∈ L2(Γ). This gives

the second mapping property in (3.18a). The mapping properties in (3.18b) are shown by similar

arguments using, for ψ ∈ H1/2(Γ), the potential u = K̃kψ−K̃0ψ, which is in H1(Ω)∩H1(Ω+∩BR(0))
by [20, Thm. 1].

Inserting the mapping properties (3.18) in (3.16) yields, for any chosen ε ∈ (0, 1/2) and all
(v, λ, vext) ∈ H1(Ω)×H−1/2(Γ)×H1/2(Γ) , the G̊arding inequality

RE
(
T
(
(v, λ, vext), (v, λ, vext)

))
&‖a 1

2∇v‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ

− cG(k)
(
‖n v‖20,Ω + ‖λ‖2−1+ε,Γ + ‖vext‖20,Γ

)
.

The compact perturbation in the G̊arding inequality of Theorem 3.6 essentially arises from the
the differences Vk − V0, Kk − K0, K′k − K′0, Wk − W0. For analytic Γ, a very good description of
these differences is provided in [47]. In Appendix A, based on that characterization of the difference
operators (see (A.1)), a k-explicit G̊arding inequality for analytic Γ is proven (see Theorem A.2).
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3.2 Regularity of solutions to the dual problem of (3.8)

In this section, we analyze a problem dual to problem (3.8), or equivalently to problem (3.9). The
regularity of the solution of this dual problem is crucial for the convergence analysis in Section 4.

The dual problem we are interested in reads{
find (ψ,ψm, ψ

ext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ) such that

T ((v, λ, vext), (ψ,ψm, ψ
ext)) = F(v, λ, vext) ∀(v, λ, vext) ∈ H1(Ω)×H− 1

2 (Γ)×H 1
2 (Γ),

(3.19)

where
F(v, λ, vext) = [(v, r)0,Ω + (λ, rm)−σm,Γ + (vext, rext)−σv,Γ]

for a given (r, rm, r
ext) ∈ L2(Ω) × H−σm(Γ) × H−σv (Γ) and σm = 5

2 , σv = 3
2 . We recall that the

Sobolev inner products (·, ·)−σ,Γ on H−σ(Γ) are defined in (1.4).
More explicitly, we consider:

find (ψ,ψm, ψ
ext) ∈ H1(Ω)×H− 1

2 (Γ)×H 1
2 (Γ) such that

(a∇v,∇ψ)0,Ω − ((kn)2v, ψ)0,Ω + ik(v, ψ)0,Γ − 〈λ, ψ〉
−〈(Bk + ikA′k)vext −A′kλ, ψext〉+ 〈v, ψm〉 − 〈( 1

2 +Kk)vext − Vk(λ− ikvext), ψm〉
= ((v, r)0,Ω + (λ, rm)−σm,Γ + (vext, rext)−σv,Γ)

∀(v, λ, vext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ).

(3.20)

3.2.1 Riesz representations

In the following, we need a few technical results.

Lemma 3.8. The following identities are valid: For all ϕ ∈ H− 1
2 (Γ) and for all ψ ∈ H 1

2 (Γ)

V∗kϕ = Vkϕ, K∗kϕ = K′kϕ, (3.21)

(K′k)∗ψ = Kkψ, W∗kψ =Wkψ, (3.22)

where we recall that ·∗ denotes the adjoint operator. Moreover, for all ϕ ∈ H− 1
2 (Γ) and ψ ∈ H 1

2 (Γ),
it holds true that

〈ϕ, (A′k)∗ψ〉 = 〈ϕ, 1

2
ψ +Kkψ + ikVkψ〉, (3.23)

〈ϕ, (Bk + ikA′k)∗ψ〉 = −〈ϕ, (Wk + k2Vk)ψ + ik(K′k +Kk)ψ〉. (3.24)

Proof. The identities in (3.21) are proven in [13, equation (2.38)]. We limit ourselves to prove here the

first identity in (3.22), since the second one can be dealt with similarly to [13]. For all ϕ ∈ H− 1
2 (Γ)

and ψ ∈ H 1
2 (Γ), we have

〈ϕ, (K′k)∗ψ〉 = 〈K′kϕ,ψ〉
(3.21)

= 〈K∗kϕ,ψ〉 = 〈ϕ,Kkψ〉 = 〈ϕ,Kkψ〉.

As far as the proof of (3.23) is concerned, recalling the definition of A′k from (3.5), we have

〈ϕ, (A′k)∗ψ〉 = 〈ϕ, (1

2
+K′k + ikVk)∗ψ〉 = 〈ϕ, 1

2
ψ + (K′k)∗ψ − ikV∗kψ〉

(3.21),(3.22)
= 〈ϕ, 1

2
ψ +Kkψ − ikVkψ〉 = 〈ϕ, 1

2
ψ +Kkψ + ikVkψ〉,

whence follows the claim. The proof of (3.24) is dealt with similarly.

The second technical result we need reads as follows.

Lemma 3.9 (Riesz representation). Let s ∈ R+
0 and σm ≥ 1/2, σv ≥ 0. Given rm ∈ Hs−σm(Γ)

and rext ∈ Hs−σv (Γ), there exist Rm ∈ Hs+σm(Γ) and Rext ∈ Hs+σv (Γ) such that

‖Rm‖s+σm,Γ = ‖rm‖s−σm,Γ, ‖Rext‖s+σv,Γ = ‖rext‖s−σv,Γ,
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and

〈µ,Rm〉 = (µ, rm)−σm,Γ ∀µ ∈ H− 1
2 (Γ),

(vext, Rext)0,Γ = (vext, rext)−σv,Γ ∀vext ∈ L2(Γ).
(3.25)

Proof. We show the assertion for Rm only, since the case of Rext can be proven analogously. We
construct Rm in terms of the eigenpairs {ϕn, λn}n∈N of the Laplace-Beltrami operator explicitly.
Recall that we identify elements of positive order Sobolev spaces Ht(Γ) and negative order Sobolev
spaces H−t(Γ) with sequence spaces, where, for t ≥ 0, the identification is simply the L2(Γ)-orthogonal
expansion u =

∑
n unϕn. It is notationally convenient to realize the isomorphisms between the

spaces Ht(Γ) and sequence spaces by simply writing u =
∑
n unϕn. Recall the realization of the

duality pairing (1.3) and the realization (1.4) of the inner products.
Given rm ∈ Hs−σm(Γ) we write it as

rm =
∑
n∈N

(rm)nϕn

and define Rm by

Rm =
∑
n∈N

(Rm)nϕn :=
∑
n∈N

(rm)n(1 + λn)−σmϕn.

We have

‖Rm‖2s+σm,Γ

(1.4)
=
∑
n∈N
|(rm)n|2(1 + λn)s−σm

(1.4)
= ‖rm‖2s−σm,Γ,

which entails Rm ∈ Hs+σm(Γ). Moreover, for any µ ∈ H−σm(Γ), which we express as µ =
∑
n∈N µnϕn,

we get from (1.3)

〈µ,Rm〉 =
∑
n∈N

µn(rm)n(1 + λn)−σm = (µ, rm)−σm,Γ.

3.2.2 A shift theorem for the dual problem

In order to study the regularity of the solutions to (3.20), we rewrite the dual problem in an equivalent
formulation by using Lemmata 3.8 and 3.9.

Lemma 3.10. Let σm ≥ 1/2 and σv ≥ 0. Let (r, rm, r
ext) ∈ L2(Ω) × H−σm(Γ) × H−σv (Γ) and

let Rm and Rext be the representers of rm and rext, respectively, constructed in Lemma 3.9. Then,
problem (3.19) is equivalent to the three following coupled problems: find (ψ,ψm, ψ

ext) ∈ H1(Ω) ×
H−

1
2 (Γ)×H 1

2 (Γ) such that, in strong form,{
−div(a∇ψ)− (kn)2ψ = r in Ω,

∇ψ · nΓ + ikψ + ψm = 0 on Γ,
(3.26){

−ψ + ( 1
2 +Kk + ikVk)ψext + Vkψm = Rm on Γ, (3.27){

(Wk + ik( 1
2 −K

′
k)− ik( 1

2 +Kk + ikVk))ψext − (( 1
2 +K′k) + ikVk)ψm = Rext on Γ. (3.28)

Proof. By selecting λ = 0 and vext = 0 in (3.20), we get{
find (ψ,ψm) ∈ H1(Ω)×H− 1

2 (Γ) such that

(a∇v,∇ψ)0,Ω − ((kn)2v, ψ)0,Ω + ik(v, ψ)0,Γ + 〈v, ψm〉 = (v, r)0,Ω ∀ψ ∈ H1(Ω),

which entails (3.26) after an integration by parts.

Next, by choosing v = 0 and vext = 0 in (3.20) and using (3.25), we obtain{
find (ψ,ψm, ψ

ext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ) such that

−〈λ, ψ〉+ 〈A′kλ, ψext〉+ 〈Vkλ, ψm〉 = (λ, rm)−σm,Γ = 〈λ,Rm〉 ∀λ ∈ H−
1
2 (Γ).
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In order to get (3.27), it is enough to use the definition of the adjoint of an operator, and to apply
the identities (3.21) and (3.23) when dealing with Vk and (A′k)∗ψ, respectively.

