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Abstract

In Isogeometric Analysis, the computational domain is often described as multi-patch, where each patch
is given by a tensor product spline/NURBS parametrization. In this work we propose a FETI-like solver
where local inexact solvers exploit the tensor product structure at the patch level. To this purpose, we
extend to the isogeometric framework the so-called All-Floating variant of FETI, that allows us to use the
Fast Diagonalization method at the patch level. We construct then a preconditioner for the whole system
and prove its robustness with respect to the local mesh-size h and patch-size H (i.e., we have scalability).
Our numerical tests confirm the theory and also show a favourable dependence of the computational cost of
the method from the spline degree p.

Keywords: Isogeometric Analysis, domain decomposition, FETI, IETI, preconditioners, Fast Diagonaliza-
tion.

1 Introduction

Isogeometric Analysis (IgA) was introduced in the seminal paper [19] as an extension of finite element analysis.
The key idea is to use the same basis functions that describe the computational domain, typically B-splines,
NURBS or extensions, also to represent the unknown solution of the partial differential equations.

In this work, we are concerned with the numerical solution of large isogeometric compressible linear elasticity
problems in multi-patch domains, that is, domains defined as the union of several patches, each described by
a different tensor product spline/NURBS parametrization (see [8]). Knowing the advantages that come from
the use of high-degree and high-continuity spline approximation (see for example [13, 1, 32, 36, 5, 34]), we are
particularly interested in this case. It is also known that the development of linear solvers, both direct and
iterative, for high-degree splines is a challenging task, see [7, 6].

Our starting point is [33], where it has been shown the potential of the Fast Diagonalization (FD) method
to construct fast solvers for elliptic isogeometric problems. The FD method is a direct solver introduced in [22],
that can be applied to problems with a Sylvester-like structure. In general, elliptic isogeometric problems do
not possess the required Sylvester-like structure, even on a single patch, unless the patch parametrization is
trivial. However, [33] constructs efficient preconditioners (that is, inexact solvers) with the required structure
on a single patch. Similarly, here we use FD as an inexact and fast solver for problems at the patch level.

Our approach is based on the Finite Element Tearing and Interconnecting (FETI) idea, that, after its
appearance in [15], has been widely developed and adopted in finite element solvers, see [37]. IETI, the
isogeometric version of FETI, has been introduced in [21]. In particular, we develop in this paper an All-
Floating IETI (in short AF-IETI) method, the isogeometric version of the All-Floating FETI introduced in [27],
which is in turn similar to the so-called total-FETI of [12]. With this variant of FETI, both the global continuity
of the solution and the Dirichlet boundary conditions are weakly imposed by Lagrange multipliers. The choice
of the AF-IETI formulation is crucial for us since it yields the Sylvester-like structure that we need to use FD
as inexact local solver. To allow inexact solvers, a saddle point formulation as in [20] is also required.
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To show the potential of the proposed inexact AF-IETI, we compare numerically its performance to AF-
IETI with the exact local solvers. Our results indicate that the inexact approach requires orders of magnitude
less time than the exact one. Moreover, and perhaps even more important, numerical tests indicate that the
performance of the preconditioner does not deteriorate as the degree p is increased.

Domain decomposition methods represent an active research area in isogeometric analysis. We recall the
overlapping Schwarz methods studied in [4, 2], the BDDC methods with related preconditioners studied from [3],
the dual-primal approach introduced in [21] and further studied in [17, 28]. Domain decomposition approaches
with inexact local solvers have been studied in [18, 35]. The case of trimmed domains has ben recently addressed
in [10]

The paper is organized as follows. In Section 2 we present the basics of multi-patch based IgA and in
Section 3 we introduce the model problem as well as its discrete formulation. The AF-IETI method is described
in Section 4, while exact and inexact local solvers are introduced and analyzed in Section 5. Numerical results
are reported in Section 6 and, finally, Section 7 contains some conclusions and future directions of research.

2 Preliminaries

2.1 B-splines

Given two integers m, p > 0, we introduce a knot vector Ξ := {0 = ξ1 ≤ . . . ≤ ξm+p+1 = 1} in the interval
[0, 1], where m and p are, respectively, the number of basis functions that will be built from the knot vector
and their polynomial degree. We consider open knot vectors, i.e. we set ξ1 = . . . = ξp+1 = 0 and ξm+1 =
. . . = ξm+p+1 = 1. Following Cox-de Boor recursion formulas [9], univariate B-splines are piecewise polynomials
defined for i = 1, . . . ,m as follows:

for p = 0

b̂i,0(η) =

{
1 if ξi ≤ η < ξi+1,

0 otherwise,

for p ≥ 1

b̂i,p(η) =


η − ξi
ξi+p − ξi

b̂i,p−1(η) +
ξi+p+1 − η
ξi+p+1 − ξi+1

b̂i+1,p−1(η) if ξi ≤ η < ξi+p+1,

0 otherwise,

where we adopted the convention 0
0 = 0. The multiplicity of the internal knots influences the smoothness of the

B-splines (see [8]). The corresponding univariate spline space is defined as

Ŝp := span{b̂i,p}mi=1.

We also introduce the mesh-size h := max{ξi+1− ξi | i = 1, . . . ,m+ p}. We remark that the first and last basis

function are nodal at the endpoint of the unit interval, i.e. b̂1,p (0) = b̂m,p (1) = 1.
We consider multivariate B-splines as tensor products of univariate ones. In particular, for d-dimensional

problems, given 2d integersml, pl > 0 for l = 1, . . . , d, we introduce d univariate knot vectors Ξl := {ξl,1, . . . , ξl,ml+pl+1}
for l = 1, .., d and the corresponding mesh-sizes denoted with hl for l = 1, .., d. For simplicity we suppose that
the degree of the B-splines is the same in all parametric direction, i.e. we set p1 = · · · = pd =: p, but the general
case is similar. For a multi-index i = (i1, . . . , id), we define the multivariate B-spline as follows

B̂i,p(η) := b̂i1,p(η1) . . . b̂id,p(ηd)

where η = (η1, . . . , ηd). Hence, the multivariate spline space on the parametric domain Ω̂ := [0, 1]
d

is defined as

Ŝp := Ŝp × · · · × Ŝp︸ ︷︷ ︸
d

= span{B̂i,p | il = 1, . . . ,ml; l = 1, . . . , d}.

We also introduce the global mesh-size, defined as h := max{hl | l = 1, . . . , d}.
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2.2 Multi-patch domains

Let Ω ⊂ Rd be the union ofNpatch isogeometric patches, i.e Ω =
⋃Npatch

k=1 Ω
(k)

and Ω(j)∩Ω(k) = ∅ for j 6= k. In the
present approach, these patches coincide with the non-overlapping subdomains whose prescription is the starting
point of every FETI method. Let H(k) be the diameter of Ω(k) for k = 1, . . . ,Npatch and H := max{H(k) | k =

1, . . . ,Npatch}. For each patch, given d + 1 integers m
(k)
1 , . . . ,m

(k)
d , p(k) > 0, we introduce open knot vectors

Ξ
(k)
l := {0 = ξ

(k)
1 ≤ . . . ≤ ξ

(k)

m
(k)
l +p(k)+1

= 1} for l = 1, . . . , d and the local mesh-size h(k). For simplicity, we

suppose that the degree of the B-splines is the same in each patch, i.e. we set p(1) = · · · = p(Npatch) =: p, even if
the general case is similar. Let also h := max{h(k) | k = 1, . . . ,Npatch}. We will make the following assumption
on the quasi-regularity of the meshes and on the diameter of the patches.

