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ANALYSIS OF A SEMI-IMPLICIT STRUCTURE-PRESERVING FINITE
ELEMENT METHOD FOR THE NONSTATIONARY INCOMPRESSIBLE
MAGNETOHYDRODYNAMICS EQUATIONS

WEIFENG QIU AND KE SHI

ABSTRACT. We revise the structure-preserving finite element method in [K. Hu, Y. MA and
J. Xu. (2017) Stable finite element methods preserving V- B = 0 exactly for MHD models.
Numer. Math., 135, 371-396]. The revised method is semi-implicit in time-discretization.
We prove the linearized scheme preserves the divergence free property for the magnetic field
exactly at each time step. Further, we showed the linearized scheme is unconditionally
stable and we obtain optimal convergence in the energy norm of the revised method even
for solutions with low regularity.

1. INTRODUCTION

In this paper, we consider the nonstationary incompressible magnetohydrodynamics (MHD)
equations over [0, 7] x Q where Q C R? (d = 2,3) is a Lipschitz polyhedral domain:

%—?+(U-V)U—RQ1AU—Sj x B+ Vp=Ff, (1.1a)
j— R,V xB=0, (1.1b)
0B

— E = 1.1
BT +V x 0, (1.1c)
V-B =0, (1.1d)
V-u=0, (1.1e)
j=FE+ux B, (1.1f)

with the boundary and initial conditions as

u=0, B-n=0, Exn=0, ond, (1.1g)
u(x,0) = up(x), B(x,0)= By(x), (1.1h)

where V - ug =V - By = 0. In (1)), w is the fluid velocity, p is the fluid pressure, j is the
current density, E and B are the electric and magnetic fields respectively. The system is
characterized by three parameters: the hydrodynamic Reynolds number R., the magnetic
Reynolds number R,, and the coupling number S. f € L*(Q2) stands for the external body
force. m denotes the outer unit normal vector on 0f).
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The nonstationary incompressible MHD equations have wide applications in fusion reac-
tor blankets [3], liquid metals [9] [19] and plasma physics [11]. The global existence of weak
solution is well known. The existence and uniqueness of local strong solutions on regular
domains is proved in [28]. There are many research works on numerical methods and nu-
merical analysis on the nonstationary incompressible MHD equations. Here we just provide
an incomplete list [4] Bl @ &, 12} 18, 25].

Recently, exactly divergence-free discretizations on the magnetic field B draws more at-
tentions. Though by [§] it seems that it is tolerable if this property is only satisfied weakly
in numerical simulations of incompressible MHD equations, we notice that it is desirable
to provide exactly divergence-free numerical magnetic filed in numerical approximations for
inductionless MHD model (see [20, 211, 29} [31]). Authors of [15] utilized H (curl)-conforming
elements to approximate A which is the potential of B (B = V x A), such that their numer-
ical approximation of B is exactly divergence-free. It is proved in [I5] that a subsequence of
their numerical solutions converge to the true solution on any Lipschitz polyhedral domain.
In [I6], a structure-preserving finite element method is developed for the nonstationary in-
compressible MHD equations. Besides u and B, the electric field E is also considered as an
unknown in the numerical method in [16]. By using discretization of the equation

0B
— +V X FE =
o TV E=0

the numerical approximation of B is exactly divergence-free. Later in [I7], it is proved that
the method in [16] achieves optimal convergence in the energy norm under the regularity
assumption that j € L>([0,T]; L*™(2)).

In this paper, our main contribution is to carefully modify /linearize the structure-preserving
finite element method in [I6] so that it is semi-implicit with respect to time-discretization
and it only need to solve a linear system at each time step. This effort is based on our
rigirous analysis of the scheme. In addition, we don’t compromise on the accuracy of the
method, structure-preserving and/or smoothness of the exact solutions. We prove optimal
convergence for the energy norm even for solutions with low regularity. We also show that
our numerical approximation of B is exactly divergence-free and the method is energy con-
serving.

The rest of the paper is organized as follows: Section 2 we discribe the linearized scheme
together with the main results from our analysis. In Section 3 we present analytic tools
needed for the analysis. Details of the proofs for the main result is presented in Section 4.