Finally, we observe that, by taking v = 0 and λ = 0 and by using (3.25),
find (ψ,ψm, ψ

ext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ) such that

−〈(Bk + ikA′k)vext, ψext〉 − 〈( 1
2 +Kk)vext + ikVkvext, ψm〉

= (vext, rext)−σv,Γ = (vext, Rext)0,Γ ∀ψext ∈ H 1
2 (Γ).

By using the definition of the adjoint of an operator and the identities (3.21) and (3.24), we rewrite
the previous equation as

〈vext, (Wk + k2Vk)ψext + ik(K′k +Kk)ψext〉 − 〈vext, 1

2
ψm +K′kψm − ikVkψm)〉 = 〈vext, Rext〉,

whence follows (3.28).

We conclude this section by proving that, assuming some smoothness of the coefficients of the
differential operator and smoothness of the interface Γ, then the solution operator to the dual problem
(3.26)–(3.28) satisfies a shift theorem.

Theorem 3.11. Let Γ be smooth and assume that a is smooth, and that a and n satisfy (2.1).
Assume (2.4). Then:

(i) Fix s ∈ R+
0 and let the refraction index n ∈ C∞(R3,C). Let, for

r ∈ Hs(Ω), Rm ∈ H
3
2 +s(Γ), Rext ∈ H 1

2 +s(Γ),

the triple (ψ,ψm, ψ
ext) be the solution to (3.26)–(3.28). Then (ψ,ψm, ψ

ext) satisfy

ψ ∈ Hs+2(Ω), ψm ∈ Hs+ 1
2 (Γ), ψext ∈ Hs+ 3

2 (Γ),

together with the a priori estimates

‖ψ‖s+2,Ω + ‖ψm‖s+ 1
2 ,Γ

+ ‖ψext‖s+ 3
2 ,Γ

.
(
‖r‖s,Ω + ‖Rm‖s+ 3

2 ,Γ
+ ‖Rext‖s+ 1

2 ,Γ

)
, (3.29)

where the hidden constant depends on k, Ω, a, and n.

(ii) If the refraction index n is in L∞(Ω,C) on Ω, then the bounds in (3.29) hold true with s = 0.

Proof. Proof of (i): The proof identifies a potential kk (which depends on ψext, ψm) such that the
function Lk defined in (3.44) below satisfies an elliptic transmission problem, for which a shift theorem
is available. The regularity of Lk then will allow us to infer the regularity of ψ, ψext, and ψm.

We will only consider the case of integer s ∈ N0, as the general case is then obtained by interpo-
lation.

1. step (a priori estimate): By Theorem 3.5, the sesquilinear form T satisfies an inf-sup condition,
so that we have the (k-dependent) a priori bound:

|ψ|1,Ω + ‖ψm‖− 1
2 ,Γ

+ ‖ψext‖ 1
2 ,Γ

. ‖r‖(H1(Ω))′ + ‖Rm‖ 1
2 ,Γ

+ ‖Rext‖− 1
2 ,Γ
. (3.30)

2. step (the potentials ℵk and ik): We introduce the two following potentials:

ℵk := K̃kψext + ikṼkψext, ik := Ṽkψm. (3.31)

By noting that

γint1 ik = (
1

2
+K′k)ψm, γext1 ik = (−1

2
+K′k)ψm, γint0 ik = γext0 ik = Vkψm, (3.32)

we also have

γint1 ℵk = −Wkψext + ik(
1

2
+K′k)ψext, γext1 ℵk = −Wkψext + ik(−1

2
+K′k)ψext, (3.33)

13



and

γint0 ℵk = (−1

2
+Kk)ψext + ikVkψext, γext0 ℵk = (

1

2
+Kk)ψext + ikVkψext. (3.34)

By using (3.32), (3.33) and (3.34), we can rewrite (3.28) in terms of the two auxiliary potentials ℵk
and ik:

− γext1 ℵk − ikγext0 ℵk − γint1 ik − ikγint0 ik = Rext. (3.35)

Since (3.33) and (3.34) imply that

−γext1 ℵk − ikγext0 ℵk = −γint1 ℵk − ikγint0 ℵk,

we deduce

− γint1 ℵk − ikγint0 ℵk − γint1 ik − ikγint0 ik = Rext. (3.36)

It is also possible to reshape (3.27) as

− ψ + γext0 ℵk + γext0 ik = Rm. (3.37)

3. step (the potential kk): Introduce the combined potential

kk := ℵk + ik, (3.38)

where ℵk and ik are defined in (3.31). For future use, we record from 3.32, (3.34) the jump relation

JkkKΓ = −ψext.

In view of the mapping properties of the double and single layer potentials, see, e.g., [56, 62],

K̃k : Hs′+ 1
2 (Γ)→ Hs′+1(Ω ∪ (Ω+ ∩BR(0))), Ṽk : Hs′− 1

2 (Γ)→ Hs′+1(Ω ∪ (Ω+ ∩BR(0))), (3.39)

for any fixed R > 0, we deduce for s′ ≥ 0 such that the right-hand side is finite that

‖kk‖H1+s′ (Ω∪(Ω+∩BR(0))) . ‖ψm‖s′− 1
2 ,Γ

+ ‖ψext‖s′+ 1
2 ,Γ
.

In particular, for s′ = 0, we have in view of (3.30)

‖kk‖H1(Ω∪(Ω+∩BR(0))) . ‖r‖(H1(Ω))′ + ‖Rm‖ 1
2 ,Γ

+ ‖Rext‖− 1
2 ,Γ
. (3.40)

Thanks to (3.36), (3.35), and (3.32), kk satisfies
−∆kk − k2kk = 0 in R3 \ Γ

γint1 kk + ikγint0 kk = −Rext on Γ

γext1 kk + ikγext0 kk = −Rext − ψm on Γ.

(3.41)

Regularity of kk on Ω and Ω+ beyond (3.40) can be inferred from (3.41) by elliptic regularity. In-
deed, since kk|Ω satisfies an elliptic equation with impedance boundary conditions, we get from the

smoothness of Γ and Rext ∈ Hs+ 1
2 (Γ) that kk ∈ Hs+2(Ω); see, e.g., [25, Theorem 6, Section 6.3]

or [48, Lemma 6.5]. Taking the trace on Γ we get for kintk := γint0 (kk)

‖kk‖s+2,Ω + ‖kintk ‖s+ 3
2 ,Γ

. ‖Rext‖s+ 1
2 ,Γ
. (3.42)

Combining (3.37) and (3.38), we also have

kextk := γext0 (kk) = Rm + ψ

As ψ|Γ = γint0 (ψ) we arrive at

γint0 (ψ + kk)− γext0 (kk) = kintk −Rm ∈ Hs+ 3
2 (Γ). (3.43)
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4. step (the function Lk as the solution of a transmission problem): We introduce the function Lk
in R3 \Γ, which will be see to satisfy the transmission problem defined by (3.47), (3.45), (3.46) below:

Lk =

{
ψ + χkk in Ω,

kk in Ω+,
(3.44)

where χ is a smooth cut-off function such that χ = 1 in N (Γ), which we recall denotes a sufficiently
small neighborhood of Γ, such that a and n are equal to 1 on the support of χ.

The jump relation
JLkKΓ = kintk −Rm ∈ Hs+3/2(Γ), (3.45)

is an immediate consequence of (3.43). Moreover, we observe that

J∂nΓLkKΓ = γint1 (ψ) + J∂nΓkkKΓ = γint1 (ψ) + γint1 ℵk + γint1 ik − γext1 ℵk − γext1 ik
(3.32), (3.33)

= γint1 (ψ) + ikψext + ψm
(3.26)

= ik(ψext − ψ).
(3.46)

Next, we write an equation solved by Lk in Ω:

−div(a∇Lk)
(3.44)

= −div(a∇ψ)− div(a∇(χkk))
(3.26)

= (kn)2ψ + r − {∇a · ∇(χkk) + a∆(χkk)} .

We study the two terms in the curly braces {· · · } on the right-hand side separately. The first one
belongs to Hs+1(Ω), since we are assuming smoothness of a and we have that kk ∈ Hs+2(Ω). As far
as the second one is concerned, we note that

a∆(χkk) = a{∆χkk + 2∇χ · ∇kk + χ∆kk}
(3.41)

= a{ ∆χkk︸ ︷︷ ︸
∈Hs+2(Ω)

+ 2∇χ · ∇kk︸ ︷︷ ︸
∈Hs+1(Ω)

− k2χkk︸ ︷︷ ︸
∈Hs+2(Ω)

},

where we have used again that kk ∈ Hs+2(Ω).
We infer that

−div(a∇Lk)− (kn)2Lk
= (kn)2ψ + r − (kn)2ψ − (kn)2χkk − {∇a · ∇(χkk) + a(∆χkk + 2∇χ · ∇kk + χ∆kk)}
= r︸︷︷︸
∈Hs(Ω)

− (kn)2χkk︸ ︷︷ ︸
∈Hs+2(Ω)

−∇a · ∇(χkk)︸ ︷︷ ︸
∈Hs+1(Ω)

−a{ ∆χkk︸ ︷︷ ︸
∈Hs+2(Ω)

+ 2∇χ · ∇kk︸ ︷︷ ︸
∈Hs+1(Ω)

− k2χkk︸ ︷︷ ︸
∈Hs+2(Ω)

}

=: RHSLk
∈ Hs(Ω).