Assumption 1. There exists α ∈ (0, 1], independent of h(k) and H(k) for k = 1, . . . ,Npatch, such that each

non-empty knot span (ξ
(k)
l,i , ξ

(k)
l,i+1) fulfils αh(k) ≤ ξ

(k)
l,i+1 − ξ

(k)
l,i ≤ h(k) for i = 1, . . .m

(k)
l + p, for l = 1, . . . d and

for k = 1, . . . ,Npatch and each H(k) fulfils αH ≤ H(k) ≤ H for k = 1, . . . ,Npatch.

We denote the multivariate spline-space associated as Ŝ
(k)

p := span{B̂(k)
i,p | il = 1, . . . ,m

(k)
l ; l = 1, . . . , d}. By

introducing a colexicographical reordering of the basis functions, we have

Ŝ
(k)

p := span
{
B̂

(k)
i,p | i = 1, . . . , n(k)

}
,

where n(k) := dim(Ŝ
(k)

p ). Each Ω(k) is represented by a non-singular spline parametrization F (k) ∈
[
Ŝ

(k)

p

]d
,

i.e. Ω(k) = F (k)(Ω̂) and the Jacobian matrix JF(k) is invertible everywhere. According to the isoparametric
concept, the isogeometric space on each patch is defined as

V
(k)
h := span

{
B

(k)
i,p := B̂

(k)
i,p ◦

(
F (k)

)−1
∣∣∣∣ i = 1, . . . , n(k)

}
, (2.1)

while the isogeometric space over Ω is defined as

Vh := Π
Npatch

k=1 V
(k)
h =

{
v ∈ L2(Ω)

∣∣∣∣ v|Ω(k)
∈ V (k)

h , k = 1, . . . ,Npatch
}
.

Note that functions in Vh are not necessarily continuous.
Through this paper, we consider both conforming and non-conforming meshes at the patch interfaces. In

the first case, for all j and k s.t. ∂Ω(k) ∩ ∂Ω(j) 6= ∅ and this intersection is not a point, Ω(k) and Ω(j) are fully
matching (see [19]). In the second case, we allow that on a given interface the knot vector of one patch can be
more refined than the knot vector of an adjacent patch (see Figure 1a in Section 6). With this assumption, we
have that splines of the coarser side can be written as a linear combination of splines of the finer one.

3 Model problem and its discretization

Let Ω ⊂ Rd be a computational domain described by a multi-patch spline parametrization, as in Section 2.2,
and let ∂Ω denote its boundary. Suppose that ∂Ω = ∂ΩD ∪∂ΩN with ∂ΩD ∩∂ΩN = ∅, where ∂ΩD has positive
measure. Let f ∈ [L2(Ω)]d, g ∈ [L2(∂ΩN )]d and H1

D(Ω) := {v ∈ H1(Ω) s.t. v = 0 on ∂ΩD}. Then, the
variational formulation of the compressible linear elasticity problem we consider reads:

Find u ∈ [H1
D(Ω)]d s.t. for all v ∈ [H1

D(Ω)]d

a(u,v) = 〈F ,v〉,
where we define

a(u,v) := 2µ

∫
Ω

ε(u) : ε(v) dx+ λ

∫
Ω

(∇ · u) (∇ · v) dx, 〈F ,v〉 :=

∫
Ω

f · v dx+

∫
∂ΩN

g · v ds (3.1)

and where we used the notation ε(v) := 1
2

(
∇v + (∇v)T

)
for the symmetric gradient, while λ and µ denote the

material Lamé coefficients.
The corresponding discrete problem we want to solve is then

Find uh ∈ [Vh ∩H1
D(Ω)]d s.t. for all vh ∈ [Vh ∩H1

D(Ω)]d

a(uh,vh) = 〈F ,vh〉. (3.2)
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4 All-Floating IETI method

In this section, we present the All-Floating IETI (AF-IETI) method, an extension to IgA of the AF-FETI
method, introduced in [30], (see also [29]). In this formulation, the FETI interface includes the whole boundary
∂Ω without distinction between Dirichlet and Neumann boundary.

Let Ω be the computational domain described as the union of Npatch isogeometric patches Ω(k) for k =
1, . . . ,Npatch, as detailed in Section 2.2. We work with the computational spaces

V(k)
h :=

[
V

(k)
h

]d
and Vh := Π

Npatch

k=1 V(k)
h , (4.1)

where V
(k)
h is defined in (2.1). Note that the space Vh above does not include any boundary condition or

continuity condition across the patch boundaries, unlike the space [Vh ∩H1
D(Ω)]d used in problem (3.2). Let

N (k)
dof := dim

(
V(k)
h

)
=
[
n(k)

]d
and Ndof := dim (Vh) =

Npatch∑
k=1

N (k)
dof

denote the dimension of the k−th local space for k = 1, . . . ,Npatch, and the dimension of the whole space,

respectively. Each function v
(k)
h ∈ V(k)

h is uniquely represented by a coordinate vector v(k) ∈ RN
(k)
dof . Similarly,

each function vh ∈ Vh is associated to a coordinate vector v ∈ RNdof of the form

v :=

 v(1)

...
v(Npatch)

 .
We assemble the local stiffness matrices A(k) and local right-hand-side vectors f (k) by integrating the appro-

priate expressions over individual patches Ω(k) for k = 1, . . . ,Npatch. The matrices A(k) for k = 1, . . . ,Npatch
are symmetric, positive semidefinite and singular. We then define the block-diagonal matrix A and the load
vector f as

A :=

A(1)

. . .

A(Npatch)

 ∈ RNdof×Ndof and f :=

 f (1)

...
f (Npatch)

 ∈ RNdof (4.2)

where each local matrix A(k) has a natural block structure, that follows from the vectorial nature of the space

V(k)
h in (4.1) and of the bilinear form a(·, ·) in (3.1):

A(k) :=


A

(k)
1,1 . . . A

(k)
1,d

...
. . .

...

A
(k)
d,1 . . . A

(k)
d,d

 . (4.3)

The interface Γ is defined as the union of the local interfaces, that in our method are the whole local boundaries
∂Ω(k), as

Γ :=

Npatch⋃
k=1

∂Ω(k).

Note that, thanks to the use of open knot vectors, we can identify the local degrees-of-freedom associated to
basis functions that have non-zero support on the local interface ∂Ω(k) and the remaining degrees-of-freedom,
that are associated to the interior functions. Thus, we also assume a partition of each local matrix A(k) as

A(k) :=

[
A

(k)
II A

(k)
IΓ

A
(k)
ΓI A

(k)
ΓΓ

]
, (4.4)

where the subscript Γ refers to the interface degrees-of-freedom that belongs to the k-th patch, while I indicates

the remaining local interior degrees-of-freedom. Let also N (k)
Γ be the dimension of A

(k)
ΓΓ for k = 1, . . . ,Npatch,

i.e. A
(k)
ΓΓ ∈ RN

(k)
Γ ×N (k)

Γ for k = 1, . . . ,Npatch.
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As the functions in Vh are in general discontinuous across the patch boundaries and do not have prescribed
Dirichlet boundary conditions, we need to impose these constraints separately. To this end, we introduce the
sparse matrix B ∈ RNc×Ndof , where Nc denotes the number of conditions to impose. In particular, Bv = 0
when the function vh ∈ Vh corresponding to the vector v ∈ RNdof satisfies homogeneous Dirichlet boundary
conditions and it is continuous across the patches. If Dirichlet boundary conditions are non-homogeneous, then
also the right-hand side has to be modified (see [12] for further details). Without loss of generality, we assume
that ker(BT ) = 0, i.e. there are no redundant constraints and range(B) = RNc .

