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Gianluigi Rozza∗

Abstract

In this work we present a Reduced Basis VMS-Smagorinsky Boussinesq
model, applied to natural convection problems in a variable height cavity,
in which the buoyancy forces are involved. We take into account in this
problem both physical and geometrical parametrizations, considering the
Rayleigh number as a parameter, so as the height of the cavity. We
perform an Empirical Interpolation Method to approximate the sub-grid
eddy viscosity term that let us obtain an affine decomposition with respect
to the parameters. We construct an a posteriori error estimator, based
upon the Brezzi-Rappaz-Raviart theory, used in the greedy algorithm for
the selection of the basis functions. Finally we present several numerical
tests for different parameter configuration.

Keywords. Reduced basis method, Empirical interpolation method, a pos-
teriori error estimation, Boussinesq equations, Smagorinsky turbulence model.

1 Introduction

Nowadays, several industrial processes need numerical simulations, which are
usually performed with the widespread high-fidelity approximation techniques
such as finite element (FE), finite volumes or spectral methods, and they usually
take very long time for computation (several hours, even days). In many situa-
tions, the model that represents the behavior of an industrial process is given by
a Partial Differential Equation (PDE) depending on parameters. Reduced-order
modeling (ROM) is used in parametrized PDE in order to try to reduce the high
computational time required by its numerical solution, when large number of
simulations with different parameter values are needed [1, 2, 3, 4, 5, 6, 7, 8].

In the context of fluids dynamics, even with the reduction of the computa-
tional cost provided by turbulent models, such as the Variational Multi-Scale

∗mathLab, Mathematics Area, SISSA, International School for Advanced Studies, via
Bonomea 265, I-34136 Trieste, Italy. francesco.ballarin@sissa.it, gianluigi.rozza@sissa.it
†IMUS & Departamento de Ecuaciones Diferenciales y Análisis Numérico , Apdo. de
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(VMS) models (cf. [9]), with respect to the DNS, it is still expensive to compute
accurately the real flows that commonly appear in industry problems, specially
in cases where parameters play important roles. When a high number of com-
putations for a fluid flow depending on parameters is required, ROM becomes
useful. Several works for Reduced Basis (RB) model have been presented for
Stokes equations [10, 6, 11] and Navier-Stokes equations [12, 13, 14, 15, 16].
Most recently, there have been developed works for RB turbulent models, such
as the Smagorinsky model [17], or the VMS-Smagorinsky model [18]. In those
last works, the ROM is constructed from the turbulent model. A different way
to build ROM model for turbulent flows is the one in which initially we would
build a ROM for Navier-Stokes equations, and then model the unresolved scales
(either by eddy diffusion or other techniques) to build the turbulence model.
This approach has been followed in [19, 20], for instance. We address here the
construction of a RB model for the Boussinesq equations, that includes turbulent
diffusivity for both momentum and energy equations. The turbulent diffusivities
are modeled by a VMS-Smagorinsky approach, in such a way that eddy diffu-
sion effects only act on the small resolved scales. One of the main advantages
of using the VMS-Smagorinsky is that the eddy viscosity and eddy diffusivity
only affect the small resolved scales, avoiding over-diffusive effects, that can be
maintained in the ROM setting thanks to the Reduced Basis framework that
we have developed. On the counterpart, we deal with non-linear terms related
with the VMS-Smagorinsky model, that force us to use techniques such as the
Empirical Interpolation Method, resulting a feasible ROM model.

In this work we consider the application of a RB Boussinesq VMS-Smago-
rinsky model to simulate a natural convection in a variable height cavity. In
applications to architecture, this cavity represents a courtyard inside a build-
ing. The study of the heat exchange between the air and the walls inside the
courtyard is of high interest to minimize the energy needs of the building. The
variability of the cavity height is considered through a geometrical parametriza-
tion of the domain. Since we are interested in solving efficiently the parameter-
dependent problem, we need to reformulate the Boussinesq VMS-Smagorinsky
model in a parameter-independent domain with a change of variables. With this
change of variables, we obtain operators that depend on both physical and geo-
metrical parameters. This setting, besides the Empirical Interpolation Method
(EIM) (cf. [21, 22]) for the non-linear eddy diffusivities, lets us approximate
these non-linear operators by operators that depend affinely with respect to the
parameters, both of physical and geometrical type. Then it is possible to store
parameter-independent matrices and tensors in the offline phase.

We tackle in this work some of the intermediate difficulties which should
necessarily be solved when dealing with RB modelling of natural convection
turbulent flows. Particularly, we analyze how to deal with the temperature when
constructing the a posteriori error estimator. From the numerical analysis point
of view, we present the development of an a posteriori error bound based upon
the Brezzi-Rappaz-Raviart (BRR) theory [23], used in the snapshot selection in
the greedy algorithm. This a posteriori error estimator is an extension of the
ones presented for the Navier-Stokes equations [12, 13, 14] and the Smagorinsky
model [17]. The main difference for the a posteriori error bound presented in
this paper with the previous ones, is the necessity of considering a mollifier
for the thermal eddy diffusivity term, due to the fact this term is no longer
Lipschitz-continuous. Thanks to the consideration of this regularized term, we
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are able to develop the a posteriori error estimator.
We present four different numerical tests for the buoyancy-driven cavity

problem. In the first two tests, we consider a fixed height, i.e. we consider
the geometrical parameter µg = 1, for different ranges of the Rayleigh num-
ber, ranging from moderate Rayleigh numbers values Ra ∈ [104, 105], to high
Rayleigh numbers values Ra ∈ [105, 106]. In the third one, we fix the Rayleigh
number, with a moderate value Ra = 105, and only the geometrical parameter
changes. This test intends to represent a situation in which the environmental
conditions are fixed and we are only interested in simulating the flow in cavities.
In the last test, both the Rayleigh and the geometric parameter are taken into
account. This test is more complex since two parameters are considered, thus
the number of basis functions to include in our RB spaces increases with respect
to the previous one. At the same time, the speed-up ratio decreases somewhat,
although it remains on values around 50.

The paper is structured as follows: in section 2 we define the high fidelity
problem in the reference domain from the one defined in the original domain
depending on the geometric parameter. Then, in section 3, we present the
Reduced Basis problem, with the EIM approximation for the eddy viscosity
and eddy diffusivity terms. In section 4 we construct the a posteriori error
estimator. Finally in section 5, we present the numerical results for the tests
previously described, programmed in FreeFem++ (cf. [24]). Conclusions are
then summarized in section 6.

2 Continuous problem and full order discretiza-
tion

The aim of this work is to present a reduced order model for natural convection
problems over domains with variable geometry. For this purpose, we propose a
turbulence Smagorinsky model in which the buoyancy forces are modeled by the
Boussinesq approach. Let µ = (µph, µg) ∈ Rpph×pg and let Ωo(µg) be a bounded
polyhedral domain in Rd (d = 2, 3), depending on the geometrical parameters,
commonly called original domain in the RB framework. Let Γ(µg) = ΓD(µg) ∪
ΓN (µg) the Lipschitz-continuous boundary of Ωo(µg), where ΓD is the part of
the boundary with Dirichlet conditions and ΓN the part of the boundary with
Neumann conditions.

We next present the continuous Boussinesq-Smagorinsky model that we con-
sider in this work. Although the Smagorinsky approach is intrinsically discrete,
we present it in a continuous form in order to clarify its relationship with the
standard Boussinesq model:

uo · ∇ouo − Pr∆ouo −∇o · (νT (uo)∇ouo)
+∇opo − Pr µph θo ed = f in Ωo(µg)

∇o · uo = 0 in Ωo(µg)

uo · ∇oθo −∆oθo −∇o · (KT (uo)∇oθo) = Q in Ωo(µg)

uo = 0 on Γ

θo = θD on ΓD

∂nθo = 0 on ΓN

(1)
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Here, uo is the velocity field, po is the pressure and θo is the temperature. In
addition, ed is the last vector of the canonical basis of Rd, while µph and Pr are
the Rayleigh and Prandtl dimensionless numbers respectively. Both the external
body forces f, and the heat source term Q, are given data for the problem. In
(1), νT (u) is the eddy viscosity term, and KT (u) is the eddy diffusivity given
by

KT (u) =
1

Pr
νT (u). (2)

In (1), we represent by θD a given temperature over the boundary ΓD. For
simplicity of the analysis, we further consider that θD = 0. In the case of
considering non-homogeneous boundary conditions, it is enough to define a lift
function θg such that θg|ΓD

= θD. In [17], an analysis with the lift function is
already done for a RBM Smagorinsky model.

