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Preconditioning mixed finite elements for tide models
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Abstract

We describe a fully discrete mixed finite element method for the linearized
rotating shallow water model, possibly with damping. While Crank-Nicolson
time-stepping conserves energy in the absence of drag or forcing terms and
is not subject to a CFL-like stability condition, it requires the inversion of
a linear system at each step. We develop weighted-norm preconditioners
for this algebraic system that are nearly robust with respect to the physical
and discretization parameters in the system. Numerical experiments using
Firedrake support the theoretical results.
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1. Introduction

Accurate modeling of tides plays an important role in several disciplines.
For example, geologists use tide models to help understand sediment trans-
port and coastal flooding, while oceanographers study tides to discern mech-
anisms sustaining global circulation [1, 2]. Finite element methods making
use of unstructured (typically triangular) meshes are attractive to handle
irregular coastlines and topography [3]. In many situations, it is sufficient
to use a linearized shallow water model with rotation and a parameterized
drag term. In particular, the literature contains many papers [4, 5, 6, 7, 8, 9]
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studying mixed finite element pairs as horizontal discretizations for ocean
and atmosphere models, and we continue study of this case here.

Much of the literature relates to dispersion relations and enforcement of
conservation principles by mixed methods, our prior work in this area has
been to focus on energy estimates. In [10], we gave a careful account of
the effect of linear bottom friction in semidiscrete mixed methods, showing
that, absent forcing, one obtained exponential damping of a natural energy
functional. This allowed estimates of long-time stability and optimal-order
a priori error estimates. Then, we handled the (much more delicate) case of
a broad family of nonlinear damping terms in [11]. In this case, the energy
decay is sub-exponential (typically bounded by a power law) but still strong
enough to admit long-time stability and error estimates.

While our work in [10, 11] focused on the semidiscrete mixed finite element
case, we now turn to certain issues related to time-stepping. Crank-Nicolson
time-stepping is second-order accurate, A-stable (not subject to CFL-like
stability condition), and exactly energy conserving in the absence of forc-
ing and damping. However, because it is implicit, it requires the solution
of a system of algebraic equations at each time step. For linear damping
models, this system is linear, but nonlinear otherwise. The point of this pa-
per is to develop robust preconditioners for the linear system (or Jacobian
of the nonlinear one) for use in conjunction with a Krylov method such as
GMRES [12].

In addition to the mesh size and time step, our model also depends on
a number of physical parameters, described in the following section. Our
goal is to design a preconditioner that enables GMRES to converge with an
overall iteration counts that depend as little as possible on these parameters.
We follow the technique of using weighted-norm preconditioners [13]. Here,
one designs an inner product with respect to which the variational problem
is bounded with bounded inverse, and such bounds should depend weakly, if
at all, on parameters.

In the rest of the paper, we describe the particular tide model of inter-
est and its discretization in Section 2. This includes Crank-Nicolson time-
stepping and a comparison to a symplectic Euler method. Then, we turn
to preconditioning the Crank-Nicolson system in Section 3. After analyzing
a simple block-diagonal preconditioner with scaled mass matrices, we devel-
ope and analyze a parameter-weighted inner product on H(div) × L2. Our
estimate shows that the preconditioned system has an intrinsic time scale de-
termined by the Rossby number that must be resolved by the time step. This
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does not seem to be a major practical constraint. After discussion and anal-
ysis of these preconditioners, we turn to numerical experiments validating
the theory in Section 4 and draw some conclusions in Section 5.

2. Description of finite element tidal model

The nondimensional linearized rotating shallow water model with linear
drag and forcing on a two dimensional surface Ω are given by

ut +
f

ǫ
u⊥ +

β

ǫ2
∇ (η − η′) + Cu = 0,

ηt +∇ · (Hu) = 0,
(1)

where u is the nondimensional two dimensional velocity field tangent to Ω,
u⊥ = (−u2, u1) is the velocity rotated by π/2, η is the nondimensional free
surface elevation above the height at state of rest, ∇η′ is the (spatially vary-
ing) tidal forcing, ǫ is the Rossby number (which is small for global tides), f
is the spatially-dependent non-dimensional Coriolis parameter which is equal
to the sine of the latitude (or which can be approximated by a linear or con-
stant profile for local area models), β is the Burger number (which is also
small), C is the (spatially varying) nondimensional drag coefficient and H is
the (spatially varying) nondimensional fluid depth at rest, and ∇ and ∇· are
the intrinsic gradient and divergence operators on the surface Ω, respectively.

