
FLEXI: A high order discontinuous Galerkin framework for
hyperbolic-parabolic conservation laws

Nico Kraisa,∗, Andrea Becka, Thomas Bolemanna, Hannes Franka, David Flada, Gregor
Gassnerb, Florian Hindenlangc, Malte Hoffmanna, Thomas Kuhna, Matthias Sonntaga,

Claus-Dieter Munza

aInstitute of Aerodynamics and Gasdynamics, University of Stuttgart
bMathematical Institute, Center for Data and Simulation Science (CDS), University of Cologne

cMax Planck Institute for Plasma Physics

Abstract

High order (HO) schemes are attractive candidates for the numerical solution of multiscale
problems occurring in fluid dynamics and related disciplines. Among the HO discretization
variants, discontinuous Galerkin schemes offer a collection of advantageous features which have
lead to a strong increase in interest in them and related formulations in the last decade. The
methods have matured sufficiently to be of practical use for a range of problems, for example
in direct numerical and large eddy simulation of turbulence. However, in order to take full
advantage of the potential benefits of these methods, all steps in the simulation chain must be
designed and executed with HO in mind. Especially in this area, many commercially available
closed-source solutions fall short. In this work, we therefor present the FLEXI framework, a
HO consistent, open-source simulation tool chain for solving the compressible Navier-Stokes
equations in a high performance computing setting. We describe the numerical algorithms and
implementation details and give an overview of the features and capabilities of all parts of the
framework. Beyond these technical details, we also discuss the important, but often overlooked
issues of code stability, reproducibility and user-friendliness. The benefits gained by developing
an open-source framework are discussed, with a particular focus on usability for the open-source
community. We close with sample applications that demonstrate the wide range of use cases and
the expandability of FLEXI and an overview of current and future developments.

Keywords:
discontinuous Galerkin, high order, large eddy simulation, computational fluid dynamics,
open-source software, conservation laws, shock capturing, finite volume

∗Corresponding author
Email addresses: krais@iag.uni-stuttgart.de (Nico Krais), beck@iag.uni-stuttgart.de (Andrea

Beck), thomas.bolemann@daimler.com (Thomas Bolemann), hannes.frank@stihl.de (Hannes Frank),
david.g.flad@nasa.gov (David Flad), ggassner@uni-koeln.de (Gregor Gassner),
florian.hindenlang@ipp.mpg.de (Florian Hindenlang), hoffmann@iag.uni-stuttgart.de (Malte Hoffmann),
thomas.kuhn@iag.uni-stuttgart.de (Thomas Kuhn), matthias.sonntag@zeiss.com (Matthias Sonntag),
munz@iag.uni-stuttgart.de (Claus-Dieter Munz)

Preprint submitted to Computers and Mathematics with Applications October 8, 2019

ar
X

iv
:1

91
0.

02
85

8v
1

 [
cs

.C
E

]
 7

 O
ct

 2
01

9

1. Introduction

The favorable properties of high order (HO) methods for smooth flow problems have long
been recognized. Initially, global spectral methods, where the solution in the computational
domain is discretized by a single, global set of basis functions were favored. One of the earli-
est applications of a spectral Galerkin method to flow problems was published by Silberman in
1954 [1]. Many others followed, in particular in the area of turbulence using Fourier (pseudo)-
spectral methods, see e.g. [2, 3, 4]. While these methods can offer unsurpassed accuracy per
invested degree of freedom, they are naturally limited by their restriction to the global, i.e. single
element, domain discretization. This makes them too inflexible for real word applications, and
this shortcoming has sparked a lot of research efforts into local high order methods during the
last decades. From these efforts, high order variants of essentially every grid-based approxima-
tion method to partial differential equations (PDE) have sprung - there exist a plethora of finite
difference, finite volume, finite element and other high order formulations nowadays, see e.g.
[5, 6, 7, 8, 9, 10] and many more. What all these methods have in common is that they surren-
der the notion of a global solution representation in favor of a local but high order one. This
locality entails that the differential operators acting on the solution themselves now can become
local, which in turn allows a multi-element domain discretization. Since on a conceptual level,
these HO methods differ in the way they define the approximate solution ansatz, the locality of
their bases and the mathematical principle that recovers the global approximate solution through
connection of the now local PDE approximations also vary. These differences do not only influ-
ence the numerical properties of the resulting schemes, but have also far-reaching consequences
with regards to practical aspects: Which meshes are suitable for which method? How are the
physical properties and limitations reflected in the design of the method? How computationally
efficient is the algorithm; can it exploit modern vectorization in CPUs and what are its limiting
components? How well can the method be run in parallel on tens or hundreds of thousand of
CPUs or on multiple GPUs? In particular the last two issues are of importance when considering
practical applications of HO methods beyond canonical test cases, most of which stem from the
global method community. The multitude of questions and choices to consider should also make
it clear that no “best” HO method exists - instead, it depends on the specific requirements of the
targeted applications at hand.

In our case and for the framework presented here, these applications are found in the realm
of the unsteady, compressible Navier-Stokes equations and derived formulations like the Eu-
ler system. The particular focus of interest are non-linear multiscale problems like turbulence
and aeroacoustics in the compressible flow regime. For these types of problems, discontinuous
Galerkin (DG) methods offer a collection of advantageous features. They are based on the varia-
tional form of the equations realized by an L2 Galerkin projection. The polynomial basis and test
functions are both restricted to each element, and thus the projection becomes a purely local op-
erator. Connection to adjacent elements is achieved by the weak imposition of a unique surface
flux. Thus, it is convenient to interpret DG as a hybrid of an element-local finite element scheme
and a finite volume (FV) discretization. This view on DG methods has direct consequences for
the approximation properties, the stability and the data connectivity of these methods. Due to
their local high order accuracy, the global method is also high order accurate and has very low
numerical dispersion and dissipation errors [11]. The possibility to introduce upwinding through
the surface fluxes provides stability for linear hyperbolic problems, and naturally adds stabiliz-
ing dissipation in the non-linear case. The connection to neighboring elements is only through
weakly imposed numerical fluxes at the interfaces, which avoids strong global coupling and re-

2

duces the communication pattern to that of first order finite volume schemes, while achieving
arbitrary high order of accuracy through the local ansatz degree.

With a certain target application in mind, choosing the most suitable HO method to solve
the governing equations is however only the first choice along the way. Any meaningful ap-
plication of such methods involves making certain that the whole simulation chain is up to the
task. In other words, choosing a HO method entails HO at all stages of the process, starting
from the pre-processing steps, in particular the generation of grids suitable for high order (both
in terms of surface representations as well as sufficient grid coarseness). Other issues to consider
at pre-processing for example include the availability of high order accurate initial and boundary
conditions. Post-processing of the solution also poses challenges. For the typical target applica-
tion such as highly resolved and time-accurate simulation of turbulence, large amounts of data
are generated during the simulation, which must be dumped to disk in a raw format to avoid
efficiency losses. This raw data has to be post-processed, manipulated and visualized in a way
that is also consistent with the HO approach and is compatible with the usually low order data
format used by third party software.

Since a successful HO strategy thus requires a concerted approach across all links of the
simulation chain and as suitable third party pre- and post-processing solutions are not available,
we designed and developed (and continue to do so) the FLEXI1 framework, which will be dis-
cussed and presented in this work. The basic idea behind FLEXI is not only to provide a HO
DG solver for the compressible Navier-Stokes equations that is well-documented and easy to
modify in the hopes others may find it useful, but to create a full, HO consistent simulation tool
chain with a focus on high performance computing (HPC) in mind. Thus, all parts of FLEXI are
designed to deal with HO data, and to make efficient use of a large number of cores. In order
to make our work available to the scientific community and to facilitate peer-review and repro-
ducibility, FLEXI has been made open-source under the GNU GPL v3.0 license. We will present
FLEXI, its features, parts, numerical schemes and algorithms as well as selected applications in
the following sections.

In this work, we focus on applications of FLEXI in the field of computational fluid dynamics
(CFD). In particular, scale-resolving and time-accurate simulation methodologies such as large
eddy simulation (LES) and direct numerical simulation (DNS) will be considered. But at its
heart, FLEXI is a solver for general hyperbolic-parabolic conservation laws. For instance, the
solver Fluxo2 is a spin-off from FLEXI and is used for applications in astro- and plasmaphysics,
solving the equations of magnetohydrodynamics including non-conservative terms. Its main
focus is on the split-form DG formulation (see Sec. 3.3) and entropy stability [12].

2. Framework overview

The overall FLEXI framework consists of open-source tools for pre-processing and genera-
tion of high order meshes, the CFD solver itself and a post-processing and visualization suite,
see Fig. 1. In the following sections, we will discuss each of the parts and give an overview over
their methods and features.

1www.flexi-project.org
2https://github.com/project-fluxo/

3

HOPR
Mesh curving

SFC domain decomposition
Unstructured/nonconforming

Parallel
HDF5 IO

FLEXI
DGSEM Solver

High-order accurate
Parallelized with MPI

Parallel
HDF5 IO

Server-client
based

POSTI
Prepare visualization

Data analysis
Parallelized with MPI

Visualization
Paraview + POSTI interface

Mesh Generation
CGNS, ANSA, ICEM, GMSH

Figure 1: Overview of the high order framework.

2.1. HOPR: Mesh generation tool
In this section, we give an overview of the high order mesh preprocessor HOPR, which

generates the mesh input file for FLEXI. Documentation and tutorials for HOPR can be found
under www.hopr-project.org and details of the mesh curving techniques are given in [13, 14].

When using high order methods, wall boundary conditions at curved geometries need a high
order representation to maintain the high order accuracy of the method [15]. Especially CFD
applications have complex geometries and pose high requirements for the quality of geometry
representation. While the open-source software GMSH [16] is constantly improving the genera-
tion of high order meshes, it is still a topic of ongoing research [17, 18, 19]. In HOPR, the main
approach is to rely on linear meshes from standard grid generators and give the user different
techniques to curve the mesh. The curved mesh geometry is represented using polynomials of
degree Ngeo, which can be chosen depending on the considered case.

First, we present the high order mesh format that supports direct parallel read-in and meshes
with curved non-conforming element interfaces. Further, we discuss the main curving techniques
that are summarized in the flowchart in Fig. 2.

In HOPR, simple multi-block meshes can also be generated internally, without the need to
rely on external grid generators. Such meshes can including the use of periodic boundary con-
ditions and non-conforming element interfaces. In addition, the mesh can be curved a-posteriori
via user-defined mappings. A detailed explanation of these two features will not be given here,
but can be found in the tutorials on the webpage.

2.1.1. Mesh format
The mesh format in HOPR is designed for fast parallel read-in in FLEXI. Therefore, the

mesh file is written in binary HDF5 format [20]. An important feature is that the elements
are ordered along a space-filling curve (SFC), providing a direct domain decomposition during
parallel read-in. That means one can directly start the parallel computation with an arbitrary
number of domains (≥ number of elements) and always read the same mesh file. The element
list is simply divided by the number of domains, and each domain is associated with a contiguous
range of elements. The SFC curve guarantees that these elements are, on average, in proximity of
each other. An example is shown in Fig. 3 for an unstructured mesh, with two different domain
decompositions based on the same HOPR mesh file. In FLEXI, the same element ordering is
used to write the restart files.

4

standard mesher: ICEM, ANSA, Hexpress, …
linear unstructured mesh (cgns)

curved boundary faces

point-normals surface subdivision

curved boundary edges
& blend edges to face

blend curved edges
to inner faces

& curved faces
to elements

+ subdivided
surface mesh

curved high order mesh

block-structured mesh
(cgns struct. format)

Agglomeration
of sub-blocks to

curved hexahedra

RBF interpolation
propagate boundary
curving into volume

associate subdivided
mesh with coarse

surface mesh

reconstruct
normals from
surface mesh

Normals from
analytical

expression

Figure 2: Flowchart of the curved mesh generation process in HOPR.

Figure 3: Space-filling curve based domain decomposition of an unstructured mesh around a sphere, with communication
graph between the domains, for 128 domains of 165− 166 elements (left) and 1024 domains of 20− 21 elements (right),
from [13].

In contrast to standard mesh formats, which provide the element node connectivity list and the
node list separately, the HOPR mesh format provides direct neighbor connectivity information
of the element sides (conforming and non-conforming) and the element node information (index
and (x, y, z) position) as a package per element. Hence, for a given range of elements, non-
overlapping contiguous parts of the arrays can be read from file in parallel. As a consequence,
the coordinates of the same physical nodes are stored several times, but remain associated by a
unique global node index.

2.1.2. Surface curving
In HOPR, there are two main strategies to curve the boundary surfaces, the ’surface-subdivision’

and the ’point-normal’ approach [14]. The surface-subdivision approach is the most convenient
and accurate, but it needs an additional refined surface mesh. As shown in Fig. 4, a subdivided
mesh was created with the mesh generator ANSA©, with the new points lying on the exact bound-
ary surface, and the coarse mesh points being unchanged. Given the polynomial degree of the
surface mapping (Ngeo = 2, 4, 8) that corresponds to the number of refinement steps, HOPR finds
automatically the connection between each boundary face and its refined surface elements by

5

making use of the connectivity information of the subdivided surface mesh. The curved face is
then defined by an interpolation polynomial through the new points.

Figure 4: Surface mesh of the DLR-F6 body-wing intersection, after two steps of isotropic refinement, from [14].

The point-normal approach, proposed in [21], relies on the reconstruction of the curved sur-
face using only normal vectors at the grid points of the boundary of the linear volume mesh. The
surface elements are then G1 continuous at the corner nodes. Clearly, the most difficult part is
to provide the normal vector. In HOPR, analytical expressions for simple geometric shapes are
included, and it is easy to add other user-defined functions. If no analytical expression is avail-
able, the normal vector is reconstructed from the linear surface mesh, with a grid-size dependent
approximation error. We also need to consider sharp edges at the intersections of surfaces, where
two point-normals exist. To find these edges, curved boundary patches can be associated with an
unique index, and a sharp edge is assumed between patches of different indices.

The process to generate the curved faces from the normals is depicted in Fig. 5. The tangential
vectors of the face edges are constructed first, by projecting the straight edge into the tangential
plane. If two point-normals are given (at sharp edges), the direction of the tangential is found by
a cross-product and its length again by projection onto the straight edge. The curved edge is a
cubic polynomial, computed from the edge end points and the tangential vectors. In a following
step, the curved faces are computed from a blending of the curved edges [22].

Once all boundary faces are curved, the 3D element mapping is computed using blending
functions of curved edges and faces, for all elements that share at least one edge with a curved
boundary face (’local curving’). If the elements are highly stretched, additional curving of inner
elements would be required (’global curving’) to avoid invalid cells, which is addressed in the
next section.

p1

p2

n1

t 1

e
= X a + X b − X t

Figure 5: Construction of curved edge tangential from point-normal vector (left) and blending of curved edges to curved
surface (right), from [14].

6

2.1.3. Volume curving using RBF interpolation

0.25

1

Figure 6: Visualization of mesh and scaled Jacobian around the leading edge of a NACA0012 airfoil. Left: Curved
surface without volume curving, right: curved surface and volume curving based on RBF interpolation.

The stategies presented in the last section allow to create curved boundary faces of the domain
and curve only the elements adjacent to the boundary. No information about volume curving is
present in those approaches. This can lead to serious problems, as demonstrated in the left plot
in Fig. 6. It shows the mesh around the leading edge of a NACA0012 airfoil, where the surface
of the airfoil has been curved, but the volume mesh is still linear. This leads to strongly deformed
cells in the first layer around the airfoil, especially since the cells are highly anisotropic as it is
typical for boundary layer meshes. As a quantitative quality criterion, the mesh is colored by the
scaled Jacobian, defined as the ratio between the Jacobian of the high order mapping and its max-
imum value in each cell (see Sec. 3.1 for details on that quantity). Lower values indicate larger
deformation, lowering the approximation quality in these regions. Since the physical boundaries
are typically of high interest and their representation affects the solution quality globally, a way
to remedy this loss is necessary. In HOPR, a possible way to achieve this is based on the inter-
polation of the surface curving to the volume based on radial basis function (RBF) interpolation.
RBFs can in general be used to interpolate scattered data, and are for instance used to deform
meshes in response to a moving boundary [23]. In our application, we use them to interpolate
the displacement between the linear and the curved representation of the airfoil surface to the
volume. This spreads the distortion across the first few layers of cells, dramatically improving
the mesh quality in the critical first layer. The effect of this can be seen by comparing the two
plots in Fig. 6, where the mesh on the right was created with the RBF interpolation approach.

2.1.4. Curved mesh by agglomeration
The most simple way to generate a fully curved hexahedral mesh is by using block-structured

meshes as input. The main requirement is that all blocks can be coarsened by a unique factor
of nb elements in all directions. Then, the high order element mapping is simply found via
interpolation of an agglomerated block of (nb × nb × nb) cells. Note that the polynomial degree
of the mapping can be chosen independently from nb, with Ngeo ≤ nb.

A complex application example is shown in the upper left of Fig.7. The original CGNS block-
structured mesh has 85 blocks and a total of 20.6 million linear elements. After agglomeration
with Ngeo = nb = 4, the high order mesh consisted of 322, 110 elements.

There is no guarantee that the agglomerated mesh is a valid high order mesh. In HOPR,
we always provide the mesh statistics of the scaled Jacobian, to inform the user about the mesh
quality, and if invalid elements with a negative scaled Jacobian exist. In Tbl. 1, we show that

7

Figure 7: Agglomeration of block-structured mesh of a serrated nozzle (courtesy of A. Cimpoero), with Ngeo = 4. Upper
left: curved surface mesh, upper right: elements with Jscaled < 0.1, if only boundary is curved, lower left: valid mesh,
with 2 layers of curved elements, lower right: elements with Jscaled < 0.1, if all elements curved.