Let us consider the spaces Y o = (H1
0 (Ωo))

d, Mo = L2
0(Ωo), Θo = H1

0 (Ωo).
We denote by ‖ · ‖k,p,Ω the norm of the Sobolev space W k,p(Ω). We consider
the H1-seminorm for the velocity and temperature spaces, and the L2-norm for
the pressure space. In addition, let us define the Sobolev embedding constants
Cu and Cθ, associated to these norms, such that

‖v‖0,4,Ω ≤ Cu‖∇v‖0,2,Ω, ∀v ∈ Y, (3)

and
‖θ‖0,4,Ω ≤ Cθ‖∇θ‖0,2,Ω, ∀θ ∈ Θ. (4)

Moreover, we consider the tensor space Xo = Y o × Θo × Mo, with the
following associated norm:

‖U‖2X = ‖∇u‖20,2,Ω + ‖∇θ‖20,2,Ω + ‖p‖20,2,Ω, ∀U = (u, θ, p) ∈ X. (5)

The variational formulation of problem (1), over the parameter-dependent
original domain is



Find (uo, θ
u
o , p

u
o ) = (uo(µ), θuo (µ), puo (µ)) ∈ Xo such that

ãu(uo,vo;µ) + b̃(vo, p
u
o ;µ) + ã′Su(uo;uo,vo;µ)

+c̃u(uo,uo,vo;µ) + f̃(θuo ,vo;µ) = F̃ (vo;µ) ∀vo ∈ Y o,

b̃(uo, p
v
o;µ) = 0 ∀pvo ∈Mo,

ãθ(θ
u
o , θ

v
o ;µ) + c̃θ(uo, θ

u
o , θ

v
o ;µ)

+ã′Sθ,n(uo; θ
u
o , θ

v
o ;µ) = Q̃(θvo ;µ) ∀θvo ∈ Θo.

(6)

Here, the bilinear forms ãu(·, ·;µ), ãθ(·, ·;µ), b̃(·, ·;µ) and f̃(·, ·;µ) are de-
fined by

ãu(uo,vo;µ) = Pr

∫
Ωo(µg)

∇ouo : ∇ovo dΩo,

ãθ(θ
u
o , θ

v
o ;µ) =

∫
Ωo(µg)

∇oθuo · ∇oθvo dΩo,

f̃(θuo ,vo;µ) = −Pr µph
∫

Ωo(µg)

θuo vdo dΩo,

b̃(uo, p
v
o;µ) = −

∫
Ωo(µg)

(∇o · uo)pvo dΩo;

(7)
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the trilinear forms c̃u(·, ·, ·;µ) and c̃θ(·, ·, ·;µ) are defined by

c̃u(zo,uo,vo;µ) =

∫
Ωo(µg)

(zo · ∇ouo)vo dΩo,

c̃θ(uo, θ
u
o , θ

v
o ;µ) =

∫
Ωo(µg)

(uo · ∇oθuo )θvo dΩo;
(8)

and the non-linear Smagorinsky term for eddy viscosity, ã′Su(·; ·, ·;µ), is given
by

ã′Su(zo;uo,vo;µ) =

∫
Ωo(µg)

νT (zo)∇uo : ∇vo dΩo, (9)

with
νT (u) = (CShK)2|∇u|K |.

For the thermal eddy diffusivity term ã′Sθ,n, let us first introduce a mollifier
φ ∈ C∞c (R), with supp(φ)⊂ B(0, 1), φ ≥ 0, ‖φ‖0,1,R > 0, and φ is even, i.e.,
φ(−x) = φ(x). Let us consider the mollifier sequence {φn(x)}n≥1, with φn ∈
C∞c (R), supp(φn)⊂ B(0, 1/n), φn ≥ 0, ‖φn‖0,1,R = 1, defined by

φn(x) =
n

‖φ‖0,1,R
φ(nx).

Thus, the VMS-Smagorinsky eddy diffusivity term is defined as

ã′Sθ,n(uo; θ
u
o , θ

v
o ;µ) =

∫
Ωo(µg)

νT,n(uo)∇oθuo · ∇oθvo dΩo, (10)

with
νT,n(u) = (CShK)2(φn ∗ |∇u|K |),

where ∗ denotes the convolution. The choice of the eddy viscosity is the one
suggested in [25]. For thermal eddy diffusivity, we have chosen a modified form,
considering a mollifier for the thermal eddy diffusivity in [25]. The choice of
this thermal eddy diffusivity with the mollifier, assure the Lipschitz continuity
of the eddy diffusivity operator.

Thanks to mollifier properties (see [26] for details), it holds that ã′Sθ,n con-
verges uniformly to ã′Sθ, with

ã′Sθ(uo; θ
u
o , θ

v
o ;µ) =

∫
Ωo(µg)

νT (uo)∇θuo · ∇θvo dΩo.

Remark 1 The mollified eddy diffusivity ã′Sθ,n is considered for the
well-possedness analysis and the development of a posteriori error estimator. In
practice, we consider the eddy diffusivity term in the Boussinesq-Smagorinsky
model as ã′Sθ.

Finally, the linear forms F̃ and Q̃ are given by

F̃ (vo;µ) = 〈f,vo〉 , Q̃(θvo ;µ) = 〈Q, θvo〉 , (11)

where here 〈·, ·〉 stands either the duality paring between Y and Y ′, and between
Θ and Θ′; being Y ′ and Θ′ the dual spaces of Y and Θ, respectively.
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(0, 0) (1, 0)

(0, µg) (1, µg)

Figure 1: Original domain Ωo(µg), with the geometrical parameter considered.

We present a cavity domain, whose height is varied through a geometrical
parameter. This geometrical parameter, that we denote by µg, varies the aspect
ratio of the cavity. In Fig. 1 we show the original cavity domain considered,
with the geometrical parameter considered.

To be able to store parameter independent matrices in the offline phase (see
section 3) of the RB method, we need to compute all the integrals in a reference
domain trough a transformation of the original domain. Thus, we set µrefg = 1,

and we define the reference domain Ωr = Ωo(µ
ref
g ). The parameter-dependent

original domain can be recovered by a transformation map, Ψ : Ωr × D → R2,
defined as

Ψ((x, y);µg) =

(
1 0
0 µg

)(
x
y

)
, ∀(x, y) ∈ Ωr. (12)

As this map is linear, its Jacobian matrix and its determinant are given by

J((x, y);µg) =

(
1 0
0 µg

)
, and |J((x, y);µg)| = µg. (13)

Let {Th}h>0 a regular family of triangulations on the reference domain. We
denote Yh = (H1

0 (Ωr) ∩ V lh(Ωr))
d, Mh = L2

0(Ωr) ∩ V mh (Ωr), Θh = H1
0 (Ωr) ∩

V qh (Ωr), with l,m, q ∈ N, respectively the discrete velocity, pressure and temper-
ature spaces on the reference domain. Although the analysis can be performed
for a regular mesh, for simplicity in the analysis we suppose that the mesh we
are considering is uniform. Denoting Xh = Yh ×Θh ×Mh, we rewrite problem
(6) with respect to the reference domain, applying the change of variables of
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the transformation map T , as

Find (uh, θ
u
h, p

u
h) = (uh(µ), θuh(µ), puh(µ)) ∈ Xh such that

au,x(uh,vh;µ) + au,y(uh,vh;µ) + bx(vh, p
u
h;µ)

+by(vh, p
u
h;µ) + a′Su,x(uh;uh,vh;µ)

+a′Su,y(uh;uh,vh;µ) + cu,x(uh,uh,vh;µ)

+cu,y(uh,uh,vh;µ) + f(θuh,vh;µ) = F (vh;µ) ∀vh ∈ Yh,
bx(uh, p

v
h;µ) + by(uh, p

v
h;µ) = 0 ∀pvh ∈Mh,

aθ,x(θuh, θ
v
h;µ) + aθ,y(θuh, θ

v
h;µ) + cθ,x(uh, θ

u
h, θ

v
h;µ)

+cθ,y(uh, θ
u
h, θ

v
h;µ) + a′Sθ,nx(uh; θuh, θ

v
h;µ)

+a′Sθ,ny(uh; θuh, θ
v
h;µ) = Q(θvh;µ) ∀θvh ∈ Θh,

(14)

where the subscripts x and y denote the addend of the corresponding operator,
relative to the partial derivative with respect to x or y, respectively. For both the
eddy viscosity and eddy diffusivity terms, we consider a VMS small-small setting
approach (cf. [9]). For that, we consider a uniformly H1-norm interpolator
operator from Yh to Y h = (H1

0 (Ωr) ∩ V l−1
h (Ωr))

d, denoted by Πh. Thus, we
assume that Πh satisfies that there exists a constant Cf > 0 independent of h
such that

‖Π∗huh‖1,2,Ω ≤ Cf‖uh‖1,2,Ω uh ∈ Yh, (15)

where we denote Π∗h = Id−Πh. See [27, 28] for more details.
The operators in (14) have the following form:

au,x(uh,vh;µ) = Pr µg

∫
Ωr

(∂xu1∂xv1 + ∂xu2∂xv2) dΩr,

au,y(uh,vh;µ) =
Pr

µg

∫
Ωr

(∂yu1∂yv1 + ∂yu2∂yv2) dΩr,

bx(uh, p
u
h;µ) = −µg

∫
Ωr

puh∂xu1 dΩr, by(uh, p
u
h;µ) = −

∫
Ωr

puh∂yu2 dΩr,

f(θuh,vh;µ) = Pr µph µg

∫
Ωr

θuhv2 dΩr,

aθ,x(θuh, θ
v
h;µ) = µg

∫
Ωr

∂xθ
u
h∂xθ

v
h dΩr, aθ,y(θuh, θ

v
h;µ) =

1

µg

∫
Ωr

∂yθ
u
h∂yθ

v
h dΩr,

cu,x(wh,uh,vh;µ) = µg

∫
Ωr

[
(w1∂xu1)v1 + (w1∂xu2)v2

]
dΩr,

cu,y(wh,uh,vh;µ) =

∫
Ωr

[
(w2∂yu1)v1 + (w2∂yu2)v2

]
dΩr,

cθ,x(uh, θ
u
h, θ

v
h;µ) = µg

∫
Ωr

(u1∂xθ
u
h)θvh dΩr,

cθ,y(uh, θ
u
h, θ

v
h;µ) =

∫
Ωr

(u2∂yθ
u
h)θvh dΩr,

a′Su,x(wh;uh,vh;µ) = µg

∫
Ωr

νT (Π∗hw)
[
∂x(Π∗hu1)∂x(Π∗hv1)
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+∂x(Π∗hu2)∂x(Π∗hv2)dΩr
]
,

a′Su,y(wh;uh,vh;µ) =
1

µg

∫
Ωr

νT (Π∗hw)
[
∂y(Π∗hu1)∂y(Π∗hv1)