By introducing a vector of Lagrange multipliers λ ∈ RNc , problem (3.2) can be reformulated as follows:

Find (u,λ) ∈ RNdof × RNc such that[
A BT

B 0

] [
u
λ

]
=

[
f
0

]
. (4.5)

The difficulty in preconditioning (4.5) is that A is singular. Following [20], we introduce the matrix

R :=

R(1)

. . .

R(Npatch)

 ,
where the matrices R(k) are defined such that range(R(k)) = ker(A(k)) for k = 1, . . .Npatch. Thus, we also
have that range(R) = ker(A). In our case, R(k) represents the space of rigid body motions on the patch Ω(k).
For three-dimensional problems, the case addressed in the numerical experiments of this paper, this space is
spanned by three translations and three infinitesimal rotations

r1 :=

1
0
0

, r2 :=

0
1
0

 , r3 :=

0
0
1

 , r4 :=

 0
x3

−x2

, r5 :=

 x3

0
−x1

 , r6 :=

 x2

−x1

0

 .
Note that ker(A) ∩ ker(B) = 0, hence system (4.5) is uniquely solvable.

Multiplying the first block of equations of (4.5) by RT and using that RTA = 0, we get

RTBTλ = RT f .

Let G := BR and decompose λ = λ0 + χ such that λ0 satisfies

GTλ0 = RT f ,

and χ ∈ ker(GT ). We introduce the orthogonal projection onto ker(GT )

Pχ := INc
−G

(
GTG

)−1
GT ∈ RNc×Nc , (4.6)

where In denotes the identity matrix of dimension n×n. Finally, the problem we want to solve is the following:

Find (w,χ) ∈ range(A)× ker(GT ) such that

A
[
w
χ

]
:=

[
A (PχB)T

PχB 0

] [
w
χ

]
=

[
f −BTλ0

0

]
. (4.7)

We observe that A is an isomorphism of range(A) × ker(GT ) into itself. Indeed, A is an isomorphism on
range(A), and (PχB)Tv = BTPχv = BTv for every v ∈ ker(GT ). Thus, system (4.7) is uniquely solvable.
Note that, since Pχχ = χ and Pχ = PTχ , the first equation of (4.7) is equivalent to the first equation of (4.5).
However, from the second equation of (4.7) we see that the solution w satisfies PχBw = 0 and not Bw = 0.

Thus, given the solution

[
w
χ

]
of (4.7), by a straightforword calculation, we can see that the solution

[
u
λ

]
of (4.5) is

u :=
(
INdof

−R
(
GTG

)−1
GTB

)
w, λ := λ0 + χ.
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Our solver for the linear system (4.7) is MINRES preconditioned by a block-diagonal matrix, whose con-
struction and required properties are discussed below.

Using the splitting of the local matrices into boundary and internal degrees-of-freedom (4.4), we introduce

the local Schur complement matrices S(k) ∈ RN
(k)
Γ ×N (k)

Γ for k = 1, . . . ,Npatch, defined as

S(k) := A
(k)
ΓΓ −A

(k)
ΓI

(
A

(k)
II

)−1

A
(k)
IΓ for k = 1, · · · ,Npatch.

Let also M(k) ∈ RN
(k)
dof×N

(k)
dof for k = 1, . . . ,Npatch be the local mass matrices, that are block-diagonal matrices,

split component-wise as

M(k) :=


M

(k)
1

. . .

M
(k)
d

 . (4.8)

We then can build the global Schur complement and mass matrices, as

S :=

S(1)

. . .

S(Npatch)

 ∈ RNΓ×NΓ M :=

M(1)

. . .

M(Npatch)

 ∈ RNdof×Ndof ,

where NΓ :=
∑Npatch

k=1 N (k)
Γ represents the number of degrees-of-freedom associated to the interface Γ. Note that

S is the Schur complement of A that is obtained by eliminating the interior degrees-of-freedom of each patch.
We also introduce the scaling diagonal matrix

DH :=


(H(1))−2 IN (1)

dof

. . .

(H(Npatch))−2 I
N

(Npatch)

dof

 ,
and the matrix BΓ ∈ RNc×NΓ as the restriction of the constraint matrix B to the interface degrees-of-freedom.
Finally, following [20], we define the block-diagonal preconditioner

B−1 :=

[
PuP−1

A PTu
PχPSPTχ

]
, (4.9)

for the system (4.7), where

Pu := INdof
−R

(
RTR

)−1
RT

is the orthogonal projection onto range(A) and Pχ is the orthogonal projector onto ker(GT ) defined in (4.6).
The following general result provides the bound on the condition number for the resulting preconditioned system.

Theorem 1. Under the assumptions above, given two symmetric matrices PA ∈ RNdof×Ndof and PS ∈ RNΓ×NΓ ,
if there exist positive constants a0, a1, s0 and s1 independent of h and H such that

a0 uT (A + DHM)u ≤ uTPAu ≤ a1 uT (A + DHM)u ∀ u ∈ range(A), (4.10)

s0 λ
TBΓSBT

Γλ ≤ λTPSλ ≤ s1 λ
TBΓSBT

Γλ ∀ λ ∈ ker(GT ), (4.11)

then the condition number of the system (4.7) preconditioned by (4.9) fulfils

κ(B−1A) ≤ C
(

1 + log
H

h

)2

, (4.12)

where C > 0 is a constant independent of h and H.

Proof. The proof is analogous to the one of [20, Theorem 15], which follows from [20, Lemma 13] and [20,
Lemma 14] that can be straightforwardly extended to our framework. We remark that the proof of [20, Lemma
13] uses inverse inequalities and, for that reason, the constant C in (4.12) may depend on the spline degree
p.
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Note in (4.9) the different roles of the matrix PA, that needs to be inverted, and of the matrix PS , that is
just multiplied. We further observe that B−1 is an isomorphism of range(A) × ker(GT ) into itself. Hence the
preconditioned problem

Find (w,χ) ∈ range(A)× ker(GT ) such that:

B−1A
[
w
χ

]
= B−1

[
f −BTλ0

0

]
is uniquely solvable and equivalent to (4.7). Finally, the AF-IETI method is the MINRES method applied to
the preconditioned system above.

5 Solving the local problems

This section deals with the definition of PA and PS . These operators are selected block-diagonal, where each
block corresponds to a patch. In particular, both the application of P−1

A and the application of PS correspond
to the solution of patch-wise elliptic problems. We discuss two possible choices: the first involves exact solvers
for A + DHM and BΓSBT

Γ , while the second represents an inexact version that makes the application of the
whole preconditioner B−1 more efficient.

5.1 Exact local solvers

From (4.10) and (4.11), we infer that the ideal choice for PA and PS , respectively, is

Pex
A = A + DHM, (5.1)

Pex
S = BΓSBT

Γ . (5.2)

The matrix (5.2) is known in the FETI community as Dirichlet preconditioner (see [14, 23]), as its application
involves the solution of Dirichlet problems.

5.2 Inexact local solvers

Before introducing the inexact local solvers, we recall the definition of the Kroneker product.
Let C ∈ Rnc×nc and D ∈ Rnd×nd be square matrices and let the entries of the matrix C be denoted with

[C]i,j . Then the Kronecker product between C and D is defined as

C⊗D :=

 [C]1,1D . . . [C]1,nc
D

...
. . .

...
[C]nc,1D . . . [C]nc,nc

D

 ∈ Rncnd×ncnd ;

we refer to [16, Section 1.3.6] for a survey on the properties of Kronecker product.

First we define an approximate version Â ∈ RNdof×Ndof of the matrix A. In particular, following the same
ideas developed in [26] for the Stokes system, we replace each local matrix A(k) in (4.2) with the block-diagonal

matrix Â(k) ∈ RN
(k)
dof×N

(k)
dof , defined as

Â(k) :=


Â

(k)
1

. . .