8

the linear agglomerated mesh is valid (nb = 4, Ngeo = 1), but if all elements are curved, elements
with small scaled Jacobian and even invalid elements exist. Therefore, an additional parameter
controls to keep the high order mapping only in a certain number of element layers adjacent to
the curved boundary, and all other elements become linear. If only the boundary faces or the
first layer of elements is curved, the mesh is still invalid, but increasing the number of layers to
2 − 4 leads to a valid mesh and an increased quality. In Fig. 7, we show the failed cases of only
boundary curving or curving of all elements and the valid mesh with 2 layers of curved elements.

#elements with Jscaled < 0 0 − 0.1 0.1 − 0.2 0.2 − 0.3 ≥ 0.3

no curving 0 0 65 204 321,841
all curved 10 737 896 1,684 318,783
boundary only 61 6 70 216 321,757
1 layer 10 50 104 376 321,570
2 layers 0 0 197 520 321,393
3 layers 0 0 178 667 321,265
4 layers 0 0 160 746 321,204

Table 1: Scaled Jacobian distribution between all elements of the agglomerated serrated nozzle mesh, for different
settings. Invalid elements have Jscaled < 0.

2.2. FLEXI: DG solver

FLEXI is a general purpose solver for hyperbolic/parabolic systems following the method
of lines, where the spatial operator is treated with a discontinuous Galerkin spectral element
method (DGSEM), optionally combined with a subcell finite volume method to capture regions
with shocks. High order explicit Runge-Kutta methods are used to integrate the semi-discrete
DGSEM in time. Explicit time-integration in combination with the spectral element version of
DG leads to a very efficient scheme that is well suited for massively parallel computing hardware.
Details on the numerical schemes, methods and implementations will be given in Sec. 3, 4 and
5. In this section, we will give an overview of its features.

2.2.1. Code design
In the context of this work, we present FLEXI with a focus on CFD, in particular for solving

the unsteady, compressible Navier–Stokes equations. At its core however, FLEXI is intended
to be a general purpose solver for hyperbolic-parabolic systems of partial differential equations.
This goal requires a design with a focus on modularity, i.e. a collection of features or methods in
functional units, which can be used and modified largely independently from each other. FLEXI
and the framework are predominantly written in modern, procedural Fortran for its suitability
and performance for scientific computing in HPC environments. In Fortran, code flexibility can
be achieved by arranging functional units in modules, each with their own encapsulated set of
variables. Within this concept, five major functional units exist in our solver:

1. The spatial operator, including the DG and FV discretization schemes
2. The temporal operator
3. Mesh preparation and handling
4. The equation system to be solved
5. Analysis and output routines

9

The inter-dependencies of these functional units are kept to a minimum. For example, the tem-
poral integrator is essentially an ODE solver completely independent from all other units. The
spatial discretization operators are written for general hyperbolic and parabolic terms, and the
specific equation system to be solved can be added in a “plug and play” style, as all code parts
specific to the equation system (e.g. fluxes, time step restrictions, initial conditions, numerical
flux functions) are organized in a single, interchangeable functional unit. In order to provide
custom features specific to a user-defined case, a test case environment can be defined, which
injects information at specific parts of the code. For example, within this test case, extra analysis
routines or source terms can be defined, which are then invoked automatically.

2.2.2. Parallelization
FLEXI and its associated tools use a distributed memory parallelization based on the Message

Passing Interface (MPI) standard. In this paradigm, each parallel process manages its own mem-
ory, and information interchange between processes occurs through messages being sent over
the network only. Like for all element-based discretizations, a single grid cell is a natural con-
ceptual, granular unit for parallelization, i.e. all domain decomposition is element-based. Due to
the local approximation space in DG and the absence of continuity requirements on the solution
across element interfaces, the communication pattern of DG schemes is side-based. Thus, for a
computation in a domain of dimensionality d, only information of dimensionality d − 1 has to be
exchanged. Furthermore information only has to be exchanged between neighbours that share
a face. In a communication sense, DG is thus comparable to FV schemes, with the important
differences being the amount of data being sent (for high order DG) and the absence of volume
work in FV, where the evaluation of the numerical flux requires the overwhelming amount of
computational effort. In DG, where additional volume work exists, these local computations can
be used for communication latency hiding. This high density of local operations and the small
communication footprint make DG operators naturally parallel and allow for a rather simple
parallelization of explicit-in-time DG schemes.

In FLEXI, we use the MPI concept of non-blocking communication extensively, which allows
initiating a message transfer at the earliest possible instance but does not require immediate
execution of this command. I/O of solution data is achieved by use of the HDF5 library [20],
where we additionally gather operations over a compute node to reduce file access for large scale
computations. With the help of these features, simulations with over 1 billion degrees of freedom
(DOF) on 100,000 cores and perfect strong scaling performance are possible. Fig. 8 shows a
sample computation with FLEXI: a DNS of a supersonic turbulent boundary layer, reaching a
momentum thickness based Reynolds number Reθ = 3878, computed with close to 1.5 billion
DOF per solution variable [24].

2.2.3. Code features
FLEXI contains a number of features, most of which are focused towards stability in underre-

solved scenarios and analytics for complex flows e.g. from direct aeroacoustic simulations. The
most important ones can be grouped as follows:

1. Hybrid DG / FV operator: The spatial discretization in FLEXI is based on an element-
wise formulation of the DG method of arbitrary order. As discussed before, high order
schemes have favorable properties in smooth regions of the solution, but lack stability in
underresolved regions, in particular when strong gradients occur, as is typical in compress-
ible flows. These solution types thus require some form of shock capturing mechanism.

10

Figure 8: Spatially-developing supersonic turbulent boundary layer up to Reθ = 3878 at Ma = 2.67, computed with
1.458 billion DOF per variable. λ2-Visualization of the turbulent structures along the flat plate colored by the streamwise
velocity component u [24].

In FLEXI, this is achieved by a reinterpretation of the DG polynomial in troubled cells
as a finite volume solution on a structured subcell grid, i.e. a DG element is concep-
tually switched to a local, block-structured FV grid. On this grid, 1st or 2nd order FV
total variation diminishing (TVD) schemes with slope limitation are then solved to pro-
vide element-local, accurate shock capturing. The inverse functionality is also included to
revert back to the DG representation, once sufficient smoothness of the solution can be de-
tected. Different, element-local indicators are available to judge the local smoothness and
determine the operator choice. Due to the shared data structure of DG and FV and careful
implementation, the hybrid method suffers almost no additional computational cost com-
pared to pure DG. More details on this feature can be found in Sec. 4. Fig. 9 shows the
application of this approach to 2D Riemann problems.

2. Non-linear stability: For under-resolved simulations of non-linear problems, stability be-
comes an important aspect of the numerical method. Specifically high order methods tend
to show oscillatory behaviour, ultimately leading to the crash of the simulation. Classi-
cal stabilization approaches are mostly based on the addition of artificial viscosity - either
explicitly or implicitly, e.g. by using upwind operators. While the surface contribution
in the DG method employs upwind Riemann solvers, the volume integral is completely
free of artificial viscosity, such that the amount of added viscosity might not be enough to
stabilize the simulation for even moderately under-resolved simulations. Adding viscosity
to the volume might be a solution for the stability problem, but possibly also restricts ac-
curacy. Thus, a method to stabilize the simulation without the need for excessive artificial
viscosity is desirable. A possible way to achieve this is by using the so-called split form of
the advection operator, in which aliasing errors can be avoided to guarantee preservation of
kinetic energy (or entropy) at a discrete level [26]. Within FLEXI, several split variants are
available. As an alternative stabilization methods, consistent integration of the non-linear
terms can also be selected [27].

3. LES formulations: As common in CFD, LES in FLEXI is based on the implicitly filtered
form of the governing equations, i.e. the scale separation filter is determined by the cut-

11

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

0.55

1.21

0.75

1

ρ

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

0.54

1.7

1

1.5

ρ

−0.5 −0.25 0 0.25 0.5
−0.5

−0.25

0

0.25

0.5

Figure 9: Two dimensional Riemann problem, configurations E and F from [25]. Left: Density at final time. Right: FV
(red) and DG (blue) elements.

12

off behaviour of the discretization. For well-resolved LES, implicit closure through the
discretization operator, in particular the choice of the numerical flux function, is avail-
able [27, 28, 29]. A number of flux formulations for both the advective fluxes (e.g. Roe’s
approximate Riemann solver, Rusanov flux, HLL-type formulations [30]) as well as the
viscous fluxes (i.e. two formulations according to Bassi and Rebay) [9, 31] can be used.
For typical LES resolutions that require additional modelling, the Smagorinsky, the σ and
Vreman’s eddy viscosity models can be selected [32, 33, 34]. Common filtering opera-
tions like volume or surface filtering with sharp or smooth filter kernels are also available
and can thus be used for filter-based LES or advanced multiscale models like Variational
Multiscale (VMS) approaches or other structural models [35]. In order to reduce the reso-
lution requirements for wall-bounded flows at high Reynolds numbers, FLEXI uses a wall-
stress model according to Larsson [36]. Initial solutions for the LES can be obtained by a
Reynolds-averaged NavierStokes (RANS) formulation with a Spalart-Allmaras model [37]
using pseudo-time stepping.

4. Boundary Conditions: Boundary conditions in DG methods are typically enforced weakly
through the choice of the corresponding interface flux. This choice leads to a more stable
and accurate solution at the boundaries [38], and makes implementation of a new bound-
ary type rather easy. Standard boundary conditions for compressible flows are available in
FLEXI, among them Dirichlet conditions, super- and subsonic inlet and outlet conditions,
solutions to a Blasius boundary layer profile and the possibility to read in a given state
from file, e.g. when using information from a precursor RANS computation as far field
boundaries. Generating synthetic inflow turbulence for boundary layer computations is
achieved by the anisotropic linear forcing (ALF) formulation [39]. In order to avoid re-
flection at the outflow faces in particular for aeroacoustic simulations, an absorbing layer
variant called a sponge layer is available. In this method, a retarding volume forcing term
is introduced in the vicinity of the outflow, which dampens the solution towards a baseflow.
A flexible and general method to determine a suitable base flow is to generate it from a
moving time-average of the solution which can be computed by an exponential temporal
filter [40].

5. Flow analytics: FLEXI features a number of flow analysis options. The most basic one
is that the solution (or any derived quantity) can be written to a solution file at a speci-
fied interval. Also, error norms with respect to a given exact function can be computed
and stored at any time. Other information gathered and reported are the time history of
the forces acting on immersed bodies, the velocity slip at solid walls, the bulk quantities
and overall balances. For more advanced analysis of turbulent flows, FLEXI employs an
on-the-fly time-averaging procedure for arbitrary linear and non-linear quantities. This
information is stored at the same instance as the solution files, and can be reassembled
in post-processing to produce volume information about the fluctuating quantities, e.g.
the Reynolds stresses. For time-dependent solutions, FLEXI also supports data probes or
record points, where the time accurate history of the full solution vector is stored for later
analysis.

2.3. POSTI: Post-processing suite

Since the main focus of FLEXI is on unsteady scale-resolving computations, the output of a
simulation potentially consists of a large amount of files each containing the solution variables
on tens or hundreds of million degrees of freedom for a single time step. Besides demanding

13

large resources for storage, post-processing such amounts of data becomes a real challenge.
The classical approach to visualization includes a conversion step, where the data from the file
format native to the solver is transformed to an alternative format suitable for the visualization
tool of choice. This not only introduces the need for additional storage space for the converted
files, but also neither the conversion process nor the visualization tool itself might be suitable
for parallel execution, which could lead to a prohibitively large cost of visualizing simulation
results. Another important aspect to consider is that the large majority of available tools can not
efficiently or accurately handle the high order data provided by FLEXI.

Thus, the visualization process within the FLEXI framework follows a custom approach.
We use the open-source software ParaView [41] as our primary visualization tool. One of the
main features of ParaView is the capability to use remote computing resources for visualization
in a server-client environment. Thus, a user can connect from a local workstation to e.g. a
server on the cluster system used to run a large-scale simulation and directly use the processing
power available there. Instead of converting the native HDF5 file format of FLEXI to a format
suitable for ParaView, a custom read-in plugin has been created, which allows to directly open
the simulation results without any prior conversion. This reader effectively provides an interface
to a fully parallel visualization software, specifically designed for our framework. Since it is
incorporated in the software package, it can make use of routines originally designed for the
solver itself, e.g. domain decomposition algorithms or the calculation of gradients. It is also
fully aware of the high order nature of the solution, which is used to super sample the solution
and visualize that version on ParaView. Additionally, the equation system used for the calculation
is known to the software, and it provides routines to calculate derived quantities from the solution
variables, e.g. temperature or vorticity for the Navier-Stokes equations. The results will then be
returned directly to ParaView without first writing them to the hard drive.

As an alternative, the visualization tool itself can be used to follow the classical approach and
convert the FLEXI file format to the native ParaView file format. Next to the visualization soft-
ware, the post-processing suite POSTI consists of several other programs. Those include tools
to perform temporal or spatial averaging, analysis based on Fourier transformation, direct mode
decomposition and several other, smaller programs. As a side project, we created a pipeline [42]
which allows to render results from FLEXI in the open-source 3D computer graphics toolset
Blender [43]. It can be used to present 3D simulation results in a pleasing visual style, and some
examples can be found in this article.

3. Numerical methods

3.1. Discontinuous Galerkin spectral element method

In the following section, the DGSEM as it is implemented in FLEXI will be derived for a
general system of hyperbolic-parabolic conservation laws for the conserved variables ~U defined
on Ω ⊆ R3:

∂ ~U
(
~x, t

)
∂t

+ ∇ ·
(
~Fc

(
~U
)
− ~Fv

(
~U,∇ ~U

))
= 0, (1)

with convective and viscous fluxes ~Fc and ~Fv respectively. We combine them into a single flux
~F to keep the notation compact.

The domain Ω is subdivided into K ∈ N non-overlapping and (for the moment) conforming
hexahedral elements eK , each bounded by six curved faces ~Γi, i = 1, 2, 3, 4, 5, 6, as sketched in

14

Fig. 10. The geometry of the faces ~Γi(r, s), (r, s) ∈ [−1, 1]2 is approximated as tensor products of
one-dimensional Lagrange interpolating polynomials up to degree Ngeo :

~Γi(r, s) :=
Ngeo∑
j,k=0

~Γi

(
r j, sk

)
` j (r) `k (s) . (2)

The usual definition of the Lagrange polynomials is

` j (r) =

Ngeo∏
i=0,i, j

r − ri

r j − ri
. (3)

The nodal points ri are taken from either Legendre-Gauss (LG) or Legendre-Gauss-Lobatto
(LGL) quadrature.

The DGSEM will be constructed on a reference cube, such that all operators only need to be
defined once, regardless of the actual shape of the considered element. Thus, a transfinite map
~x = ~χ

(
~ξ, t

)
from the reference cube E = [−1, 1]3 in computational space ~ξ = [ξ1, ξ2, ξ3]T onto

the element in physical space ~x = [x1, x2, x3]T is introduced. We then define the Jacobian of the
mapping J as the determinant of the Jacobian matrix ∇ξ~χ. The operator ∇ξ represents the nabla
operator evaluated in the computational coordinates. For the required transformation between
physical and reference space, the contravariant basis vectors J~ai (also called metric terms) are
introduced, calculated in a guaranteed discretly divergence free (so called curl) form [44]:

J~ai
n = −x̂i · ∇ξ ×

(
xl∇ξxm

)
, i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic, (4)

where x̂i is the unit vector in the ith Cartesian direction. This formulation ensures that the so-
called metric identities are fulfilled, which is necessary to achieve free-stream preservation.

As is detailed in [14], the mapping is constructed by blending the curved boundary faces
together. This ensures that the map ~χ itself is a polynomial of degree Ngeo or less, and that
required derivatives can be computed by derivation of that polynomial.

The conservation law (1) can now be formulated in the reference cube. Inserting the trans-
formation rule for the divergence

∇ · ~F =
1
J

3∑
i=1

∂J~ai · ~F
∂ξi , (5)

yields

J
∂ ~U

(
~x, t

)
∂t

+ ∇ξ · ~F = 0, (6)

with the so-called contravariant fluxes ~F , which are defined as

~F i = J~ai · ~F, i = 1, ..., 3. (7)

We can obtain the weak formulation of the conservation law in reference coordinates by multi-
plying (6) with an arbitrary test function φ = φ(~ξ) and by integration over the reference element∫∫∫

E

J ∂ ~U
∂t

+ ∇ξ · ~F

 φ d~ξ =

〈
J
∂ ~U
∂t

+ ∇ξ · ~F , φ

〉
= 0. (8)

15

Γ2
(
ξ1, ξ3

)
Γ4

(
ξ1, ξ3

)

︷ ︸︸ ︷
Γ1

(
ξ1, ξ2

)

︷ ︸︸ ︷
Γ6

(
ξ1, ξ2

)
Γ3

(
ξ2, ξ3

)
Γ5

(
ξ2, ξ3

)
︸ ︷︷ ︸

x1

x2
x3

ξ1

ξ2ξ3

~χ
(
~ξ
)

Figure 10: Left the reference element E = [−1, 1]3 and on the right a general hexahedral element eκ with the curved
faces ~Γi. The mapping ~χ

(
~ξ
)

connects E and eκ.

Here, 〈·, ·〉 defines the inner product between two functions. The divergence can be split into
interior and boundary contributions by applying Green’s identity:〈

J
∂ ~U
∂t
, φ

〉
+

∫∫
∂E
φ
(
~F · N

)∗
dS −

〈
~F ,∇ξφ

〉
= 0, (9)

where N is the outward pointing normal vector. Since no continuity is required between ele-
ments, numerical flux functions are used to approximate a unique normal flux

(
~F · N

)∗
from the

double-valued solution on the boundary.
Both the solution ~U and the components of the contravariant fluxes ~F l, l = 1, 2, 3 are ap-

proximated by tensor products of Lagrange polynomials of degree N on the reference element,
e.g.