+∂y(Π∗hu2)∂y(Π∗hv2)dΩr
]
,

a′Sθ,nx(uh; θuh, θ
v
h;µ) =

µg
Pr

∫
Ωr

νT,n(Π∗hu;µg)∂x(Π∗hθ
u)∂x(Π∗hθ

v) dΩr,

a′Sθ,ny(uh; θuh, θ
v
h;µ) =

1

Pr µg

∫
Ωr

νT,n(Π∗hu;µg)∂y(Π∗hθ
u)∂y(Π∗hθ

v) dΩr,

These integrals are derived applying the well-known change of variable for-
mula (see e.g. [5]). With this geometrical parametrization, the eddy viscosity
νT (·) (analogously νT,n(·)) also depends on the geometrical parameter, and is
defined as

νT (u;µg) = C2
S

µ2
g + 1

N2
h

√
(∂xu1)2 +

1

µ2
g

(∂yu1)2 + (∂xu2)2 +
1

µ2
g

(∂yu2)2. (16)

Here we are supposing that we consider an uniform mesh in the reference
domain Ωr, with Nh partitions on each side. Since the mesh size, hK , in the
VMS-Smagorinsky eddy viscosity and eddy diffusivity appears in (16) in terms
of the parameter-dependent original domain, we map it to the reference domain,
by applying the change of variable map Ψ defined in (12).

3 Reduced Basis formulation

In this section we present the RB problem derived from the discrete problem
presented in section 2. We construct the low-dimensional spaces for the RB
problem with the Greedy algorithm. Both the pressure and the temperature
reduced basis spaces are defined with the corresponding snapshots computed
solving the FE problem (14).

The RB velocity space is constructed with the velocity snapshot of the FE
velocity solution, and the inner pressure supremizer (cf. [29, 30]), Tµ

p : Mh →
Yh, defined for this problem as∫

Ωr

∇Tµ
p qh : ∇vh dΩr = −µg

∫
Ωr

qh ∂xv1 dΩr −
∫

Ωr

qh ∂yv2 dΩr, ∀vh ∈ Yh.

(17)
Thus, the reduced basis spaces are given by

YN = span{ζv2k−1 := uh(µk), ζv2k := Tµ
p ξ

p
k, k = 1, . . . , N}, (18)

MN = span{ξpk := puh(µk), k = 1, . . . , N}, (19)

ΘN = span{ϕθk := θuh(µk), k = 1, . . . , N}. (20)
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Denoting XN = YN ×ΘN ×MN , the RB problem is

Find (uN (µ), θuN (µ), puN (µ) ∈ XN such that

au,x(uN ,vN ;µ) + au,y(uN ,vN ;µ) + bx(vN , p
u
N ;µ)

+by(vN , p
u
N ;µ) + a′Su,x(uN ;uN ,vN ;µ)

+a′Su,y(uN ;uN ,vN ;µ) + cu,x(uN ,uN ,vN ;µ)

+cu,y(uN ,uN ,vN ;µ) + f(θuN ,vN ;µ) = F (vN ;µ) ∀vN ∈ YN ,
bx(uN , p

v
N ;µ) + by(uN , p

v
N ;µ) = 0 ∀pvN ∈MN ,

aθ,x(θuN , θ
v
N ;µ) + aθ,y(θuN , θ

v
N ;µ) + cθ,x(uN , θ

u
N , θ

v
N ;µ)

+cθ,y(uN , θ
u
N , θ

v
N ;µ) + a′Sθ,nx(uN ; θuN , θ

v
N ;µ)

+a′Sθ,ny(uN ; θuN , θ
v
N ;µ) = Q(θvN ;µ) ∀θvN ∈ ΘN .

(21)
The eddy viscosity νT (u;µg) must be tensorized in problem (21), for the

efficient solve in the online phase. For this purpose, we consider the use of EIM
(cf. [21, 22]). The eddy viscosity and eddy diffusivity terms are approximated
as

a′Su,x(wh;uh,vh;µ) ≈ â′Su,x(uN ,vN ;µ),

a′Su,y(wh;uh,vh;µ) ≈ â′Su,y(uN ,vN ;µ),

a′Sθ,nx(uh; θuh, θ
v
h;µ) ≈ â′Sθ,x(θuN , θ

v
N ;µ),

a′Sθ,ny(uh; θuh, θ
v
h;µ) ≈ â′Sθ,y(θuN , θ

v
N ;µ),

with,

â′Su,x(uN ,vN ;µ) =

M∑
k=1

σk(µ)su,x(qk,uN ,vN ),

â′Su,y(uN ,vN ;µ) =

M∑
k=1

σk(µ)su,y(qk,uN ,vN ),

â′Sθ,x(θuN , θ
v
N ;µ) =

M∑
k=1

σk(µ)sθ,x(qk, θ
u
N , θ

v
N ),

â′Sθ,y(θuN , θ
v
N ;µ) =

M∑
k=1

σk(µ)sθ,y(qk, θ
u
N , θ

v
N ),

and,

su,x(qk,uN ,vN ) = µg

∫
Ωr

qk
[
∂x(Π∗hu1)∂x(Π∗hv1) + ∂x(Π∗hu2)∂x(Π∗hv2)

]
dΩr,

su,y(qk,uN ,vN ) =
1

µg

∫
Ωr

qk
[
∂y(Π∗hu1)∂y(Π∗hv1) + ∂y(Π∗hu2)∂y(Π∗hv2)

]
dΩr,

sθ,x(qk, θ
u
N , θ

v
N ) =

µg
Pr

∫
Ωr

qk ∂x(Π∗hθ
u)∂x(Π∗hθ

v) dΩr,

sθ,y(qk, θ
u
N , θ

v
N ) =

1

Pr µg

∫
Ωr

qk ∂y(Π∗hθ
u)∂y(Π∗hθ

v) dΩr,
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where σk(µ) and qk are computed by the EIM algorithm (see [22] for further
details).

The parameter independent matrices and tensors to store during the offline
phase in order to efficiently solve problem (21), are given in this case by

(Au,xN )ij = au,x(ζvj , ζ
v
i ), (Au,yN )ij = au,y(ζvj , ζ

v
i ), i, j = 1, . . . , 2N,

(Aθ,xN )lm = aθ,x(ϕθm, ϕ
θ
l ), (Aθ,yN )lm = aθ,y(ϕθm, ϕ

θ
l ), l,m = 1, . . . , N,

(FN )li = f(ϕθl , ζ
v
i ), i = 1, . . . , 2N, l = 1, . . . , N,

(BxN )li = bx(ζvi , ξ
p
l ), (B(y)

N )li = by(ζvi , ξ
p
l ), i = 1, . . . , 2N, l = 1, . . . , N,

(Cu,xN (ζvs ))ij = cu,x(ζvs , ζ
v
j , ζ

v
i ), i, j, s = 1, . . . , 2N,

(Cu,yN (ζvs ))ij = cu,y(ζvs , ζ
v
j , ζ

v
i ), i, j, s = 1, . . . , 2N,

(Cθ,xN (ζvs ))lm = cθ,x(ζvs , ϕ
θ
m, ϕ

θ
l ), l,m = 1, . . . , N, s = 1, . . . , 2N,

(Cθ,yN (ζvs ))lm = cθ,y(ζvs , ϕ
θ
m, ϕ

θ
l ), l,m = 1, . . . , N, s = 1, . . . , 2N,

(Su,xN (qs))ij = su,x(qs, ζ
v
j , ζ

v
i ), i, j = 1, . . . , 2N, s = 1, . . . ,M,

(Su,yN (qs))ij = su,y(qs, ζ
v
j , ζ

v
i ), i, j = 1, . . . , 2N, s = 1, . . . ,M,

(Sθ,xN (qs))lm = sθ,x(qs, ϕ
θ
m, ϕ

θ
l ), l,m = 1, . . . , N, s = 1, . . . ,M,

(Sθ,yN (qs))lm = sθ,y(qs, ϕ
θ
m, ϕ

θ
l ), l,m = 1, . . . , N, s = 1, . . . ,M.

Here we are representing the reduced basis velocity, temperature and pres-
sure solutions as a linear combination of the velocity, temperature and pressure
snapshots, respectively, of the reduced spaces, i.e.,

uN (µ) =

2N∑
j=1

uNj (µ)ζvj , θN (µ) =

N∑
j=1

θNj (µ)ϕθj , pN (µ) =

N∑
j=1

pNj (µ)ξpj .