(3.47)

5. step (bootstrapping regularity): In the following step 6, we will establish a shift theorem for Lk. The

a priori estimate (3.30) provides ψ ∈ H1(Ω) and ψext ∈ H 1
2 (Γ) so that J∂nΓ

LkKΓ ∈ H
1
2 (Γ); cf. (3.46).

The shift theorem of the 6. step then will provide Lk ∈ Hmin{2,s+2}(Ω ∪ (Ω+ ∩BR(0))) with

‖Lk‖min{2,s+2},Ω +‖Lk‖min{2,s+2},Ω+∩BR(0) . ‖Rext‖s+ 1
2 ,Γ

+‖Rm‖s+ 3
2 ,Γ

+‖ψ‖1,Ω +‖ψext‖ 1
2 ,Γ
. (3.48)

The definition of Lk in (3.44) and the estimate (3.42) provide ψ ∈ Hmin{2,s+2}(Ω) with

‖ψ‖min{2,s+s},Ω . ‖Rext‖s+ 1
2 ,Γ

+ ‖Rm‖s+ 3
2 ,Γ

+ ‖ψ‖1,Ω + ‖ψext‖ 1
2 ,Γ
. (3.49)

Thanks to (3.38), (3.32), and (3.34), it holds

JLkKΓ
(3.43)

= γint0 (kk + ψ)− γext0 kk = ψ − ψext =⇒ ψext = ψ − JLkKΓ. (3.50)

Inserting (3.48) and (3.49) in (3.50) provides ψext ∈ Hmin{ 3
2 ,s+

3
2}(Γ). Hence, we get from (3.46) that

J∂nΓ
LkKΓ ∈ H

3
2 (Γ). That is, we have improved the regularity of (ψ,ψext) from H1(Ω) × H 1

2 (Γ) to

H2(Ω)×H 3
2 (Γ) and in turn of J∂nΓ

LkKΓ from H
1
2 (Γ) to H

3
2 (Γ). The arguments can be repeated with

this improved regularity to infer (ψ,ψext) ∈ H3(Ω) × H 5
2 (Γ), (ψ,ψext) ∈ H4(Ω) × H 7

2 (Γ) until we

have reached (ψ,ψext) ∈ Hs+2(Ω)×H 3
2 +s(Γ). Finally, equation (3.27) yields ψm ∈ H

1
2 +s(Γ).
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6. step: For s′ ≥ 0 let the scalar function U satisfy the transmission problem

− div(a∇U)− (kn)2U =

{
g ∈ Hs′(Ω), in Ω,

0 in Ω+
,

JUKΓ = g1 ∈ Hs′+ 3
2 (Γ), J∂nΓ

UKΓ = g2 ∈ Hs′+ 1
2 (Γ),

We claim that for fixed R > 0

‖U‖s′+2,Ω + ‖U‖s′+2,Ω+∩BR(0) . ‖g‖s′,Ω + ‖g1‖s′+ 3
2 ,Γ

+ ‖g2‖s′+ 1
2 ,Γ
.

To see this shift theorem, we first remove the jumps across Γ. We define

P := −K̃kg1 + Ṽkg2 + Ñkg.

Using the smoothing properties of the double and single layer potentials given in (3.39), we deduce
that

‖P‖s′+2,Ω + ‖P‖s′+2,Ω+∩BR(0) . ‖g1‖s′+ 3
2 ,Γ

+ ‖g2‖s′+ 1
2 ,Γ

+ ‖g‖s′,Ω. (3.51)

The jump relations (2.9), (2.13), (2.11), (2.15) imply JPKΓ = g1 and J∂nΓ
PKΓ = g2. Furthermore, we

have

−∆P − k2P =

{
g on Ω,

0 on Ω+.
(3.52)

At this point, we define the additional function Z as

Z := U − χP

with χ being the same cut-off function as the one used in (3.44). By construction, we observe that

JZKΓ = 0 = J∂nΓ
ZKΓ.

A calculation reveals on Ω and Ω+

div(a∇(χP)) + kn2χP = aχ∆P + 2a∇χ · ∇P + χ∇a · ∇P + a∆χP + (kn)2χP
=: χ(a∆P + (kn)2P) +R (3.53)

with

‖R‖s′+1,Ω + ‖R‖s′+1,Ω+∩BR(0)

(3.51)

. ‖g1‖s′+ 3
2 ,Γ

+ ‖g2‖s′+ 1
2 ,Γ

+ ‖g‖s′,Ω

and R ≡ 0 on a neighborhood N ′(Γ) of Γ.
Upon writing g̃ for the zero extension of g to R3 we get on Ω ∪ Ω+ from (3.53), (3.52)

−div(a∇(χZ))− kn2χZ = (1− aχ)g̃ + χk2(n2 − a)P +R =: R′. (3.54)

We note that R vanishes near Γ and ‖R′‖s′,Ω + ‖R′‖s′,Ω+∩BR(0) . ‖g1‖s′+ 3
2 ,Γ

+ ‖g2‖s′+ 1
2 ,Γ

+ ‖g‖s′,Ω.

In view of the jump conditions satisfied by Z, the equation (3.54) holds on R3. Standard elliptic

regularity then gives, for any R′ < R, that Z ∈ Hs′+2
loc (R3) and ‖Z‖s′+2,BR′ (0) . ‖R′‖s′,BR(0), which

leads to the desired claim.
Proof of (ii): The case of a refraction index in L∞ follows along the same lines as the smooth case,

with the difference that the shift result of Step 6 is only valid for s′ = 0. Therefore, all the estimates
are valid substituting s with 0.

Finally, we prove the shift theorem for the adjoint variational problem (3.20).

Theorem 3.12. Let Γ be smooth and assume that a is smooth, and that a and n satisfy (2.1).
Assume (2.4). Let σm ≥ 1

2 and σv ≥ 0. Then:
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(i) Let the refraction index n ∈ C∞(R3,C). Assume s1, s2, s3 ≥ 0, s2 ≥ 3
2 − σm, and s3 ≥ 1

2 − σv.
Set s := min{s1, s2 − 3

2 + σm, s3 − 1
2 + σv} ≥ 0. Let, for

r ∈ Hs1(Ω), rm ∈ H−σm+s2(Γ), rext ∈ H−σv+s3(Γ),

the triple (ψ,ψm, ψ
ext) be the solution to (3.20). Then (ψ,ψm, ψ

ext) satisfy

ψ ∈ Hs+2(Ω), ψm ∈ Hs+ 1
2 (Γ), ψext ∈ Hs+ 3

2 (Γ),

together with the a priori estimates

‖ψ‖s+2,Ω + ‖ψm‖s+ 1
2 ,Γ

+ ‖ψext‖s+ 3
2 ,Γ

.
(
‖r‖s1,Ω + ‖rm‖−σm+s2,Γ + ‖rext‖−σv+s3,Γ

)
, (3.55)

where the hidden constant depends on k, Ω, a, and n.

(ii) If the refraction index n is in L∞(Ω,C) on Ω, then the bounds in (3.55) hold true with s = s1 = 0
and s2, s3 as in (i).

Proof. Proof of (i): Lemma 3.9 provides representers Rm ∈ Hσm+s2(Γ) and Rext ∈ Hσv+s2(Γ) such
that (·, rm)−σm,Γ = 〈·, Rm〉 and (·, rext)−σv,Γ = 〈·, Rext〉. In view of s + 3

2 ≤ σm + s2 and in view of
s+ 1

2 ≤ σv + s3, we get the result from Theorem 3.11.

Proof of (ii): For s1 = 0 we have s = 0. The assumptions on s2, s3 imply that the representers

Rm ∈ H
3
2 (Γ), Rext ∈ H 1

2 (Γ). Theorem 3.11, (ii) then proves the claim.

Remark 3.13. The analysis in Theorem 3.11 has been performed assuming that a is globally smooth.
The smoothness assumption on a can be relaxed to piecewise smooth in the following sense: Let Ωi,
i = 1, . . . , N , be Lipschitz domains whose closures are pairwise disjoint and Ωi ⊂ Ω. Let a be smooth
on each Ωi and smooth on Ω\∪iΩi. Assume that the following shift theorem holds: There is s0 ∈ (0, 1]
such that, for any g ∈ H−1+s0(Ω), the solution v ∈ H1

0 (Ω) of

−div(a∇v) = g in Ω,

satisfies
∑
i ‖v‖H1+s0 (Ωi) + ‖v‖H1+s0 (Ω\∪iΩi)

. ‖g‖H−1+s0 (Ω). Then, for r ∈
(
H1−s0(Ω)

)′
, Rm ∈

H−1+s0+3/2(Γ), and Rext ∈ H−1+s0+1/2(Γ), the solution (ψ,ψm, ψ
ext) satisfies

∑
i ‖ψ‖H1+s0 (Ωi) +

‖ψ‖H1+s0 (Ω\∪iΩi)
+ ‖ψm‖H1+s0−3/2(Γ) + ‖ψext‖H1+s0−3/2(Γ) . ‖r‖H−1+s0 (Ω) + ‖rm‖H−1+s0−3/2(Γ) +

‖rext‖H−1+s0−1/2(Γ). This regularity assertion is sufficient to perform the convergence analysis of
Section 4 on meshes that are aligned with subdomains Ωi, i = 1, . . . , N .