2. AN IMPLICIT LINEARIZED MIXED FEM

2.1. Preliminaries. In this section, we introduce the notations and spaces that related
with the scheme. We adopt the standard notation for the inner product and the norm
of the L? space. Namely, for scalar valued functions the inner products are defined as:

(u,v) = [qu-vde, |ul = ([,|ul*dz) "2 This convention applies to vector and tensor-
valued functions as well. For a function u € W*P(Q), we use |lul|x, for the standard norm
in WHP(Q). When p = 2 we drop the index p, i.e. |Jully := ||u||r2 and [Jul| := ||uljo2. Vector-

valued Sobolev spaces, we use the bold version of the corresponding scalar-valued spaces.
For instance, H*(Q) := [H'(Q)]".
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In addition to the standard Sobolev spaces over €2, we define vector function spaces as:

H(curl,Q) :={v € L*(Q),V x v € [L*(Q)]*},
(d1v Q) :={w € L*(Q )v w € L*(Q)},
H{(Q):={ve H(Q) :v|pn=0},
H(curl,Q) :={v € H(curl,Q),v x n =0 on 00},
H(div, Q) := {w € H(div,Q),w - n =0 on 00},

H (div0, Q) :={w € H(div,Q2),V -w = 0},
H(div0, Q) := {w € Hy(div,2),V - w = 0},
L) =g € 59, [ ado =0}

2.2. The linearized mixed FEM. Next we introduce some notation and spaces in order to
define the linearized mixed FEM for the problem (I1]). Let T}, be a conforming triangulation
of the domain §2 with tetrahedral elements. Here we assume that the triangulation is shape-
regular and quasi-uniform. For each element K € T, hx denotes the diameter of K and
the global mesh size is denoted by h = maxgeq, hix. To approximate (u,p), we use the
stable pair of Stokes elements V', x Q, C H{ x L2(Q) which satisfies the discerete inf-sup
condition: there exists a constant 5 > 0 only depending on {2 such that

v.
wf sup (@0 VoUa (2.1)
1€Qi\0 v, evi,\o ||Vnll1lanllo

In this paper, we choose the classical P¥*'-P* Taylor-Hood pair:

Vi = {on € Hy(Q)|vs|x € PMH(K),VK € T},
Qn = {an € Li(Q) N C(Dlanlx € PH(K), VK € Tp}.

Here P'(K) denotes the space of polynomials of degree no more than [ over K.

For the other two unknowns (E, B), we use discrete spaces Cj, x D), C Hy(curl, Q) x
H ((div, Q) which are competible in the sense that they belong to the same finite element de
Rham sequence [I], 2]. In this paper, we choose C), to be the k-th order second type Nédélec
H (curl) element and D), the k-th order Brezzi-Douglas-Marini element on simplexes. In
this paper we assume k > 1.

For the time discretization, let {t;}Y_; be a uniform partion of time domain (0,7) with

the step size 7 = L, and for generic function U(x,t) we define U™ = U(-,n7). Finally, we
define

n _ Jn—1 — n n—1
pun-Y" V" g :%, for m=1,2-- N.
T

Now we are ready to derive the linearized mixed FEM for the MHD system (ILI]). For
each n > 0 we seek approximate solution (u},py, E}, B}y) € V), x Q, x C), x D), satisfies
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the following governing equations:

1
(Dyu},v) + R, (Va), Vo) + 5[(1&2_1 -V, v) — (u) - Vo)) (2.2a)
_SRr_rLl((vh X EZ) X BZ_l,’U) o (p27 V- U) = (fn’,v)’
(JZ>F) - R;zl(§2>v X F) =0, (22b
(DB, Z) + (V x B}, Z) = 0, (2.2¢

(V-up,q) =0, (2.2d
jr=E} +u}xB} (2.2e

for all (v,q, F, Z) € V,xQp, x C), x D;,. At the initial time step, we take u) = ITyug, B =
II,B,. Here Ilyug, IIp By are projections (defined in the next secion) of the initial data

ug, By in the spaces V', Dy, respectively. Here the discrete curl (V) x -) is a linear map
L?*(Q) — C), defined as: given B € L*(Q2), V;, x B € C, satisfies

(VhXB,F):(B,VXF) VF € C,. (23)

Remark 2.1. Notice that in the above scheme, the convection term and jj are linear with
respect to u}, By repectively. Consequently at each time step, the above scheme leads to a
linear system for all the unknowns. Here we also want to remark on the fact that in (2.2D])
we replaced jj with R 'V}, x EZ comparing with the original scheme defined in [16]. This
modification requires a global L?—type projection in the assembly process. Nevertheless,
from the analysis below we can see that it is crucial to make such modification in order to
obtain the desired optimal error estimates. It is not clear if the analysis remains valid if we
keep 7} in this term.