4 A posteriori error estimator

In order to develop the a posteriori error estimator for the Greedy algorithm,
we rewrite problem (14) in a more compact form as{

Find Uh(µ) = (uh, θ
u
h, p

u
h) ∈ Xh such that

A(Uh(µ), Vh;µ) = F (Vh;µ) ∀Vh ∈ Xh,
(22)

The a posteriori error estimator is based upon the BRR theory (cf. [23]).
For this purpose we define the Gateaux derivative of A(·, ·;µ) with respect to
the first variable, in the direction Z ∈ X, denoted by ∂1A(U, V ;µ)(Z). For this
problem, denoting Z = (z, θz, pz), the derivative is defined by:

∂1A(U, V ;µ)(Z) = au,x(z,v;µ) + au,y(z,v;µ) + bx(v, pz;µ) + by(v, pz;µ)

+f(θz,v;µ)− bx(z, pv;µ)− by(z, pv;µ) + aθ,x(θz, θv;µ) + aθ,y(θz, θv;µ)

+cu,x(z,u,v;µ) + cu,x(u, z,v;µ) + cu,y(z,u,v;µ) + cu,y(u, z,v;µ)
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+cθ,x(z, θu, θv;µ) + cθ,x(u, θz, θv;µ) + cθ,y(z, θu, θv;µ) + cθ,y(u, θz, θv;µ)

+a′Su,x(u; z,v;µ) + a′Su,y(u; z,v;µ) + a′Sθ,nx(u; θz, θv;µ) + a′Sθ,ny(u; θz, θv;µ)

+µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂x(Π∗hu1)∂x(Π∗hv1) + ∂x(Π∗hu2)∂x(Π∗hv2)] dΩr

+
1

µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂y(Π∗hu1)∂y(Π∗hv1) + ∂y(Π∗hu2)∂y(Π∗hv2)] dΩr

+
µg
Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂x(Π∗hθ
u)∂x(Π∗hθ

v) dΩr

+
1

µg Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂y(Π∗hθ
u)∂y(Π∗hθ

v) dΩr,

with

∂1νT (u)(z) = C2
S

µ2
g + 1

N2
h

∂xu1∂xz1 +
1

µ2
g

∂yu1∂yz1 + ∂xu2∂xz2 +
1

µ2
g

∂yu2∂yz2

|∇(Ψ−1u)|
,

and

∂1νT,n(u)(z) = C2
S

µ2
g + 1

N2
h

[
φ′n ∗ |∇Ψ−1(u)|

]
:
[
∇Ψ−1(z)

]
.

The Gateaux derivative satisfies the following continuity and inf-sup condi-
tions:

∞ > γ0 ≥ γh(µ) ≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(µ), Vh;µ)(Zh)

‖Zh‖X‖Vh‖X
. (23)

0 < β0 < βh(µ) ≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(µ), Vh;µ)(Zh)

‖Zh‖X‖Vh‖X
. (24)

The existence of γ0 ∈ R and β0 > 0 satisfying (23) and (24), respectively,
are given by the following results, whose proofs can be found in A.1 and A.2
respectively.

Proposition 1 There exists γ0 ∈ R such that ∀µ ∈ D

|∂1A(Uh(µ), Vh;µ)(Zh)| ≤ γ0‖Zh‖X‖Vh‖X ∀Zh, Vh ∈ Xh.

Proposition 2 Let C(µ, ‖φ′n‖0,1,R) a constant depending on µ and ‖φ′n‖0,1,R.
Then if

‖∇uh‖0,2,Ω ≤
2Prmin{µg, 1/µg} − CPPrµgµ

4C2
u min{µg, 1}+ C(µ, ‖φ′n‖0,1,R)‖∇θuh‖0,2,Ω

(25)

and

‖∇θuh‖0,2,Ω ≤
2 min{µg, 1/µg} − CPPrµgµ

4CuCθ min{µg, 1}+ C(µ, ‖φ′n‖0,1,R)‖∇uh‖0,2,Ω
, (26)

then there exists β̃(µ) > 0 such that

∂1A(Uh, Vh;µ)(Vh) ≥ β̃(µ)(‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω) ∀Vh ∈ Xh. (27)
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Since operator b(vh, ph;µ) satisfies the discrete inf-sup condition

α‖ph‖0,2,Ω ≤ sup
vh∈Yh

b(vh, ph;µ)

‖vh‖0,2,Ω
,

we can prove that the inf-sup condition (27) is satisfied thanks to Prop. 2.

With the following result, we prove that the Gateaux derivative of the
Boussinesq-Smagorinsky operator is locally Lipschitz-continuous. The proof
can be found in A.3.

Lemma 1 Let U1
h , U

2
h ∈ Xh. Then, in a neighborhood of U1

h and U2
h, there

exists a positive constant ρn(µg) such that, ∀Zh, Vh ∈ Xh,∣∣∂1A(U1
h , Vh;µ)(Zh)− ∂1A(U2

h , Vh;µ)(Zh)
∣∣ ≤ ρn(µg)‖U1

h −U2
h‖X‖Zh‖X‖Vh‖X .

(28)

We define the following continuity and inf-sup constants:

0 < βN (µ) ≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(UN (µ), Vh;µ)(Zh)

‖Zh‖X‖Vh‖X
= inf
Zh∈Xh

‖TNZh‖X
‖Zh‖X

, (29)

∞ > γN (µ) ≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(UN (µ), Vh;µ)(Zh)

‖Zh‖X‖Vh‖X
= sup
Zh∈Xh

‖TNZh‖X
‖Zh‖X

, (30)

where the supremizer operator TN is defined as

(TNZh, Vh)X = ∂1A(UN (µ), Vh;µ)(Zh) ∀Vh, Zh ∈ Xh, (31)

such that

TNZh = arg sup
Vh∈Xh

∂1A(UN (µ), Vh;µ)(Zh)

‖Vh‖X
. (32)

The existence of these constants can be proved in the same way that the
existence of the constants (23)-(24). Thus, we can define the a posteriori error
estimator as

∆N (µ) =
βN (µ)

2ρn(µg)

[
1−

√
1− τN (µ)

]
, (33)

where τN (µ) is given by

τN (µ) =
4εN (µ)ρn(µg)

β2
N (µ)

, (34)

with εN (µ) the dual norm of the residual. The a posteriori error estimator is
stated by the following result, whose proof can be found in A.4.

Theorem 1 Let µ ∈ D, and assume that βN (µ) > 0. If problem (22) admits a
solution Uh(µ) such that

‖Uh(µ)− UN (µ)‖X ≤
βN (µ)

ρn(µg)
,
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then this solution is unique in the ball BX

(
UN (µ),

βN (µ)

ρn(µg)

)
.

Moreover, assume that τN (µ) ≤ 1 for all µ ∈ D. Then there exists a unique
solution Uh(µ) of (22) such that the error with respect UN (µ), solution of (21),
is bounded by the a posteriori error estimator, i.e.,

‖Uh(µ)− UN (µ)‖X ≤ ∆N (µ), (35)

with effectivity

∆N (µ) ≤
[

2γN (µ)

βN (µ)
+ τN (µ)

]
‖Uh(µ)− UN (µ)‖X . (36)

5 Numerical results

In this section we present some numerical results for the Boussinesq VMS-
Smagorinsky RB model. We perform three different configurations for the para-
metrical set. The first configuration corresponds to the consideration only of
physical parametrical set, fixing the value of the geometrical parameter µg = 1.
Here we consider two different scenarios depending on the Rayleigh number
range. In order to get error levels small enough for taking into account the
a posteriori error estimator, we split the Rayleigh number ranger considered,
µph ∈ [103, 106], into two ranges, µph ∈ [103, 105] and µph ∈ [105, 106].

Then, we suppose that the Rayleigh number is fixed with µph = 105, and
we consider the geometrical parameter ranging in µg ∈ D = [0.5, 2]. Finally,
we consider both the geometrical parameter and the Rayleigh number. For
this test, we consider the Rayleigh number, µph, ranging in [103, 104], and the
geometrical parameter, µg, ranging in µg ∈ [0.5, 2]. Thus we are considering
that the parameter domain is D = [103, 104]× [0.5, 2]. For all cases, the Prandtl
number considered is Pr = 0.71, that corresponds to the air Prandtl number.

In all tests, we consider no-slip boundary conditions for velocity. We also
consider homogeneous Neumann boundary condition for temperature at the top
and bottom of the cavity, and Dirichlet conditions for the vertical walls: θ = 1
for the left vertical wall and θ = 0 for the right vertical wall. Moreover, we
consider f = 0 and Q = 0 both for the momentum equation and the energy
equation, respectively.

The FE solution is computed through a semi-implicit evolution approach,
considering that the steady state solution is reached when the error between two
iterates is below εFE = 10−10. The FE solution has been computed considering
P2−P2−P1 finite elements for velocity, temperature and pressure, respectively.