~U
(
ξ1, ξ2, ξ3, t

)
≈ ~U

(
ξ1, ξ2, ξ3, t

)
=

N∑
m,n,o=0

~Umno(t)`m(ξ1)`n(ξ2)`o(ξ3), (10)

where the bold font indicates the polynomial interpolation. The notation ~Umno(t) stands for the
degree of freedom associated with the basis function ψmno = `m(ξ1)`n(ξ2)`o(ξ3). For the chosen
nodal basis, the degrees of freedom are also identical to the value of the interpolation at the posi-
tion (ξ1

m, ξ
2
n , ξ

3
o). The nodes are again chosen from either LG or LGL quadrature. To determine the

nodal values of the contravariant flux components ~F l
mno, the physical flux is evaluated using the

interpolated solution and multiplied by the weighted contravariant basis vectors, transforming it
to computational space:

~F l
mno(t) =

3∑
d=1

Jal
d

(
ξ1, ξ2, ξ3, t

)
~Fd

(
~U

(
ξ1, ξ2, ξ3, t

))
. (11)

The polynomial approximations can now be inserted into the weak form (9). Integrals will be
evaluated using Gauss-Legendre quadrature with collocation of the interpolation and quadrature
nodes. The basis functions are also used as test functions, following the Galerkin ansatz.

16

Time derivative integral
Substituting the polynomial approximation into the weak form (9) and replacing the integrals

by Gauss-Legendre quadrature yields for the first term, containing the time derivative:〈
J
∂ ~U
∂t
, φ

〉
=

∂

∂t

N∑
α,β,γ

J
(
~ξαβγ

) N∑
m,n,o

(
~Umno(t)`m(ξ1

α)`n(ξ2
β)`o(ξ3

γ)
)
ψi jk(ξαβγ)ωαωβωγ ∀ i, j, k. (12)

Here, {ωi}
N
i=0 are the weights associated with the quadrature rule and {ξi}

N
i=0 the position of the

nodes. Since the Lagrange polynomials satisfy the property

`i(ξ j) = δi j =

1 i = j
0 i , j

∀i, j = 0, ...,N, (13)

the above equation simplifies to〈
J
∂ ~U
∂t
, φ

〉
=
∂

∂t

N∑
m,n,o

J
(
~ξmno

)
~Umnoψi jk(ξmno)ωmωnωo ∀ i, j, k. (14)

Taking once more advantage of the Lagrange property when substituting the basis functions leads
to

=
∂

∂t

N∑
m,n,o

J
(
~ξmno

)
~Umno `i(ξ1

m)︸︷︷︸
δim

` j(ξ2
n)︸︷︷︸

δ jn

`k(ξ3
o)︸︷︷︸

δko

ωmωnωo

= J
(
~ξi jk

) ∂~Ui jk

∂t
ωiω jωk ∀ i, j, k. (15)

Our choice of basis functions and the collocation approach lead to significant simplifications
of the scheme. We obtain a diagonal mass matrix Mi j =

〈
`i, ` j

〉
, a manifestation of the discrete

orthogonality of the basis functions. It should be noted that (for a constant Jacobian) the mass
matrix is exactly computed for LG nodes, since the quadrature in this case is exact up to a degree
2N + 1, and the product of the two functions is of degree 2N. Quadrature on LGL nodes is only
exact up to degree 2N − 1, and the analytical mass matrix for LGL nodes would thus not be
diagonal. The discrete version is, which is referred to as mass lumping, a property that has an
influence on dispersion and dissipation characteristics and which was investigated in [11].

Volume Integral
The rightmost term in the weak formulation (9) is the scalar product of the contravariant

fluxes with the gradient of the test function, compactly written as

〈
~F ,∇ξφ

〉
=

3∑
d=1

〈
~F d,

∂φ

∂ξd

〉
. (16)

17

Only the first entry in the sum (d = 1) will be considered in the following, since they are all of
the same structure. Applying Gauss quadrature, substituting the polynomial approximation and
using the Lagrange property leads to〈

~F 1,
∂φ

∂ξ1

〉

=

N∑
α,β,γ=0

N∑
m,n,o=0

 ~F1
mno `m(ξ1

α)︸︷︷︸
δmα

`n(ξ2
β)︸︷︷︸

δnβ

`o(ξ3
γ)︸︷︷︸

δoγ

 ∂ψi jk

∂ξ1 ωαωβωγ

=

N∑
m,n,o=0

~F1
mno

∂`i

(
ξ1

)
∂ξ1

∣∣∣∣∣∣∣∣
ξ=ξ1

m

` j

(
ξ2

n

)︸︷︷︸
δ jn

`k

(
ξ3

o

)︸︷︷︸
δko

ωmωnωo

= ω jωk

N∑
m=0

~F1
m jk

∂`i

(
ξ1

)
∂ξ1

∣∣∣∣∣∣∣∣
ξ=ξ1

m

ωm ∀ i, j, k. (17)

We can define the differentiation matrix

Drs =
∂`s (ξ)
∂ξ

∣∣∣∣∣
ξ=ξr

, r, s = 0, ...,N, (18)

containing the derivatives of the Lagrange polynomials at the interpolation nodes. This allows
us to write the sum over the derivative of the Lagrange polynomials as a matrix vector product,
which can be efficiently implemented:

N∑
m=0

∂`i

(
ξ1

)
∂ξ1

∣∣∣∣∣∣∣∣
ξ=ξ1

m

ωm =

N∑
m=0

Dmiωm. (19)

Using this notation, the volume integral can be written as〈
~F ,∇ξφ

〉
=

ω jωk

N∑
m=0

~F1
m jkDmiωm + ωiωk

N∑
n=0

~F2
inkDn jωn + ωiω j

N∑
o=0

~F3
i joDokωo ∀ i, j, k. (20)

Surface integral
The second term of the weak form (9) consists of the surface integral, which can be evaluated

on all six sides of the reference cube independently and summed up subsequently:∫∫
∂E
φ
(
~F · N

)∗
dS =∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ2 dξ3

∣∣∣∣∣∣
ξ1=1

+

∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ2 dξ3

∣∣∣∣∣∣
ξ1=−1

+

∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ1 dξ3

∣∣∣∣∣∣
ξ2=1

+

∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ1 dξ3

∣∣∣∣∣∣
ξ2=−1

+

∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ1 dξ2

∣∣∣∣∣∣
ξ3=1

+

∫ 1

−1

∫ 1

−1
φ
(
~F · N

)∗
dξ1 dξ2

∣∣∣∣∣∣
ξ3=−1

. (21)

18

The Riemann solvers used for the numerical fluxes are in general implemented to compute the
flux in the normal direction in physical space on the surface (~F · n̂)∗, so we need to relate those
quantities to the computational system. Realizing that a non-normalized physical normal vector
ñ can be computed from the metric terms at the surface

ñd =

3∑
i=1

Jai
dN

i, d = 1, 2, 3, (22)

this relationship can be used for the following transformation:

(~F · n̂) =

3∑
d=1

~Fd · n̂d =
1
|ñ|

3∑
d=1

~Fd · ñd

=
1
|ñ|

3∑
d=1

~Fd ·

3∑
i=1

Jai
dN

i =
1
|ñ|

3∑
i=1

3∑
d=1

Jai
d
~Fd · N

i. (23)

Thus, we can state that (
~F · N

)∗
=

(
~F · n̂

)∗
ŝ = ~f ∗

(
~UL, ~UR, n̂

)
ŝ, (24)

with the surface element (the norm of the non-normalized physical unit vector)

ŝ =

√√√ 3∑
d=1

(
Ja1

d (1, ξ2, ξ3)
)2
. (25)

By ~f ∗ we denote the Riemann solver that takes the double-valued solution at the left and the
right side (~UL and ~UR, respectively) at an interface (along with the physical normal unit vector)
as arguments and returns an unique flux in the direction of that normal vector. The left state is
obtained from the polynomial interpolation of the solution in the mesh element currently consid-
ered, while the right state is obtained from the solution in the adjacent element in the considered
direction. Riemann solvers only handle the convective part of the fluxes, the treatment of the
viscous part is described later.

The numerical flux is again approximated using Lagrange interpolation, e.g. on the side
ξ1 = 1 (

~F · N
)∗

=

N∑
m,n=0

[
~f ∗

(
~UL, ~UR, ~ν, n̂

)
ŝ
]+ξ1

m,n
`m

(
ξ2

)
`n

(
ξ3

)
, (26)

Here, the superscript +ξ1 indicates the evaluation at the face where ξ1 = 1 and the subscript m, n
identifies the m, n− th Gauss node on the cell boundary. For LGL nodes, since the boundaries are
included in the set of nodes, the interface nodal points coincide with nodes from the volume, and
the solution can be directly obtained from the degrees of freedom of the Lagrange interpolation.
For LG nodes , the solution at the face must be obtained by evaluating the interpolation at ξ1 =

1. Exploiting the tensor product nature of the interpolation, this reduces to a one-dimensional
operation:

~U+ξ1

m,n =

N∑
o=0

~Umno`o(1) (27)

19

0

ξ1

ξ2

1

1

~Ui j~U(−1, ξ2j)

~U(ξ1i , 1)

0

ξ1

ξ2

1

1

~U(−1, ξ2j) = ~U0j

~U(ξ1i , 1) = ~UiN

Figure 11: Two-dimensional sketch of the location of the interpolation nodes in the volume and on the surface , both
for LG nodes (left) and LGL nodes (right) with N = 3.

A sketch of the situation for both LG and LGL nodes is given in Fig. 11, in two dimensions.
We now insert the numerical flux (26) into the corresponding part of the surface integral (21),

again apply Gauss quadrature, use the Galerkin ansatz and make use of the Lagrange property:∫ 1

−1

∫ 1

−1
φ

(
~F · N

)∗
dξ2 dξ3

∣∣∣∣
ξ1=1

=

N∑
α,β=0

N∑

m,n=0

[
~f ∗ ŝ

]+ξ1

m,n
`m

(
ξ2
α

)︸ ︷︷ ︸
δmα

`n

(
ξ3
β

)︸ ︷︷ ︸
δnβ

 `i(1) ` j(ξ2
α)︸︷︷︸

δ jα

`k(ξ3
β)︸︷︷︸

δkβ

ωαωβ

=
[
~f ∗ ŝ

]+ξ1

j,k
`i(1)ω jωk ∀ i, j, k. (28)

We omit the arguments of the Riemann solver to shorten the notation. Repeating the same pro-
cedure for the remaining five sides yields:∫∫

∂E
φ
(
~F · N

)∗
dS =

([
~f ∗ ŝ

]+ξ1

j,k
`i(1) +

[
~f ∗ ŝ

]−ξ1

j,k
`i(−1)

)
ω jωk

+

([
~f ∗ ŝ

]+ξ2

i,k
` j(1) +

[
~f ∗ ŝ

]−ξ2

i,k
` j(−1)

)
ωiωk

+

([
~f ∗ ŝ

]+ξ3

i, j
`k(1) +

[
~f ∗ ŝ

]−ξ3

i, j
`k(−1)

)
ωiω j ∀ i, j, k. (29)

20

Semi-discrete formulation
Now each part of the weak formulation (9) is discretized, and we can combine the results and

gain the semi-discrete version of the DGSEM, with a still continuous time:

∂~Ui jk

∂t
= −

1
Ji jk

[N∑
α=0

~F1
α jkD̂iα +

([
~f ∗ ŝ

]+ξ1

j,k
ˆ̀i(1) +

[
~f ∗ ŝ

]−ξ1

j,k
ˆ̀i(−1)

)
+

N∑
β=0

~F2
iβkD̂ jβ +

([
~f ∗ ŝ

]+ξ2

i,k
ˆ̀ j(1) +

[
~f ∗ ŝ

]−ξ2

i,k
ˆ̀ j(−1)

)

+

N∑
γ=0

~F3
i jγD̂kγ +

([
~f ∗ ŝ

]+ξ3

i, j
ˆ̀k(1) +

[
~f ∗ ŝ

]−ξ3

i, j
ˆ̀k(−1)

)]
∀ i, j, k. (30)

The operator can be split in a volume integral (left half) and a surface integral (right half). For
the surface integral, the numerical flux function must first be computed. Those three procedures
are the main working points of the DG method. Choosing the tensor product basis directly lead
to a tensor product structure of the operator itself: Each of the three lines correspond to the
application of a one-dimensional DG operator in one of the reference directions. Thus, we can
make use of the precomputed one-dimensional operators

ˆ̀i =
`i

ωi
and D̂i j = −

ωi

ω j
D ji, i, j = 0, ...,N, (31)

for an efficient computation.

Strong formulation
If Green’s identity is applied once more to the weak form (9), and only using the interior

contribution ~F int in the newly emerging surface integral, this leads to〈
J
∂ ~U
∂t
, φ

〉
+

∫∫
∂E
φ
((
~F · N

)∗
− ~F int · N

)
dS +

〈
∇ξ ~F , φ

〉
= 0. (32)

In this form, the volume flux still needs to be differentiable, and it is thus referred to as strong
form. It consists of the local residual of the equation (the last term) and a surface penalty term,
that vanishes when the solution is continuous at the boundary.

Repeating the discretizations steps for this version of the equations leads to the semi-discrete
formulation

∂~Ui jk

∂t
=

−
1
Ji jk

[N∑
α=0

~F1
α jkDiα +

([
~f ∗ ŝ − ~F1

]+ξ1

j,k
ˆ̀i(1) +

[
~f ∗ ŝ − ~F1

]−ξ1

j,k
ˆ̀i(−1)

)
+

N∑
β=0

~F2
iβkD jβ +

([
~f ∗ ŝ − ~F2

]+ξ2

i,k
ˆ̀ j(1) +

[
~f ∗ ŝ − ~F2

]−ξ2

i,k
ˆ̀ j(−1)

)

+

N∑
γ=0

~F3
i jγDkγ +

([
~f ∗ ŝ − ~F3

]+ξ3

i, j
ˆ̀k(1) +

[
~f ∗ ŝ − ~F3

]−ξ3

i, j
ˆ̀k(−1)

)]
∀ i, j, k. (33)

21

For the volume integral, the difference between weak and strong form is simply that the strong
form uses directly the D matrix instead of D̂, meaning the same algorithm can be used for both
of them. The interior surface contribution must be computed by interpolating the volume flux
to the boundary, introducing additional operations. Analytically and also discretely, the weak
and the strong formulation are identical for DGSEM for LGL quadrature, and for LG quadrature
with special care for the internal fluxes [45]. The main use for the strong form is that it can be
used as a starting point for the construction of non-linear stable schemes, as will be described in
Sec. 3.3.

Approximation for second order equations
To handle viscous fluxes, that also depend on the gradients of the solution, we follow a

method by Bassi and Rebay [9], now known as BR1. While FLEXI also supports the BR2
method [31], we restrict ourselves here to the details of BR1. For this procedure, known as
lifting, we are going to introduce an additional gradient quantity

~gd =
∂ ~U
∂xd

, d = 1, 2, 3. (34)

Those are used to express second-order equations as a system of first-order equations:

∂ ~U
(
~x, t

)
∂t

+ ∇ ·
(
~Fc(~U) − ~Fv(~U, ~g)

)
= 0, (35)

~gd −
∂ ~U
∂xd

= 0, d = 1, 2, 3. (36)

An additional 3m (in the case of three spatial dimensions) gradient equations must now be solved
for m variables that need to be lifted. We note that depending on the viscous fluxes, not all of the
conservative variables might be lifted, or alternative sets of variables can be used.

We apply the same discretization steps to the gradient equations, starting with the transfor-
mation to the computational space:

~gd −
1
J
∇ξ · ~U

d = 0, (37)

with the contravariant solution in direction d

~Ud =
(
Ja1

d,Ja2
d,Ja3

d

)T
~U. (38)

The weak formulation of equation (37) is again obtained by projection onto the space of test
functions and applying Green’s first identity〈

J~gd, φ
〉
−

∫∫
∂E
φ
(
~Ud · N

)∗
dS +

〈
~Ud,∇ξφ

〉
= 0. (39)

22

1

2

1

3
2

4

Type 1/2 Type 3

Figure 12: Sketch of the supported mortar types. Yellow sides represent virtual small sides. Types one and two cut in
different reference directions of the side.

The discretized version of the weak gradient equations then reads

~gd
i jk =

1
Ji jk

[N∑
α=0

~U1,d
α jkD̂iα +

([
~U∗n̂d ŝ

]+ξ1

j,k
ˆ̀i(1) +

[
~U∗n̂d ŝ

]−ξ1

j,k
ˆ̀i(−1)

)
+

N∑
β=0

~U2,d
iβk D̂ jβ +

([
~U∗n̂d ŝ

]+ξ2

i,k
ˆ̀ j(1) +

[
~U∗n̂d ŝ

]−ξ2

i,k
ˆ̀ j(−1)

)

+

N∑
γ=0

~U3,d
i jγ D̂kγ +

([
~U∗n̂d ŝ

]+ξ3

i, j
ˆ̀k(1) +

[
~U∗n̂d ŝ

]−ξ3

i, j
ˆ̀k(−1)

)]
∀ i, j, k. (40)

The specific lifting procedure now must define the unique solution ~U∗ used as the numerical
surface flux, and how to calculate the numerical viscous flux at the cell boundaries for the main
equations. The BR1 scheme simply uses the arithmetic mean as the surface flux for the lifting
equations

~U∗ =
1
2

(
~UL + ~UR

)
, (41)

and the arithmetic mean of the viscous fluxes in the numerical surface flux for the main equation

~Fv∗ =
1
2

(
~Fv

(
~UL, ~gL

)
+ ~Fv

(
~UR, ~gR

))
. (42)

3.2. Non-conforming meshes
Hexahedral mesh generation for arbitrary geometries in three dimensions is an area of active

research and still a challenge. Many algorithms used in such situations rely on unstructured and
non-conforming meshes. Thus, to expand the applicability of the solver towards more complex
examples, a support for non-conforming meshes is needed. The so-called mortar technique was
introduced by Kopriva [46] to handle such interfaces, in a conservative and high order accurate
way. We restrict ourselves to three simple types of non-conforming interfaces, which are shown
in Fig. 12. For types one and two, a big side is halved into two smaller sides. The first type
specifically cuts in the first computational direction on the side, type two in the second direction.