Prior energy and error analysis in [10] assumes that the bottom friction
satisfies some 0 < C∗ ≤ C(x) ≤ C∗. The strict lower bound allows one to
show an exponential damping of the energy. However, the model is well-posed
and, absent forcing, has non-increasing energy. Since we are not working with
energy estimates, it is sufficient for us to merely assume the upper bound
C(x) ≤ C∗.

As in [10], we arrive at a form suitable for discretization by mixed methods
by working with the linearized momentum ũ = Hu rather than velocity.
After making this substitution and dropping the tildes, we obtain

1

H
ut +

f

Hǫ
u⊥ +

β

ǫ2
∇η + C

H
u = F,

ηt +∇ · u = 0.
(2)

A natural weak formulation of this equations is to seek u ∈ H(div) and
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η ∈ L2 so that

(
1

H
ut, v

)
+

1

ǫ

(
f

H
u⊥, v

)
− β

ǫ2
(η,∇ · v) +

(
C

H
u, v

)
= (F, v) ,

(ηt, w) + (∇ · u, w) = 0

(3)

for all v ∈ H(div) and w ∈ L2.
We select suitable mixed finite element spaces Vh ⊂ H(div) and Wh ⊂

L2 of order k satisfying the commuting projection and having divergence
mapping Vh onto Wh [14]. Since we are not proving error estimates in this
paper, we do not recount the particulars of these projections. However,
we will need to make use of the inverse assumption that there exists some
CI (typically depending on the polynomial degree and mesh shape but not
element size) such that

‖∇ · u‖ ≤ CI

h
‖u‖ (4)

for all u ∈ Vh.
Our examples will use the Raviart-Thomas [15] triangular finite elements

for Vh together with discontinuous piecewise polynomials for Wh. We follow
the ordering of the Periodic Table of Finite Elements [16] summarize Finite
Element Exterior Calculus [17] rather than the original ordering of Raviart
and Thomas so that the lowest order RT space is RT1 combined with dP0. We
will also employ the recently-developed trimmed serendipity elements [18, 19].
These elements are smaller than the rectangular RT elements for the same
order of approximation, and pair with Pk rather than tensor-product spaces
for Wh.

We define uh ⊂ Vh and ηh ⊂ Wh as solutions of the discrete variational
problem

(
1

H
uh,t, vh

)
+

1

ǫ

(
f

H
u⊥h , vh

)
− β

ǫ2
(ηh,∇ · vh) +

(
C

H
uh, vh

)
= (F, vh) ,

(ηh,t, wh) + (∇ · uh, wh) = 0.

(5)

In previous work [10], we analyzed the semi-discrete form of this method,
and in [20] we analyzed a symplectic Euler time discretization of mixed meth-
ods for the simpler (obtained from our current model putting f = 0, C = 0
and possibly allowing β, ǫ to vary spatially) acoustic wave equation. For each
time step, this method only requires the inversion of a mass matrix for Vh and
another for Wh. However, it requires a CFL-like time step constraint with

4



∆t = O(h) (the constant depends somehow on the shape of mesh elements),
is only first-order accurate, and only conserves a quantity close to the actual
system energy in the undamped case. Moreover, in the finite element context
even explicit methods require the inversion of mass matrices, unless the mesh
and approximating spaces admit some kind of diagonal approximation (e.g.
lumping).

In this paper, we turn to implicit methods, especially Crank-Nicolson.
This method is second-order accurate in time, does not require a CFL condi-
tion for stability, and exactly conserves the system energy for the undamped
equations. We also point out that, for linear problems it is equivalent to
the implicit midpoint rule, which is the lowest-order Gauss-Legendre im-
plicit Runge-Kutta method. In addition to their A-stability, these methods
are both symplectic and B-stable, which makes them seem quite appropriate
for problems based on a energy conservation principle plus some damping
mechanism. (Note: for nonlinear problems, Crank-Nicolson is actually the
lowest-order LobattoIIIA method, which is still A-stable but not symplec-
tic.) On the down side, it requires the solution of a more complicated system
of equations at each time step than symplectic Euler. Error analysis goes
through following standard techniques; our goal here is the design and anal-
ysis of an effective preconditioner.

Selecting time levels 0 = t0 < t1 < · · · < tN = T with tn = t0 + n∆t, we
seek a sequence of {(unh, ηnh)}Nn=0 such that for each n ≥ 1,

(
1

H

un+1
h − unh
∆t

, vh

)
+

1

ǫ

(
f

2H

(
(un+1

h )⊥ + (unh)
⊥) , vh

)

− β

2ǫ2
(
ηn+1
h + ηnh ,∇ · vh

)
+

(
C

2H

(
un+1
h + unh

)
, vh

)
=

(
F n+

1
2 , vh

)
,

(
ηn+1
h − ηnh
∆t

, wh

)
+
(
1
2
∇ · (un+1

h + unh), wh

)
= 0.