With respect to the constants that appear in the a posteriori error estimator,
we explain in the following the numerical approximation of those constants. For
the constant β, we use the Radial Basis Function (RBF) algorithm in order
to compute efficiently β(µ) for all µ ∈ D. We follow the technique suggested
in [31]. Although it can not be proved that a lower bound of the constant
β as the Successive Constraint Method (SCM) is provided, the computational
time is much lower for the RBF, mainly when more than one parameter is
considered, with quite good accuracy. The constant ρn, and more precisely the
Sobolev embedding constants, are built once in the reference domain following
the algorithm proposed in [12]. Moreover, we compute the Lipschitz constant
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ρn(µg) without taking into account the term in which the mollifier takes part
of it. This term in ρn(µg) that comes from the mollifier is multiplied by a
factor of (CSh)2, that has no relevance in the value of the Lipschitz constant.
Thus, we consider accurate the approximation of the Lipschitz constant without
considering the mollifier.

5.1 Physical parametrization

In this test, we consider two different scenarios, one for the Rayleigh number
range [103, 105], an the other for the Rayleigh number range [105, 106]. In both
cases we consider the geometrical parameter fixed, with µg = 1. For the first sce-
nario, which corresponds to the lower Rayleigh number values, the heat transfer
is principally in form of diffusion, i.e., the diffusion term in the energy equation
is predominant, leading to an almost vertical linear contouring for the temper-
ature, and a recirculating motion in the core of the region is observed. As we
increase the value of the Rayleigh number in D, the flow is stretched to the walls,
especially to the vertical walls; and the heat transfer starts to be driven mainly
by convection. The isotherms become horizontal in a domain inside the cavity,
far from the walls, that increases as the Rayleigh number increases. When we
consider the second scenario, where the Rayleigh number range is higher, the
velocity in the center of the cavity is practically zero, and presents large and
normal gradients near the vertical walls. The temperature isolines are horizontal
in a large domain inside the cavity, except near the vertical walls. This behavior
agrees with the results presented in several works, e.g. [32, 33, 34]. In Fig. 2 we
show the FE velocity magnitude and temperature for µph = 4363, µph = 53778
and µph = 667746, with a fixed value of the geometrical parameter of µg = 1.

Figure 2: FE solution, velocity magnitude (top) and temperature (bottom), for
µph = 4363, µph = 53778 and µph = 667746 (left to right), µg = 1.
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We consider different meshes depending the scenario. For µph ∈ [103, 105] we
consider a uniform mesh, with 50 divisions in each square side, i.e., h = 0.02

√
2.

For µph ∈ [105, 106] we consider a finer mesh, with 70 divisions in each square
side, i.e., h = 1/70 ·

√
2, in order to reproduce efficiently the eddies near the

vertical walls appearing in this Rayleigh number range.
Concerning the time step in the evolution semi-implicit approach, we have

considered a time step ∆t = 0.01 for the case of µph ∈ [103, 105], and ∆t =
2 · 10−3 for the case µph ∈ [105, 106].

In the Reduced Basis framework, we perform an EIM for both the eddy
viscosity and eddy diffusivity. Although for the numerical analysis performed in
this work we have considered a regularized eddy diffusivity, the numerical tests
are done with the eddy diffusivity defined in (2). Since the eddy diffusivity
is proportional to the eddy viscosity, we only need to perform one EIM. With
the EIM we are able to decouple the parameter dependence of the non-linear
eddy viscosity and eddy diffusivity terms. For this test, we need M = 42 basis
until reaching a prescribed tolerance of εEIM = 5 · 10−3, when we consider
that µph ∈ [103, 105], and M = 150 basis functions when we consider the second
scenario where µph ∈ [105, 106]. In this last case, the Smagorinsky eddy viscosity
and eddy diffusivity terms become more relevant, and for this reason, we take
a lower tolerance for this test with respect to the previous one, considering
εEIM = 10−4. In Fig. 3 we show the evolution of this error for both scenarios.
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Figure 3: Error evolution for the EIM, for µph ∈ [103, 105] (left) and µph ∈
[105, 106] (right).

For the Greedy algorithm we prescribe a tolerance of εRB = 10−4 for both
scenarios. For the first scenario, when µph ∈ [103, 105], we need Nmax = 22 basis
to reach this tolerance. When N = 15, holds the condition of Theorem 1 and
τN (µ) < 1 for all µ in D. In the second scenario, when µph ∈ [105, 106], we need
N = Nmax = 64 basis functions to reach the tolerance previously prescribed,
becoming τN (µ) smaller than one when we get N = 52 basis functions. In both
cases, when τN (µ) > 1 and the a posteriori error bound is not defined, we use as
a posteriori error bound the proper τN (µ). In Fig. 4 we show the convergence
for the greedy algorithm.

In Fig. 5 (left) we show the comparison between the true error and the a
posteriori error bound when µph ∈ [103, 105], in which we can observe that the
efficiency of the a posteriori error bound is between two and three orders of
magnitude. Moreover, in Fig. 5 (right) we represent the comparison between
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the true error and the dual norm of the residual, εN (µ). For this test, we can
observe how the error correlates quite better with the dual norm of the residual
than the a posteriori error bound, but in any case, it does not give us an upper
bound of the error.

In Fig. 6 (left) we show the comparison between the true error and the
a posteriori error bound when µph ∈ [105, 106], in which we can observe that
the efficiency of the a posteriori error bound is between one and two orders of
magnitude. Moreover, in Fig. 6 (right) we represent the comparison between
the true error and the dual norm of the residual, εN (µ). For this test case, we
can see how the dual norm of the residual is much lower than the error. Thus,
the a posteriori error estimator gives us a better estimation for the error than
the dual norm of the residual.
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Figure 4: Evolution of the a posteriori error bound in the Greedy algorithm,
for µph ∈ [103, 105] (left) and µph ∈ [105, 106] (right).
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Figure 5: A posteriori error bound vs true error for N = Nmax (left) and A
posteriori error bound vs εN (µ) (right), for µph ∈ [103, 105].
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Figure 6: A posteriori error bound vs true error for N = Nmax (left) and A
posteriori error bound vs εN (µ) (right), for µph ∈ [105, 106].

Finally, in Table 5.1, we show a comparison between the FE and RB solutions
for several Rayleigh values in both scenarios. We show the computational time
for solving a FE solution and a RB solution in the online phase. As can be
observed, the speed-up rate of the computational time is larger than three orders
of magnitude when µg ∈ [103, 105], while when µg ∈ [105, 106] the speed-up rate
is close to three hundred. The difference in the speed-up magnitude between
both cases is due to the longer number of EIM and RB functions computed
in each case. In addition, we show the relative errors in H1-norm for velocity
and temperature, and in L2-norm for pressure; for which we observe that the
RB solution is close enough to the FE solution, with relative errors about 10−9

in both test cases. For this test, the offline phase when µph ∈ [103, 105] took
approximately 2 days in being performed. For the case when µph ∈ [105, 106],
the offline phase took approximately 3 weeks in be performed. In this offline
computational time we consider either the EIM and the Greedy algorithm with
the computation of the a posteriori error estimator

5.2 Geometrical parametrization

In this test, we consider a moderate Rayleigh number value Ra = 105, and we
consider the geometrical parameter ranging in µg ∈ D = [0.5, 2]. The difference
in the height of the cavity affects to the buoyancy force, making it more relevant
when we increase the parameter value. This behavior is observed in Fig. 7, in
which we show four solutions for different values of the geometrical parameter.

Firstly in the offline phase, we construct the reduced-basis space correspond-
ing to the EIM, in which we approximate properly the eddy viscosity and eddy
diffusivity terms. In this test, we need M = 73 basis functions in order to reach
a prescribed tolerance of εEIM = 10−4. In Fig. 8 (left) we show the evolution
of the infinity norm of the error between the eddy viscosity νT (µg) and its EIM
approximation.

For the Greedy algorithm, in this test, we prescribe a tolerance for the a
posteriori error bound of εRB = 10−4. We need N = 23 basis functions until
to guarantee the condition of Theorem 1, and get τN (µ) < 1. Then, we reach
the prescribed tolerance when N = Nmax = 32. In Fig. 8 (right), we show the
maximum value for all µg ∈ D of the a posteriori error estimator, and τN (µ),
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Data µph = 4060 µph = 17808 µph = 53778 µph = 93692
TFE 633.65s 585.83s 553.25s 677.86s
Tonline 0.55s 0.5s 0.46s 0.49s
speedup 1133 1151 1189 1367
‖uh − uN‖1
‖uh‖1

4.01 · 10−9 4.06 · 10−9 3.56 · 10−9 3.22 · 10−9

‖θh − θN‖1
‖θh‖1

5.59 · 10−9 4.29 · 10−9 5.36 · 10−9 4.76 · 10−9

‖ph − pN‖0
‖ph‖0

5.75 · 10−10 1.71 · 10−10 1.96 · 10−10 2.30 · 10−10

Data µph = 169411 µph = 355402 µph = 667746 µph = 921441
TFE 3563.11s 3675.01s 4354.26s 4928.37s
Tonline 9.28s 11.34s 15.22s 16.8s
speedup 383 324 285 293
‖uh − uN‖1
‖uh‖1

2.88 · 10−9 2.87 · 10−9 1.59 · 10−9 3.05 · 10−9

‖θh − θN‖1
‖θh‖1

5.93 · 10−9 5.63 · 10−9 5.11 · 10−9 4.81 · 10−9

‖ph − pN‖0
‖ph‖0

3.53 · 10−10 3.83 · 10−10 3.79 · 10−10 3.65 · 10−10

Table 1: Computational time for FE and RB solutions, with the speedup and
the error, for problem (1), Ra ∈ [103, 105] (top) and Ra ∈ [105, 106] (bottom),
µg = 1.

in each iteration of the Greedy algorithm.
In Fig. 9 (left), we show a comparison between the a posteriori error bound

and the true error for all µg ∈ D, in the last iteration of the Greedy algorithm,
i.e., when N = 32. Here we can see how the efficiency of the a posteriori
error bound is about one order of magnitude. In Fig. 9 (right), we show the
comparison between the a posteriori error bound and εN (µ). In this case, we
can observe how the dual norm of the residual is much lower than the error, and
how the a posteriori error bound fits better the true error than the dual norm
of the residual.