4 Analysis of the FEM-BEM mortar coupling

In this section, we discuss a FEM-BEM mortar coupling tailored to the approximation of the solution
to (3.8), and equivalently to (3.9).

Given a triple of finite dimensional spaces Vh × Wh × Zh ⊂ H1(Ω) × H−
1
2 (Γ) × H

1
2 (Γ), the

discretization of (3.9) reads
Find (uh,mh, u

ext
h ) ∈ Vh ×Wh × Zh such that

(a∇uh,∇vh)0,Ω − ((kn)2uh, vh)0,Ω + ik(uh, vh)0,Γ − 〈mh, vh〉 = (f, vh)0,Ω ∀vh ∈ Vh,
〈(Bk + ikA′k)uexth −A′kmh, v

ext
h 〉 = 0 ∀vexth ∈ Zh,

〈uh, λh〉 − 〈( 1
2 +Kk)uexth − Vk(mh − ikuexth ), λh〉 = 0 ∀λh ∈Wh.

(4.1)

We will show unique solvability of (4.1), as well as a quasi-optimality result using the Schatz argu-
ment [58], which relies on (i) the G̊arding inequality (3.11), (ii) the regularity of the solution to the
dual problem in Theorem 3.12, and (iii) an approximation property of the space Vh ×Wh × Zh. For
the latter we make the following assumption:
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Assumption 4.1 (Approximation property). Given s0 > 0, the family {Vh×Wh×Zh}h>0 ⊂ H1(Ω)×
H−

1
2 (Γ)×H 1

2 (Γ) of spaces has the following approximation property: For any ε > 0 there is h0 > 0

such that for all h ∈ (0, h0] there holds for all (ψ,ψm, ψ
ext) ∈ H1+s0(Ω) × H− 1

2 +s0(Γ) × H 1
2 +s0(Γ)

with ‖ψ‖H1+s0 (Ω) + ‖ψm‖
H−

1
2

+s0 (Γ)
+ ‖ψext‖

H
1
2

+s0 (Γ)
≤ 1

inf
ψh∈Vh

‖ψ − ψh‖H1(Ω) + inf
ψmh∈Wh

‖ψm − ψmh‖
H−

1
2 (Γ)

+ inf
ψext

h ∈Zh

‖ψext − ψexth ‖H 1
2 (Γ)
≤ ε.

Remark 4.2. For domains Ω with smooth boundary Γ, families Vh, Wh, Zh with some approximation
properties can be constructed as spaces of piecewise mapped polynomials. In order to resolve the
boundary Γ, curved elements have to employed in the construction of Vh, using, e.g., the technique
of “transfinite blending”, [29–31]. A specific family of spaces of piecewise polynomials of degree p on
meshes of size h is given in [50, Example 5.1]; that family has the expected approximation properties in
terms of the mesh size h and the polynomial degree p. The spaces Wh and Zh can also be constructed
as spaces of piecewise mapped polynomials of degree p on a mesh on Γ using the parametrization(s)
of Γ. We refer to [56, Sec. 4.1] for details.

Theorem 4.3. Let (u,m, uext) ∈ H1(Ω)×H− 1
2 (Γ)×H 1

2 (Γ) be the solution to problem (3.8). Let the
family of space {Vh ×Wh × Zh}h>0 satisfy Assumption 4.1 with s0 = 1. Then there is h0 > 0 such
that for all h ∈ (0, h0] there is a unique solution (uh,mh, u

ext
h ) ∈ Vh ×Wh × Zh of (4.1). Moreover,

there is C > 0, which depends on k, Ω, a, and n, such that for h ∈ (0, h0]

‖a 1
2∇(u− uh)‖1,Ω + k‖n(u− uh)‖0,Ω + ‖m−mh‖− 1

2 ,Γ
+ ‖uext − uexth ‖ 1

2 ,Γ

≤ C
(
‖u− vh‖1,Ω + ‖m− nh‖− 1

2 ,Γ
+ ‖uext − vexth ‖ 1

2 ,Γ

)
∀(vh, nh, vexth ) ∈ Vh ×Wh × Zh.

Proof. We follow the classical Schatz argument [58]. We apply the G̊arding inequality (3.11) and get

‖a 1
2∇(u− uh)‖20,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

+ k2‖n(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 5

2 ,Γ
+ ‖uext − uexth ‖2− 3

2 ,Γ

)
. RE

(
T
(
(u− uh,m−mh, u

ext − uexth ), (u− uh,m−mh, u
ext − uexth )

))
+ 2k2‖n(u− uh)‖20,Ω + 2cG(k)

(
‖m−mh‖2− 5

2 ,Γ
+ ‖uext − uexth ‖2− 3

2 ,Γ

)
,

where cG(k) is the constant appearing in (3.11).
In the following, we understand that the implied constants in . depend on k, Ω, a, and n.
By considering the dual problem (3.19) with r = 2(kn)2(u−uh), rm = 2cG(k)(m−mh), and rext =

2cG(k)(uext − uexth ), we can write

‖a 1
2∇(u− uh)‖20,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

+ k2‖n(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 5

2 ,Γ
+ ‖uext − uexth ‖2− 3

2 ,Γ

)
. RE

(
T
(
(u− uh,m−mh, u

ext − uexth ), (u− uh,m−mh, u
ext − uexth )

))
+ T

(
(u− uh,m−mh, u

ext − uexth ), (ψ,ψm, ψ
ext)
)
,

where, by the stability estimate (3.55) of Theorem 3.11 with the parameters s1 = s2 = s3 = 0, σm = 5
2 ,

σv = 3
2 and thus s = 0 there holds,

‖ψ‖2,Ω + ‖ψm‖ 1
2 ,Γ

+ ‖ψext‖ 3
2 ,Γ

. k2‖u− uh‖0,Ω + cG(k)‖m−mh‖− 5
2 ,Γ

+ cG(k)‖uext − uexth ‖− 1
2 ,Γ
,

. ‖u− uh‖1,Ω + ‖m−mh‖− 1
2 ,Γ

+ cG(k)‖uext − uexth ‖ 1
2 ,Γ
. (4.2)

Applying the Galerkin orthogonality, we get for all ψh ∈ Vh, ψmh ∈Wh, and ψexth ∈ Zh

‖a 1
2∇(u− uh)‖20,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

+ k2‖n(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 5

2 ,Γ
+ ‖uext − uexth ‖2− 3

2 ,Γ

)
. RE

(
T
(
(u− uh,m−mh, u

ext − uexth ), (u− uh,m−mh, u
ext − uexth )

))
+ T

(
(u− uh,m−mh, u

ext − uexth ), (ψ − ψh, ψm − ψmh, ψext − ψexth )
)

= I + II.

(4.3)
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We estimate the two terms I, II on the right-hand side of (4.3) separately, starting with the term I.
Using again Galerkin orthogonality and the definition of T (·, ·) and of the combined integral operators,
we get for all vh ∈ Vh, nh ∈Wh, and vexth ∈ Zh

I = RE T
(
(u− uh,m−mh, u

ext − uexth ), (u− vh,m− nh, uext − vexth )
)

= RE
(
(a∇(u− uh),∇(u− vh))0,Ω − ((kn)2(u− uh), u− vh)0,Ω + ik(u− uh, u− vh)0,Γ

− 〈m−mh, u− vh〉 − 〈(Bk + ikA′k)(uext − uexth )−A′k(m−mh), uext − vexth 〉

+ 〈u− uh,m− nh〉 − 〈(
1

2
+Kk)(uext − uexth )− Vk((m−mh)− ik(uext − uexth )),m− nh〉

)
.

As (see, e.g., [53, proof of Lemma 8.1.6])

k(u− uh, u− vh)0,Γ . k2‖u− uh‖0,Ω‖u− vh‖0,Ω + |u− uh|1,Ω|u− vh|1,Ω,

we have the straightforward bound

|I| . ‖u− uh‖1,Ω‖u− vh‖1,Ω + ‖m−mh‖− 1
2 ,Γ
‖u− vh‖ 1

2 ,Γ

+ ‖Bk(uext − uexth )‖− 1
2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ
+ k‖A′k(uext − uexth )‖− 1

2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ

+ ‖A′k(m−mh)‖− 1
2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ

+ ‖m− nh‖− 1
2 ,Γ
‖u− uh‖ 1

2 ,Γ
+ ‖m− nh‖− 1

2 ,Γ
‖(1

2
+Kk)(uext − uexth )‖ 1

2 ,Γ

+ ‖m− nh‖− 1
2 ,Γ
‖Vk(m−mh − ikn(uext − uexth ))‖ 1

2 ,Γ
.