2.3. Main Result. We first present the stability of the discrete problem (2.2) in the follow-
ing theorem:

Theorem 2.1. The discrete solution (u}l, py, Ey, B}) satisfies

g |® — [,

2T

BRIP = 1B P

+ BV + SRV < B|* + SR, >

(f",@p).
Consequently, we have form =1,2,..., N:
lupl® + SRLB? + 7> (R, P + 25 R2|Va x By|1%)
i=1
< |lupl* + SRMUBRI + C7 Y Rell fill%-
i=1

In addition, the magmetic field is exactly divergence free:
V-By=0, =12...,N,

provided V - BY = 0.
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Proof. Taking (v, F, Z,q) = (@}, —SR;'V,xB,,SR;'B,, p) in (ZZa) - 2.2d) and adding
together, after some algebraic simplification we have:

][> — [l
27

[ BhlI* — 1Br 1> _
2T

L ROVEIP + SRV, x BL? + SR (£

n — n | —
< COIFIlIVaR] < CRSZ + SRV

In the above estimate we used the Cauchy-Schwartz inequality, Poincaré inequality and
Young’s inequality. Hence for any n = 1,2,..., N if we sum over the above estimate from 1
to k we have

lupl® + SRHIBR +7 ) (RIIVa, [P + 2SR, 2| Vi x By [°)
i=1

< Jupl? + SRHBRIP + C7 ) Rellfil:
i=1

This completes the proof for the first assersion. For the second part, notice that V x C}, C
D), N Hy(div0, Q). Hence ([22d) is equivalent as

D.By +V x E; =0.
Or )

BiBi_ v«E =0

Taking the divergence of the above eunation we have:

V- (B} - By =0.
This completes the proof. O

For the error estimates, we assume that the exact solution of MHD system ([ILT]) uniquely
exists and the unknowns have following regularity property:

w € L0, T; H'%(Q)),u, € L*(0,T; H"*), uy € L*(0,T; L*(Q));
p € L™(0,T; H (), p € L*(0,T; H*(2));

B,V x B € L™(0,T; H(Q)), B;,V x By, By, € L*(0,T; L*(Q))
E.V x E c L>(0,T; H*(Q)),

(2.4)

where s > % Under this assumption, our main error estimate result can be summarized as
follows:

Theorem 2.2. Let (u,p, B, E) be the exact solution of (1) with the above regularity (24
holds. Let (wp, pn, By, Ey) be the numerical solution of the discrete system (2Z2). Then we
have for allmn =1,2,--- /N
lu = up|* + | B" = Bi|* + C7 ) _(IVa" = Vag|* + |V x B" = Vi x By|*)  (2.5)
j=1
S €2CT(h2B +T2),
at each time step, we also have

|Vu" — Vul||> + ||V, x B" =V, x B}||* < C(h* + 72). (2.6)
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with f = min{s, k + 1} and C depends on the physical parameters but is independent of the
discrete paramters T and h. Further, at each time step, we have
|E" — E}||* < C(1 + h?). (2.7)
Ip" = phl* < C(r~h* + 7). (2.8)
If we further assume that u, € L>(0,T; H*(Q)); B,V x B, € L>(0,T; L*(9)), we have

that:
|E" — E7|| < C(m2 + h*). (2.9)

3. AUXILIARY ESTIMATES

In this section, we gather the necessary tools for the final error estimates in the next
section. First we present an approximation property for the discrete curl operator:

Lemma 3.1. For any vector field C € H (curl, <)), we have
Vi X Cllr@) < IV % Cllie@),

with any p € (1,00).
Proof. Define II;, : L*(Q) — C), be the standard L*projection. By the definition of the
discrete curl operator (Z23]) we have for any C € H (curl, Q)

(Vi xC,F)=(C,VxF)=(VxC,F) VF €C,.
Therefore, this implies that V; x C = I1,(V x C). Similar to the proof of [7, Theorem 3],
we have:

Vi % Cllre) = (VX C)llzre) < GolIV X CllLry,
with any p € [1, +00]. O

The next result gathers classical and discrete Sobolev inequalities needed for the error

estimates in the next section [22], 14].