Finally, in Table 2, we summarize the results for several parameter values.
We show the comparison between the time for computing a FE solution, and
the online phase computational time. We obtain a speed-up rate of several
hundreds in the computational time. The RB solution accuracy is fairly good,
since the relative error is approximately of order 10−9 for velocity, temperature,
and pressure. For this test, the offline phase took approximately 5 days in being
performed. In this offline computational time we consider either the EIM and
the Greedy algorithm with the computation of the a posteriori error estimator
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Figure 7: FE snapshots for µg = 0.5, µg = 1, µg = 1.5 and µg = 2 (left to
right).
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Figure 8: Error evolution for the EIM (left) and Evolution of the a posteriori
error bound in the Greedy algorithm (right), for Boussinesq VMS-Smagorinsky
model with µg ∈ [0.5, 2].

Data µg = 0.64 µg = 1.08 µg = 1.44 µg = 1.87
TFE 808.91s 810.16s 866.1s 851.82s
Tonline 2.68s 2.55s 2.61s 2.52s
speedup 301 317 331 337
‖uh − uN‖1/‖uh‖1 3.4 · 10−9 4.12 · 10−9 5.41 · 10−9 5.68 · 10−9

‖θh − θN‖1/‖θh‖1 3.75 · 10−8 4.66 · 10−9 4.86 · 10−9 4.91 · 10−9

‖ph − pN‖0/‖ph‖0 2.51 · 10−9 3.25 · 10−9 5.51 · 10−9 4.48 · 10−9

Table 2: Computational time for FE and RB solutions, with the speed-up and
the error, for Boussinesq VMS-Smagorinsky model with µg ∈ [0.5, 2].

5.3 Physical and geometrical parametrization

In this test, we perform a RB model in which a physical parameter (the Rayleigh
number), and a geometric parameter are taken into account. Due to the in-
creasing complexity in the flux with the consideration of this two parameters,
we consider low range of Rayleigh number.

Thus, we consider that µ = (µph, µg) ∈ D = [103, 104]×[0.5, 2]. If we wanted
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Figure 9: A posteriori error bound for N = Nmax = 32.

to increase the Rayleigh number, we would have to consider a smaller interval
for the geometric parameter. Indeed, as shown in sect. 5.1, the flow for high
Rayleigh values is quite complex, thus the consideration of geometric parameter
joint with the physical parameter is only possible if both intervals are not too
big. If a big parameter set is required, a possible strategy is to split it in subsets
of smaller amplitude.

For the EIM, in this test, we prescribe a tolerance of εEIM = 10−3. The
error between νT (uh;µ) and its interpolant fits this tolerance when M = 138
basis functions are included in the EIM reduced-basis space. In Fig. 10 (left)
we show the evolution of that error along the Greedy algorithm in the EIM.
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Figure 10: Error evolution for the EIM, for Boussinesq VMS-Smagorinsky model
with µ ∈ [103, 104]× [0.5, 2].

For the Greedy algorithm in the offline phase we prescribe a tolerance of
εRB = 10−3. This tolerance is reached when N = Nmax = 54 basis functions
are considered. We need N = 46 basis functions to get τN (µ) < 1, satisfying
the conditions of Theorem 1, and having defined the a posteriori error bound
∆N (µ). In Fig. 10 (left) we show the evolution of the maximum value of τN (µ)
and ∆N (µ) in the Greedy algorithm. On the other hand, in Fig. 11 we show the
value of the a posteriori error estimator, when N = Nmax = 54, for all µ ∈ D.

Finally, in Table 3 we sumarize some results obtained for some values of
µ ∈ D. There we show that the relative error between the FE solution and
the RB solution is between order 10−7 and 10−9 for velocity and temperature,
and between order 10−8 and 10−9 for pressure. For this test, the speedup
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Figure 11: A posteriori error bound for Nmax = 54.

rate obtained in the computation of the RB solution in the online phase with
respect the computation of the FE solution is around fifty, due to the large
number of EIM and RB basis functions needed, and the lower computational
effort in the FE computation. Again, we have obtained a good accuracy in the
RB solution with respect to the FE solution, with a considerable decrease of the
computational time. For this test, the offline phase took approximately 2 weeks
in being performed. In this offline computational time we consider either the
EIM and the Greedy algorithm with the computation of the a posteriori error
estimator.

Data Ra = 2143 Ra = 3506 Ra = 5922 Ra = 9618
µg = 1.95 µg = 0.71 µg = 1.13 µg = 1.63

TFE 600.96s 914.18s 684.95s 630.94s
Tonline 11.08s 15.73s 14.52s 11.46s
speedup 54 58 47 55
‖uh − uN‖1/‖uh‖1 2.07 · 10−7 3.91 · 10−7 6.52 · 10−8 4.18 · 10−8

‖θh − θN‖1/‖θh‖1 1.29 · 10−7 3.75 · 10−7 3.17 · 10−8 1.19 · 10−8

‖ph − pN‖0‖ph‖0 1.56 · 10−8 4.21 · 10−8 5.57 · 10−9 1.52 · 10−9

Table 3: Computational time for FE and RB solutions, with the speedup and
the error, for Boussinesq VMS-Smagorinsky model with µ ∈ [103, 104]× [0.5, 2].

6 Conclusions

In this work, we have developed a reduced turbulence model for buoyant flows
in domains with geometrical variability. Specifically, we have dealt with the RB
Boussinesq VMS-Smagorinsky model, for a variable height cavity. To represent
this variability in the cavity height, we have parametrized the domain. Thus,
we needed to reformulate our problem in a reference domain, which does not
depend on the geometric parameter. As main technical tool, we have developed
an a posteriori error estimator for the greedy algorithm involved in the reduced

21



basis space construction. This construction is based upon the Brezzi-Rappaz-
Raviart theory. We had to regularize the eddy viscosity for temperature, in
order to ensure that the Boussinesq-Smagorinsky operator is locally Lipschitz-
continuous.

Moreover, we have presented three different tests, considering geometrical
parameters, physical parameters, or both. For each test, we obtained an accu-
rate RB solution with a speedup rate going from one thousand in the simplest
case, to fifty in the most complex case from one thousand for variability of only
the physical parameter with diffusion-dominant effects, to nearly fifty for both
geometrical and physical parameter variability.
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A Proofs of theoretical results

A.1 Proof of Proposition 1

We consider Zh = Vh in ∂1A(Uh, Vh;µ)(Vh). We first start bounding the diffu-
sive terms for velocity and temperature, obtaining:

au,x(v,v;µ) + au,y(v,v;µ) + aθ,x(θv, θv;µ) + aθ,y(θv, θv;µ)

≥ min

{
µg,

1

µg

}
(Pr‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω).

(37)

Denoting by CP the Poincare’s constant, and considering the Holder’s and
Young’s inequalities, the buoyancy term is bounded as

f(θv,v;µ) ≥ −Prµgµ‖θvh‖0,2,Ω‖vh‖0,2,Ω ≥ −
CPPrµgµ

2
(‖θvh‖20,2,Ω + ‖vh‖20,2,Ω).

(38)
Recalling the Sobolev embedding constants Cu and Cθ, defined in (3) and

(4) respectively, we bound the following velocity convective terms as

cu,x(vh,uh,vh;µ) + cu,y(vh,uh,vh;µ) ≥ −|min{µg, 1}(vh · ∇uh,vh)Ω|
≥ −min{µg, 1}‖‖vh‖20,4,Ω‖uh‖0,2,Ω ≥ −min{µg, 1}C2

u‖∇uh‖0,2,Ω‖∇vh‖20,2,Ω.
(39)

The remaining convective terms can be bounded analogously, obtaining that

cu,x(vh,uh,vh;µ) + cu,x(uh,vh,vh;µ) + cu,y(vh,uh,vh;µ)
+cu,y(uh,vh,vh;µ) + cθ,x(vh, θ

u
h, θ

v
h;µ) + cθ,x(uh, θ

v
h, θ

v
h;µ)

+cθ,y(vh, θ
u
h, θ

v
h;µ) + cθ,y(uh, θ

v
h, θ

v
h;µ)

≥ −min{µg, 1}(2C2
u‖∇uh‖0,2,Ω‖∇vh‖20,2,Ω + 2CuCθ‖∇θuh‖0,2,Ω‖∇θv‖20,2,Ω).