Â
(k)
d

 ,
where Â

(k)
l ∈ Rn(k)×n(k)

corresponds to A
(k)
l,l in (4.3), but discretized in the parametric domain Ω̂, i.e, referring

to Section 2.2 for the notation,

[Â
(k)
l ]i,j := â(B̂

(k)
i,p el, B̂

(k)
j,p el) for i, j = 1, . . . , n(k), (5.3)

where el is the l-th vector of the canonical basis and

â(w,v) := 2µ

∫
Ω̂

ε(w) : ε(v) dx̂+ λ

∫
Ω̂

(∇ ·w) (∇ · v) dx̂.
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The matrices Â
(k)
l for k = 1, . . . ,Npatch and l = 1, . . . , d have a tensor product structure and, in particular, for

d = 3, that is the case we address in our numerical tests, we have

Â
(k)
1 := µK̂

(k)
3 ⊗ M̂ (k)

2 ⊗ M̂ (k)
1 + µM̂

(k)
3 ⊗ K̂(k)

2 ⊗ M̂ (k)
1 + (2µ+ λ)M̂

(k)
3 ⊗ M̂ (k)

2 ⊗ K̂(k)
1 ,

Â
(k)
2 := µK̂

(k)
3 ⊗ M̂ (k)

2 ⊗ M̂ (k)
1 + (2µ+ λ)M̂

(k)
3 ⊗ K̂(k)

2 ⊗ M̂ (k)
1 + µM̂

(k)
3 ⊗ M̂ (k)

2 ⊗ K̂(k)
1 ,

Â
(k)
3 := (2µ+ λ)K̂

(k)
3 ⊗ M̂ (k)

2 ⊗ M̂ (k)
1 + µM̂

(k)
3 ⊗ K̂(k)

2 ⊗ M̂ (k)
1 + µM̂

(k)
3 ⊗ M̂ (k)

2 ⊗ K̂(k)
1 ,

where K̂
(k)
l and M̂

(k)
l for l = 1, 2, 3 are the local univariate stiffness and mass matrices. We remark that in the

construction of the matrices K̂
(k)
l and M̂

(k)
l for l = 1, . . . , d we consider all the local degrees-of-freedom and

thus also the interface degrees-of-freedom: the univariate stiffness matrices are always singular, which in turn
means that also Â(k) is singular.

Similarly, we approximate each mass matrix M(k) defined in (4.8) with the corresponding mass matrix

M̂(k) ∈ RN
(k)
dof×N

(k)
dof in the parametric domain, that is defined component-wise as

M̂(k) :=


M̂

(k)
1

. . .

M̂
(k)
d

 ,
where M̂

(k)
l := M̂

(k)
d ⊗· · ·⊗M̂

(k)
1 for l = 1, . . . , d and M̂

(k)
l are the univariate mass matrices in the l-th parametric

direction. In particular, for d = 3 we have that

M̂
(k)
l := M̂

(k)
3 ⊗ M̂ (k)

2 ⊗ M̂ (k)
1 l = 1, 2, 3.

We then define for k = 1, . . . ,Npatch

P
inex,(k)
A :=


(
H(k)

)d−2
(
Â

(k)
1 + M̂

(k)
1

)
. . . (

H(k)
)d−2

(
Â

(k)
d + M̂

(k)
d

)
 .

Note that, differently from Â(k), the matrices P̂
inex,(k)
A are always positive definite, thanks to the addition of

the mass matrix.
We also introduce the local Schur complement matrices Ŝ(k) ∈ RN

(k)
Γ ×N (k)

Γ associated to the matrices Â(k)

for k = 1, . . . ,Npatch, obtained by eliminating the interior degrees-of-freedom and defined as

Ŝ(k) := Â
(k)
ΓΓ − Â

(k)
ΓI

(
Â

(k)
II

)−1

Â
(k)
IΓ . (5.4)

Component-wise, the matrices (5.4) for k = 1, . . . ,Npatch can be split as

Ŝ(k) :=


Ŝ

(k)
1

. . .

Ŝ
(k)
d

 ,
where we defined for l = 1, . . . , d

Ŝ
(k)
l :=

(
Â

(k)
l

)
ΓΓ
−
(
Â

(k)
l

)
ΓI

[(
Â

(k)
l

)
II

]−1 (
Â

(k)
l

)
IΓ
. (5.5)

In conclusion, the inexact choice that we propose for PA and PS , respectively, is

Pinex
A :=


P

inex,(1)
A

. . .

P
inex,(Npatch)
A

 , (5.6)

Pinex
S :=


(
H(1)

)d−2
B

(1)
Γ Ŝ(1)

(
B

(1)
Γ

)T
. . . (

H(Npatch)
)d−2

B
(Npatch)
Γ Ŝ(Npatch)

(
B

(Npatch)
Γ

)T
 , (5.7)
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where, for k = 1, . . . ,Npatch, B
(k)
Γ denotes the restriction of BΓ to the k-th patch degrees-of-freedom.

5.2.1 Fast algorithm

At each iteration of the preconditioned MINRES method we have to compute the application of the precon-
ditioner B−1 with the choice PA = Pinex

A and PS = Pinex
S , defined in (5.6)-(5.7). The computational core of

the operation above is the computation of the solution of linear systems with matrices P̂A and ÂII and in

particular of their local component-wise blocks
(
H(k)

)d−2
(
Â

(k)
l + M̂

(k)
l

)
and (Â

(k)
l )II for l = 1, . . . , d and for

k = 1, . . . ,Npatch. We use the FD method, for which we give full details in what follows.

Following [33], for a given patch Ω(k) we consider the eigendecompositions of the pencils (K̂
(k)
l , M̂

(k)
l ) and

((K̂
(k)
l )II , (M̂

(k)
l )II): we find two couples of matrices (D

(k)
l , U

(k)
l ) and (D̃

(k)
l , Ũ

(k)
l ) such that

K̂
(k)
l = (U

(k)
l )−TD

(k)
l (U

(k)
l )−1 and M̂

(k)
l = (U

(k)
l )−T (U

(k)
l )−1, (5.8)

(K̂
(k)
l )II = (Ũ

(k)
l )−T D̃

(k)
l (Ũ

(k)
l )−1 and (M̂

(k)
l )II = (Ũ

(k)
l )−T (Ũ

(k)
l )−1,

where D
(k)
l and D̃

(k)
l are diagonal matrices containing the generalized eigenvalues, while the columns of U

(k)
l

and Ũ
(k)
l contain the corresponding normalized eigenvectors, respectively. Then,

(
H(k)

)d−2
(
Â

(k)
l + M̂

(k)
l

)
can

be rewritten in this form(
H(k)

)d−2 (
Â

(k)
l + M̂

(k)
l

)
= (U

(k)
d ⊗ · · · ⊗ U (k)

1 )−TΛ
(k)
l (U

(k)
d ⊗ · · · ⊗ U (k)

1 )−1 (5.9)

where Λ
(k)
l are diagonal matrices for l = 1, . . . , d, that, e.g. in the case d = 3, are defined as

Λ
(k)
1 =

(
H(k)

)d−2 [
I
m

(k)
3
⊗ I

m
(k)
2
⊗ L(k)

1 + µI
m

(k)
3
⊗D(k)

2 ⊗ I
m

(k)
1

+ µD
(k)
3 ⊗ I

m
(k)
2
⊗ I

m
(k)
1

]
,

Λ
(k)
2 =

(
H(k)

)d−2 [
µI
m

(k)
3
⊗ I

m
(k)
2
⊗D(k)

1 + I
m

(k)
3
⊗ L(k)

2 ⊗ I
m

(k)
1

+ µD
(k)
3 ⊗ I

m
(k)
2
⊗ I

m
(k)
1

]
,

Λ
(k)
3 =

(
H(k)

)d−2 [
µI
m

(k)
3
⊗ I

m
(k)
2
⊗D(k)

1 + µI
m

(k)
3
⊗D(k)

2 ⊗ I
m

(k)
1

+ L
(k)
3 ⊗ I

m
(k)
2
⊗ I

m
(k)
1

]
,

where we defined the diagonal matrices L
(k)
l := (2µ+ λ)D

(k)
l + I

m
(k)
l

for l = 1, 2, 3.