Simple calculations, based on the mapping properties of the trace operator: H1(Ω)→ H
1
2 (Γ) and of

boundary integral operators and combined integral operators (in particular, we use Bk : H
1
2 (Γ) →

H−
1
2 (Γ), A′k,Kk : H

1
2 (Γ)→ H

1
2 (Γ), Vk : H−

1
2 (Γ)→ H

1
2 (Γ)), lead to

|I| . ‖u− uh‖1,Ω‖u− vh‖1,Ω + ‖m−mh‖− 1
2 ,Γ
‖u− vh‖1,Ω

+ ‖uext − uexth ‖ 1
2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ
+ ‖uext − uexth ‖− 1

2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ

+ ‖m−mh‖− 1
2 ,Γ
‖uext − vexth ‖ 1

2 ,Γ

+ ‖m− nh‖− 1
2 ,Γ
‖u− uh‖1,Ω + ‖m− nh‖− 1

2 ,Γ
‖uext − uexth ‖ 1

2 ,Γ

+ ‖m− nh‖− 1
2 ,Γ
‖m−mh‖− 1

2 ,Γ
+ ‖m− nh‖− 1

2 ,Γ
‖uext − uexth ‖− 1

2 ,Γ
.

An `2 Cauchy-Schwarz inequality, together with ‖uext − uexth ‖− 1
2 ,Γ
≤ ‖uext − uexth ‖ 1

2 ,Γ
, entails

|I| .
(
‖u− uh‖21,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

) 1
2

·
(
‖u− vh‖21,Ω + ‖m− nh‖2− 1

2 ,Γ
+ ‖uext − vexth ‖21

2 ,Γ

) 1
2

.

(4.4)

For the term II appearing on the right-hand side of (4.3), we proceed similarly as for the term I and
deduce

|II| .
(
‖u− uh‖21,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

) 1
2

·
(
‖ψ − ψh‖21,Ω + ‖ψm − ψmh‖2− 1

2 ,Γ
+ ‖ψext − ψexth ‖21

2 ,Γ

) 1
2

.

(4.5)

Assumption 4.1 with s0 and the regularity assertion (4.2) provide for each ε > 0 an h0 = h0(ε) such
that for h ∈ (0, h0] we have

‖ψ − ψh‖21,Ω + ‖ψm − ψmh‖2− 1
2 ,Γ

+ ‖ψext − ψexth ‖21
2 ,Γ

. ε2
(
‖ψ‖22,Ω + ‖ψm‖21

2 ,Γ
+ ‖ψext‖23

2 ,Γ

)
. ε2

(
‖u− uh‖21,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

)
.

(4.6)
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Inserting (4.6) into (4.5) produces

|II| . ε
(
‖u− uh‖21,Ω + ‖m−mh‖2− 1

2 ,Γ
+ ‖uext − uexth ‖21

2 ,Γ

)
. (4.7)

We insert (4.4) and (4.7) into (4.3) and take ε sufficiently small so as to kick the term II back to the
left-hand side of (4.3). The desired quasi-optimality result is obtained.

The well-posedness of method (4.1) follows as in [58].

Remark 4.4. In the numerical experiments of Section 5, we employ a polyhedral domain Ω. This case
is not directly covered by Theorem 4.3. Nevertheless, Remark 3.7 indicates that a G̊arding inequality
is valid also for Lipschitz domains. The shift theorem for the dual problem in Theorem 3.11 relies on
(i) a shift theorem for the iterior impedance problem (cf. (3.42) in Step 3 of the proof of Theorem 3.11)
and (ii) a shift theorem for a transmission problem (cf. Steps 4 and 5 of the proof of Theorem 3.11).
Some shift theorem is also available for both problems for polyhedral domains.

5 Numerical results

partitions of Ω by tetrahedra with straight faces, with h denoting the mesh size. The two sequences
of meshes {P2

h} and {P3
h} on Γ are obtained by intersecting Γ with the tetrahedra in P1

h. For ` ∈ N0,
we denote by P` the space of polynomials of degree at most `. For a polynomial degree p ≥ 1, we set

Vh := Sp,1(Ω,P1
h) := {v ∈ H1(Ω) | v|K ∈ Pp ∀K ∈ P

1
h}, (5.1a)

Wh := Sp−1,0(Γ,P2
h) := {v ∈ L2(Γ) | v|K ∈ Pp−1 ∀K ∈ P2

h}, (5.1b)

Zh := Sp,1(Γ,P3
h) := {v ∈ H1(Γ) | v|K ∈ Pp ∀K ∈ P

3
h}. (5.1c)

The numerical experiments for an h-version are based on quasi-uniform mesh refinements of a
coarse initial triangulation and polynomial degrees, p = 1, 2, and 3. We also study the p-version on
fixed meshes. We investigate the behavior of the following relative errors:

‖u− uh‖0,Ω
‖u‖0,Ω

,
|u− uh|1,Ω
|u|1,Ω

, h
1
2
‖m−mh‖0,Γ
‖m‖0,Γ

, h−
1
2
‖uext − uexth ‖0,Γ
‖uext‖0,Γ

. (5.2)

Note that the two last quantities scale, in terms of h, like the corresponding H−
1
2 (Γ) and the H

1
2 (Γ)

relative errors, respectively, but are computationally more easily accessible.

Test case 1: h-version. Let the diffusion coefficient a ≡ 1, and prescribe the exact solution to be

u(x, y, z) =

{
sin(kx) cos(ky) in Ω
eikr

r in Ω+ ∪ Γ,
(5.3)

where we recall that Ω+ := R3 \ Ω.
We remark that the function u in (5.3) does not solve (1.1) due to the nonzero jumps across Γ.

Instead, we considered a modified problem and discretization scheme allowing for known jumps across
the interface. This only incurs slight changes in the right-hand sides.

Here, we are interested in the h-version of the method. We depict the errors (5.2) for three different
choices of wavenumber k, namely, k = k

√
3π with k = 1.5, 3, and 6. Note that k is an eigenvalue of

the Dirichlet-Laplacian in the second and third case. We begin with the case k = 1.5
√

3, see Figure 1.
We observe the optimal O(hp)-convergence in the H1-error. However, all the other errors converge

faster. A similar “superconvergence” behavior in FEM-BEM coupling has been analyzed in [49] by a
refined duality technique.

As a second experiment, we consider the wavenumber k = 3
√

3π, which is a Dirichlet-Laplace
eigenvalue; see Figure 2. We observe a very similar convergence behavior to the one observed in
Figure 1.
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Figure 1: The four panels depict the four errors in (5.2) for p = 1, 2, 3 in (5.1) versus the mesh size h. The wavenum-
ber k = 1.5

√
3π is neither an interior Dirichlet nor a Neumann eigenvalue. a is constant. The solution is given in (5.3).

Top-left panel: H1 error in Ω. Top-right panel: L2 error in Ω. Bottom-left panel: L2 error on Γ of the mortar

variable times h
1
2 . Bottom-right panel: L2 error on Γ times h−

1
2 .

Finally, we consider the wavenumber k = 6
√

3π, which is again a Dirichlet-Laplace eigenvalue; see
Figure 3.

Here, the initial rate of convergence is degraded by the pollution effect, due to the fact that k is
larger than in the previous two cases. However, with the exception of the L2(Ω) error, the optimal
convergence O(hp) is visible. Importantly, it does not matter whether k is an eigenvalue. The method
converges for all choices of the wavenumber, as theoretically predicted.

Test case 1: p-version. Here, we are interested in the p-version of method (4.1). We consider the
test case with explicit solution given in (5.3). Note that the exact solution is piecewise analytic. We
consider three meshes, namely, a coarse mesh that is then uniformly refined once and twice. Figure 4
shows the performance of the p-version on these three meshes.

For all choices of the mesh, the method converge exponentially in terms of the polynomial degree p.
This is reasonable, due to the piecewise smoothness of the solution (5.4). We stress that the decay of
the error is extremely slow when employing the coarsest mesh.

Test case 2: h-version. Here, we investigate the performance of the h-version of the method for
the case of piecewise smooth diffusion coefficient a. In particular, we assume that

a =

{
2 in Ω̂ := (−0.2, 0.2)3

1 in Ω \ Ω̂.
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Figure 2: The four panels show the four errors in (5.2) for p = 1, 2, 3 in (5.1) versus the mesh size h. The wavenumber
k = 3

√
3π is a Dirichlet-Laplace eigenvalue. a is constant. The solution is provided in (5.3). Top-left panel: H1

error in Ω. Top-right panel: L2 error in Ω. Bottom-left panel: L2 error on Γ of the mortar variable times h
1
2 .

Bottom-right panel: L2 error on Γ times h−
1
2 .

We fix k =
√

3π. We prescribe the solution as

u(x, y, z) =

{
sin2

(
5π
2 (x− 0.2)

)
sin2

(
5π
2 (y − 0.2)

)
sin2

(
5π
2 (z − 0.2)

)
in Ω

eikr

r in Ω+ ∪ Γ.
(5.4)

We consider meshes that are conforming with respect to the diffusion parameter, i.e., on each element
of the tetrahedral mesh, a is constant; see Figure 5 for the results.

Owing to the fact that the tetrahedral mesh is conforming with respect to the discontinuity of a,
the method converges optimally for polynomial degree p = 1, 2, and 3; see Remark 3.13.