Lemma 3.2. For u € H'™(Q) with s > 1 we have
[wllop < Cllully,  for 1<p<6,
[wlloco < Cllufiys.
For B € H*(Q) with s > L, we have
| Bllos < C[[Bls.
Further, for B € H*(Q2) N H(di0,), we have
|Bllos < C||Blls < CIV x Bj.

Next we define the projections of the unknowns (ITyu, llgp, IIc E, IIp B) and gather their
approximation properties. For the fluid pair w,p, we follow the idea used in [8]. Namely,
for a fixed t € (0,77, for the exact solution (u,p) € Hy(Q) x L2(Q2) we define the Stokes
projection (Ilyu,Ilgp) € V), x @), satisfies

RN (VIIyu, Vv) — (gp, V -v) = R, (Vu, Vo) — (p, V - v), (3.1a)
for all (v,q) € V, x Q. We can see that the above projection is defined globally over

through the variational form of Stokes equations. For the electric field E we simply use the
Nedéléc H-curl projection [23], denoted by IIo E.
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Finally, for the magnetic field B, notice that B, € DY := D}, N Hy(div0,Q) and B €
H(div0, Q). We define the L?-projection ITp : L*(Q2) — D} such that IIp B € DY satisfies:
(MIpB,Z)=(B,Z) VZ <€ D). (3.2)
We have the following approximation property result for the projections [10, [8]:
Lemma 3.3. Under the regularity assumption [2.4), the above projection satisfies

18ully + 116,11 < CAZ(ulliss + [Ip]l6),

090,
1551 < CR7(lwills + lIpils),

My ulje + [[Hyulls < Cflullies + [lplls) < oo,
105l + IV x ép] < CR(||El[s + |V x El|s),
l85] < C17||Bl|s,
Vh X (SB = 0.

with 6 = min{s, k + 1}.

Proof. 1t suffice to establish the last two inequality and identity since others are well-known
results [10]. Notice that since B € H(div0, 2) we have that its BDM projection IlgpyB €
DY. This implies that

165] < ||B — TgpuB|| < CA”||Bs. (3.3)
For the last identity, we can derive this identity by the definition of “V,x” (2.3)) and the
projection Ilp is L2-projection onto D?L: for any F € C,

(Vh X HDB,F) = (HDB,V X F) = (B,V X F) = (Vh X B,F)

This completes the proof since V;, x B,V x IIpB € C},. O

As a consequence of the above result, we have that the intial errors satisfy:
|u® —ul|, + ||B° - BY|| < Ch’, V,xB’-V,xB)=0. (3.4)
Finally, we need the well-known discrete Gronwall’s inequality [13]:

Lemma 3.4. Let 7, B and ay, by, i, 7 be non-negative numbers for all integers k > 0,

J J J
aJ‘I—TZbk STZVkak%—TZijLB, for J >0,

k=0 k=0 k=0

suppose that Ty, < 1 for all k and set o, = (1 — 7yx)~t, Then it holds:

J J
ay +7'Zbk < 6721{:07’“"’“(7'20%C + B).

k=0 k=0

4. ERROR ESTIMATES

In this section we present the main error estimates of the method. We first carry out
the error equations for the error estimates. By convention, for a generic unknown U, its
numerical approximation U;, and its projection IIU, we split the errors as:

u—uh: (U—HU)+(HU—uh) = 6u+5u. (41)
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First we notice that the exact solution of the system ([[LT]) satisfies the following variational
equations at time t,,:

(D;u"™,v) + R, (Vu", Vo) + %[(u”_1 V', v) — (u" - Voa")) (4.2a)
—SR (V) x En) x B v) — (p",V-v) = (f*,v) + R (v),

(7, F)—R;' (B",V x F) = Ry(F), (4.2b)

(D.B", Z)+ (V x E", Z) = R4(Z), (4.2¢)

(V-u",q) =0 (4.2d)

J =E'"+u"xB", (4.2¢)

for all (v,q, F,Z) € V;, x Q) x Cj, x Dy,. Here Ry, Ry, R3 are the truncation error terms as
follows:

R (v) =(D,u" — u},v) + Re” (Va" — Vu", Vo)

1
+ 5[(u"_1 Va",v) — (u" - Vo, u")] — (u" - Vu", v)

— SRM((Vy, x B") x B" ™ v) — (V x B") x B",v)],
Ro(F) =(@" x B" ' —u" x B",F) - R.}(B"— B",V x F),
Rs(Z) =(D,B" — B}, Z).