Similarly, we have for the local interior matrix (Â
(k)
l )II the factorization

(Â
(k)
l )II = (Ũ

(k)
d ⊗ · · · ⊗ Ũ (k)

1 )−T Λ̃
(k)
l (Ũ

(k)
d ⊗ · · · ⊗ Ũ (k)

1 )−1 (5.10)

where Λ̃
(k)
l are diagonal matrices for l = 1, . . . , d, that, in the case d = 3, are defined as

Λ̃
(k)
1 = (2µ+ λ)I

m
(k)
3 −2

⊗ I
m

(k)
2 −2

⊗ D̃(k)
1 + µI

m
(k)
3 −2

⊗ D̃(k)
2 ⊗ I

m
(k)
1 −2

+ µD̃
(k)
3 ⊗ I

m
(k)
2 −2

⊗ I
m

(k)
1 −2

,

Λ̃
(k)
2 = µI

m
(k)
3 −2

⊗ I
m

(k)
2 −2

⊗ D̃(k)
1 + (2µ+ λ)I

m
(k)
3 −2

⊗ D̃(k)
2 ⊗ I

m
(k)
1 −2

+ µD̃
(k)
3 ⊗ I

m
(k)
2 −2

⊗ I
m

(k)
1 −2

,

Λ̃
(k)
3 = µI

m
(k)
3 −2

⊗ I
m

(k)
2 −2

⊗ D̃(k)
1 + µI

m
(k)
3 −2

⊗ D̃(k)
2 ⊗ I

m
(k)
1 −2

+ (2µ+ λ)D̃
(k)
3 ⊗ I

m
(k)
2 −2

⊗ I
m

(k)
1 −2

.

The direct inversion of (5.9) and (5.10) can be efficiently computed with the FD method [33]. We detail below
the algorithm for the solution of the system(

H(k)
)d−2 (

Â
(k)
l + M̂

(k)
l

)
s = (U

(k)
d ⊗ · · · ⊗ U (k)

1 )−TΛ
(k)
l (U

(k)
d ⊗ · · · ⊗ U (k)

1 )−1s = r.

The same algorithm, with obvious modifications, can be used for the solution of a system with matrix (Â
(k)
l )II .

Algorithm 1 FD method

1: Compute the generalized eigendecomposition (5.8).

2: Compute r̃ = (U
(k)
d ⊗ · · · ⊗ U (k)

1 )T r.

3: Compute q̃ =
(
Λ

(k)
l

)−1

r̃.

4: Compute s = (U
(k)
d ⊗ · · · ⊗ U (k)

1 ) q̃.
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We now discuss the computational cost of Algorithm 1, and for this purpose we assume for simplicity that

the matrices K̂
(k)
l and M̂

(k)
l have the same order n for l = 1, . . . , d, i.e. N (k)

dof = nd. Step 1, that represents

the setup of the preconditioner and can therefore be performed only once, requires O(dn3) FLOPs, which is

optimal (i.e. proportional to the number of degrees-of-freedom N (k)
dof ) for d = 3. Step 3 involves the inversion

of a diagonal matrix, which always yields an optimal cost. The leading cost of Algorithm 1 is given by Step
2 and Step 4, each of which can be rewritten in terms of d dense matrix-matrix products, and require a total

of 4dnN (k)
dof FLOPs. Although this cost is slightly sub-optimal, thanks to the high efficient implementation of

dense matrix-matrix products in modern computers, in practice the computational time spent by Algorithm
1 turns out to be negligible in the overall Krylov method, up to an very large number of degrees-of-freedom
(see [33, Table 10] and [25]).

5.2.2 Spectral estimates

In this section, we prove the spectral estimates (4.10) and (4.11) for the choice PA = Pinex
A and PS = Pinex

S ,
defined in (5.6)-(5.7). In particular, we will show that the bounds (4.10) and (4.11) hold with constants
independent of h,H and p by restricting to a single patch Ω(k) with k = 1, . . . ,Npatch. The final result is
summarized in Proposition 1.

Lemma 1. There are positive constant ã
(k)
0 and ã

(k)
1 , independent of h, H and p, such that(

H(k)
)d−2

uT Â(k)u ≥ ã
(k)
0 uTA(k)u, ∀u ∈ RN

(k)
dof , (5.11)(

H(k)
)d−2

uT Â(k)u ≤ ã
(k)
1 uTA(k)u, ∀u ∈ range(A(k)). (5.12)

Proof. Let uh ∈ V(k)
h and let u ∈ RN

(k)
dof be its coordinate vector. Let also ûh := uh ◦ F (k) and let ûh,l for

l = 1, . . . , d denote its components, i.e. ûh =
∑d
l=1 ûh,lel. Note that, using (5.3), we have that

µ|ûh|2H1(Ω̂)
=

d∑
l=1

µ|ûh,l|2H1(Ω̂)
≤

d∑
l=1

(
µ|ûh,l|2H1(Ω̂)

+ (λ+ µ)

∥∥∥∥ ∂

∂x̂l
ûh,l

∥∥∥∥2

L2(Ω̂)

)
= uT Â(k)u. (5.13)

Denoting by ‖ · ‖2 the norm induced by the Euclidean vector norm and using the definition of a(·, ·) in (3.1)
and the estimate (5.13), we get

uTA(k)u = 2µ‖ε(uh)‖2L2(Ω(k)) + λ ‖∇ · uh‖2L2(Ω(k))

≤ (2µ+ dλ)|uh|2H1(Ω(k))

≤ 2µ+ dλ

µ
sup
x̂∈Ω̂

{
|det(JF(k)(x̂))|

∥∥J−1
F(k)(x̂)

∥∥2

2

}
µ|ûh|2H1(Ω̂)

≤ 2µ+ dλ

µ
sup
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣ ∥∥∥H(k)J−1
F(k)(x̂)

∥∥∥2

2

}(
H(k)

)d−2

µ|ûh|2H1(Ω̂)

≤
(
H(k)

)d−2

ã
(k)
0

uT Â(k)u

where
1

ã
(k)
0

:=
2µ+ dλ

µ
sup
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣ ∥∥∥H(k)J−1
F(k)(x̂)

∥∥∥2

2

}
, and inequality (5.11) is proven.