Implementation issues. We briefly discuss here some implementation issues.
First of all, we observe that the linear system stemming from method (4.1) has the following form:A B1 0

0 B2 B3

B4 B5 B6

 −→uh−→mh−−→
uexth

 =


−→
fh−→
0
−→
0

 , (5.5)

where −→uh, −→mh, and
−−→
uexth denote the vector of degrees of freedom associated with uh, mh, and uexth ,

respectively, where the matrix on the left-hand side is defined by the sesquilinear forms on the left-

hand side of (4.1), and where the vector
−→
fh is defined by the sesquilinear form on the right-hand side

of (4.1).
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Figure 3: The four panels show the four errors in (5.2) for p = 1, 2, 3 in (5.1) versus the mesh size h. The wavenumber
k = 6

√
3π is a Dirichlet-Laplace eigenvalue. a is constant. The solution is provided in (5.3). Top-left panel: H1

error in Ω. Top-right panel: L2 error in Ω. Bottom-left panel: L2 error on Γ of the mortar variable times h
1
2 .

Bottom-right panel: L2 error on Γ times h−
1
2 .

Importantly, the matrix A is associated with a sesquilinear form with entries in conforming finite
element spaces. All the other matrices, i.e. the Bi with i = 1, . . . , 6, are associated with sesquilinear
form having at least one entry in boundary element spaces. The assembly of the system is performed
by combining the two libraries BEM++ [61] and NGSolve [2].

Having at our disposal system (5.5), we first write −→uh in terms of −→mh. This can be done by means
of the LU decomposition that the solver Pardiso [59] provides within NGSolve:

−→uh = A−1(B1
−→mh). (5.6)

We substitute −→uh in the second and third “lines” of the system. Note that the resulting system is
considerably smaller than the original one, especially for high polynomial degree. In fact, we have a
system associated only with boundary element degrees of freedom.

The solution of such system is successively computed with GMRES, preconditioned with an ap-
proximate LU decomposition based on the H-matrix arithmetic provided by the library H2Lib [1].
We have fixed the tolerance 10−8 and a maximum number of 2000 iterations.

Since we showed that it is possible to proceed by Schur complement (5.6), it is clear that the
computational effort needed to solve system (5.5) is comparable to that needed in a formulation
without the additional mortar variable.

Remark 5.1. As a side remark, we observe that the system (5.5) can be also rewritten by solving the
second line in terms of mh as

mh = B−1
2 B1u

ext
h ,
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Figure 4: The four panels show the four errors in (5.2) for different meshes versus the polynomial degree p. The
wavenumber kn = 3

√
3π is a Dirichlet-Laplace eigenvalue. a is constant. The solution is provided in (5.3). Top-left

panel: H1 error in Ω. Top-right panel: L2 error in Ω. Bottom-left panel: L2 error on Γ of the mortar variable

times h
1
2 . Bottom-right panel: L2 error on Γ times h−

1
2 .

and substitute mh in the first and third equations, getting the discrete version of the transmission
problem discussed in Remark 3.1.

6 Conclusions

We have presented a FEM-BEM coupling strategy for time harmonic acoustic scattering in media with
variable speed of sound. The continuous problem has been formulated with the aid of an auxiliary
mortar variable representing an impedance trace. The novelty of this approach relies in this choice of
the mortar variable, which leads to a block-structured system, with subblocks that are invertible, for
any arbitrary choice of the coupling boundary. The flexibility in the choice of the coupling boundary
can be exploited to facilitate the meshing or the realization of relevant boundary integral operators.
The invertibility of the FEM and the BEM subblocks allows for the use of existing computationally
tools for their numerical realization. Stability and convergence of this FEM-BEM mortar method
have been investigated theoretically and numerically.
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Figure 5: We depict the four errors in (5.2) in the four panel, for different choices of the mesh, versus the polynomial
degree. The wavenumber kn = 3

√
3π is a Dirichlet-Laplace eigenvalue. The diffusion parameter a is piecewise constant.

The solution is provided in (5.4). Top-left panel: H1 error in Ω. Top-right panel: L2 error in Ω. Bottom-left

panel: L2 error on Γ of the mortar variable times h
1
2 . Bottom-right panel: L2 error on Γ times h−

1
2 .

A k-explicit continuity and G̊arding inequality for analytic Γ

In this appendix, we consider the case of analytic boundary Γ. For this case, based on the character-
ization of the difference operators Vk − V0, Kk − K0, K′k − K′0, and Wk −W0 established in [47], we
prove a k-explicit continuity assertion as well as a G̊arding inequality in Theorem A.2.

Introduce the class of analytic functions

A(C1, γ1,Ω) := {v ∈ C∞(Ω) | ‖∇nv‖L2(Ω) ≤ C1γ
n
1 max{n+ 1, k}n+1 ∀n ∈ N0},

where |∇nv|2 =
∑
α∈N3

0:|α|=n
n!
α! |D

αv|2.

The following lemma decomposes the operators Vk −V0, Kk −K0, K′k −K′0, Wk −W0 into a part
that has a finite shift property and a part that maps into the class of analytic functions.

Lemma A.1. Let Γ be analytic and k ≥ k0 > 0. Then there are bounded linear operators SV , SK,
SK′ , SW and linear maps ÃV : H−

3
2 (Γ)→ C∞(Ω), ÃK : H−

1
2 (Γ)→ C∞(Ω) such that

Vk − V0 = SV + γint0 ÃV , (A.1a)

K′k −K′0 = SK′ + γint1 ÃV , (A.1b)

Kk −K0 = SK + γint0 ÃK, (A.1c)

Wk −W0 = SW − γint1 ÃK. (A.1d)
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For s ≥ −1 the operators SV , SK, SK′ , SW , ÃV , ÃK have, for constants Cs,s′ , CV , CK, γV , γK > 0
independent of k ≥ k0, the mapping properties

‖SV‖
H−

1
2

+s′ (Γ)←H−
1
2

+s(Γ)
≤ Cs,s′k−(1+s−s′), 1/2 < s′ ≤ s+ 3, (A.2a)

‖SK′‖
H−

3
2

+s′ (Γ)←H−
1
2

+s(Γ)
≤ Cs,s′k−(1+s−s′), 3/2 < s′ ≤ s+ 3, (A.2b)

‖SK‖
H−

1
2

+s′ (Γ)←H+ 1
2

+s(Γ)
≤ Cs,s′k−(1+s−s′), 1/2 < s′ ≤ s+ 3, (A.2c)

‖SW‖
H−

3
2

+s′ (Γ)←H+ 1
2

+s(Γ)
≤ Cs,s′k−(1+s−s′), 3/2 < s′ ≤ s+ 3, (A.2d)

ÃVϕ ∈ A(CV‖ϕ‖
H−

3
2 (Γ)

, γV ,Ω) ∀ϕ ∈ H− 3
2 (Γ), (A.2e)

ÃKψ ∈ A(CK‖ψ‖
H−

1
2 (Γ)

, γK,Ω) ∀ψ ∈ H− 1
2 (Γ). (A.2f)

Proof. We stress that the functions ÃVϕ and ÃKψ are analytic in Ω so that, when taking their traces
in (A.1), the traces are analytic on Γ.

[47, Thms. 5.3, 5.4] assert for the potentials the representations Ṽk − Ṽ0 = S̃V + ÃV and K̃k −
K̃0 = S̃V + ÃK, where the linear operators S̃V : H−

3
2 (Γ) → H3(Ω), S̃K : H−

1
2 (Γ) → H3(Ω), ÃV :

H−
3
2 (Γ) → C∞(Ω), ÃK : H−

1
2 (Γ) → C∞(Ω) have the following mapping properties: for s ≥ −1 and

for 0 ≤ s′ ≤ s+ 3 and a constant C > 0 independent of k there holds

‖S̃V‖
Hs′ (Ω)←H−

1
2

+s(Γ)
≤ Ck−1(1+s−s′), ‖S̃K‖

Hs′ (Ω)←H
1
2

+s(Γ)
≤ Ck−1(1+s−s′). (A.3)

For constants CV , CK, γV , γK independent of k, one has ÃVϕ ∈ A(CV‖ϕ‖− 3
2 ,Γ
, γV ,Ω) and ÃKψ ∈

A(CK‖ψ‖− 1
2 ,Γ
, γK,Ω). Applying the trace operator γint0 one obtains the representations (A.1a) and

(A.1c), where the linear operators SV , SK′ , SK, SW and the operators ÃV , ÃK satisfy (A.2). The
representations (A.1b) and (A.1d) are obtained similarly with the aid of γint1 .

Based on the representations (A.1) of the difference operators, we can prove the following k-explicit
continuity and G̊arding inequality.