(40)
For what concerns to the VMS-Smagorinsky terms, it holds

a′Su,x(uh;vh,vh;µ) + a′Su,y(uh;vh,vh;µ) + a′Sθ,nx(uh; θvh, θ
v
h;µ)

+a′Sθ,ny(uh; θvh, θ
v
h;µ) ≥ 0,

(41)

and

µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂x(Π∗hu1)∂x(Π∗hv1) + ∂x(Π∗hu2)∂x(Π∗hv2)] dΩr

+
1

µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂y(Π∗hu1)∂y(Π∗hv1) + ∂y(Π∗hu2)∂y(Π∗hv2)] dΩr

≥ min

{
µg,

1

µg
, 1,

1

µ2
g

} ∑
K∈Th

∫
K

C2
S

1 + µ2
g

N2
h

|∇(Π∗huh) : ∇(Π∗hvh)|2

|∇(T−1uh)|
dΩ ≥ 0.

(42)
Finally, using the local inverse inequalities (cf. [35]), we have that

µg
Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂x(Π∗hθ
u)∂x(Π∗hθ

v) dΩr

+
1

µg Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂y(Π∗hθ
u)∂y(Π∗hθ

v dΩr)
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≥ −C(µ, ‖φ′n‖0,1,R)‖∇uh‖0,2,Ω‖∇θuh‖0,2,Ω‖∇vh‖0,2,Ω‖∇θvh‖0,2,Ω

≥ −C(µ, ‖φ′n‖0,1,R)

2
‖∇uh‖0,2,Ω‖∇θuh‖0,2,Ω(‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω),

with

C(µ, ‖φ′n‖0,1,R) =

min

{
µg,

1

µg

}
C2
S

(√
µ2
g + 1

N2
h

)2−d

C4
fC‖φ′n‖0,1,R

Pr
.

Thus, taking into account all the previous bounds, we have proved that if
(25) and (26) are verified, then there exists β̃(µ) > 0 such that

∂1A(Uh, Vh;µ)(Vh) ≥ β̃(µ)(‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω)∀Vh ∈ Xh.

A.2 Proof of Proposition 2

We consider Zh = Vh in ∂1A(Uh, Vh;µ)(Vh). We first start bounding the diffu-
sive terms for velocity and temperature, obtaining:

au,x(v,v;µ) + au,y(v,v;µ) + aθ,x(θv, θv;µ) + aθ,y(θv, θv;µ)

≥ min

{
µg,

1

µg

}
(Pr‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω).

(43)

Denoting by CP the Poincare’s constant, and considering the Holder’s and
Young’s inequalities, the buoyancy term is bounded as

f(θv,v;µ) ≥ −Prµgµ‖θvh‖0,2,Ω‖vh‖0,2,Ω ≥ −
CPPrµgµ

2
(‖θvh‖20,2,Ω + ‖vh‖20,2,Ω).

(44)
Recalling the Sobolev embedding constants Cu and Cθ, defined in (3) and

(4) respectively, we bound the following velocity convective terms as

cu,x(vh,uh,vh;µ) + cu,y(vh,uh,vh;µ) ≥ −|min{µg, 1}(vh · ∇uh,vh)Ω|
≥ −min{µg, 1}‖‖vh‖20,4,Ω‖uh‖0,2,Ω ≥ −min{µg, 1}C2

u‖∇uh‖0,2,Ω‖∇vh‖20,2,Ω.
(45)

The remaining convective terms can be bounded analogously, obtaining that

cu,x(vh,uh,vh;µ) + cu,x(uh,vh,vh;µ) + cu,y(vh,uh,vh;µ)
+cu,y(uh,vh,vh;µ) + cθ,x(vh, θ

u
h, θ

v
h;µ) + cθ,x(uh, θ

v
h, θ

v
h;µ)

+cθ,y(vh, θ
u
h, θ

v
h;µ) + cθ,y(uh, θ

v
h, θ

v
h;µ)

≥ −min{µg, 1}(2C2
u‖∇uh‖0,2,Ω‖∇vh‖20,2,Ω + 2CuCθ‖∇θuh‖0,2,Ω‖∇θv‖20,2,Ω).

(46)
For what concerns to the VMS-Smagorinsky terms, it holds

a′Su,x(uh;vh,vh;µ) + a′Su,y(uh;vh,vh;µ) + a′Sθ,nx(uh; θvh, θ
v
h;µ)

+a′Sθ,ny(uh; θvh, θ
v
h;µ) ≥ 0,

(47)
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and

µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂x(Π∗hu1)∂x(Π∗hv1) + ∂x(Π∗hu2)∂x(Π∗hv2)] dΩr

+
1

µg

∫
Ωr

∂1νT (Π∗hu)(Π∗hz)[∂y(Π∗hu1)∂y(Π∗hv1) + ∂y(Π∗hu2)∂y(Π∗hv2)] dΩr

≥ min

{
µg,

1

µg
, 1,

1

µ2
g

} ∑
K∈Th

∫
K

C2
S

1 + µ2
g

N2
h

|∇(Π∗huh) : ∇(Π∗hvh)|2

|∇(T−1uh)|
dΩ ≥ 0.

(48)
Finally, using the local inverse inequalities (cf. [35]), we have that

µg
Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂x(Π∗hθ
u)∂x(Π∗hθ

v) dΩr

+
1

µg Pr

∫
Ωr

∂1νT,n(Π∗hu)(Π∗hz) ∂y(Π∗hθ
u)∂y(Π∗hθ

v dΩr)

≥ −C(µ, ‖φ′n‖0,1,R)‖∇uh‖0,2,Ω‖∇θuh‖0,2,Ω‖∇vh‖0,2,Ω‖∇θvh‖0,2,Ω

≥ −C(µ, ‖φ′n‖0,1,R)

2
‖∇uh‖0,2,Ω‖∇θuh‖0,2,Ω(‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω),

with

C(µ, ‖φ′n‖0,1,R) =

min

{
µg,

1

µg

}
C2
S

(√
µ2
g + 1

N2
h

)2−d

C4
fC‖φ′n‖0,1,R

Pr
.

Thus, taking into account all the previous bounds, we have proved that if
(25) and (26) are verified, then there exists β̃(µ) > 0 such that

∂1A(Uh, Vh;µ)(Vh) ≥ β̃(µ)(‖∇vh‖20,2,Ω + ‖∇θvh‖20,2,Ω)∀Vh ∈ Xh.

A.3 Proof of Lemma 1

Thanks to the triangular inequality, it holds∣∣∂1A(U1
h , Vh;µ)(Zh)− ∂1A(U2

h , Vh;µ)(Zh)
∣∣

≤ max{1, µg}|(zh · ∇(u1
h − u2

h),vh)Ωr
|+ max{1, µg}|((u1

h − u2
h) · ∇zh,vh)Ωr

|

+ max{1, µg}|(zh · ∇(θu1
h − θu2

h ), θvh)Ωr
|+ max{1, µg}|((u1

h − u2
h) · ∇θzh, θvh)Ωr

|

+ max

{
µg,

1

µg

}
|(νT (u1

h;µ)− νT (u2
h;µ))∇(Π∗hzh),∇(Π∗hvh))Ωr

|

+ max

{
µg,

1

µg

}
|(νT,n(u1

h;µ)− νT,n(u2
h;µ))∇(Π∗hθ

z
h),∇(Π∗hθ

v
h))Ωr

|

+ max

{
µg,

1

µg

} ∣∣∣(∂1νT (Π∗hu
1
h)(Π∗hzh)∇(Π∗hu

1
h),∇(Π∗hvh))Ωr

−(∂1νT (Π∗hu
2
h)(Π∗hzh)∇(Π∗hu

2
h),∇(Π∗hvh))Ωr

∣∣∣
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+ max

{
µg,

1

µg

} ∣∣∣(∂1νT,n(Π∗hu
1
h)(Π∗hzh)∇(Π∗hθ

u1
h ),∇(Π∗hθ

v
h))Ωr

−(∂1νT,n(Π∗hu
2
h)(Π∗hzh)∇(Π∗hθ

u2
h ),∇(Π∗hθ

v
h))Ωr

∣∣∣
We bound each term separately. The first four terms, corresponding with the

convective terms are bounded analogously. For brevity, we show one of them.
Thus, considering the Sobolev embedding constants (3) and (4),

|(zh · ∇(θu1
h − θu2

h ), θvh)Ωr | ≤ ‖zh‖0,4,Ω‖∇(θu1
h − θu2

h )‖0,2,Ω‖θvh‖0,4,Ω
≤ CuCθ‖U1

h − U2
h‖X‖Zh‖X‖Vh‖X

(49)

The VMS-Smagorinsky terms for eddy viscosity and eddy diffusivity are also
bounded in a similar way. We show the boundness of the eddy diffusivity term,
for which we take into account inequality (15), the inverse inequalities (cf. [35])
and the properties of the convolution, recalling that ‖φn‖0,1,R = 1,

|(νT,n(u1
h;µ)− νT,n(u2

h;µ))∇(Π∗hθ
z
h),∇(Π∗hθ

v
h))Ωr |

≤ (CSh)2‖φn‖0,1,R‖∇(Π∗hu
1
h −Π∗hu

2
h)‖0,3,Ω‖∇(Π∗hθ

z
h)‖0,3,Ω‖∇(Π∗hθ

v
h)‖0,3,Ω

≤ C2
Sh

2−d/2C3
f‖U1

h − U2
h‖X‖Zh‖X‖Vh‖X

(50)
Taking into account inequality (15), the seventh term can be bounded as in

Lemma 5.1 of [17]. We resume the bound in the following∣∣∣(∂1νT (Π∗hu
1
h)(Π∗hzh)∇(Π∗hu

1
h),∇(Π∗hvh))Ωr

−(∂1νT (Π∗hu
2
h)(Π∗hzh)∇(Π∗hu

2
h),∇(Π∗hvh))Ωr

∣∣∣
≤ (CSh)2‖∇z‖0,3,Ω‖∇(u1

h − u2
h)‖0,3,Ω‖∇vh‖0,3,Ω

+(CSh)2‖∇(u1
h − u2

h)‖0,3,Ω‖∇z‖0,3,Ω‖∇vh‖0,3,Ω
+(CSh)2‖∇(u1

h − u2
h)‖0,3,Ω‖∇z‖0,3,Ω‖∇vh‖0,3,Ω

≤ 3CSh
2−d/2C‖∇(u1

h − u2
h)‖0,2,Ω‖∇z‖0,2,Ω‖∇vh‖0,2,Ω

≤ 3CSh
2−d/2C‖U1

h − U2
h‖X‖Zh‖X‖Vh‖X .