The quantity

sup
x̂∈Ω̂

{∣∣∣det
(

(H(k))−1JF(k)(x̂)
)∣∣∣ ∥∥∥H(k)J−1

F(k)(x̂)
∥∥∥2

2

}
depends on

(
H(k)

)−1
JF(k) and then depends on the shape of the patch Ω(k) but is independent of its actual

diameter H(k), that is, it is invariant for homothety transformations of Ω(k). In this sense, ã
(k)
0 is independent

of H(k), and of course independent of p and of h(k).
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We now turn to the proof of bound (5.12). As above, u ∈ range(A(k)) is the vector that represents uh ∈ V(k)
h

and ûh := uh ◦ F (k). In this case, we use the Korn inequality (see [20, Lemma 4])

C
(k)
korn|uh|

2
H1(Ω(k)) ≤ ‖ε(uh)‖2L2(Ω(k)),

where C
(k)
korn is a positive constant that depends only on Ω(k). Thus(

H(k)
)d−2

uT Â(k)u ≤
(
H(k)

)d−2 (
2µ‖ε(ûh)‖2

L2(Ω̂)
+ λ|ûh|2H1(Ω̂)

)
≤
(
H(k)

)d−2

(2µ+ λ)|ûh|2H1(Ω̂)

≤ sup
x̂∈Ω̂

{∣∣∣ det
(
H(k)J−1

F(k)(x̂)
)∣∣∣ ∥∥∥∥(H(k)

)−1

JF(k)(x̂)

∥∥∥∥2

2

}
(2µ+ λ)|uh|2H1(Ω(k))

≤ sup
x̂∈Ω̂

{∣∣∣ det
(
H(k)J−1

F(k)(x̂)
)∣∣∣ ∥∥∥∥(H(k)

)−1

JF(k)(x̂)

∥∥∥∥2

2

}
2µ+ λ

2µC
(k)
korn

2µ‖ε(uh)‖2L2(Ω(k))

≤ ã
(k)
1

(
2µ‖ε(uh)‖2L2(Ω(k)) + λ ‖∇ · uh‖2L2(Ω(k))

)
= ã

(k)
1 uTA(k)u,

where ã
(k)
1 := sup

x̂∈Ω̂

{∣∣∣ det
(
H(k)J−1

F(k)(x̂)
)∣∣∣ ∥∥∥∥(H(k)

)−1

JF(k)(x̂)

∥∥∥∥2

2

}
2µ+ λ

2µC
(k)
korn

.

Lemma 2. There are positive constants a
(k)
0 and a

(k)
1 , independent of h,H and p, such that for all u ∈

range(A(k))

a
(k)
0 uT

(
A(k) +

(
H(k)

)−2

M(k)

)
u ≤ uT P̂

(k)
A u ≤ a

(k)
1 uT

(
A(k) +

(
H(k)

)−2

M(k)

)
u.

Proof. Let uh ∈ V(k)
h and let u ∈ RN

(k)
dof be its coordinate vector. Let also ûh := uh ◦ F (k). It holds(

H(k)
)−2

uTM(k)u =
(
H(k)

)−2
∫

Ω(k)

u2
h dx =

(
H(k)

)−2
∫

Ω̂

û2
h|det(JF(k))| dx̂

≤ sup
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣}(H(k)
)d−2

∫
Ω̂

û2
h dx̂

and in a similar way(
H(k)

)−2

uTM(k)u ≥ inf
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣}(H(k)
)d−2

∫
Ω̂

û2
h dx̂.

Therefore, we infer(
H(k)

)−2

m
(k)
0 uTM(k)u ≤

(
H(k)

)d−2

uTM̂(k)u ≤
(
H(k)

)−2

m
(k)
1 uTM(k)u, (5.14)

with 1

m
(k)
0

:= inf
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣} and 1

m
(k)
1

:= sup
x̂∈Ω̂

{∣∣∣∣det

((
H(k)

)−1

JF(k)(x̂)

)∣∣∣∣}. Analogously

to what happens for ã
(k)
0 and ã

(k)
1 in (5.11) and (5.12), the constantsm

(k)
0 andm

(k)
1 depend only on

(
H(k)

)−1
JF(k)

and thus on the shape of the patch Ω(k) and they are independent of H(k), of p and of h(k).
The application of the inequality (5.14) and of Lemma 1 to a vector u ∈ range(A(k)) immediately give the

required result.

We now consider the estimates for Ŝ(k).

Lemma 3. Let B(k) and R(k) denote the restrictions of B and R, respectively, to the k-th patch degrees-of-

freedom, and let G(k) := B(k)R(k). Then there are positive constants s
(k)
0 and s

(k)
1 , independent of h,H and p,

such that ∀ λ ∈ ker
(
(G(k))T

)
s

(k)
0 λTB

(k)
Γ S(k)

(
B

(k)
Γ

)T
λ ≤

(
H(k)

)d−2

λTB
(k)
Γ Ŝ(k)

(
B

(k)
Γ

)T
λ ≤ s

(k)
1 λTB

(k)
Γ S(k)

(
B

(k)
Γ

)T
λ.
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Proof. We first observe that

λ ∈ ker
(

(G(k))T
)
⇐⇒

(
B

(k)
Γ

)T
λ ∈ range(S(k)). (5.15)

Indeed, (G(k))Tλ =
(
R(k)

)T (
B(k)

)T
λ = 0 if and only if

(
B(k)

)T
λ ∈ ker

(
(R(k))T

)
= range(A(k)), and the

latter is equivalent to
(
B

(k)
Γ

)T
λ ∈ range(S(k)). In light of (5.15), the statement we want to prove is equivalent

to

s
(k)
0 ≤

(
H(k)

)d−2 θT Ŝ(k)θ

θTS(k)θ
≤ s

(k)
1 ∀ θ ∈ range(S(k)). (5.16)

To this end, referring to [20, Section 5.1] for further details, we use that

θTS(k)θ = min

v∈RN(k)
dof , v|Γ=θ

vTA(k)v, θT Ŝ(k)θ = min

v∈RN(k)
dof , v|Γ=θ

vT Â(k)v,

where v|Γ refers to the degrees-of-freedom of v that belong to the interface Γ. Thus, in particular

(
H(k)

)d−2 θT Ŝ(k)θ

θTS(k)θ
=
(
H(k)

)d−2

min

v∈RN(k)
dof , v|Γ=θ

vT Â(k)v

min

v∈RN(k)
dof , v|Γ=θ

vTA(k)v
.

Since inequality (5.11) holds for every vector belonging to RN
(k)
dof , we infer that(

H(k)
)d−2

min

v∈RN(k)
dof , v|Γ=θ

vT Â(k)v ≥ ã
(k)
0 min

v∈RN(k)
dof , v|Γ=θ

vTA(k)v,

and the left inequality of (5.16) holds by taking s
(k)
0 := ã

(k)
0 .

Now, if we define velast := argmin

v∈RN(k)
dof , v|Γ=θ

vTA(k)v, it can be shown that since θ ∈ range(S(k)), then velast ∈

range(A(k)). Thus,

(
H(k)

)d−2

min

v∈RN(k)
dof , v|Γ=θ

vT Â(k)v

min

v∈RN(k)
dof , v|Γ=θ

vTA(k)v
=
(
H(k)

)d−2

min

v∈RN(k)
dof , v|Γ=θ

vT Â(k)v

velast
TA(k)velast

≤
(
H(k)

)d−2 velast
T Â(k)velast

vTelastA
(k)velast

≤ ã
(k)
1 ,

where the last inequality follows from (5.12). Thus, the right inequality of (5.16) holds by taking s
(k)
1 := ã

(k)
1 .

We are finally ready to prove the main result of this Section.

Proposition 1. The spectral estimates (4.10) and (4.11) are satisfied for the choice PA = Pinex
A and PS = Pinex

S

defined in (5.6) and (5.7), respectively, with constants a0, a1, s0, and s1 that are independent of h,H and p.

Proof. The result immediately follows from Lemma 2 and Lemma 3 by taking

a0 := min
k=1,...,Npatch

{
a

(k)
0

}
, a1 := max

k=1,...,Npatch

{
a

(k)
1

}
,

s0 := min
k=1,...,Npatch

{
s

(k)
0

}
, s1 := max

k=1,...,Npatch

{
s

(k)
1

}
.
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5.2.3 Inclusion of the geometry information

We have shown in Section 5.2.2 that the spectral estimates for the local preconditioned problems do not depend
on h,H and on p. However, they depend on the geometry parametrizations F (k). We propose a strategy

that allows to include in P̂
(k)
A and P̂

(k)
S some information about the parametrization maps, while keeping the

Kronecker structure of the local solvers. This strategy, which we briefly present below, is made of two steps: an
approximation of the coefficients and a diagonal scaling. For more details, see e.g. [25, Appendix C].