Theorem A.2 (k-explicit continuity and G̊arding inequality for analytic Γ). Let Γ be analytic and
k ≥ k0 > 0. Then there are bounded linear operators

Θf,uext,vext : H−
1
2 (Γ)→ H

1
2 (Γ) Θf,m,vext : H−

3
2 (Γ)→ H

1
2 (Γ),

Θf,uext,λ : H−
1
2 (Γ)→ H

3
2 (Γ), Θf,m,λ : H−

3
2 (Γ)→ H

3
2 (Γ)

(the subscript f stands for “finite shift properties”) and linear operators Ã′V : H−
3
2 (Γ) → C∞(Ω)

Ã′K : H−
1
2 (Γ)→ C∞(Ω), such that, setting

ΘA,uext,vext := −γint1 Ã′K + ik
(
γint0 Ã′K + γint1 Ã′V

)
+ k2γint0 Ã′V , (A.4a)

ΘA,m,vext := γint1 Ã′V − ikγint0 Ã′V , (A.4b)

ΘA,uext,λ := −(γint0 Ã′K − ikγint0 Ã′V), (A.4c)

ΘA,m,λ := γint0 Ã′V (A.4d)

(the subscript A stands for “analytic”) and

Θuext,vext := Θf,uext,vext + ΘA,uext,vext , Θm,vext := Θf,m,vext + ΘA,m,vext ,

Θuext,λ := Θf,uext,λ + ΘA,uext,λ, Θm,λ := Θf,m,λ + ΘA,m,λ,

the following holds true:
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(i) For each s ≥ −1, there holds

‖Θf,uext,vext‖
H−

3
2

+s′ (Γ)←H
1
2

+s(Γ)
≤ Ck−(1+s−s′), 3/2 < s′ ≤ s+ 3,

‖Θf,m,vext‖
H−

3
2

+s′ (Γ)←H−
1
2

+s(Γ)
≤ Ck−(1+s−s′), 3/2 < s′ ≤ s+ 3,

‖Θf,uext,λ‖H− 1
2

+s′ (Γ)←H
1
2

+s(Γ)
≤ Ck−(1+s−s′), 1/2 < s′ ≤ s+ 3,

‖Θf,m,λ‖
H−

1
2

+s′ (Γ)←H−
1
2

+s(Γ)
≤ Ck−(1+s−s′), 1/2 < s′ ≤ s+ 3,

Ã′Vϕ ∈ A
(
CV‖ϕ‖

H−
3
2 (Γ)

, γV ,Ω
)

∀ϕ ∈ H− 3
2 (Γ),

Ã′Kψ ∈ A
(
CK‖ψ‖

H−
1
2 (Γ)

, γK,Ω
)

∀ψ ∈ H− 1
2 (Γ).

The constant C depends only on s, s′, Γ, and k0. The constants CV , CK, γV , γK depend only
on k0 and Γ.

(ii) For a constant c > 0 depending only on k0 and Γ, the sesquilinear form T (·, ·) defined in (3.10)
satisfies the G̊arding inequality

RE
(
T
(
(v, λ, vext), (v, λ, vext)

)
+ 〈(v, λ, vext),Θ(v, λ, vext)〉

)
≥ c‖a 1

2∇u‖20,Ω + k2‖nu‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ
,

where the linear operator Θ is given by

〈(u,m, uext),Θ(v, λ, vext)〉 = 2((kn)2u, v)0,Ω

− 〈uext,Θuext,vextvext〉 − 〈m,Θm,vextvext〉 − 〈uext,Θuext,λλ〉 − 〈m,Θm,λλ〉.

(iii) For a constant Ccont > 0 depending only on k0 and Γ, the sesquilinear form T (·, ·) defined
in (3.10) satisfies the continuity estimate∣∣∣T ((u,m, uext), (v, λ, vext))+ 〈(u,m, uext),Θ(v, λ, vext)〉 − 〈(u,m, uext), Θ̃(v, λ, vext)〉

∣∣∣
≤ Ccont

{
‖a 1

2∇u‖20,Ω + k‖u‖20,Γ + ‖m‖2− 1
2 ,Γ

+ ‖uext‖21
2 ,Γ

} 1
2

×
{
‖a 1

2∇v‖20,Ω + k‖v‖20,Γ + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ

} 1
2

,

with a linear operator Θ̃ given by

〈(u,m, uext), Θ̃(v, λ, vext)〉 = 〈uext, ˜̃Θf,uext,vextvext〉

+ 〈uext, Θ̃f,uext,vextvext〉+ 〈m, Θ̃f,m,vextvext〉+ 〈uext, Θ̃f,uext,λλ〉,

where, for s ≥ 0 and a constant C > 0 independent of k,

‖ ˜̃Θf,uext,vext‖
H

1
2

+s(Γ)←H−
1
2

+s(Γ)
≤ Ck2, (A.5a)

‖Θ̃f,uext,vext‖
H

1
2

+s(Γ)←H
1
2

+s(Γ)
≤ Ck, (A.5b)

‖Θ̃f,m,vext‖
H

1
2

+s(Γ)←H−
1
2

+s(Γ)
≤ Ck, (A.5c)

‖Θ̃f,uext,λ‖H 1
2

+s(Γ)←H−
1
2

+s(Γ)
≤ Ck. (A.5d)

Proof. The proof of Theorem 3.6 shows in (3.12) that the sesquilinear form T (·, ·) can be written as
the sum of the sesquilinear form T1(·, ·), T2(·, ·), T3(·, ·).

Proof of (ii): As in the proof Theorem 3.6, we have

RE
(
T1

(
(v, λ, vext), (v, λ, vext)

))
& ‖a 1

2∇v‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ
,

RE
(
T2

(
(v, λ, vext), (v, λ, vext)

))
= 0.
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We therefore focus on T3(·, ·). We rewrite T3(·, ·) as

T3

(
(u,m, uext), (v, λ, vext)

)
=
{
−((kn)2u, v)0,Ω

}
+
{
〈uext, (Wk −W0)∗vext〉 − ik〈uext, (Kk −K0)∗vext〉

− ik〈uext, (K′k −K′0)∗vext〉+ k2〈uext, (Vk − V0)∗vext〉
}

+
{
〈m, (K′k −K′0)∗vext〉+ ik〈m, (Vk − V0)∗, vext〉

}
+
{
−〈uext, (Kk −K0)∗λ〉 − ik〈uext, (Vk − V0)∗λ〉

}
+
{
〈m, (Vk − V0)∗λ〉

}
=: −((kn)2u, v)0,Ω + 〈uext,Θuext,vextvext〉+ 〈m,Θm,vextvext〉+ 〈uext,Θuext,λλ〉+ 〈m,Θm,λλ〉
= ((kn)2u, v)0,Ω − 〈(u,m, uext),Θ(v, λ, vext)〉.

Notice that

Θuext,vext = (Wk −W0)∗ + ik(Kk −K0)∗ + ik(K′k −K′0)∗ + k2(Vk − V0)∗, (A.6a)

Θm,vext = (K′k −K′0)∗ − ik(Vk − V0)∗, (A.6b)

Θuext,λ = −(Kk −K0)∗ + ik(Vk − V0)∗, (A.6c)

Θm,λ = (Vk − V0)∗. (A.6d)

Lemma 3.8 and the representations (A.1) give

(Vk − V0)∗ = S ′V + γint0 Ã′V , (K′k −K′0)∗ = S ′K′ + γint1 Ã′V , (A.7a)

(Kk −K0)∗ = S ′K + γint0 Ã′K, (Wk −W0)∗ = S ′W − γint1 Ã′K, (A.7b)

where the superscript ′ indicates that, for a linear operator ϕ 7→ Aϕ, the linear operator A′ is
understood as ϕ 7→ Aϕ. Inserting (A.7) into (A.6), and taking into account the definitions (A.4) of
the operators ΘA,·,· mapping into classes of analytic functions, we have the decompositions Θ·,· =
Θf,·,· + ΘA,·,· with

Θf,uext,vext = S ′W + ik (S ′K + S ′K′) + k2S ′V ,
Θf,m,vext = S ′K′ − ikS ′V ,
Θf,uext,λ = −(S ′K − ikS ′V)

Θf,m,λ = S ′V .

The G̊arding inequality stated in (ii) is shown.

Proof of i: The expressions for the operators Θf,·,· obtained above and the mapping properties of
the operators SV , SK, SK′ , and SW given in Lemma A.1 imply

‖Θf,uext,vext‖
H−

3
2

+s′ (Γ)←H
1
2

+s(Γ)
. k−(1+s−s′) + kk−(1+s−(s′−1)) + kk−(1+(s+1)−s′) + k2k−(1+(s+1)−(s′−1))

. k−(1+s−s′), 3/2 < s′ ≤ s+ 3,

‖Θf,m,vext‖
H−

3
2

+s′ (Γ)←H−
1
2

+s(Γ)
. k−(1+s−s′) + kk−(1+s−(s′−1)) . k−(1+s−s′), 3/2 < s′ ≤ s+ 3,

‖Θf,uext,λ‖H− 1
2

+s′ (Γ)←H
1
2

+s(Γ)
. k−(1+s−s′) + kk−(1+(s+1)−s′) . k−(1+s−s′) 1/2 < s′ ≤ s+ 3,

‖Θf,m,λ‖
H−

1
2

+s′ (Γ)←H−
1
2

+s(Γ)
. k−(1+s−s′), 1/2 < s′ ≤ s+ 3.

This shows that the functions Θf,uext,vext , Θf,m,vext , Θf,uext,λ, Θf,m,λ have the mapping properties
stated in (i).