Finally, we next show the bound of the last term, taking into account again
the inverse inequalities and the Sobolev embedding constants:∣∣(∂1νT,n(Π∗hu

1
h)(Π∗hzh)∇(Π∗hθ

u1
h ),∇(Π∗hθ

v
h))Ωr

−(∂1νT,n(Π∗hu
2
h)(Π∗hzh)∇(Π∗hθ

u2
h ),∇(Π∗hθ

v
h))Ωr

∣∣
≤
∣∣(∂1νT,n(Π∗hu

1
h)(Π∗hzh)∇(Π∗h(θu1

h − θu2
h ),∇(Π∗hθ

v
h))Ωr

∣∣
+
∣∣[(∂1νT,n(Π∗hu

2
h)(Π∗hzh)− (∂1νT,n(Π∗hu

2
h)(Π∗hzh)]∇(Π∗hθ

u2
h ),∇(Π∗hθ

v
h))Ωr

∣∣
≤ C1(‖Π∗h(∇u1

h)‖0,∞,Ω)‖∇zh‖0,2,Ω‖∇(θu1
h − θu2

h )‖0,2,Ω‖θvh‖0,2,Ω
+C2(‖Π∗h(∇θu2

h )‖0,∞,Ω)‖∇zh‖0,2,Ω‖∇(u1
h − uh2)‖0,2,Ω‖θvh‖0,2,Ω

≤ [C1(‖Π∗h(∇u1
h)‖0,∞,Ω) + C2(‖Π∗h(∇θu2

h )‖0,∞,Ω)]‖U1
h − U2

h‖X‖Zh‖X‖Vh‖X .
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A.4 Proof of Theorem 1

This proof is an adaptation of the proofs of Theorems 5.2 and 5.3 of [17] and
Theorem 3.3 of [12].

We define the following operators:

• R(·;µ) : Xh → X ′h, defined as

〈R(Zh;µ), Vh〉 = A(Zh, Vh;µ)− F (Vh;µ), ∀Zh, Vh ∈ Xh (51)

• DA(Uh(µ);µ) : Xh → X ′h, defined, for Uh(µ) ∈ Xh, as

〈DA(Uh(µ);µ)Zh, Vh〉 = ∂1A(Uh(µ), Vh;µ)(Zh), ∀Zh, Vh ∈ Xh (52)

• H : Xh → Xh, defined as

H(Zh;µ) = Zh −DA(UN (µ);µ)−1R(Zh;µ), ∀Zh ∈ Xh (53)

Note that DA(UN (µ);µ) is invertible thanks to the assumption βN (µ) > 0.
. We express

H(Z1
h;µ)−H(Z2

h;µ) = (Z1
h − Z2

h)−DA(UN (µ);µ)−1(R(Z1
h;µ)−R(Z2

h;µ)).
(54)

It holds
R(Z1

h;µ)−R(Z2
h;µ) = DA(ξ;µ)(Z1

h − Z2
h), (55)

where ξ = λZ1
h−(1−λ)Z2

h, for some λ ∈ (0, 1). Multiplying (54) byDA(UN (µ);µ)
and applying this last property, we can write

DA(UN (µ);µ)(H(Z1
h;µ)−H(Z2

h;µ)) = [DA(UN (µ);µ)−DA(ξ;µ)] (Z1
h−Z2

h).

Then, thanks to Lemma 1 and this last equality, it follows that in a neigh-
borhood of UN (µ) and ξ,〈

DA(UN (µ);µ)(H(Z1
h;µ)−H(Z2

h;µ)), Vh
〉

≤ ρn(µg)‖UN (µ)− ξ‖X‖Z1
h − Z2

h‖X‖Vh‖X .

Now, applying the definitions of βN (µ), TN , DA(UN (µ);µ), and this last
property, we can obtain

βN (µ)‖H(Z1
h;µ)−H(Z2

h;µ)‖X‖TN (H(Z1
h;µ)−H(Z2

h;µ))‖X

≤ ‖TN (H(Z1
h;µ)−H(Z2

h;µ))‖2X
=
(
TN (H(Z1

h;µ)−H(Z2
h;µ);µ), TN (H(Z1

h;µ)−H(Z2
h;µ);µ)

)
X

=
〈
DA(UN (µ);µ)(H(Z1

h;µ)−H(Z2
h;µ)), TN (H(Z1

h;µ)−H(Z2
h;µ);µ)

〉
≤ ρn(µg)‖UN (µ)− ξ‖X‖Z1

h − Z2
h‖X‖TN (H(Z1

h;µ)−H(Z2
h;µ);µ)‖X

So, we have proved that

‖H(Z1
h;µ)−H(Z2

h;µ)‖X ≤
ρn(µg)

βN (µ)
‖UN (µ)− ξ‖X‖Z1

h − Z2
h‖X .
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If Z1
h and Z2

h are in BX(UN (µ), α) then, ‖UN (µ)− ξ‖X ≤ α, and,

‖H(Z1
h;µ)−H(Z2

h;µ)‖X ≤
ρn(µg)

βN (µ)
α‖Z1

h − Z2
h‖X .

Then, H(·;µ) is a contraction if α <
βN (µ)

ρn(µg)
. So it follows that there can

exist at most one fixed point of H(·;µ) inside BX

(
UN (µ),

βN (µ)

ρn(µg)

)
, and hence,

at most one solution Uh(µ) to (22) in this ball.
To prove (35), we prove that the operator H(·;µ) has a fixed point. Thus,

let α > 0 and Zh ∈ Xh such that ‖UN (µ)− Zh‖X ≤ α. We consider

H(Zh;µ)− UN (µ) = Zh − UN (µ)−DA(UN (µ);µ)−1R(Zh;µ)

= Zh − UN (µ)−DA(UN (µ);µ)−1 [R(Zh;µ)−R(UN (µ);µ)]

−DA(UN (µ);µ)−1R(UN (µ);µ)

Multiplying by DA(UN (µ);µ), we obtain

〈DA(UN (µ);µ)(H(Zh;µ)− UN (µ)), Vh〉 = 〈DA(UN (µ);µ)(Zh − UN (µ)), Vh〉

− 〈R(Zh;µ)−R(UN (µ);µ), Vh〉 − 〈R(UN (µ);µ), Vh〉 , ∀Vh ∈ Xh.

It holds that R(Zh;µ) −R(UN (µ);µ) = DA(ξ(µ);µ)(Zh − UN (µ)), where
ξ(µ) = t∗Zh + (1− t∗)UN (µ), t∗ ∈ (0, 1).

Thus, Lemma 1 and this last equality, it follows that in a neighborhood of
UN (µ) and ξ(µ), we obtain:

〈DA(UN (µ);µ)(H(Zh;µ)− UN (µ)), Vh〉 = 〈DA(UN (µ);µ)(Zh − UN (µ)), Vh〉

− 〈DA(ξ(µ);µ)(Zh − UN (µ)), Vh〉 − 〈R(UN (µ);µ), Vh〉
≤ ρn(µg)‖UN (µ)− ξ(µ)‖X‖Zh − UN (µ)‖X‖Vh‖X + εN (µ)‖Vh‖X

≤
(
ρn(µg)‖Zh − UN (µ)‖2X + εN (µ)

)
‖Vh‖X

Thus, it follows that,

βN (µ)‖H(Zh;µ)− UN (µ)‖X‖TµN (H(Zh;µ)− UN (µ))‖X

≤ ‖TµN (H(Zh;µ)− UN (µ))‖2X
≤
(
ρn(µg)‖Zh − UN (µ)‖2X + εN (µ)

)
‖TµN (H(Zh;µ)− UN (µ))‖X .

Then, as Zh ∈ BX (UN (µ), α), we have

‖H(Zh;µ)− UN (µ)‖X <
ρn(µg)

βN (µ)
α2 +

εN (µ)

βN (µ)
. (56)

In order to ensure that H maps BX(UN (µ), α) into a part of itself, we are

seeking the values of α such that
ρn(µg)

βN (µ)
α2 +

εN (µ)

βN (µ)
≤ α. This condition is

verified for α = ∆N (µ). Consequently, since ∆N (µ) ≤ βN (µ)

ρn(µg)
, there exists a

unique solution Uh(µ) to (22) in the ball BX(UN (µ), α).
Finally, (36), can be proved analogously as in [17].
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