23

A combination of the first two results in the third type, where the big side is cut into four smaller
sides. It should be noted that the cuts are always made in the middle of the surface in reference
space.

The main idea of the mortar technique can be summarized as follows:

• Interpolate the solution from the big side to the small sides.

• Calculate the numerical flux on the small sides.

• Project the flux onto the big side.

• Compute the surface integral for the small sides and the big sides.

The only additional steps introduced by the mortar technique are the interpolation to the small
sides and the projection unto the big sides, since flux calculation and surface integral are also
performed for conforming sides. In the following, the interpolation and projection operators will
be derived. We only investigate the type one mortars in detail, since the other types follow in a
similar fashion. To distinguish the computational coordinates used on the surface from those in
the volume, we will use the notation (η1, η2) for the latter.

For the type one mortar, the side is cut in half along the η1 direction, which means that the
η2 coordinate is still congruent. Thus, only one-dimensional operations are needed to interpolate
the solution from the big side to the small sides, and the degrees of freedom on the small sides
can be computed as

~UL
i j =

N∑
m=0

~UB
m j`m

(
ηL

i

)
and ~UU

i j =

N∑
m=0

~UB
m j`m

(
ηU

i

)
∀i, j. (43)

The superscripts are denoting the sides where the respective quantities are evaluated. The big
side is marked with B, the two smaller sides with U and L for upper and lower. Since we
are interpolating from the big side, the positions of the interpolation nodes ηU

i and ηL
i must be

evaluated in the coordinate system of the big side. As the side is cut in half in reference space,
the positions can be expressed as

ηL
i =

ηi − 1
2

and ηU
i =

ηi + 1
2

, i = 0, ...,N. (44)

Here, ηi are the positions of the interpolation nodes in the reference element [−1, 1]. The node
coordinates of the lower element are in the range [−1, 0], and the upper element lies in the interval
[0, 1]. We can now define interpolation matrices for both of the small sides

IL
im = `m

(
ηL

i

)
and IU

im = `m

(
ηU

i

)
, (45)

and use them to efficiently compute the interpolation for each position along η2 using a matrix-
vector multiplication:

~U
U
: j = IL · ~U

B
: j and ~U

L
: j = IU · ~U

B
: j ∀ j. (46)

The vector ~U: j here contains all the degrees of freedom in η1 direction at a specific position
η2 = η j.

Once the values are interpolated to the small sides, the usual Riemann solvers can be used
to compute the numerical flux functions. No adaption to the mortar technique is necessary here.

24

The surface integral for the small side can then be performed as usual, but special care has to be
taken for the big side. Following Kopriva [46], we use L2 projection to compute the flux for the
big side from the numerical fluxes of the two small sides. Thus, we are looking for a flux ~f B on
the big side that satisfies for every test function φ:∫ 1

−1

∫ 1

−1

~f B
(
η1B, η2

)
φ dη1B dη2 =

∫ 1

−1

∫ 1

−1

~f L
(
η1L, η2

)
φ
(
η1L, η2

)
dη1L dη2

+

∫ 1

−1

∫ 1

−1

~f U
(
η1U , η2

)
φ
(
η1U , η2

)
dη1U dη2. (47)

The test function is defined on the big side, thus we need to transform the first coordinate for
the integrals over the small sides. As usual, we apply Gauss quadrature, insert the polynomial
approximation of the flux and use the basis functions `i(η1B)` j(η2) as test functions to gain

N∑
α,β=0

N∑
m,n=0

~fB
mn `m(ηα)︸ ︷︷ ︸

δmα

`n(ηβ)︸︷︷︸
δnβ

`i(ηα)︸︷︷︸
δiα

` j(ηβ)︸︷︷︸
δ jβ

ωαωβ

=

N∑
α,β=0

N∑
m,n=0

~fL
mn `m(ηα)︸ ︷︷ ︸

δmα

`n(ηβ)︸︷︷︸
δnβ

`i

(
ηα − 1

2

)
` j(ηβ)︸︷︷︸
δ jβ

ωαωβ

+

N∑
α,β=0

N∑
m,n=0

~fU
mn `m(ηα)︸ ︷︷ ︸

δmα

`n(ηβ)︸︷︷︸
δnβ

`i

(
ηα + 1

2

)
` j(ηβ)︸︷︷︸
δ jβ

ωαωβ ∀i, j. (48)

The Lagrange property allows us to simplify this equation to

~fB
i j =

N∑
α=0

~fL
α j`i

(
ηα − 1

2

)
ωα
ωi

+

N∑
α=0

~fU
α j`i

(
ηα + 1

2

)
ωα
ωi

∀i, j. (49)

We now introduce projection matrices

PL
iα = `i

(
ηα − 1

2

)
ωα
ωi

and PU
iα = `i

(
ηα + 1

2

)
ωα
ωi
, (50)

again allowing us to write and implement the projection as a matrix-vector multiplication for
each position j:

~f
B
: j = PL ·~f

L
: j + PU ·~f

U
: j . (51)

The other types of mortars follow in a similar fashion. For type two, one simply needs
to interchange the indices for the first and second computational direction. The third type can
then be constructed by concatenating the two operators defined for types one and two, again
showcasing the advantages of the tensor product structure.

3.3. Split DG
A possible way to achieve robustness without the need for excessive artificial damping is to

construct a numerical method that is able to mimic energy or entropy estimates, that are valid
in the continuous setting, on a discrete level. Recently, Gassner et al. [26] have shown how to

25

design such schemes based on the strong form DGSEM on LGL nodes. This specific version
of DG possesses the diagonal norm summation-by-parts (SBP) property, a discrete analogon to
integration by parts. As Fisher and Carpenter [47] have shown, the application of a differentia-
tion operator that fulfills the SBP property can be re-written to make use of numerical volume
flux functions. This allows us to express the volume integral in the strong form on LGL nodes
(discarding the influence of the Jacobian for simplicity, and only for the first direction) as:

N∑
α=0

~F1
α jkDiα ≈ 2

N∑
α=0

~F#,1(~Ui jk, ~Uα jk)Diα, (52)

with the two-point flux function ~F#,1(~Ui jk, ~Uα jk). While every two-point flux function that is
consistent and symmetric can be used for a valid numerical scheme, additional properties might
be achieved by choosing specific flux functions. These properties include the conservation of
entropy, following the definition of Tadmor [48], or preservation of kinetic energy as defined
by Jameson [49]. Gassner et al. [26] also showed how to relate the two-point fluxes to the
discretization of split forms of the advection terms of non-linear equations, which have been
used extensively in the finite difference community to stabilize simulations (see e.g. [50, 51]).
Thus, a framework was created that allowed for the direct translation of many available split-
formulations into the DG scheme, leading to the so-called split DG method.

With the introduced discretization of the differentiation operator based on volume flux func-
tions, the semi-discrete version of the split DGSEM formulation can be written as:

∂~̃Ui jk

∂t
=

−

[
2

N∑
α=0

~F#,1(~Ui jk, ~Uα jk)Diα +

([
~f ∗ ŝ − ~F1

]+ξ1

j,k
ˆ̀i(1) +

[
~f ∗ ŝ − ~F1

]−ξ1

j,k
ˆ̀i(−1)

)
+2

N∑
β=0

~F#,2(~Ui jk, ~Uiβk)D jβ +

([
~f ∗ ŝ − ~F2

]+ξ2

i,k
ˆ̀ j(1) +

[
~f ∗ ŝ − ~F2

]−ξ2

i,k
ˆ̀ j(−1)

)

+2
N∑
γ=0

~F#,3(~Ui jk, ~Ui jγ)Dkγ +

([
~f ∗ ŝ − ~F3

]+ξ3

i, j
ˆ̀k(1) +

[
~f ∗ ŝ − ~F3

]−ξ3

i, j
ˆ̀k(−1)

)]
∀ i, j, k. (53)

Here, the contravariant two-point fluxes are defined in the following way, for e.g. the first com-
putational direction:

~F#,1(~Ui jk, ~Uα jk) =
[
~F#,1(~Ui jk, ~Uα jk){{Ja1

1}}(i,α) jk

+ ~F#,2(~Ui jk, ~Uα jk){{Ja1
2}}(i,α) jk

+ ~F#,3(~Ui jk, ~Uα jk){{Ja1
3}}(i,α) jk

]
, (54)

where the arithmetic mean is denoted by {{·}}.
For the surface fluxes, the same two-point fluxes as in the volume can be used. If those fluxes

would be e.g. conservative in an entropy, then the (semi-discrete) scheme would also be entropy-
conserving. Since the goal is mainly to construct a scheme that is guaranteed dissipative in the
respective quantity, additional dissipation terms are added for the surface fluxes, based e.g. on
Roe-type dissipation.

26

4. Shock Capturing

High order methods suffer from well-known stability problems in non-smooth regions of
the solution, for example across the shocks and discontinuities occurring in compressible gas
dynamics. Adopting high order methods for these situations despite this inherent mismatch
usually follows along two lines of thought: The non-smooth solution is regularized to bring
it into the approximation space of the discretization method. This is typically achieved by the
introduction of a local dissipative operator that acts on the high gradients of the solution and
essentially smears them out. A classical example of this is the method of artificial viscosity,
originally introduced for finite difference schemes by von Neumann and Richtmyer [52]. An
adaption to high order DG schemes was described by Persson and Peraire [53]. The second
general approach to shock capturing is to combine or replace the high order discretizations by
more robust operators, for example WENO reconstruction [54]. Another option is to reduce
the local order of the approximation, e.g. revert to first order, often in combination with h-
refinement [55]. The method implemented in FLEXI for shock capturing follows a variant of
this method. The general idea is to replace the DG operator in troubled cells by a finite volume
scheme and then take advantage of the excellent shock capturing properties of this formulation.
Since each DG cell contains (N + 1)d degrees of freedom, the finite volume formulation can take
advantage of this information richness by transferring the high order polynomial into (N + 1)d

first order finite volume representations. This can be understood as a reinterpretation of the
DG solution on a structured finite volume mesh. This approach not only moderates the loss in
effective resolution when switching from DG to FV, but also makes the implementation easy
and efficient through the reliance on the same data structure. In this sense, for shock capturing,
we append the DG scheme by the option of locally switching to a block structured FV scheme.
Details on the method are given in the following sections, the implications for the implementation
are discussed in Sec. 5.7.

4.1. Finite Volume Scheme on Subcells

In Sec. 3.1, we have derived the DGSEM formulation in arbitrary dimensions. In order to
keep the formulation simple and the equations manageable, we will restrict the discussion of the
FV operator in the following sections to 2D. However, it will become apparent that the extension
to 3D is naturally given by the tensor product structure of both the DG and FV discretizations.
The discussion herein follows the more extensive descriptions in [56, 57]. We thus start the
discussion by recalling that in each single DG element, we approximate the solution by a tensor
product of 1D Lagrange polynomials of degree N, which are associated with N + 1 Legendre-
Gauss(-Lobatto) nodes, leading to (N + 1)2 number of degrees of freedom nDOFDG in each DG
element E. In theory, the number of finite volume subcells and thus nDOFFV per element is
completely independent from nDOFDG. However a strong reason exists to choose nDOFFV =

nDOFDG: In this case, the same data structures for storing both solution representations can be
used, which saves memory and avoids data copying operations. It is thus a natural expression of
the notion outlined above that FV and DG are a different interpretation of the same underlying
solution. In addition, this choice for the number of finite volume subcells also makes sense from
a load-balancing point of view: For an optimal load distribution, both DG and FV elements
should incur identical computational costs. As we will show later, our choice of nDOFFV =

nDOFDG leads to nearly even computational effort for both operators. The next discretization
choice concerns the distribution, size and location of the FV subcells within a DG element. A
natural choice is an isotropic, equispaced distribution, leading to a regular FV grid, depicted in

27

w

w

w

w

w

w

w

w

Figure 13: DG reference element split into FV subcells with Gauss points of the original DG reference element,
locations of the inner and the interface boundary fluxes as well as the sizes w of the subcells.

Fig. 13. It should be noted that with this distribution, the FV subcells inside a DG element can
be interpreted as a local “block” grid. Adjacent blocks are then connected via the surface fluxes,
and thus may be interpreted as a block-structured FV discretization.

Since the distribution is constructed in reference space, each FV subcell has an area ofw · w,
with w = 2

N+1 . Each of the subcells now contains a DG solution point i j, so we label the FV cells
as κi j and formulate the FV scheme of the transformed equation Eq. (6) on each of them as∫

κi j

J
∂ ~U
∂t

+ ∇ξ · ~F d~ξ = 0, ∀κi j ∈ E. (55)

Applying the divergence theorem yields the classical FV formulation∫
κi j

J
∂ ~UFV

∂t
d~ξ +

∫
∂κi j

~F (~UFV) · N dS κi j = 0, ∀κi j ∈ E, (56)

where we have also introduced the superscript FV to distinguish the DG and FV solution. We
will now first derive the operators that allow consistent transformation between the DG and FV
solutions, and then discretize Eq. (56). To ensure conservation, we require that∫

E

~U d~ξ =

∫
E

~UFV d~ξ =

N∑
i, j=0

∫
κi j

~UFV d~ξ (57)

holds. Taking again advantage of the tensor product structure of both the FV and DG operators,
we can consider Eq. (57) for the one-dimensional case as∫

E

~U d~ξ =

∫ +1

−1

~U d~ξ =

N∑
k=0

∫ −1+(k+1)·w

−1+k·w

~UFV d~ξ, (58)

where we have defined the FV subcells on the reference line as

[−1 + k · w,−1 + (k + 1) · w] ∀k = 0, . . . ,N. (59)
28

Replacing the second integral in Eq. (58) by the sum over the FV subcells, inserting the DG
solution according to Eq. (10) and noting that the FV solution ~UFV

i j is constant in every subcell
κi j yields

N∑
k=0

∫ −1+(k+1)·w

−1+k·w

N∑
i=0

~Ui`i(ξ) d~ξ =

N∑
k=0

~UFV
k w. (60)

This formulation ensures a conservative definition of the mean values ~UFV in each subcell. In
order to solve Eq. (60), the integration of the DG polynomial is achieved by Gauss quadrature in
each subcell, leading to

w
2

N∑
k=0

N∑
λ=0

N∑
i=0

~Ui`i(ξk
λ)ωλ =

N∑
k=0

~UFV
k w. (61)

Here, the scaling factor w
2 relates the reference line [−1, 1] to the length w of the subintervalls,

and ξk
λ are the integration nodes in the k-th subcell. Also note that `i(ξk

λ) , δik, since the Lagrange
basis functions are constructed w.r.t. the integration nodes in the reference interval and not the
local subintervall. With the help of the Vandermonde matrix

VDG⇒FV :=

1
2

N∑
λ=0

ωλ`i(ξk
λ)

N

k,i=0

. (62)

Equation (61) can be rewritten as
~UFV = VDG⇒FV ~U, (63)

which can be implemented as a simple matrix-vector multiplication in one spatial dimension.
The backward transformation FV ⇒ DG is facilitated by VFV⇒DG = V−1

DG⇒FV . Turning now to
the discretization of Eq. (56), the usual steps for an FV scheme are followed, i.e. the introduction
of a numerical flux function at the cell interfaces and the approximation of the integrals by
the midpoint rule. With Ji j being the integral value of the original Jacobian determinant inside
subcell κi j and fi, j+ 1

2
for example being the flux at the top edge of the i j-th subcell, the FV scheme

on the block-structured grid reads

wJi j

∂ ~UFV
i j

∂t
= −

[
fi− 1

2 , j

(
~UFV−, ~UFV+,N

)
+ fi+ 1

2 , j

(
~UFV−, ~UFV−,N

)]
−

[
fi, j− 1

2

(
~UFV−, ~UFV+,N

)
+ fi, j+ 1

2

(
~UFV−, ~UFV+,N

)]
.

(64)

The first order FV method described up to now is overly dissipative away from the shocks.
To ameliorate the properties of the scheme in smooth regions adjacent to the shock, we extend it
by a second order reconstruction procedure. Slope limiters are introduced to avoid an associated
loss of the TVD (total variation diminishing, see e.g [58, 59]) property; we apply the recon-
struction and limiting procedure to primitive variables to prevent violation of thermodynamic
relations. In a first step, the inner slopes between the centroids of the FV subcells inside a DG
element are computed along ξ1 and ξ2 lines (see Fig. 14a). These slopes can then be limited with
standard approaches, e.g. those described in [60, 61, 62]. In a second step, the slopes that require
neighboring information are evaluated, see Fig. 14b).

29

(a) Inner slopes (b) Slopes over element interfaces.

Figure 14: Computation of slopes for second order reconstruction (green: ξ1-direction, red: ξ2-direction, blue: interface
slopes).

~U+
j

~UFV+
j

V
D

G
⇒

F
V

~UFV−
j

Figure 15: Coupling of a discontinuous Galerkin element with equidistant distributed finite volume subcells.

4.2. FV/DG Interfaces

It is clear from the discussion on properties of high order methods that switching to a FV
representation should only occur in regions of shocks or unresolvably strong gradients. Detecting
such troubled cells is an open area of research in itself, and we will briefly present our approach
using indicators in Sec. 4.3. In any case, once a troubled DG element is detected and switched
to a FV representation, a DG/FV interface as depicted in Fig. 15 appears. Since both operators
are coupled to the surroundings weakly via flux functions, it is natural to use this for the DG/FV
interface definition as well. However, since the points of flux evaluation of the FV and DG
schemes differ along their interfaces, a direct computation of the pointwise flux functions is not
possible. Instead, the DG solution ~U+

j is first evaluated at the FV solution points with the help
of the Vandermonde matrix defined in Eq. (62). The only difference to Eq. (63) is that here it
is applied to face data only and not to the whole volume. Once this operation yields ~UFV+

j , the
pointwise numerical flux function is then evaluated. It can directly be applied to the DOF in the
FV element to update the solution in subcells. The transfer to the DG solution points occurs by
the inverse of Eq. (62). Note that a FV/DG interface can also occur across the mortar interfaces
discussed in Sec. 3.2. While in principle the coupling in this case uses the same concepts that are
presented here, some subtleties and special cases need to be considered. For a detailed discussion,
we refer the reader to [63].