Proof of (iii): From the representation (3.12) of T (·, ·) in terms of the sesquilinear forms T1(·, ·),
T2(·, ·), T3(·, ·) and the definition of Θ, we get

T
(
(u,m, uext), (v, λ, vext)

)
+ 〈(u,m, uext),Θ(v, λ, vext)〉

= T1

(
(u,m, uext), (v, λ, vext)

)
+ T2

(
(u,m, uext), (v, λ, vext)

)
+ ((kn)2u, v)0,Ω.
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We therefore concentrate on the terms

T1

(
(u,m, uext), (v, λ, vext)

)
=
{

(a∇u,∇v)0,Ω + 〈W0u
ext, vext〉+ k2〈V0u

ext, vext〉+ 〈V0m,λ〉
}
,

T2

(
(u,m, uext), (v, λ, vext)

)
=
{
ik(u, v)0,Γ − ik〈K0u

ext, vext〉 − ik〈K′0uext, vext〉+ 〈(1

2
+K′0)m, vext〉

+ ik〈V0m, v
ext〉 − ik〈V0u

ext, λ〉 − 〈(1

2
+K0)uext, λ〉 − 〈m, v〉+ 〈u, λ〉

}
.

We start with estimating T1(·, ·). We introduce
˜̃
Θf,uext,vext by

〈uext, ˜̃Θf,uext,vextvext〉 = k2〈uext,V0v
ext〉 (A.8)

and note that
˜̃
Θf,uext,vext has mapping property given in (A.5a). We bound

|T1

(
(u,m, uext), (v, λ, vext)

)
−〈uext, ˜̃Θf,uext,vextvext〉| . ‖a 1

2∇u‖0,Ω‖a
1
2∇v‖0,Ω

+ |uext| 1
2 ,Γ
|vext| 1

2 ,Γ
+ ‖m‖− 1

2 ,Γ
‖λ‖− 1

2 ,Γ
.

We turn to T2(·, ·). We introduce Θ̃f,uext,vext , Θ̃f,m,vext , and Θ̃f,uext,λ by

〈uext, Θ̃f,uext,vextvext〉 = −ik〈uext, (K0 +K′0)vext〉,

〈m, Θ̃f,m,vextvext〉 = ik〈m,V0v
ext〉,

〈uext, Θ̃f,uext,λu
ext〉 = −ik〈uext,V0λ〉,

and note that Θ̃f,uext,vext , Θ̃f,m,vext , and Θ̃f,uext,λ have the mapping properties given in (A.5). We
have

|T2

(
(u,m, uext), (v, λ, vext)

)
−〈uext, Θ̃f,uext,vextvext〉 − 〈m, Θ̃f,m,vextvext〉 − 〈uext, Θ̃f,uext,λλ〉|

. k‖u‖0,Γ‖v‖0,Γ + ‖m‖− 1
2 ,Γ
‖vext‖ 1

2 ,Γ
+ ‖uext‖ 1

2 ,Γ
‖λ‖− 1

2 ,Γ
+ ‖m‖− 1

2 ,Γ
‖v‖ 1

2 ,Γ
+ ‖λ‖− 1

2 ,Γ
‖u‖ 1

2 ,Γ
.

The estimate given in (iii) follows.

The G̊arding inequality and the continuity estimate of Theorem A.2, (ii) and (iii), can be simplified
to be get some fully k-explicit bounds, as shown in the following corollary.

Corollary A.3. Let Γ be analytic. Then there are c, C > 0 independent of k ≥ k0 > 0 such that for
all (u,m, uext) and (v, λ, vext) ∈ H1(Ω)×H− 1

2 (Γ)×H 1
2 (Γ) there holds the G̊arding inequality

RE
(
T
(
(v, λ, vext), (v, λ, vext)

)
+ 〈(v, λ, vext),Θ(v, λ, vext)〉

)
≥ c
{
‖a 1

2∇v‖20,Ω + k2‖n v‖20,Ω + ‖λ‖2− 1
2 ,Γ

+ ‖vext‖21
2 ,Γ

}
− C

{
k2‖n v‖20,Ω + k4‖λ‖2− 3

2 ,Γ
+ k4‖vext‖2− 1

2 ,Γ
+ k6‖vext‖2− 3

2 ,Γ

}
,

as well as the continuity estimate

|T
(
(u,m, uext), (v, λ, vext)

)
|

≤ C
{
‖a 1

2∇u‖20,Ω + k2‖nu‖20,Ω + k‖u‖20,Γ + ‖m‖2− 1
2 ,Γ

+ ‖uext‖21
2 ,Γ

+ k2‖uext‖2− 1
2 ,Γ

} 1
2

×
{
‖a 1

2∇v‖20,Ω + k2‖n v‖20,Ω + k‖v‖20,Γ + ‖vext‖21
2 ,Γ

+ k4‖vext‖2− 1
2 ,Γ

+ k6‖vext‖2− 3
2 ,Γ

+ k2‖λ‖2− 1
2 ,Γ

+ k4‖λ‖2− 3
2 ,Γ

} 1
2 .

Proof. In view of Theorem A.2, (ii) and (iii), we have to estimate the terms in Θ and in Θ̃. From
the definitions of the operators ΘA,·,· in (A.4) and Theorem A.2, (i), with the (multiplicative) trace
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inequality, we get

|〈uext,ΘA,uext,vextvext〉| ≤ Ck‖uext‖− 1
2 ,Γ

[
k3‖vext‖− 3

2 ,Γ
+ k2‖vext‖− 1

2 ,Γ

]
, (A.9a)

|〈m,ΘA,m,vextvext〉| ≤ C‖m‖− 1
2 ,Γ
k3‖vext‖− 3

2 ,Γ
, (A.9b)

|〈uext,ΘA,uext,λλ〉| ≤ Ck‖uext‖− 1
2 ,Γ

[
k2‖λ‖− 3

2 ,Γ
+ k‖λ‖− 1

2 ,Γ

]
, (A.9c)

|〈m,ΘA,m,λλ〉| ≤ C‖m‖− 1
2 ,Γ
k2‖λ‖− 3

2 ,Γ
. (A.9d)

Furthermore, from Theorem A.2, (i), we get

|〈uext,Θf,uext,vextvext〉| ≤ Ck−(1−s1)‖uext‖ 3
2−s1,Γ

‖vext‖ 1
2 ,Γ
, 3/2 < s1 ≤ 3, (A.10a)

|〈m,Θf,m,vextvext〉| ≤ Ck−(1+1−s2)‖m‖ 3
2−s2,Γ

‖vext‖ 1
2 ,Γ
, 3/2 < s2 ≤ 4, (A.10b)

|〈uext,Θf,uext,λλ〉| ≤ Ck−(1−1−s3)‖uext‖ 1
2−s3,Γ

‖λ‖− 1
2 ,Γ
, 1/2 < s3 ≤ 2, (A.10c)

|〈m,Θf,m,λλ〉| ≤ Ck−(1−s4)‖m‖ 1
2−s4,Γ

‖λ‖− 1
2 ,Γ
, 1/2 < s4 ≤ 3 (A.10d)

(in Theorem A.2, (i), we have chosen s′ = s1 and s = 0 for (A.10a), s′ = s2 and s = 1 for (A.10b),
s′ = s3 and s = −1 for (A.10c), s′ = s4 and s = 0 for (A.10d), and, by (A.5)

|〈uext, ˜̃Θf,uext,vextvext〉| ≤ Ck2‖uext‖− 1
2 ,Γ
‖vext‖− 1

2 ,Γ

|〈uext, Θ̃f,uext,vextvext〉| ≤ Ck‖uext‖− 1
2 ,Γ
‖vext‖ 1

2 ,Γ

|〈m, Θ̃f,m,vextvext〉| ≤ Ck‖m‖− 1
2 ,Γ
‖vext‖− 1

2 ,Γ
,

|〈uext, Θ̃f,uext,λλ〉| ≤ Ck‖uext‖ 1
2 ,Γ
‖λ‖− 1

2 ,Γ
.

By selecting s1 = 2, s2 = 2, s3 = 1, and s4 = 1 in (A.10), we obtain the stated continuity estimate.
For the G̊arding inequality, we employ Theorem A.2, (ii) and have to use the bounds (A.9), (A.10)

with (u,m, uext) = (v, λ, vext). In (A.9) we rearrange the powers of k as follows:

|〈vext,ΘA,uext,vextvext〉| ≤ Ck2‖vext‖− 1
2 ,Γ
k2‖vext‖− 3

2 ,Γ
+ k3‖vext‖2− 1

2 ,Γ
, (A.11a)

|〈λ,ΘA,m,vextvext〉| ≤ C‖λ‖− 1
2 ,Γ
k3‖vext‖− 3

2 ,Γ
, (A.11b)

|〈vext,ΘA,uext,λλ〉| ≤ Ck2‖vext‖− 1
2 ,Γ
k‖λ‖− 3

2 ,Γ
+ k2‖vext‖− 1

2 ,Γ
‖λ‖− 1

2 ,Γ
, (A.11c)

|〈λ,ΘA,m,λλ〉| ≤ C‖λ‖− 1
2 ,Γ
k2‖λ‖− 3

2 ,Γ
. (A.11d)

Combining these estimates (A.11) with the bounds (A.10) for the choices s1 = 2, s2 = 3, s3 = 1, and
s4 = 2 we obtain the stated G̊arding inequality using Young’s inequality.
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