If we subtract the numerical system (2.2)) from the above system (4.2)), with some algebraic
simplification and the projection properties ([B1]), (B:2]) we can obtain the error equations as
follows:

Lemma 4.1. The projection errors (ey, €y, €g, ep) satisfies the system:

(D.el, v) + R (Vel, V) — (e), V-v) = —(D;60y,v) +Ri(v) + O(v) + My(v) (4.3a)
(e F) = R, (@5, V X F) = —(8, F) + Ra(F) — Ma(F), (4.3b)

(Drelg, Z)+ (V x ey, Z) = (D 05, Z)— (Vx0y,Z)+R3(Z), (4.3¢c)

(V-er q) = (4.3d)

for all (v,q,F,Z) € V, x Qn x Cp, x Dy,. Here the nonlinear terms are gathered as:

O(v) = —5 (™" V& 0) = (@ Vo)) + g (wh - Vg v) = (w) - Vo, @)
M, (v) = SR;}((Vy, x B") x B" ', v) — SR, ((V), x B),) x B! ', v),

My(F) = (u" x B" ' —au} x B}"' F).

We are ready to prove our main result Theorem with the above error equations.

Proof. of Theorem 2.2] We start by taking (v, F, Z,q) = (e, —SR'V, x ey, SR, €4, e ey)
in the error equations (£3al) - (£.3d)) and adding togather, with some algebraic 51mp11ﬁcat10n
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we have:

lewll” = llew "1

2T

legll? — lleg I
+ RY|VeEr|* + SR} 5 B + SR 2|V x egl?
= —(D,0",2") + SR, (8, Vi x EF) — SR, N (D,6'%,e%) — SRV x 8'%,e%)
+ R1(E) + Ro(— SRV, x €f) + Ra(Eh)

+O(@2) + My (E2) + Mo (SR,'V), x €h).

Next we will estimate each term on the right hand side of the above identity. For the first four
linear terms, we simply use the Cauchy-Schwarz inequality and the approximation property
of the projections Lemma as follows:

nony L[ [ 08, . 1 [ 08, _
.5 = | () eudedp < - [ IS dp
t

T n—1 < at th—1
AN
<L o)
T tn—1
9 h}26 tn 9 tn
<leule+ 2 [ Nt ldp [ 1dp
T th—1 th—1
26

h
=n (|2 2
< ||6u|| + 7||ut(p> ')HLZ(tn,l,tn;Hﬁ(Q))-
For the second linear term we simply apply Cauchy-Schwarz inequality to have
SR (8%, Vi xeg) < Chﬁ||E||5||Vh X en|l < Ce||Vy x eg||> + Ce 'h?.

For the third linear term, since [Ip B, B;, € DY, with the orthogonal property of I1p we
have

SR ND,d'%,eg) = 0.
For the last linear term, we have
SR, (V x 0%,¢) < Ch2|V x E|s|[ep| < Cllep|* + Ch?.
Truncation error estimates: In R (v), there is a term as:

(D,u" —uy,ey),
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here is how we estimate this term by ||wwl/ 2, | 1..02(0)):

1 tn
(D,u" —uy,ey) = —/ / w(p, ) — w(ty, - )dp - e.dx
T Q tn—1

1 e
= —// / uy (o, - )endodpde
tn—1 tn—1

tn o

<! / / Jeselo, 5 dodp = 25 ) / / s (0, ) | dordp
tnl tn—1 Jtn—1
<Ll [ o, Moz ez 2, e

tn—1

tn
< 20 | Tanao Mo 0~ o)

< CTHUtt||L2((tn71,tn)7L2(Q)) + CHEZHZ'
Similarly, for R3(SR;,'€) we have the following estimates:
Rs(SR,,'ep) < CTBull 2@,y 2 + Cllesll”. (4.4)

For other terms in Ry (€7 ), the estimates are similar as the one shown below in Ry(—SR, 'V, x
ey) and we gather the result as follows:

R7(VE" — Vu", Vey) < Ce|Ves|® + Ce 7l Va2 o 12y
u" Vet er) — (u't - ver,wt)] — (ut - Vu',ep)
< Cel|Vey]|* + Clleg||” + CE_lT(HutH%Z(tn,htn;LQ(Q)) + ||Vut||2L2(tn,1,tn;L2(Q)))
—SRM((Va x B") x B" ' @) = ((V x B") x B",7,)]
< Ce|IVeull* + Ce (1Bl @y T IV X Billiag, @)

DN | =
—~

Combining the estimates for all the terms in R;(€],) we have

Ry(@) < Cel[VEL + ClZal? + Ch IV x B[l + Crllunl 2,22

+ Ce (el o, ooy T IBllz0,  sirzi) T IV X Billzg, , gir2p)-
(4.5)
In Ry(—SR,'V), x €), there is a term like this: (omit the coefficient for simplicity)

(@" x B"!' —u" x B",V, xeg) = (@" x (B"'—~B") + (u" —u") x B",V, x &g)
=T+ 1.
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For T7,

tn tn
T, = / / Bi(p.-) x W' - Vi x Edadp < / 1B (o, M| ey IV % € 1o
th—1 JQ tn—1

tn
< Nl s iz |V % 2 / |Bi(p, ) ldp
tn—1

tn
< e XTI+ Ml o[ 1Bl )dp
tn—1

< ellVi x I + Ce T Bill L2, 220
The last step we used the Cauchy-Schwarz inequality and the fact that w” € H'"*(Q) —
L*>(Q). For Ty, with a similar technique as above, we have

Ty < e[V x )12+ € B 21 g el o, o)
< €[V x 12+ O el o
the last step we used the regularity assumption 2.4] and that H*(Q) < L*(Q).
For the second term in Ry(—SR, 'V, X €g), we have

. 1

SR2(B" — B",V x (V) x¢g)) = —§SR;?(V x (B" — B"™ "), V), x &)
1

tn
= —iSR;f/t /QV X By(p,x) - Vy, x egdadp

tn
<Clux el [ 19 x Bilpa)lds
tn—1

tn
< C(el|Vi x el* + 6‘1(/ IV % Bi(p, )l|dp)*)

tn—1

tn tn
< Ce|| Vi, x eg|* + Oe—l/ |V x By(p, a:)||2dp/ Ldp

tn—1 tn—1

= Ce|Vy x eg|* + Ce 7|V x By|)3,
Combine above estimates, we have
Ro(—SR 2V, x €g) < Ce|| V), x egl? (4.6)
+Ce (1Bl s, iz T IV X Belliag,  ainziy + 1%ellzeg, y in2p)-

Finally, we bound the nonlinear terms as follows:

1
O(es) = — Sl(w " - Var el) — (up - Vg, el) +
1

(tnflﬂf'rl;Lz (Q)) :

1
5l

(™ =) - Vg, 7)

(w"™" - Ve, ") — (uy ™" - Ve, )]

(u" - V(@" - uy),e,) -

1
2

(u" - Ve, " =) + S ((u" — ™) - Ve, )

+
N —

(w" - V(@" —u,),2,) -

(w" ' —up™) - VILyu", €))

1
2

(w" ' =yt Vel yu").

NN =N

(u"t.ve, w" —uy) +

+
N —
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The terms in the last step can be bounded using Hoélder’s inequality, Sololev inequalities
Lemma and the approximation properties of the projections in Lemma as:

1 1 —n
—5 V@ —wg) e) = —5 Vo, +ey). @)

2 T
< Cllu" MooV (8, + )l 20
< C’e||V€h||2 + C'e_1||Eh||2 + Ce 'h?,

1 n— n— —n —=n <n—1 n— —n —n
—5 (@™ =™ VI, &) < (8, + e IIVITafosl|eflos
< Ce||[Ver||? + Ce e H? + Ceth??,
1 n— —n —n __ =—n n— <" —n —n
@ Ve, =) < w16, + 2L VELl
< Ce||Ver||? + Ceer||> + Ceth??,
1

S (W =) - VE, Tt < |[Tva o185 + e~ ([ Ve
< Ce||[Ver||? + CetepH|? + Ceth?P.
This concludes that
0(@,) < Cel|Ver|* + Ce™ (llep ' I1* + lle|I?) + Ce™'h*. (4.7)

Similarly, for M; (€?) + Ma(SR,,'V), x €g) we start with some algebraic rearrangement as
follows:

Ml(EZ)—FMQ(SR;}Vh X E%) =
SR, (Va x (B" = B),) x B",e,) + SR, (Vs x B,) x (B"™' — B;™"),ep)

+SRN (@ —ay) x B" 'V, xeg) + SR N @) x (B! — ByY), V), x &)
=My + My + M3 + M,.