30

Figure 16: Indicator based switching between DG and FV sub-cell method.

4.3. Troubled Cell Indicators

In the previous sections, we have presented the operators that allow a fast and efficient switch-
ing of the element type from a DG to a FV-subcell element and vice versa. It is clear that the
switching itself costs some computational effort and should occur as infrequently as possible.
Also, cells that require FV treatment to ensure stability should be detected and switched in time,
while they should be able to revert back to the DG representation if the solution permits. De-
tecting candidate cells for switching thus requires the evaluation of some criterion - either in an
a priori or an a posteriori approach. In the latter, less frequently used case, all elements are com-
puted at each time step with the DG scheme and the solution is evaluated afterwards. If it shows
signs of instability, the time step is repeated, with the marked cells being treated by a more stable
method [64]. In the more prevalent a priori method, the solution at the beginning of each time
step is examined, and cells are then flagged accordingly and treated by the appropriate numerical
scheme. In any case, evaluating the cells is achieved by some form of indicator function. Often,
these are loosely called ”shock detectors”, however, it is worthwhile pointing out they are used
more as troubled cell indicators. What makes a cell suffer from instabilities is not just a function
of the solution (i.e. the presence of a shock, steep gradient or not) itself, but even more so of the
discretization scheme and its properties. A situation that might lead to oscillations in one dis-
cretization scheme might be treated more robustly in another, and thus, troubled cell indicators
need to be tuned to the specific discretization at hand. A large number of indicators exist which
are based on physical reasoning, jump conditions or model solution representation [53, 65, 66].
All of these cited indicators are available in FLEXI. They are implemented to return a large value
in regions of non-smoothness and a low value otherwise. Starting from purely DG elements, if
the indicator increases over a given threshold, the element in question is switched to a FV subcell
element before the next time step. It remains in this discretization state until the indicator drops
below a given value. The solution in this element is then seemed smooth enough to warrant a DG
discretization of residual without the introducing stability issues. Numerical studies have shown
that a single threshold might lead to excessive back- and forth switching and a high sensitivity to
the actual, user-defined value. Therefore, the single threshold has been replaced by an upper and
a lower threshold as visualized by the range in Fig. 16.

4.4. Time integration

While the semi-discrete systems can be, in principle, advanced in time by any suitable time
integration method, both implicit and explicit, we restrict ourselves to explicit Runge-Kutta type

31

schemes, specifically low-storage versions. For this class of methods, there is no need to store
the result from every Runge-Kutta stage, thus reducing the memory requirements and leading to
a scheme which is suitable for HPC. In general, the schemes used are based on the two-register
formalism introduced by Williamson [67], and several specific schemes are available to choose
from. In the hybrid DG/FV approach, both systems are advanced in time with the same method.

Time step restrictions
Since we use explicit Runge-Kutta time integration, the time step is limited by the famous

CFL condition [68] for a given mesh size. For our DGSEM, the condition can be written as:

∆t ≤ CFL · γ1
RK(N)

∆x
λc (2N + 1)

, (65)

where CFL is the CFL number, ∆x the size of an element and λc the largest convective signal
velocity. Usually, a scaling factor of 1

2N+1 is included to take the high order solution in the
element into account [69]. In practice, this scaling is not accurate, and the user might not be able
to tell the valid range of the CFL number for each configuration. To circumvent this problem, we
introduce an additional correction factor γ1

RK(N), that depends on the polynomial degree and the
set of interpolation nodes. This factor is derived from numerical experiments such that the usual
condition CFL ≤ 1 must hold to obtain a (linear) stable time step.

The largest signal velocity λc depends on the specific set of equations currently considered,
where those velocities are given by the eigenvalues of the system matrix. While this restriction
stems from the hyperbolic part of the equations, the parabolic fluxes also introduce time step
limitations. Those can be expressed analogously to the hyperbolic restriction

∆t ≤ CFLd · γ
2
RK(N)

∆x2

λv (2N + 1)
, (66)

where a diffusive CFL number CFLd was introduced. The factor λv here is the largest eigenvalue
of the diffusion matrix. Since this restrictions scales as ∆x2, it is especially restrictive in regions
where the mesh size reduces significantly.

Both of these conditions must be satisfied for a stable simulation, so that the minimum of the
two will be used for the time step in the computation. The conditions are evaluated for each of
the directions in the reference element, thus the physical size of the element enters through the
transformations.

For cells that are discretized with the FV method, the time step restriction can be expressed
as

∆t ≤ CFL · γ1
RK(0)

∆xFV

λc , (67)

where ∆xFV = ∆xDG/(N + 1). Note that for a given flow field the time step given by the DG
representation is smaller than for the FV subcell representation.

5. Implementation details

This section will describe how the DGSEM and the hybrid DG/FV scheme is implemented
in the solver. Aspects that will be discussed include the data structures, parallelization approach
and general structure of the algorithm. Performance aspects like the required count of operations
and the memory consumption are investigated, before the parallel scalability is reviewed.

32

ξ1
ξ2

ξ3
ξ1

ξ2

ξ3

η2

η1

η2

η1

η2

η1

f lip = 0

f lip , 0

Figure 17: Schematic of relationship between volume and side coordinate systems. Volume systems denoted by solid
coordinate axis, side systems by dotted axis. The grey element is the master for the yellow side, the green element the
slave.

5.1. Coordinate systems for unstructured grids
Operations in the DG method either act on the volume of a cell or on sides, which are shared

by two adjacent elements (excluding the boundaries). In our mesh structure, elements and sides
are thus handled separately, and sides are only stored once and connected to the respective ele-
ments through a mapping. To be able to handle unstructured grids, several different coordinate
systems and their relationship must first be introduced. Figure 17 shows a sketch of the used
systems. Each element has a local volume coordinate system, denoted by ξ1, ξ2 and ξ3, which
is always a right-hand system. On each side of the element, a local side coordinate system (η1

and η2) is introduced, following the definitions given by the CGNS (see e.g. [70]) standard. But,
as each side is shared by two elements, local side coordinate systems from those two elements
might differ. To obtain a definitive system that should be used for operations on that side, one of
the two elements will be designated as the master of that side (and the other as slave). The local
coordinate system of the master element will then be used as the global side coordinate system
for that respective surface. To convert from local side systems to global ones, a flip is defined
that represents how the two systems are oriented with respect two each other. A flip of 0 is used
to indicate a master side.

The conversion between side and volume information thus requires first a mapping between
the volume coordinate system and local side systems. This only depends on the currently con-
sidered local side (e.g. +ξ1) and the relation can be implemented as a lookup-table. Second, the
mapping between local and global sides is uniquely defined by the flip, and since only a limited
number of possible combinations exist, this can also be computed and stored before the actual
simulation starts.

5.2. Domain decomposition
The natural parallelization approach for the DG method is to divide the elements in the mesh

into separate domains (each containing one or more mesh elements), and to assign each domain
33

to an available processing unit. We want the decomposition to be flexible, so it can handle
computations on an arbitrary number of processes without the need for expensive re-calculations.
Additionally, domains should be compact and contiguous, to reduce the required amount of
communication between the domains. As has been mentioned in section 2.1.1, HOPR provides
the SFC sorting to achieve this. When a parallel computation is started, the SFC can simply be
subdivided into as many parts as processing units are available.

5.3. Parallelization aspects

FLEXI uses a distributed memory approach for parallelization. Thus, across boundaries of
the mesh domains, communication will be necessary. An advantage of the DG method is that,
due to the local approximation space and the absence of continuity requirements on the solution
across element interfaces, only surface data needs to be communicated to the direct neighbour
elements, reducing the amount of data compared with other schemes significantly. Thus, all com-
munications operations are based on side data structures. To perform the actual communication,
the Message Passing Interface (MPI) protocol is used. It is widely available and optimized on
HPC architecture, and allows for non-blocking operations that can be used to hide communi-
cation time. For efficient communication hiding, one can take advantage of the high density of
local operations of the DG operator, as is explained in detail later.

The communication patterns are build at the start of the simulation, as each processor can
determine from the SFC with which other processors it needs to communicate. Only very few
operations require all-to-all communication, notably the identification of a global smallest time
step for the Runge-Kutta time integration scheme.

At MPI boundaries, the distinction between master and slave elements of a side will also
influence the amount of work that the MPI domain needs to do, since only the domain with
the master element will compute the numerical flux function for that surface. Thus, to ensure
optimal load-balancing, we try to evenly distribute slave and master sides at MPI boundaries for
each domain.

5.4. Data structures

The duality of the volume and side operations is also reflected in the data structures employed
in FLEXI. Volume data are stored on a per-element basis, but side data are not provided for each
of the six sides of an element. Instead, sides are uniquely and independently defined, such that
two elements that share a side simply access the same side data. Of course, this means the
data might need to be converted to a local coordinate system, as is explained in Sec. 5.1, and a
mapping between the side data structures and elements must be provided. The major advantage
is that operations can directly be performed on either the sides or the volume, whichever is more
appropriate.

Table 2 shows the main data structures that are used during the simulation and their sizes per
element. Regarding the volume data, besides the actual DOFs themselves, we need to store the
current time increment (Ut) and the last register (R) to use in the two-register time integration
scheme. Other arrays hold the metric terms required for the transformation (J~ai), the Jacobian
J itself and the physical coordinates of the nodes ~x. For computations involving gradients, also
those need to be stored (with one gradient per direction per primitive variable).

Although there are six sides per element, on average we only need the storage for three
of them per element since the side arrays are shared by adjacent elements. If double-valued
solutions exist on sides, they are stored in separate arrays - e.g. the solution from the element

34

Element-wise data Side-wise data
U,Ut,R: nVar(N + 1)3 U+,U−: 3 · nVar(N + 1)2

∇U: 3 · nVarLi f t(N + 1)3 ∇U+,∇U−: 3 · 3 · nVarLi f t(N + 1)2

Ja: 3 · 3(N + 1)3 Flux: 3 · 3 · nVar(N + 1)2

~x: 3 · (N + 1)3 ~n, ~t1, ~t2: 3 · 3 · (N + 1)2

J (N + 1)3 ŝ: 3 · (N + 1)2

Table 2: Overview of the main data structures and their respective sizes per elements. Each is realized as a REAL array
with 32bits per variable. The number of conservative variables is denoted with nVar , the number of lifted variables as
nVarLi f t .

that is the master to a specific side is stored in U−, while the solution from the slave element is
stored in U+. The geometry of the side is represented by normal and tangential vectors (~n, ~t1, ~t2)
used for the transformation into the coordinate system normal to the side, and the surface element
ŝ.

Volume data are always stored ordered along the SFC, while side-based data structures are
combined into different types for each MPI domain. The ordered sequence for each domain is:
boundary sides, inner sides, master sides on MPI boundaries and finally slave sides. Storing them
in such an ordered approach is beneficial since we can run operations only required for one type
of sides on a contiguous chunk of memory.

5.5. Algorithm sequence
Figure 18 shows an overview of the algorithmic implementation of the DG operator. We start

by considering the DOFs in the volume U obtained from initialization or during the last time
step. Since the computation of the numerical fluxes requires the solution on the surface of the
elements, as a first step we need to extrapolate the volume solution to the sides of each element.
Master and slave elements of the respective side will use different arrays to store both values of
the double-valued solution. If LGL nodes are used, the extrapolation reduces to a simple memory
copy, since the surface nodes are included in this set of nodes.

As the numerical fluxes are unique on a side, they only need to be computed once. We
arbitrarily decide that the domain that owns the master element of that side will compute the flux
function. In a parallel setting, this means that now the MPI threads owning slave sides on the
MPI boundaries must communicate the extrapolated solution to the threads owning the respective
master sides. We employ non-blocking communication, thus the communication is started, but
other computations can be commenced while the actual data transfer happens. Ignoring the
lifting procedure (grey box in Fig. 18) for the moment, the volume integral of the DG operator
can now be computed. This is a purely cell-local operation, and can thus be done while the
communication of the surface data is still ongoing. The large amount of cell-local work enables
effective hiding of the communication in the DG operator.

Once the volume integral is finished, the communication must be finished. As a next step, the
master sides calculate the numerical flux from the double-valued surface states. This process can
be split in two parts, where first only the surfaces that belong to MPI boundaries are processed.
This allows us to immediately start the communication of the fluxes back to the slave cells, and
then use the computation of the fluxes at the inner cell boundaries to again hide that communi-
cation. One step further, the actual computation of the surface integral over the numerical fluxes
starts with the inner sides. Only when all inner sides are finished, the communication of the
fluxes must be closed, and the surface integral over the remaining sides can be computed.

35

U

Extrapolate U → U−,U+ 1.MPI
2. other

S endS→M : U+

Lifting Flux
1.MPI
2. other

Lifting Volume Operator

Lifting Surface Integral
1. other
2.MPI

Extrapolate ∇U → ∇U−,∇U+ 1.MPI
2. other

ReceiveM←S : U+

S endM→S : Lifting Flux

ReceiveS←M : Lifting Flux

S endS→M : ∇U+

Volume Operator DG

Fluxes
1.MPI
2. other

ReceiveM←S : ∇U+

S endM→S : Flux

Surface integral
1. other
2.MPI ReceiveS←M : Flux

∂U
∂t

ex
pl

ic
it

R
un

ge
K

ut
ta

tim
e

in
te

gr
at

io
n

Figure 18: Flowchart of the discontinuous Galerkin operator. Grey box indicates the lifting procedure.

36

Once these steps are complete, the calculation of the semi-discrete DG operator is finished.
The result then enters the low-storage time integration scheme, and the operator evaluation starts
again at the next stage.

If gradients are required for the considered equation system, the lifting procedure basically
introduces another layer of a similarly functioning operator. The lifting is again split into the vol-
ume and the surface contribution, and communication hiding is performed in the same manner.

5.6. Operator count and memory requirements
In this section we estimate the number of required operations for the main parts of the oper-

ator as well as the memory requirements.

Part of operator Operation count (O) Communication required
Volume fluxes 3(N + 1)3 No
Flux transformation 9(N + 1)3 No
Volume integral 3(N + 1)4 No
Surface fluxes 3(N + 1)2 Yes
Surface integral LG 6(N + 1)3 No
Surface integral LGL 6(N + 1)2 No
Prolongation LG 6(N + 1)3 Yes
Prolongation LGL 6(N + 1)2 (copy) Yes

Table 3: Operation count estimates of a single cell for important parts of the DG operator, for three-dimensional compu-
tations, on a per variable (of the considered equation system) basis.

Table 3 gives the estimated operation count for several important parts of the DG operator.
Each of them is given on a per variable (of the considered equation system) basis. These numbers
can only be estimates, since the actual number of operations depends strongly on implementa-
tion, compiler optimization and the considered equation system (e.g. the complexity of the flux
functions). For the surface fluxes, only half of the six sides are considered, since they are com-
puted once per interface. The difference in LG and LGL operators is due to the fact that LGL
nodes include the boundary, thus e.g. the surface integral only acts on the DOFs at the surface
and not in the volume (as it is the case with LG nodes).

It can be seen that the volume integral makes up for a large part of the operations due to its
scaling with (N +1)4. If the polynomial degree increases, the volume contribution thus get’s even
larger compared to the surface contributions. This is an important reason for the excellent scaling
qualities of the DGSEM especially at higher polynomial degrees, since the ratio of purely local
volume operations to surface operations that require communication is increased compared to
low-order stencils. If we consider the volume integral with its (N + 1)4 scaling to be the defining
factor of the operation count, and recalling that the number of DOFs per cell is (N + 1)3, we can
conclude that the number of operations per DOF scales as O(N).

N 1 2 3 4 5 6 7 8 9 10 11 12
KiB 1.47 1.08 0.906 0.805 0.74 0.693 0.659 0.632 0.611 0.594 0.58 0.567

Table 4: Measured memory requirements per DOF for the Navier-Stokes equation system.

Regarding the memory consumption, estimates could be based on the required storage for
e.g. the solution, metric terms, gradients and so on, as given in Tbl. 2. Since for production runs

37

these estimates might not be accurate due to overhead for additionally stored quantities, e.g. for
analyze functionalities, we measure the memory consumption in a real-world situation. Table 4
shows the measured memory requirements for a single DOF for the Navier-Stokes equation sys-
tem. It becomes obvious that the memory consumption decreases with increasing polynomial
degree. This is again due to the fact that the ratio between volume and surface DOFs increases,
leading to a more memory-conserving scheme at higher order. Also, the overall low memory
consumption is evident: At N = 5, we only need around 740 MB to store 1 Mio. DOFs. This
low-consumption property is of course shared with many other explicit numerical schemes.

If we consider a typical system used for HPC, e.g. the Cray XC40 system Hazel Hen used
at the High Performance Computing Center (HLRS) in Stuttgart, where a compute node with 24
processor is equipped with 128 GB of memory, this would allow us to store over 7 Mio. DOFs
per processor, several orders of magnitude more than typically used in production runs. While
there is plenty of memory available, CPU cache storage is much more scarce, and higher-order
computations with their reduced memory footprint help us to keep a large amount of the required
data in the cache. Since the cache has not only a higher bandwidth than the RAM, but also ultra-
low latency, cache-hits are an important factor for any implementation. Thus, with increasing
polynomial degree two advantages show: The scheme becomes more cache friendly and the
increased percentage of volume operations helps to localize the data even further. Both factors
contribute to the scaling performance, which is illustrated in Sec. 5.8.

5.7. FV shock capturing
In this section, we present the implementation of the hybrid DG/FV method. A main design

principle was to keep the general structure of the DG operator intact, and to find equivalents for
each of the components in the FV operator. In combination with the fact that we keep the same
data structure for the solution in the hybrid scheme, this allows for an implementation that is only
minimally intrusive for the DG operator.