We consider the matrices on the diagonal blocks of the system matrix (4.3), and, referring to Section 2

for the notation of the basis functions, we rewrite their entries as integrals on the parametric domain Ω̂ for
k = 1, . . . ,Npatch and for l = 1, . . . , d as

[A
(k)
l,l ]i,j = 2µ

∫
Ω(k)

ε(elB
(k)
i,p ) : ε(elB

(k)
j,p )dx+ λ

∫
Ω(k)

∇ ·
(
elB

(k)
i,p

)
∇ ·
(
elB

(k)
j,p

)
dx

=

∫
Ω̂

(
∇B̂(k)

i,p

)T
C

(k)
l ∇B̂

(k)
j,p dx̂ for i, j = 1, . . . , n(k),

where for k = 1, . . . ,Npatch and for l = 1, . . . , d

C
(k)
l =

[
µJ−1
F(k)J

−T
F(k) + (µ+ λ)J−1

F(k)ele
T
l J
−T
F(k)

]
|det(JF(k))|.

We then approximate each diagonal entry of the matrices C
(k)
l for k = 1, . . . ,Npatch and l = 1, . . . , d as

[C
(k)
l (η)]

(k)
i,i ≈ [C̃

(k)
l (η)]i,i := β

(k)
l,1 (η1) . . . β

(k)
l,i−1(ηi−1)ν

(k)
l,i (ηi)β

(k)
l,i+1(ηi+1) . . . β

(k)
l,d (ηd) for i = 1, . . . , d.

The approximation, which is performed using a straightforward variant of the algorithm proposed in [39, 11] that
can be found in [25, Appendix C], is computed directly at the quadrature points. The cost of this operation
is therefore proportional to the number of quadrature points: if we assume that the number of elements is

the same in each parametric direction and that it is equal to n
(k)
el , then, using standard Gauss quadrature

rules, the approximation cost is O(n
(k)
el p

d) FLOPs. We could reduce the cost of this procedure by computing
the approximation on a coarser grid or adopting a more efficient quadrature scheme. Then we define for
k = 1, . . . ,Npatch and for l = 1, . . . , d

[Ã
(k)
l ]i,j :=

∫
Ω̂

(
∇B̂(k)

i,p

)T
C̃

(k)
l ∇B̂

(k)
j,p dx̂ for i, j = 1, . . . , n(k)

and also Ã(k) :=


Ã

(k)
1

. . .

Ã
(k)
d

 for k = 1, . . . ,Npatch. We remark that the matrices Ã
(k)
l maintain the

same Kronecker structure as the matrices Â
(k)
l in (5.3) for k = 1, . . . ,Npatch and for l = 1, . . . , d. In particular,

for d = 3 and k = 1, . . . ,Npatch we have

Ã
(k)
1 := K̃

(k)
1,3 ⊗ M̃

(k)
1,2 ⊗ M̃

(k)
1,1 + M̃

(k)
1,3 ⊗ K̃

(k)
1,2 ⊗ M̃

(k)
1,1 + M̃

(k)
1,3 ⊗ M̃

(k)
1,2 ⊗ K̃

(k)
1,1 ,

Ã
(k)
2 := K̃

(k)
2,3 ⊗ M̃

(k)
2,2 ⊗ M̃

(k)
2,1 + M̃

(k)
2,3 ⊗ K̃

(k)
2,2 ⊗ M̃

(k)
2,1 + M̃

(k)
2,3 ⊗ M̃

(k)
2,2 ⊗ K̃

(k)
2,1 ,

Ã
(k)
3 := K̃

(k)
3,3 ⊗ M̃

(k)
3,2 ⊗ M̃

(k)
3,1 + M̃

(k)
3,3 ⊗ K̃

(k)
3,2 ⊗ M̃

(k)
3,1 + M̃

(k)
3,3 ⊗ M̃

(k)
3,2 ⊗ K̃

(k)
3,1 ,

where for i, j = 1, . . . ,m
(k)
l and for l,m = 1, . . . , d

[K̃
(k)
l,m]i,j :=

∫ 1

0

ν
(k)
l,m(ηm)̂b′i,p(ηm)̂b′j,p(ηm)dηm, [M̃

(k)
l,m]i,j :=

∫ 1

0

β
(k)
l,m(ηm)̂bi,p(ηm)̂bj,p(ηm)dηm.

We also need to define modified mass matrices

M̃(k) :=


M̃

(k)
1

. . .

M̃
(k)
d

 for k = 1, . . . ,Npatch,
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where, for l = 1, . . . , d we defined

M̃
(k)
l := M̃

(k)
l,d ⊗ · · · ⊗ M̃

(k)
l,1 .

We then define for l = 1, . . . , d and for k = 1, . . . ,Npatch the Schur complement matrices of Ã
(k)
l , obtained by

eliminating the internal degrees-of-freedom, as

S̃
(k)
l :=

(
Ã

(k)
l

)
ΓΓ
−
(
Ã

(k)
l

)
ΓI

[(
Ã

(k)
l

)
II

]−1 (
Ã

(k)
l

)
IΓ
.

Finally, we define for k = 1, . . . ,Npatch

P̃
inex,(k)
A :=


D

1
2
A,1

(
Ã

(k)
1 +

(
H(k)

)−2
M̃

(k)
1

)
D

1
2
A,1

. . .

D
1
2
A,d

(
Ã

(k)
d +

(
H(k)

)−2
M̃

(k)
d

)
D

1
2
A,d


and

S̃(k) :=


D

1
2
S,1S̃

(k)
1 D

1
2
S,1

. . .

D
1
2
S,dS̃

(k)
d D

1
2
S,d

 (5.17)

where DA,l and DS,l are diagonal scaling matrices defined for l = 1, . . . , d as

[DA,l]i,i :=

[
A

(k)
l +

(
H(k)

)−2
M

(k)
l

]
i,i

[Ã
(k)
l +

(
H(k)

)−2
M̃

(k)
l ]i,i

for i = 1, . . . ,N (k)
dof

and

[DS,l]i,i :=

[(
A

(k)
l

)
ΓΓ

]
i,i[(

Ã
(k)
l

)
ΓΓ

]
i,i

for i = 1, . . . ,N (k)
Γ .

Our choice for the modified inexact versions of PA and PS is therefore

P̃inex
A :=


P̃

inex,(1)
A

. . .

P̃
inex,(Npatch)
A

 , (5.18)

P̃inex
S :=


B

(1)
Γ S̃(1)

(
B

(1)
Γ

)T
. . .

B
(Npatch)
Γ S̃(Npatch)

(
B

(Npatch)
Γ

)T
 , (5.19)

Due to the partial inclusion of the geometry information, the scaling with respect to H(k) in (5.18) and (5.19)
is the same as for the exact preconditioners (5.1)–(5.2) and differs from (5.6) and (5.7).

Remark 1. Following [20], we recall that another option for PS that is suited for the non-redundant choice of
the Lagrange multipliers is

Pex−nr
S = (BΓBT

Γ )−1BΓSBT
Γ (BΓBT

Γ )−1, (5.20)

instead of (5.2). The corresponding inexact choice is obtained by replacing S with either Ŝ or S̃. In particular,
the geometry inclusion variant takes the form

P̃inex−nr
S = (BΓBT

Γ )−1BΓS̃BT
Γ (BΓBT

Γ )−1, (5.21)
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where, recalling (5.17), the matrix S̃ is defined as

S̃ :=

S̃(1)

. . .