Next we will estimate M; + M3 and My + M, separately. Namely, we have

M+ Ms; = SR;N((Vy x (85 +¢5) x B ")+ SR (6. +¢) x B"', V), x %)
= SR ((Vy xdg) x B ") + SR (8, x B"™' V), x &)
+ SRM(Vy x €g) x B L e + SRIYE: x BV, x e)

The last two terms cancelled out due to the fact @ x b+ b x a = 0, the first term vanishes
due to the fact V), x §'5 = 0, hence

My + My = SR8, x B", V), x€g) < Cl[8,llosl B" [0l Va x €|
< Ce||Vy, x Egl|* + Ceth?.
For M, + My, we insert this identity:

SR, (Vi xep) x (B"™! = Bj™1),@,) + SR, (e, x (B" = By™), V), x €) =0
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into M, + M, with simple algebraic cancelation, we arrive at:
My + M,y
= SR, [((Vy, xTOpB") x (B™' — By ™),e}) + (Iya" x (B" L— B}, V) x ey)]
< C|[(Va x TpB" [losll6% " + e Eullos + IThv@" ooll6F " + e[V x &
< Ce(||VeL|? + [|Vh x Egl|*) + CeHeg H|? + Ceth?P.
Now if we combine all the above estimates we arrive at:
wll? = llen ik

ez
2T

+ SRI2||V, x &2 (4.8)

2
+R 1||V_u||2—|—SR_1H6BH 5 HeB
T

< Ce(|[VeRll® + Vi x egll?) + Ce™ (0> + e * + [len ™ 1 + leBl* + lem 1)
+ CT(HUtt||%2(tn,1,tn;1:2(9)) + ||Btt||L2(tn71,tn;L2(ﬂ)))

+ e (llwellTa, g mr ) T 1Bl T2y 022 + IV X Billag, 10 22(0)
+Ch257_1““t||2m(tn,1,tn; H*(Q))"

If we take € = mm{ R, ;SR 2}, multiplying 27 on the above estimate and sum over

7 =1,---,n we have

lewl® +lleil® + C7 Y (IVeull® + 1V x 2511%)

=1
n

< el + lleBl® + Cr Y (0 + lleal® + [l 1)

§=0
+ CTz(HuttH%z (0,tn;L2(2)) + HBHH%Z(O tn; L2 (Q)))
—+ CT (||’u,t||L2 (0,tn: H' (O "‘ ||BtHL2(0tn :L2(Q)) =+ ||v X 'BtHL2 (0,tn; LZ(Q))>
+ Chzﬁ||“t||L2(o,tn;H6<ﬂ>>'

By the fact €2 = 0,€% = 0 and the regularity assumption (2.4]), we have
e l? + e l* + C7 Y _(IVenl® + 1 Va x eg1%)

j=1

<Cr Y (llenl? + llel?) + C(h* + 7).
=0
By the discrete Gronwall’s inequality Lemma B4 with C7 < 1, we have
lenll” + llegll* + C Y _(IVenl® + 1 Va x 2g1%)
j=1
< e2T(p? 4 72).

We complete the proof of (2.5)) by applying the triangle inequality, approximation properties
of the projections Lemma together with above etimates. Combine the above estimate

with (£.8) we can deduce the estimates (2.6]) with the initial error estimates (B.4)).
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With the above estimates for u, B, we can simply take F' = ¢%, in ([43D), with some
algebraic rearrangement, we arrive at:

lek|* = R, (Vi x €5, €E) — (85, ) + Ra(elp) — Ma(el)
< C([[Vi x|l + 0D lepll + Ra(er) — Ma(ek).