Figure 19 presents a flowchart of the combined DG/FV scheme, which we will use to discuss
the differences to the pure DG operator (Fig. 18). For FV cells, the extrapolation of the solution
to the boundaries changes to a simple copy of the cell mean value at the element interface to the
respective arrays, such that this information can be used to compute a slope, and is communicated
to the master element in a parallel setting. Additionally, to prepare for later reconstruction, the
slope between the first and the second subcell away from the interface is computed and also
communicated. We need to do this since, as for the pure DG case, only the master side will
compute the flux functions. For this, it needs to know the limited slope from the slave element,
which is a function of the slope across the interface itself and the one between the next two
subcells (the one we communicate). If a DG element is considered, instead we communicate the
solution at the first Gauss point. This means we need to send and receive twice the amount of
data as in the DG case, both the solution and the values needed for the reconstruction. We also
communicate a single integer indicating the type of the cell (DG or FV), such that the algorithm
can decide what type of interface it needs to handle.

The equivalent for the lifting procedure in DG is the computation (and limitation) of the
slopes between the subcells for the FV elements. While there is no real volume work for the FV
scheme, we perform the slope computation across the inner subcell interfaces at the same time as
the volume integral is computed for the DG scheme. The reason is that both of those require no
communication between MPI domains, and can thus be used to hide the communication latency.
While the surface integral is done for the DG method, the remaining slopes across the cell-
interfaces can be computed, on the master sides of the elements. Here, the limitation requires

38

~U

Extrapolate ~U → ~U−, ~U+ 1.MPI
2. other

S endS→M : 2 ~U+,Type

Lifting Flux
1.MPI
2. other

Lifting Vol. Op. / Inner Reconstr.
Lifting Surf Int. / Surf. Reconstr.

Extrapolate ∇ ~U → ∇ ~U−,∇ ~U+ 1.MPI
2. other

ReceiveM←S : 2 ~U+,Type

S endM→S : Lifting Flux

ReceiveS←M : Lifting Flux

S endM→S : interface slope

S endS→M : ∇ ~U+

Vol. Op. DG / FV inner faces
ReceiveS←M : interf. slope

Fluxes
1.MPI
2. other

ReceiveM←S : ∇ ~U+

S endM→S : Flux

Surface integral
1. other
2.MPI ReceiveS←M : Flux

∂ ~U
∂t

ex
pl

ic
it

R
un

ge
K

ut
ta

tim
e

in
te

gr
at

io
n

Figure 19: Flow chart of the hybrid discontinuous Galerkin/finite volume subcells operator: Procedures underlined in red
are modified to perform their specific task either for DG or FV elements. At the same time the lifting of the DG elements
is computed, the 2nd order reconstruction of the FV subcells is built. The counterpart to the DG volume integral are the
fluxes over inner FV subcell interfaces. Additional communication is required. Besides the information of which type
(DG or FV) an element at a MPI interfaces is, for the FV reconstruction a second array of face data has to be transmitted,
which is indicated by the red numbers 2.

39

the additional data that was communicated beforehand. The limited slopes at the cell interface
need to be send back from the master element to the slave sides, since they are needed to limit
the slopes for those elements.

With the lifting/computation of the slopes complete, the volume integral of the DG operator
is performed. For FV elements, here the fluxes at the inner subcell interfaces are computed and
directly applied, since again those require no communication. The reconstruction of the values
at the subcell interfaces from the limited slopes is also done here. In the next step the fluxes at
the cell interfaces are computed. In the case of a mixed interface the DG solution must first be
transformed into the FV representation. The last step is the surface integral, where for DG cells
at mixed interfaces the flux is projected back to the DG representation, and the computed fluxes
are simply applied to the FV subcells at element boundaries.

While the arrays containing the solution are shared between the two schemes, other addi-
tional quantities must be stored for the hybrid scheme. This includes the metric terms in the FV
representation of a cell, geometric information (normal and tangential vectors, surface elements)
for inner faces as well as the physical distances between subcells in each direction to perform
the reconstruction. This additional memory consumption has some impact on the performance
of the scheme, and will be discussed in the next section.

5.8. Parallel performance
In this section, we will investigate the strong scaling behaviour of both the pure DGSEM

and the hybrid DG/FV method developed for shock capturing. All the subsequent test were
performed on the Cray XC40 system Hazel Hen at the HLRS, which is equipped with compute
nodes that consists of two Intel Xeon E5-2680 CPUs (12 cores each) and 128 GB of memory.
The communication between nodes is realized using the Cray Aries high-speed interconnect. We
ran a simple simulation of a free-stream on cubic Cartesian domain, with a varying number of
mesh elements. The smallest mesh consisted of [6 × 6 × 6] elements, and bigger meshes were
created by doubling the number of elements individually for each direction. So the next mesh
would have [12×6×6] elements, then [12×12×6] and so on until [96×96×48] elements were
reached. The simulations were all first executed on a single node, except for the largest mesh,
where two nodes were needed to provide enough memory for that case. The number of nodes
was then repeatedly doubled, until for each case only 9 elements per core remained. Thus, the
minimum number of cores used was 24, and the largest cases were run on up to 49.152 cores. All
simulations were advanced for 100 times steps, and each configuration was repeated five times
to gain information about variance in the results. To reduce the possible amount of combinations
that could be checked, we restrict ourselves to the Navier-Stokes equation system, N = 6 and
choose the LG nodes. For the mixed DG/FV scheme, one half of the computational domain was
always set to be only DG, the other to be pure FV. This is not the worst-case scenario since the
amount of mixed DG/FV interfaces is limited, but a realistic one considering that regions with
shocks should be compact and not spread out.

The main metric analyzed is the performance index PID, which is the time required to ad-
vance a single DOF from one stage of the Runge-Kutta time integration scheme to the next. It is
computed as

PID =
wall-clock-time · #cores

#DOF · #time steps · #RK-stages
. (68)

Figure 20 shows the results from the strong scaling tests. In the top row, we compare the parallel
efficiency, which is defined as the ratio of the PID using a certain amount of nodes to the me-
dian of the PID (calculated from the repeated runs of the same configuration) using the smallest

40

DG

102 103 104
60

80

100

120

#cores

Pa
ra

lle
le

ffi
ci

en
cy

63 · 21 63 · 22 63 · 23 63 · 24 63 · 25 63 · 26

63 · 27 63 · 28 63 · 29 63 · 210 63 · 211 63 · 212

half/half

102 103 104
60

80

100

120

#cores

DG

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

PI
D

(µ
s/

D
O

F)

half/half

103 104 105 106
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

#DOFs/core

Figure 20: Parallel efficiency and performance for the strong scaling test case. The line color/marker combination refers
to a specific mesh, the number of elements is given in the legend. Each test case was repeated five times, shown are the
median values, error bars indicate the smallest and biggest values observed.

41

amount of nodes. Focussing on the results obtained from the DG calculations, we observe that
all cases exhibit super-linear scaling, where the efficiency is larger than 100% in certain areas.
This can be explained by the high memory consumption for calculations on a small number of
nodes. When the number of compute nodes increases, the required memory per core decreases,
and more of the used data can be stored in the fast cache of the CPU, increasing performance.
This also explains why for the larger cases the super-linear behaviour emerges at a larger number
of cores. If the number of nodes is increased further, a drop in efficiency can be observed for
nearly all cases. In this region, the remaining core-local work load might no longer be enough
to hide the communication effort, which ultimately outweighs the increased cache-efficiency.
The performance in this region is thus bound by latency of the underlying network. Remark-
ably, efficiency even for the largest cases does not drop below 70%, which - in combination with
the super-linear areas - highlights the already expected excellent scaling capabilities of the DG
method.

For the hybrid DG/FV approach, a similar picture emerges, but the super-linear behaviour is
not as pronounced or not present at all for the large cases. This is consistent with the fact that the
FV operator increases the memory consumption of the overall method. Thus the described cache-
effects are shifted towards an increased number of compute nodes, and might not appear at all
since the latency is already the dominant factor in the cache-friendly regions. While the parallel
efficiency might not reach the same level as the pure DG operator, still the overall behaviour is
deemed as sufficient.

The bottom row of Fig. 20 presents in principle the same data, but shows absolute values for
the PID over the load on each core. Again focussing on the pure DG operator first, it is clear
that starting at about 100, 000 DOFs/core the PID is nearly constant all the way up to the largest
loads, independent of the actual size of the mesh. Reducing the load below that value will see an
increase in performance, attributed again to the effects of the lower load on the cache-friendliness.
An optimum value seems to be found at 10, 000 DOFs/core. If the load is decreased further, the
latency will start to become dominant and performance might decrease. The smaller cases are
more resilient against such performance losses, since they only require communication between
a smaller number of nodes. A striking result is the large spread of the measured performance for
the largest meshes and the smaller load per core. In those cases, performance is depending the
most on latency, and the specific physical distribution of the simulation on the manycore system
as well as workload of the network play a huge role in realizable performance.

The results for the hybrid DG/FV approach show a very similar behaviour, but lack the clear
optimum for the load per core that was observed for the pure DG operator. The reason for that
was already given in the previous paragraphs. It is important to compare the absolute values for
the performance at not just relative scaling, as we do here. This reveals that the performance for
the hybrid method is about 15 − 20% worse than for the pure DG method, which is the price we
pay for the hybrid operator structure.

5.9. Implementation of post-processing
As has been mentioned in the introduction, we implement a custom visualization toolchain,

which is fully parallel and takes advantage of the high order nature of our solution. This toolchain
combines our specifically build POSTI visu tool, which handles the actual computations, and the
open-source software ParaView.

Figure 21 presents the different parts of the toolchain and how they interact with each other.
On the top level, ParaView provides the user interface as well as access to a multitude of vi-
sualization options and filters. An important aspect is also that ParaView is fully parallelized,

42

ParaView

FLEXI

POSTI
visu
tool

ParaView
plugin

DG
operator

Lifting EOS Equation
systemMesh

Derived
quantities

Super-
sampling

Variable
mappings

Surface data
extraction

Spatial
averaging

IO / setup
extraction

GUI-control
elements

Reader
functionality

Visualization
User

interaction

- provides solver setup
- provides MPI/partition info
- requests evaluation of
 mapped variables

- provides low level functions
- provides available variables
 for file type
- provides polynomial data

- requests visu variables
- provides visu options
- provides MPI

- provides linear
 data and geometry

- provides list of
 available variables

- specifies visu files
- specifies visu options
 (sampling rate/distribution)
- requests visu variables

- provides ParaView
 adapted linear data
- fills GUI elements

Parallelization
Visu
files

- optionally
 outputs

Data-structure
conversion

Figure 21: Schematic of the implementation of the visualization tool.

43

allowing us to run the post-processing on a number of cores that is adequate for the problem at
hand. The second layer of the toolchain is a plugin that provides a reader (essentially an import
functionality) for the files written by FLEXI. A reader defines GUI elements in ParaView, that
can be used to specify options which can then be passed on to the POSTI program.

The plugin acts as an interface between ParaView (written in C/C++) and the custom POSTI
tool (written in Fortran). It will pass the MPI communicator created by ParaView down to that
tool, which means both of the visualization and the data processing part of the toolchain use
the same parallelization. The options specified by the user in the GUI are also passed down, as
a simple text file which can be parsed by the POSTI tool. Depending on the options selected
by the user, the tool can now perform calculations. To this end, it can directly use routines
originally implemented for the solver itself. This includes e.g. I/O routines, initialization of the
mesh, partitioning in MPI regions, calculation of gradients using the lifting operator or the DG
operator itself. Depending on the used equation system, derived quantities can be computed from
the conservative variables stored in the state files. Those can range from simple calculations of
primitive quantities like the temperature (taking the current equation of state into account) to
complex vortex identification criterion like λ2, requiring knowledge of the derivatives and the
calculation of eigenvalues of a matrix. The advantages of doing these calculations directly at the
lowest level instead of in the visualization software are a) the direct accessibility of all necessary
data and b) an performance advantage, since only the derived quantity needs to be passed to
the visualization software, not all variables needed to calculate it. Additional features are also
provided by the POSTI tool, for example the ability to average three-dimensional data along a
regular direction, or the interpolation of data to the surfaces.

Once the variables specified by the user have been calculated, the POSTI tool converts them
from the high order polynomial representation used internally to the linear format needed by
ParaView. To reduce the errors introduced by the linear interpolation, usually a super-sampling
of the high order polynomial is used. The data is passed back to the plugin, which provides it
in the way needed by ParaView, which is then finally able to display the requested data. All
the computation and conversion steps are hidden from the users, they simply interact with the
ParaView GUI.

As will be discussed in more detail in Sec. 6.2, the state files contain next to the solution
variables also all parameters that were used to run the simulation. Besides the aspect of repro-
ducibility, this also means we can use that information in the post-processing. This frees the
user from having to specify the details of the simulation that are necessary for the visualization
process, e.g. the polynomial degree, node type or equation system used in the simulation.

6. Aspects of Usability and Reproducibility

While a lot of emphasis is typically placed on stringent description of numerical algorithms
and mathematically precise analysis of the schemes encapsulated in open-source CFD codes,
ease of access and use as well as reproducibility are often treated less thoroughly. However,
conveying the expert knowledge that goes into the conceptual design of the scheme and code to
the final user is important to ensure correct and reproducible results. In this section, we present
some of the concepts and methods used in the FLEXI ecosystem to help make the code more
user-friendly and thus error-resistant and to support good reproducibility practices. It is obvious
that only a framework that ensures reproducible results should have its place in research and de-
velopment in the long run. Open-source software supports reproducibility on a conceptual level,

44

as it lays the basic algorithms open. However, this is just a single link in a complex, interwo-
ven chain that drives possible sources of uncertainty in the simulation stack and thus decreases
reproducibility. Other, equally important aspects that drive systemic opacity are for example the
user-defined choice of discretization parameters, the hardware and associated operating system,
the dependence on third party libraries and the build or compile options for all the code pieces
involved [71]. According to Peng [72], the gold standard in reproducibility entails not only pro-
viding all this information, but also the binaries and even the produced simulation data itself.
Taking the heterogeneous and varied hardware landscape (and again, the associated first level
software like drivers and operating systems) into account, perfect reproducibility would in the
limit entail even hardware specifications. Clearly, already the previous level demanding com-
piled and linked binaries as well as full simulation data is not practical, in particular in a HPC
context, where the data sets are voluminous and the user has neither full knowledge nor control
over the hardware and available libraries. Despite all these hindrances, striving for a maximum
amount of reproducibility increases the trustworthiness of the results, stability of the code dur-
ing its lifetime and the usability of the CFD software. In the FLEXI framework, a number of
measures supporting these notions have been included, two of which will be represented here
briefly.

6.1. Regression testing
Regression tests are mainly used to ensure code stability during the development process and

to uncover introduced bugs. Additionally, they provide provide a benchmark for code efficiency,
i.e. new features should not slow down execution speed noticeably. The tests themselves are
implemented in various forms. Unit tests are run each time the code base is compiled, and they
test several core functionalities of the DG operator, e.g. computing a surface integral for a flux
vector. The success of those tests is determined by comparing them with pre-calculated results.
They make sure that the very basic building blocks of the framework continue to operate as
expected.

Another form of tests is performed using the continuous integration capabilities of the git-
lab code management framework. Each time a new commit is published, several check-in tests
are executed. Those are computationally cheap tests, that check some basic functionalities at a
higher level than the unit tests: Can the code be compiled with the most common options? Can
the code be executed and run minimalistic examples like a constant state solution on Cartesian
grids? More thorough test are performed as daily and weekly regression tests. In those, most
possible combinations of compile options are build and tested in various examples, aimed at
testing features such as mortar interfaces, boundary conditions, Riemann solvers and time inte-
gration methods. The custom python tool REGGIE3 is used to compile, run and analyze those
tests, which provides advanced features such as the possibility to directly calculate convergence
rates from subsequent runs and compare those to expected values. The weekly tests consist of
real-world applications, such as the flow around an airfoil or a turbulent channel flow, and check
the complex interaction of multiple features at the same time. Overall, this feature thus ensures
reproducibility on a programming level.

6.2. The userblock concept
One level above the specific programming or implementation details lies the management

of code and simulation meta-data. These meta-data contain information about the specific code

3https://github.com/reggie-framework/reggie2.0/

45

variants, the compile options and the simulation settings. While open-source software generally
is seen as a step towards reducing systemic opacity, it comes with the additional challenge of
managing (even more) meta-data. FLEXI and its supporting software can be distributed freely,
modified at will and compiled on a wide range of platforms, leading to a growing variety of vari-
ants. Hence, identifying and obtaining the underlying code version for reproducing results can
be at least time consuming if not impossible. In order to assist in replicating a simulation setup
at a later date, FLEXI implements a robust mechanism to re-obtain source code, compiled bina-
ries and simulation parameters from each solution file written by FLEXI with minimal storage
overhead.

The flow solution at a given time t is stored in a HDF5 format. To each of these so called
”state” files, a block of custom meta-data is appended, subsequently called the ”user-block”.
This user-block contains all the available information at run and compile time to ensure that a)
a state file can be associated with a specific simulation run in case this information becomes
inadvertently lost and b) the simulation can be recreated with the same code variant and user
settings. The user-block format features a simple syntax with sub-groups. It can contain both
text and binary data, as well as compressed data. A schematic of the data in the user-block is
depicted in Fig. 22. The first block provides an exact copy of the settings file with the simulation
parameters. A second compressed block contains data from an object file, which is directly
generated at compile-time and linked statically into the solver executable. It contains sufficient
information to rebuild the executable. Code version control is based on Git [73], so we store
the repository that was used to clone the current code base, the git commit the user was on and
any local modifications to the code which have not been uploaded to the repository in the form
of file patches, which can be applied to recover the local code variant. Compile-time flags and
options in the form of preprocessor flags that are generated and interpreted by the CMake build
system are also stored. Access to the information contained in the user-block is facilitated by
scripts that are part of the FLEXI repository. Directly rebuilding the FLEXI variant and restoring
the configuration can also be initiated. This process consists of downloading the code from the
specified repository, checking out the correct revision, applying the patches and rebuilding the
binaries using the stored CMake configuration. Besides serving as a quick and robust mechanism
to help with reproducibility, the user-block data can also be queried by other parts of the FLEXI
ecosystem. For example, the post-processing tool chain presented in Sec. 2.3 and 5.9 can recover
the information stored therein and incorporate it consistently into the post-processing of the
simulation data.