S̃(Npatch)

 .
Note that the matrix BΓBT

Γ is a block-diagonal matrix and its inverse can be easily computed.

6 Numerical results

In this section we assess the performance of the preconditioning strategies. We compare the exact and inexact
local solvers introduced in Section 5.1 and Section 5.2, respectively, in three dimensional domains. We use the
version of the inexact local solvers that incorporates some information on the geometry parametrization, that
is detailed in Section 5.2.3. We show the results only for the choices of PS (5.20) and (5.21), for exact and
inexact local solvers, respectively, because we experimented that they provide better performances than (5.2)
and (5.7), respectively. We report in the tables below the computational time in seconds needed to solve the
preconditioned system. For the inexact local solvers, the time includes also the setup time for the FD method.
For the exact local solvers, we exclude the time of formation of the mass matrix M. Indeed, as it is known, the
formation of isogeometric matrices is quite expensive unless ad-hoc routines are used (e.g. weighted quadrature
[34] or low-rank approach [24]) and in this paper we only focus on the solver. In the tables, “EXACT” refers to

the choice PA = Pex
A and PS = Pex−nr

S (see (5.1) and (5.20)) while “INEXACT” refers to the choice PA = P̃inex
A

and PS = P̃inex−nr
S (see(5.18) and (5.21)). In all our tests we set the Lamé coefficients equal to λ = 0.3

0.52 and
µ = 1

2.6 ; that choice models steel.
All experiments are performed by Matlab R2017b and using the GeoPDEs toolbox [38], on an Intel Core

i7-5820K processor, running at 3.30 GHz, with 64 GB of RAM. We force a single-core sequential execution in all
our tests. Our linear solver is the preconditioned MINRES method with the zero vector as initial guess and with
tolerance set equal to 10−8. The generalized eigendecompositions are computed using eig Matlab function.

We recall that p stands for the degree of the splines, Npatch is for the number of patches, and n
(k)
el represents

the number of elements in each parametric direction on a given patch Ω(k).

(a) Parallelepiped with two levels of refinements (b) Sphere domain

Figure 1: Computational domains

Non-conforming test. We focus on the case in which the knot vectors of one patch are a refinement of the
knot vectors of the adjacent one: this allows the use of the properties of the knot insertion algorithm to glue
the degrees-of-freedom of the interface and properly modify the gluing matrix B (see [31, Section 5.2]).

Let Ω = (0, 1) × (0, 3) × (0, 1) be a domain on which we consider a Dirichlet boundary value problem. We
choose the problem data so that the exact solution is u(x, y, z) = [cosx, z sin y, (xyz)2]T . The domain is
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divided into three patches, with increasing levels of refinement (see Figure 1a). In particular, we set n
(1)
el = 22

in the leftmost patch, n
(2)
el = 23 in the central patch, and n

(3)
el = 24 in the rightmost one.

Table 1: Preconditioners comparison - non-conforming test on the parallelepiped domain

EXACT INEXACT
p Iter. Time (s) Iter. Time (s)
1 53 119 86 2
2 57 283 96 3
3 63 1 080 104 6
4 67 3 740 111 12

In Table 1 we report the results for the EXACT and INEXACT approaches. The INEXACT local solvers
yield to a number of iterations that is less than twice the number of iterations of the EXACT choice. On the
contrary, the solving times of the INEXACT local solvers are orders of magnitudes less than the times of the
EXACT local solvers. In all cases, the number of iterations is only mildly dependent on p.

Sphere domain test. Let Ω be the unitary sphere with center in the origin that is divided into 7 patches:
an inner cube and six patches around it (see Figure 1b). We remark that the sphere patches are described
by NURBS parametrizations and that the isogeometric local spaces used for the discretization are spaces of
mapped NURBS. However, the INEXACT local solvers are still built using B-splines and some information on
the weights of the NURBS basis functions, as well as some information about the geometry maps, is incorporated
into the solvers as described in Section 5.2.3. We choose the problem data so that the exact solution is
u(x, y, z) = [cosx, z sin y, (xyz)2]T . We impose Dirichlet boundary conditions on ∂Ω∩{z ≤ 0}, while Neumann
conditions are imposed on the rest of the boundary, i.e. on ∂Ω ∩ {z > 0}. Note that in classical IETI setting,
this choice of b.c. provides local problems without a tensor product structure.

In this test we consider an equal number of element in each parametric direction of each patch, i.e. we set

n
(1)
el = · · · = n

(7)
el =: nel. We report the numerical results in Table 2 for an increasing number of nel and for

NURBS of degree 4 and 5. The INEXACT approach is orders of magnitude faster that the EXACT one, even
though the number of iterations is higher.

Table 2: Preconditioners comparison - sphere domain test.

p = 4 p = 5
EXACT INEXACT EXACT INEXACT

nel Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)
2 61 7 123 5 65 22 146 7
4 73 56 146 9 79 160 172 16
8 87 2 757 184 26 100 5 764 225 56

16 97 63 699 217 132 105 275 500 246 277

Weak scalability test. In this test we consider the weak scalability of the AF-IETI preconditioned method:
we keep the dimension of each subproblem fixed and we increase the number of patches. In particular, we
consider a cube domain Ω = (0, 1)3. We choose the problem data so that the exact solution is u(x, y, z) =
[cosx, z sin y, (xyz)2]T . We consider Neumann boundary conditions on ∂Ω ∩ {x = 0} and ∂Ω ∩ {x = 1} and
Dirichlet boundary conditions on the remaining faces. We split the domain Ω into an increasing number Npatch
of equal cubes, keeping p = 3 and n

(1)
el = · · · = n

(Npatch)
el = 23.

Table 3 shows that the number of iterations of both the EXACT and INEXACT solvers is independent of the
number pf patches, that is, the solvers are scalable. Again, the INEXACT variant saves orders of magnitudes
of computational time. In the scalability test the computational time reflects the single-core sequential solving
of local problems. Clearly, a parallel implementation would lead to a decrease of the computational time for
both solvers.
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Table 3: Preconditioners comparison - weak scalability test.

EXACT INEXACT
Npatch Iter. Time (s) Iter. Time (s)

23 48 7 90 2
33 52 57 97 7
43 53 275 100 18
53 56 1 030 105 36
63 57 3 019 105 63

7 Conclusions

In this paper, we studied a combination of the FD solver with a domain decomposition method of FETI type in
a general multi-patch isogeometric setting, where the subdomains of the method coincide with the isogeometric
patches. We focused on the All-Floating (domain) version of FETI, where both the continuity and Dirichlet
boundary conditions are weakly imposed by Lagrange multipliers. We built a preconditioner for the resulting
saddle-point linear system in which the FD method is used in the inexact solvers for the local problems. We also
proved the spectral estimates that guarantee the good convergence properties of the preconditioned iterative
solver. The comparison of the performances of the exact and inexact local solvers in the preconditioner on
three dimensional compressible linear elasticity model problems clearly showed that the inexact choice brings
great improvements, in terms of computational time. Numerical results demonstrated the weak scalability is
not affected by introducing the inexact solvers, and that the overall approach is quite robust with respect to the
spline degree p. The variant of the inexact local solvers that includes also some information on the geometry
parametrization performs well also with distorted geometries.

We remark that while the present work is focused on IgA, the range of applicability of AF-IETI with FD-
based inexact solvers is in fact not limited to IgA problems. Indeed, the presented approach is suitable for any
discretization where the domain is split into a number of non-overlapping subdomains, on each of which the
discretization has a tensor structure, like e.g. the spectral element method.
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