For the last two terms, with a similar treatment as in the previous proofs, we can bound
these two terms as follows:

Ro(ely) = (@ —u") x B"™ efp) + (u" x (B"™' = B"), ) — R,(V x (B" — B"), e}
< O3 |lell (el r2gn s tnser @B llos + 1™ ool Bell 2 ensz2)
+ 072l enlIV % Bill 2, anizz@))):
My(el) = (@' —p) x By~ ely) + (@ x (B"™' = By™), ch)
< Cleplia —w@pllosl By los + u"ll | (B = B |)
< Clell (V@ — @)V x Byl + w1l (B™ = Bp7)
< ChP|ell.

The above estimates is due to Sobolev inequality Lemma [32land Theorem 1 in [27], stability
of the solution Theorem 21l and the estimates for w, B. This completes the proof for (27
with a simple triangle inequality and projection error estimates for E in Lemma 3.3

With a slightly stronger regularity assumption with w, € L>(0,7; H*(Q)), B;,V x B, €
L>(0,T; L*(R2)) we can regain the full order of 7 as:

Ry(ef) = (" —u") x B" ' ep) + (u" x (B""' = B"),e}) — R, (V x (B" — B"), e};)
< Crllell (el ooy s @) 1B Hlos + ™ lo.00@) 1Bill oo 11 ms22(2)))
+ CTlleBlIIV X Bl poc(,y 4:22(0)))

this completes the proof for (2.9).
Finally we use a classical inf-sup argument to bound e, as in (2.8]). By the inf-sup condition

(21) we know that there exists wy, € V', such that

1(ep,V-wy)

el < —

On the other hand, by error equation (£3al) we have

(er, V- wy) = (Drey, wy) + (D0, wy,) + RN (Vey, Vwy) — Ry(wy) — O(wy,) — My (wy,).
(4.10)

(4.9)

Each of the terms on the right hand side can be estimated as follows:

tn
(D, w // ~wpdtde = / / -wpdxdt,
th—1 tn—1
tn

1

s;/ |90 mmww<ct/ Wl )sdp
tn—1
_1

<Crt 2h'ﬁ||ut||L2(tn,1,tn;Hﬁ(Q))||wh||'

RN (Vey, Vwy) < CIVey[lwilly < C(r + h7)lJwa]y,
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For R;(wy,), with a similar estimates for the terms in R, (€), we have:
1
Ri(wy) < C72f|wy 1

Notice the above result is slightly different from the estimates for R;(€!) due to the fact that
we don’t apply the weighted Young’s inequality here for each term. For instance,

e

RN (VA" = Vu", Vwoy) < Cr2 | Vallpzg, gz lwn1-
Similarly, for O(wy,) we have:
O(wp) < C( + 17)|Jwall,

For M, (wy,), we have

My (wp) = SR;H(Vy x B") x B wy,) — SRN((Vy, x By) x B! awy,)
= SRM (Vi x B") x (B"' = By "), wy,) + SR, ((Vy, x (B" = B,,)) x By ™', wy,)
< C|Va x B"|os]|B" = By |[llwillos + CIVa x (B = By Bi: llosllwnllos
< CIV x Bloa|| B"* = By Hl|lwilh + ClI Vi x (B" = By)IVa x By, [[[[walls
< ChP w1

For the last term we start with Cauchy-Schwarz inequality to have:

(Dreq, wh) < || D€y [[|wal]-

If now we directly bound ||D,e| < 77(||e® + e~ we will lose a full power of 7 which
means there is no convergence order in time for e,. In stead, we take v = D, el in (A3a) to
have,

HDTQZHQ = —(D;dy, wy) — Re_l(VEZ> VD.ey,) + Ri(Drey) + O(Drey,) + Mi(Drey,).

Here we used the fact that (V - e, q) = 0 for all n due to the error equation (£3d)). The
second term on the right hand side can be bounded as:

—R;N(Ve,, VDe,) = =R 2n) T (Ve ” = [[Ver™|1?) < C(r + 77'0%).

e

For the rest terms on the right hand side, we bound them in the same way as above, after
simplification, we arrive at:

| Dyel||> < C’T_%hBHDTeZH + C(1 + W) Dre || + C(T 4 7712,
This implies that
|D.el]l < C(r2 + 77 2h7).
Finally if we combine all the above estimates into (4.9)), (4.10), we finally have:
||eZ||2 < O(r* + T_lhzﬁ).

This completes all the estimates in Theorem 0
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