6.3. Documentation and Tutorials

The documentation for FLEXI is available from the project website. Besides a description
of the building process and the features of FLEXI, it also contains a number of tutorials that
introduce the basic functionalities and give a starter for code modifications. For code developers,
a code documentation based on Doxygen is also available from the project website. It is rebuild
automatically to reflect updates to the master branch.

7. Applications

In this section, we briefly summarize three challenging simulations conducted with FLEXI,
which highlight some of the features presented in the previous chapters. As a first example, we
discuss a wall-resolved LES of a NACA 64418 airfoil at high Reynolds number. This simulation

46

Parameter
file (ASCII),
containing
simulation

settings

Other data...

Git revision data:

Git branch name and repository URL

Git commit id and branch name of reference

Patch against reference (commited and uncommit changes)

Build settings:

Active code features (CMake configuration file)

Compiler information, compile flags and libraries

System information

Metadata Userblock

Uncompressed
runtime data

Compressed data
built at compile-time

HDF5 Data

HDF5
Dat

a

Figure 22: Format description of meta-data in the user-block section of the solution files.

combines some of the challenges addressed before, as it requires O(108) DOF per solution vari-
able, a surface- and volume-curved mesh, a stable scheme for implicitly modelled LES and an
pre- and post-processing framework capable of handling the large-scale data seamlessly. The sec-
ond example, a shock-vortex interaction, demonstrates the ability of the hybrid DG/FV method
to capture shocks and retain the advantageous high order properties in regions of smooth flow.
Our last example highlights a HO zonal LES approach for a highly sensitive acoustic feedback
mechanisms. It features a wall-model as well as a synthetic turbulent inflow, which both do not
generate noticeable acoustic disturbances. A comparison against an experimental measurement
campaign shows that FLEXI is capable of capturing the intricate interactions between hydrody-
namics and acoustics accurately. Besides these highlighted examples here, FLEXI has been both
extensively validated against canonical test cases as well as applied to a variety of problems, see
e.g. [29, 27, 35, 74, 75, 76, 24, 77, 78].

7.1. LES of airfoil at Re = 106

The first example is used to demonstrate the applicability of FLEXI to large-scale problems
in the field of aerodynamics. We compute the flow around a NACA 64418 airfoil at a chord
Reynolds-number Re = U∞c

ν
= 106 and a free-stream Mach number of Ma = U∞

a = 0.2. Here,
U∞ is the free-stream velocity, c the chord length, ν the kinematic viscosity and a the speed of
sound. The angle of attack is set to α = 4°, which will lead to a region of separated flow at
the trailing edge of the airfoil. The separation process is sensitive to the details of the flow and
underlying modeling. Thus an accurate and scale-resolving simulation methodology is necessary
to reliably predict such phenomena.

Figure 23 shows details of the used mesh. A C-grid of height 0.04c is employed in the close
vicinity of the airfoil, to guarantee optimal grid quality for the turbulent boundary layer. Outside
of that structured layer, the grid becomes unstructured and the mesh size is increased rapidly
to minimize the total number of grid cells. A geometrical trip in the form of a protruding step

47

0.2 0.4 0.6 0.8 1
0

20

40

60

x
c

x+

y+

z+

Figure 23: Mesh used for the NACA 64418 airfoil simulation (left) and associated non-dimensional grid spacing (right).
Crosses denote the suction side, squares the pressure side.

of height 0.001c is incorporated in the mesh at x = 0.05c, which reliably triggers transition to
turbulence at this specific location. The spanwise extend is chosen as 10% of the chord length,
and the outer boundary is at least 50c away form the airfoil surface. The mesh spacing is chosen
such that certain requirements for wall-resolved LES are met. The left plot of Fig. 23 shows
the grid spacing in wall-units in the region after the turbulent trip. Since one grid cell contains
several degrees of freedom per direction, the spacing is normalized by the factor (N + 1). Across
the airfoil, the values for x+ range between 40 and 60, z+ between 20 and 30 and y+ ≈ 3. The
mesh consists in total of 229, 620 elements, and is represented by polynomials of fifth order.
We used ANSA©to generate the grid, and the surface elements were curved by splitting them as
described in Sec. 2.1.2. The volume mesh close to the airfoil was then curved using the RBF
approach, see Sec. 2.1.3.

The simulation was run as an implicit LES, using the methodology investigated by Flad and
Gassner in [28]. It is based on the split DG formulation with kinetic energy preserving fluxes,
specifically the flux introduced by Pirozzoli [79]. The equations were discretized with an eight-
order scheme, leading to approximately 117 Mio. DOFs per solution variable. The simulation
was advanced for 15 non-dimensional time units T ∗ = U∞

c , and the last five time units were used
to gather statistics. Selected results are shown in Figure 24. The left plot compares the pressure
coefficient on the suction and pressure side with results from XFoil [80], and they show excellent
agreement, except for a small region at the trailing edge of the suction side. There, the flow
separates, which can not be predicted by the low-fidelity software XFoil. The separation bubble
is also evident in the negative wall friction coefficient, as seen in Fig. 24a. In the right plot,
the turbulent structures at the trailing edge are visualized in a rendering of an isocontour of the
Q-criterion, colored by the velocity magnitude. The large area of low-velocity fluid (dark color)
and the sudden thickening of the boundary layer indicate the recirculation area.

We ran the computation on 12, 000 cores of the Hazel Hen system at the HLRS, correspond-
ing to a load of 9, 800 DOFs/core. It took 47, 000 CPUh to advance the simulation by one time
unit, including all analyze and I/O routines. Thus, we achieved a PID of 1.35µs, which is larger
than the values presented in Sec. 5.8. Part of this can be explained by additional analyze work
(e.g. calculation of time-averages, time-accurate sampling of the solution at specific points), but
the larger part of the increase is due to the additional work introduced by the split formulation of

48

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

x
c

−
c p

−1

0

1

2
·10−2

c f
(a) Comparison of pressure and friction coefficient
(cp and c f) with results from XFoil. Blue lines rep-
resent results from the suction side, red lines on the
pressure side. () cp FLEXI, () cp XFoil,
() c f FLEXI.

(b) Isocontour of Q-criterion, colored with velocity
magnitude. Close-up of trailing edge with separated
flow region.

Figure 24: Selected results from the NACA 64418 simulation.

the volume integral.

7.2. Shock-vortex interaction

This example shows how the shock-capturing mechanism based on FV subcells can be used
to simulate flows with shocks, while retaining high order accuracy in smooth regions. We sim-
ulate a shock-vortex interaction on a domain of size [0, 2] × [0, 1], where a vertical, stationary
shock of mach number Ma = 1.5 is initialized at x = 0.5 based on the Rankine-Hugoniot con-
dition. To the left of the shock, a travelling, isotropic vortex is superimposed on the flow field,
see [81] for details of the initial solution. We do not take viscous effects into account, so the Euler
equations are considered for this simulation. The two-dimensional mesh consists of 200 × 100
cells, and we run a fifth-order simulation. The left and right sides are connected through peri-
odic boundary conditions, while the top and bottom of the domain are treated as walls. In the
DG cells, the split DG formulation is used, and we employ entropy conserving flux formulations
after Chandrashekar [82]. To detect the shock region, an indicator function origination from
the Jameson-Schmidt-Turkel scheme [65] is used. It is based on pointwise comparisons of the
pressure with neighbouring maximal and minimum pressure values.

Figure 25 shows results from the simulation at two different time instances. On the left side,
the density is visualized, while the right side shows the distribution of FV and DG cells. The
top row corresponds to a time where the isotropic vortex is traveling directly through the shock,
significantly distorting the formerly straight shock front. Nonetheless, the indicator function
detects the location of the front, and we are able to only thread the immediate vicinity of the
shock with the FV scheme. No artificial waves are originating from the shock front, which
would be typical for the behaviour of high order schemes when high gradients are present. At
the time instance depicted in the bottom row, the vortex has traveled further to the right, and the
shock front is again nearly vertical. Due to the interaction with the shock, the vortex is severely
distorted. However, it is still clearly visible. At the chosen resolution, this is only possible

49

0.95

2.1

ρ

0.95

2.1

ρ

Figure 25: Results of a shock-vortex interaction at Ma = 1.5. Top row: t = 0.2, bottom row: t = 0.7. The left plots
visualize the density ρ, the right plots the distribution of FV (red) and DG (blue) cells.

because the high order DG method was used after the shock, and it is able to convect the vortex
further downstream without excessive artificial damping.

We have shown here, that the proposed hybrid DG/FV scheme can capture shocks and prevent
them from introducing spurious oscillations, while the high order method used in the smooth
regions of the flow is able to leverage its low dissipation and dispersion errors.

7.3. Aeroacoustic Cavity Noise

The third example demonstrates the applicability of FLEXI to perform direct noise computa-
tions (DNC). As an example, we consider wall-bounded turbulent flow over cavities. Industrial
applications can be found in the context of an automobile exterior such as sunroof buffeting as
well as noise emitted from small gaps between exterior panels, e.g. the door gap. Here, dif-
ferent noise generation mechanisms have been identified such as Rossiter feedback, Helmholtz
resonance and standing waves. All physical mechanisms have their source of noise in pressure
fluctuations of the incoming turbulent boundary layer above the cavity opening. To capture the
large bandwidth of scales between acoustics and turbulence, a DNC of those effects results in
a challenging multiscale problem which requires high order numerics. DNC is necessary to
resolve the two-way interaction between hydrodynamics and acoustics. Therefore, both require-
ments, high order numerics as well as DNC, make FLEXI a promising compressible flow solver
to resolve aeroacoustic noise.

To perform cavity simulations with an upstream turbulent boundary layer, a zonal LES ap-
proach is indispensable, since simulating laminar to turbulent transition in addition could exceed
computational resources. Therefore, FLEXI has been augmented by a new turbulent inflow con-
dition combining weak anisotropic linear forcing by de Meux [39] and a recycling rescaling
approach similar to Lund [83], in order to get a defined turbulent inflow which reveals good
properties in terms of artificial noise emission. To reduce computational cost further, the wall-

50

model by Kawai and Larsson [84] is used in combination with Vreman’s eddy-viscosity model
[34] to account for small-scale dissipation.

Based on the geometric definition of a benchmark experiment, which is described in detail
in [85], DNC simulations of the open rectangular cavity given in Fig. 26 have been performed.
This specific setup includes Rossiter-feedback as well as excited standing waves with a non-linear
interaction between both. The inflow velocity is chosen as U∞ = 42.5 m/s with a corresponding
momentum thickness Reynolds number at the leading edge of Reθ = 6300 at standard conditions.
The computational setup has 30 Mio. DOFs per solution variable, a polynomial degree of N=7
is used and the equally spaced y+ approximation at the wall is y+ = 15. The computation was
run for ∆t = 0.2 s on HLRS Cray XC40 HPC system at a computational cost of 80, 000 CPUh.
To validate the accuracy of our framework, results of the wall pressure signal measured inside

25mm
30mm

50mm

u∞

35mm

40mm

Figure 26: Schematic sketch of the open cavity configuration from [86] including the acoustic sensor positions inside the
cavity and in front (Microphone, Kulite sensor).

the cavity and in front of the cavity (see Fig. 26) are compared to the results of the benchmark
experiment. Fig. 27 (left) shows the Fourier transformed pressure signal inside the cavity. Above
f = 2 kHz the spectrum is characterized by various peaks that all correspond to different acoustic
room modes. Here, both pressure level as well as the frequency width of the peaks are in good
accordance with the experimental results, especially when comparing the same time averaging
intervals. Below f = 2 kHz the spectrum reveals the first two Rossiter feedback modes as well as
the first quarter wave. The underlying interaction between hydrodynamics and acoustics plays an
essential role to capture the given phenomena. This demonstrates that FLEXI is capable to depict
defined multiscale physics accurately. Fig. 27 (right) compares the wall pressure spectrum in
front of the cavity. Below f = 2kHz experiment and numerics agree well. Especially, Vreman’s
eddy-viscosity model helps to reduce artificial pressure fluctuations caused by the wall-model.
Above f = 2 kHz the measured pressure signal drops significantly, which reveals limits of the
pressure transducer used in the experiment, especially when comparing to Hu’s semi-empirical
wall pressure model. In summary, FLEXI is capable to resolve multiscale problems such as the
interaction of hydrodynamics and acoustics within cavity flows, which can not be captured by
state-of-the-art hybrid approaches. Further, we have demonstrated that in case of cavity noise,
a great amount of turbulence modeling can be introduced to significantly reduce computational
cost while still preserving accuracy of the acoustic results.

8. Conclusion and Outlook

High order schemes offer a number of potential benefits for the numerical simulation of
multiscale problems. However, leveraging their advantages also requires algorithms for compu-
tation, pre- and post-processing which are specifically designed with HO in mind. Up to now,

51

0 2000 4000 6000 8000 10000 12000 14000
Frequency - f [Hz]

0

20

40

60

80

100

SP
L

[d
B

]

Simulation - Avg. 0.2s
Experiment - Avg. 0.2s
Experiment - Avg. 30s
Experiment - Min-Max

102 103 104
Frequency - f [Hz]

40

50

60

70

80

90

100

SP
L

[d
B

]

Simulation - Avg. 0.2s
Experiment - Avg. 0.2s
Experiment - Avg. 30s
Hu’s semi-empirical model
Experiment - Min-Max

Figure 27: (left) Comparison of the pressure spectrum measured inside the cavity. (right) Comparison of the wall
pressure spectrum measured in front of the cavity.

commercially available software lacks stringent and consistent HO support. FLEXI provides an
open-source toolchain for HO fluid dynamics simulations, combining the HOPR mesh generator,
the DG-based solver for the compressible Navier-Stokes equations itself and the post-processing
suite POSTI into a seamless framework. We have presented FLEXI, its underlying numerical
algorithms, features and capabilities as well as implementation details and aspects important to
usability and reproducibility in this work here. In order to keep the discussion concise and to
the point, we have focused on aspects that are a) already available as open-source and b) that
are directly relevant to single-phase, compressible turbulent flows. There are however a number
of ongoing extension to FLEXI towards a full multi-physics framework with a strong focus on
applicability to complex engineering problems which have not been mentioned here. Among
them are:

• Multiphase and multicomponent capabilities, in which phase boundaries are tracked with
a sharp interface approach [87]

• Complex equations of state based on realistic models or tabulated data [88]

• A Lagrangian particle tracking method for high order geometry, used in LES and DNS of
particle laden flows [89]

• Asymptotic consistent low Mach number schemes based on IMEX splittings [90]

• Semi-implicit and fully implicit time integration schemes

• Mesh deformation and mesh moving based on ALE formulations

• An overset / Chimera mesh module

• Sliding mesh interface for stator/rotor flows

• A coupled particle-in-cell and direct simulation Monte Carlo solver for reactive plasma
flows [91, 92]

• Intrusive and non-intrusive methods for uncertainty quantification of the Navier-Stokes
equation [93]

52

• A flexible and modular framework for the creation and management of simulation stacks
and automatic, optimal scheduling on HPC systems

• A data-exchange interface to OpenFoam4 and a coupling to the preCICE library [94] for
coupled multiphysics simulations

We plan on incorporate most of these features into the open-source version of FLEXI in order to
provide a mature and feature-rich HO framework to the community.

Acknowledgement

The authors gratefully acknowledge the support and computing resources granted by the High
Performance Computing Center Stuttgart (HLRS) on the national supercomputer Cray XC40
Hazel Hen under the grants hpcdg and SEAL. FLEXI has been developed, tested and applied
by a number of people, both from the Numerics Research Group at the University of Stuttgart
and elsewhere. We acknowledge their contributions and work. A possibly incomplete list of
contributors can be found in the FLEXI Doxygen:

https://www.flexi-project.org/doc/doxygen/html/

We would also like to thank Andrei Cimpoero from CFMS Services Ltd., for his valuable input
by using and testing HOPR, for providing the mesh of the serrated nozzle and for organizing
the webinar on high order CFD technologies, where HOPR was presented. Gregor Gassner has
been supported by the European Research Council (ERC) under the European Union’s Eights
Framework Program Horizon 2020 with the research project Extreme, ERC grant agreement no.
714487.

References

[1] I. Silberman, Planetary waves in the atmosphere, Journal of Meteorology 11 (1) (1954) 27–34.
[2] S. A. Orszag, Numerical methods for the simulation of turbulence, The Physics of Fluids 12 (12) (1969) II–250.
[3] R. Dahlburg, J. Picone, Pseudospectral simulation of compressible magnetohydrodynamic turbulence, Computer

Methods in Applied Mechanics and Engineering 80 (1-3) (1990) 409–416.
[4] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, Y. Kaneda, 16.4-Tflops direct numerical simulation of turbulence

by a Fourier spectral method on the Earth Simulator, in: SC’02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, IEEE, 2002, pp. 50–50.

[5] M. Dumbser, M. Käser, Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for
linear hyperbolic systems, Journal of Computational Physics 221 (2) (2007) 693–723.

[6] C.-W. Shu, High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for
CFD, International Journal of Computational Fluid Dynamics 17 (2) (2003) 107–118.

[7] M. Svärd, M. H. Carpenter, J. Nordström, A stable high-order finite difference scheme for the compressible Navier–
Stokes equations, far-field boundary conditions, Journal of Computational Physics 225 (1) (2007) 1020–1038.

[8] Y. Maday, A. T. Patera, Spectral element methods for the incompressible Navier–Stokes equations, in: State-of-
the-Art Surveys on Computational Mechanics, 1989, pp. 71–143.

[9] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the
compressible Navier–Stokes equations, Journal of Computational Physics 131 (2) (1997) 267–279.

[10] B. Cockburn, G. E. Karniadakis, C.-W. Shu, Discontinuous Galerkin methods: theory, computation and applica-
tions, Vol. 11, Springer Science & Business Media, 2012.

4https://openfoam.org/

53

[11] G. Gassner, D. A. Kopriva, A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto
discontinuous Galerkin spectral element methods, SIAM Journal on Scientific Computing 33 (5) (2011) 2560–
2579.

[12] M. Bohm, A. R. Winters, G. J. Gassner, D. Derigs, F. Hindenlang, J. Saur, An entropy stable nodal discontinuous
Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification, Journal of Computa-
tional Physics (2018). doi:10.1016/j.jcp.2018.06.027.

[13] F. Hindenlang, Mesh curving techniques for high order parallel simulations on unstructured meshes, Ph.D. thesis,
University of Stuttgart (2014). doi:10.18419/opus-3957.

[14] F. Hindenlang, T. Bolemann, C.-D. Munz, Mesh curving techniques for high order discontinuous Galerkin simula-
tions, in: IDIHOM: Industrialization of high-order methods-a top-down approach, Springer, 2015, pp. 133–152.

[15] F. Bassi, S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations, Journal of
Computational Physics 138 (2) (1997) 251–285. doi:10.1006/jcph.1997.5454.

[16] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing
facilities, International Journal for Numerical Methods in Engineering 79 (11) (2009) 1309–1331. doi:10.1002/
nme.2579.

[17] T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts, Robust untangling of curvilinear meshes, Journal of Com-
putational Physics 254 (2013) 8 – 26. doi:10.1016/j.jcp.2013.07.022.

[18] M. Fortunato, P.-O. Persson, High-order unstructured curved mesh generation using the Winslow equations, Journal
of Computational Physics 307 (2016) 1 – 14. doi:10.1016/j.jcp.2015.11.020.

[19] J. Marcon, D. A. Kopriva, S. J. Sherwin, J. Peiró, A high resolution PDE approach to quadrilateral mesh generation,
Journal of Computational Physics (2019). doi:10.1016/j.jcp.2019.108918.

[20] The HDF Group, Hierarchical Data Format, version 5, http://www.hdfgroup.org/HDF5/ (1997-2019).
[21] G. Farin, Curves and surfaces for CAGD: a practical guide, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2002.
[22] G. Farin, D. Hansford, Discrete Coons patches, Computer Aided Geometric Design 16 (7) (1999) 691–700. doi:

10.1016/S0167-8396(99)00031-X.
[23] A. de Boer, A. van Zuijlen, H. Bijl, Radial basis functions for interface interpolation and mesh deformation, in:

Advanced Computational Methods in Science and Engineering, Springer, 2009, pp. 143–178.
[24] M. Atak, J. Larsson, C.-D. Munz, The multicore challenge: Petascale DNS of a spatially-developing supersonic

turbulent boundary layer up to high reynolds numbers using DGSEM, in: M. M. Resch, W. Bez, E. Focht,
H. Kobayashi, J. Qi, S. Roller (Eds.), Sustained Simulation Performance 2015, Springer International Publishing,
Cham, 2015, pp. 171–183.

[25] C. W. Schulz-Rinne, Classification of the Riemann problem for two-dimensional gas dynamics, SIAM journal on
mathematical analysis 24 (1) (1993) 76–88.

[26] G. J. Gassner, A. R. Winters, D. A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-
parts property for the compressible Euler equations, Journal of Computational Physics 327 (2016) 39–66.

[27] A. D. Beck, D. G. Flad, C. Tonhäuser, G. Gassner, C.-D. Munz, On the influence of polynomial de-
aliasing on subgrid scale models, Flow, Turbulence and Combustion 97 (2) (2016) 475–511. doi:10.1007/

s10494-016-9704-y.
URL https://doi.org/10.1007/s10494-016-9704-y

[28] D. Flad, G. Gassner, On the use of kinetic energy preserving DG-schemes for large eddy simulation, Journal of
Computational Physics 350 (2017) 782–795.

[29] A. D. Beck, T. Bolemann, D. Flad, H. Frank, G. J. Gassner, F. Hindenlang, C.-D. Munz, High-order discontin-
uous Galerkin spectral element methods for transitional and turbulent flow simulations, International Journal for
Numerical Methods in Fluids 76 (8) (2014) 522–548.

[30] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer Science
& Business Media, 2013.

[31] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, M. Savini, A high-order accurate discontinuous finite element method
for inviscid and viscous turbo-machinery flows, in: R. Decuypere, G. Dibelius (Eds.), 2nd European Conference
on Turbomachinery Fluid Dynamics and Thermodynamics, 1997, pp. 99–108.

[32] J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly
Weather Review 91 (3) (1963) 99–164.

[33] F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, J. Lee, Using singular values to build a subgrid-scale model for large
eddy simulations, Physics of Fluids 23 (8) (2011) 085106.

[34] A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications,
Physics of Fluids 16 (10) (2004) 3670–3681.

[35] D. Flad, A. Beck, C.-D. Munz, Simulation of underresolved turbulent flows by adaptive filtering using the high
order discontinuous Galerkin spectral element method, Journal of Computational Physics 313 (2016) 1–12.

[36] J. Larsson, S. Kawai, J. Bodart, I. Bermejo-Moreno, Large eddy simulation with modeled wall-stress: recent

54

https://doi.org/10.1016/j.jcp.2018.06.027
https://doi.org/10.18419/opus-3957
https://doi.org/10.1006/jcph.1997.5454
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/j.jcp.2013.07.022
https://doi.org/10.1016/j.jcp.2015.11.020
https://doi.org/10.1016/j.jcp.2019.108918
https://doi.org/10.1016/S0167-8396(99)00031-X
https://doi.org/10.1016/S0167-8396(99)00031-X
https://doi.org/10.1007/s10494-016-9704-y
https://doi.org/10.1007/s10494-016-9704-y
https://doi.org/10.1007/s10494-016-9704-y
https://doi.org/10.1007/s10494-016-9704-y
https://doi.org/10.1007/s10494-016-9704-y

progress and future directions, Mechanical Engineering Reviews 3 (1) (2016) 15–00418.
[37] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows, in: 30th Aerospace Sciences

Meeting and Exhibit, 1992, p. 439.
[38] S. S. Collis, Discontinuous Galerkin methods for turbulence simulation, in: Proceedings of the Summer Program

2002, Center for Turbulence Research, 2002, pp. 155–167.
[39] B. De Laage de Meux, B. Audebert, R. Manceau, R. Perrin, Anisotropic linear forcing for synthetic turbulence

generation in large eddy simulation and hybrid RANS/LES modeling, Physics of Fluids 27 (3) (2015) 035115.
[40] C. Pruett, T. Gatski, C. E. Grosch, W. Thacker, The temporally filtered Navier–Stokes equations: properties of the

residual stress, Physics of Fluids 15 (8) (2003) 2127–2140.
[41] J. Ahrens, B. Geveci, C. Law, Paraview: An end-user tool for large data visualization, The visualization handbook

717 (2005).
[42] A. Beck, N. Krais, Blender pipeline, https://github.com/flexi-framework/BlenderPipeline (2018).
[43] Blender Online Community, Blender - a 3D modelling and rendering package, Blender Foundation, Stichting

Blender Foundation, Amsterdam (2018).
URL http://www.blender.org

[44] D. A. Kopriva, Metric identities and the discontinuous spectral element method on curvilinear meshes, Journal of
Scientific Computing 26 (3) (2006) 301.

[45] D. A. Kopriva, G. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin
spectral element methods, Journal of Scientific Computing 44 (2) (2010) 136–155.

[46] D. A. Kopriva, A conservative staggered-grid chebyshev multidomain method for compressible flows. II. a semi-
structured method, Journal of Computational physics 128 (2) (1996) 475–488.

[47] T. C. Fisher, M. H. Carpenter, High-order entropy stable finite difference schemes for nonlinear conservation laws:
Finite domains, Journal of Computational Physics 252 (2013) 518–557.

[48] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Mathematics of
Computation 49 (179) (1987) 91–103.

[49] A. Jameson, Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numer-
ical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy
preserving schemes, Journal of Scientific Computing 34 (2) (2008) 188–208.

[50] G. Blaisdell, E. Spyropoulos, J. Qin, The effect of the formulation of nonlinear terms on aliasing errors in spectral
methods, Applied Numerical Mathematics 21 (3) (1996) 207–219.

[51] C. A. Kennedy, A. Gruber, Reduced aliasing formulations of the convective terms within the Navier–Stokes equa-
tions for a compressible fluid, Journal of Computational Physics 227 (3) (2008) 1676–1700.

[52] J. von Neumann, R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, Journal of
Applied Physics 21 (3) (1950) 232–237.

[53] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace
Sciences Meeting and Exhibit, 2006, p. 112.

[54] J. Qiu, C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous
Galerkin method: one-dimensional case, Journal of Computational Physics 193 (1) (2004) 115–135.

[55] A. Huerta, E. Casoni, J. Peraire, A simple shock-capturing technique for high-order discontinuous Galerkin meth-
ods, International Journal for Numerical Methods in Fluids 69 (10) (2012) 1614–1632.

[56] M. Sonntag, C.-D. Munz, Efficient parallelization of a shock capturing for discontinuous Galerkin methods using
finite volume sub-cells, Journal of Scientific Computing 70 (3) (2017) 1262–1289.

[57] M. Sonntag, C.-D. Munz, Shock capturing for discontinuous Galerkin methods using finite volume subcells, in:
Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer, 2014, pp.
945–953.

[58] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of computational physics 49 (3)
(1983) 357–393.

[59] B. Van Leer, Towards the ultimate conservative difference scheme. V. a second-order sequel to Godunov’s method,
Journal of computational Physics 32 (1) (1979) 101–136.

[60] P. L. Roe, Characteristic-based schemes for the Euler equations, Annual Review of Fluid Mechanics 18 (1986)
337–365.

[61] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on
Numerical Analysis 21 (5) (1984) pp. 995–1011.

[62] B. van Leer, Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in
a second-order scheme, Journal of Computational Physics 14 (4) (1974) 361–370.

[63] M. Sonntag, Shape derivatives and shock capturing for the Navier-Stokes equations in discontinuous Galerkin
methods, Ph.D. thesis, University of Stuttgart (2017).

[64] M. Dumbser, O. Zanotti, R. Loubère, S. Diot, A posteriori subcell limiting of the discontinuous Galerkin finite
element method for hyperbolic conservation laws, Journal of Computational Physics 278 (2014) 47–75.

55

http://www.blender.org
http://www.blender.org

[65] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using
Runge Kutta time stepping schemes, in: 14th Fluid and Plasma Dynamics Conference, 1981, p. 1259.

[66] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, T. Poinsot, Large-eddy simulation of the
shock/turbulence interaction, Journal of Computational Physics 152 (2) (1999) 517–549.

[67] J. Williamson, Low-storage Runge-Kutta schemes, Journal of Computational Physics 35 (1) (1980) 48–56.
[68] R. Courant, K. Friedrichs, H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik, Math-

ematische annalen 100 (1) (1928) 32–74.
[69] B. Cockburn, C.-W. Shu, Runge–Kutta discontinuous Galerkin methods for convection-dominated problems, Jour-

nal of Scientific Computing 16 (3) (2001) 173–261.
[70] C. Rumsey, B. Wedan, T. Hauser, M. Poinot, Recent updates to the CFD general notation system (CGNS), in: 50th

AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012, p. 1264.
[71] M. Resch, A. Kaminski, The epistemic importance of technology in computer simulation and machine learning,

Minds and Machines 29 (1) (2019) 9–17. doi:10.1007/s11023-019-09496-5.
[72] R. D. Peng, Reproducible research in computational science, Science 334 (6060) (2011) 1226–1227.
[73] S. Chacon, B. Straub, Pro git, Apress, 2014.
[74] G. J. Gassner, A. D. Beck, On the accuracy of high-order discretizations for underresolved turbulence simulations,

Theoretical and Computational Fluid Dynamics 27 (3-4) (2013) 221–237.
[75] F. Hindenlang, G. J. Gassner, C. Altmann, A. Beck, M. Staudenmaier, C.-D. Munz, Explicit discontinuous Galerkin

methods for unsteady problems, Computers & Fluids 61 (2012) 86–93.
[76] D. Flad, A. D. Beck, G. Gassner, C.-D. Munz, A discontinuous Galerkin spectral element method for the direct

numerical simulation of aeroacoustics, in: 20th AIAA/CEAS Aeroacoustics Conference, 2014, p. 2740.
[77] M. Atak, A. Beck, T. Bolemann, D. Flad, H. Frank, C.-D. Munz, High fidelity scale-resolving computational fluid

dynamics using the high order discontinuous Galerkin spectral element method, in: High Performance Computing
in Science and Engineering´ 15, Springer, 2016, pp. 511–530.

[78] H. M. Frank, C.-D. Munz, Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror,
Journal of Sound and Vibration 371 (2016) 132–149.

[79] S. Pirozzoli, Numerical methods for high-speed flows, Annual Review of Fluid Mechanics 43 (2011) 163–194.
[80] M. Drela, XFOIL: an analysis and design system for low Reynolds number airfoils, in: T. J. Mueller (Ed.), Low

Reynolds Number Aerodynamics, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989, pp. 1–12.
[81] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conser-

vation laws, in: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Springer, 1998, pp.
325–432.

[82] P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and
Navier–Stokes equations, Communications in Computational Physics 14 (5) (2013) 1252–1286.

[83] T. S. Lund, X. Wu, K. D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer
simulations, Journal of Computational Physics 140 (2) (1998) 233–258.

[84] S. Kawai, J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy, Physics
of Fluids 24 (1) (2012) 015105.

[85] L. Erbig, N. Hu, S. Lardeau, Experimental and numerical study of passive gap noise, in: 2018 AIAA/CEAS
Aeroacoustics Conference, 2018, p. 3595.

[86] T. Kuhn, Zonal large eddy simulation of active open cavity noise using a high order discontinuous Galerkin method,
in: 25th AIAA/CEAS Aeroacoustics Conference, 2019, p. 2465.

[87] S. Fechter, C.-D. Munz, C. Rohde, C. Zeiler, A sharp interface method for compressible liquid–vapor flow with
phase transition and surface tension, Journal of Computational Physics 336 (2017) 347–374.

[88] F. Hempert, S. Boblest, T. Ertl, F. Sadlo, P. Offenhäuser, C. Glass, M. Hoffmann, A. Beck, C.-D. Munz, U. Iben,
Simulation of real gas effects in supersonic methane jets using a tabulated equation of state with a discontinuous
Galerkin spectral element method, Computers & Fluids 145 (2017) 167–179.

[89] A. Beck, P. Ortwein, P. Kopper, N. Krais, D. Kempf, C. Koch, Towards high-fidelity erosion prediction: On time-
accurate particle tracking in turbomachinery, International Journal of Heat and Fluid Flow 79 (2019) 108457.

[90] J. Zeifang, K. Kaiser, A. Beck, J. Schütz, C.-D. Munz, Efficient high-order discontinuous Galerkin computations
of low mach number flows, Communications in Applied Mathematics and Computational Science 13 (2) (2018)
243–270.

[91] S. M. Copplestone, M. Pfeiffer, S. Fasoulas, C.-D. Munz, High-order particle-in-cell simulations of laser-plasma
interaction, The European Physical Journal Special Topics 227 (14) (2019) 1603–1614.

[92] P. Ortwein, S. Copplestone, C.-D. Munz, T. Binder, A. Mirza, P. Nizenkov, M. Pfeiffer, W. Reschke, S. Fasoulas,
Piclas: A highly flexible particle code for the simulation of reactive plasma flows, in: 2017 IEEE International
Conference on Plasma Science (ICOPS), IEEE, 2017, pp. 1–1.

[93] T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, C.-D. Munz, Uncertainty quantification for direct aeroa-
coustic simulations of cavity flows, Journal of Computational Acoustics (2018).

56

https://doi.org/10.1007/s11023-019-09496-5

[94] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, B. Uekermann, preCICE – a
fully parallel library for multi-physics surface coupling, Computers & Fluids 141 (2016) 250–258, Advances in
Fluid-Structure Interaction. doi:https://doi.org/10.1016/j.compfluid.2016.04.003.

57

https://doi.org/https://doi.org/10.1016/j.compfluid.2016.04.003

	1 Introduction
	2 Framework overview
	2.1 HOPR: Mesh generation tool
	2.1.1 Mesh format
	2.1.2 Surface curving
	2.1.3 Volume curving using RBF interpolation
	2.1.4 Curved mesh by agglomeration

	2.2 FLEXI: DG solver
	2.2.1 Code design
	2.2.2 Parallelization
	2.2.3 Code features

	2.3 POSTI: Post-processing suite

	3 Numerical methods
	3.1 Discontinuous Galerkin spectral element method
	3.2 Non-conforming meshes
	3.3 Split DG

	4 Shock Capturing
	4.1 Finite Volume Scheme on Subcells
	4.2 FV/DG Interfaces
	4.3 Troubled Cell Indicators
	4.4 Time integration

	5 Implementation details
	5.1 Coordinate systems for unstructured grids
	5.2 Domain decomposition
	5.3 Parallelization aspects
	5.4 Data structures
	5.5 Algorithm sequence
	5.6 Operator count and memory requirements
	5.7 FV shock capturing
	5.8 Parallel performance
	5.9 Implementation of post-processing

	6 Aspects of Usability and Reproducibility
	6.1 Regression testing
	6.2 The userblock concept
	6.3 Documentation and Tutorials

	7 Applications
	7.1 LES of airfoil at Re=106
	7.2 Shock-vortex interaction
	7.3 Aeroacoustic Cavity Noise

	8 Conclusion and Outlook