(6)

for all vh ∈ Vh and wh ∈ Wh.
Given unh and ηnh , this defines a linear system for un+1

h and ηn+1
h that

must be solved at each time step. Dropping the superscripts and subscripts,
multiplying through by ∆t and putting k ≡ ∆t

2
, we arrive at a canonical

equation to be solved at each time step:
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(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v) +

(
Ck

H
u, v

)
= (F, v) ,

(η, w) + k (∇ · u, w) = (G,w) ,

(7)

where the solution u ∈ Vh and η ∈ Wh and similar for test functions. Equiv-
alently, we can define a bilinear form on the product space Vh ×Wh. Adding
together the first equation and β

ǫ2
times the second, we let u = (u, η) and

v = (v, w), to define

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(8)

Before proceeding, we remark that other methods (e.g. backward Euler or
the implicit midpoint rule) would give variational problems of this form as
well. Now, solving a variational problem associated with this bilinear form
gives rise to a block-structured linear system

[
M̌ −βk

ǫ2
DT

βk

ǫ2
D β

ǫ2
M

] [
u
η

]
=

[
f
g

]
, (9)

where for finite element bases {ψi}dimVh

i=1 and {φi}dimWh

i=1 , we have matrices

M̌ij =

(
1 + Ck

H
ψj , ψi

)
+

(
fk

ǫH
ψ⊥
j , ψi

)
,

Dij = (∇ · ψj , φi) ,

Mij = (φj, φi) .

(10)

Note that M̌ is not just a weighted mass matrix. It is nonsymmetric owing
to skew-symmetric term above. This skew term on the diagonal (rather
than the off-diagonal blocks having a skew structure) that seems to lead to
parameter-dendence later in our weighted-norm estimate.

3. Preconditioning

Now, we turn to developing a preconditioner for (8), (9). Here, we con-
cretize the abstract approach taken in [21, 22] for our particular tide model.
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Essentially, a bounded bilinear form a on a Hilbert space V is equivalent to a
linear operator A from V into its topological dual V ′. Classical Galerkin dis-
cretization restricts this bilinear form and operator to some finite-dimensional
subspace Vh ⊂ V . Moreover, the discrete operator Ah : Vh → V ′

h is encoded
by the usual finite element stiffness matrix A obtained by substituting each
member of a basis for Vh into each argument of a.

When one seeks to solve the linear system for the discrete solution by
means of an iterative method such as GMRES [12], the conditioning of the
matrix A plays a critical role. As the condition number, and hence number
of iterations required, of A degrades under mesh refinement, it is critical to
precondition the linear system by means of (at least morally) pre-multiplying
the system

Ax = b

by some linear operator P−1. Thus, one obtains the equivalent system

P−1Ax = P−1b,

and if the conditioning of P−1A is much better than that of A, the iterative
method should converge much faster. Of course, the cost of applying P−1

at each iteration must not offset the reduction in iteration count for the
preconditioner to be successful.

One can think of the matrix P as discretizing some simpler operator
P : V → V ′ so that the product P−1A encodes a bounded operator from Vh
onto itself. In the simplest case this is the Riesz map, which isometrically
identifies each f ∈ V ′

h uniquely with some v ∈ Vh so that F (u) = (u, v)
for all u ∈ Vh. Bounded operators have bounded spectra, and functional-
analytic bounds obtained on P−1A mean that the matrices P−1A will inherit
mesh-independent bounds on their spectra. We refer to [21, 22] for further
discussion of this approach.

In addition to mesh refinement, variation in physical parameters can also
contribute adversely to the conditioning of discrete problems. While the
standard Riesz map serves as a simple preconditioner that eliminates mesh
dependence, it does not address physical constants. Increasingly, attempts
are made to design parameter-robust preconditioners, meaning that they also
eliminate or at least mitigate the dependence of the conditioning on system
parameters.

In this section, we present two preconditioners. One is based on inverting
weighted mass matrices. This utilizes an inverse assumption in H(div) to
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work in purely a discrete L2 inner product, so that the bounds depend on
the mesh parameter h in such a way that conditioning (as expected) degrades
as h ց 0. However, this dependence can be offset by taking k = O(h), a
CFL-like criterion that enforces conditioning rather than stability of the time-
discretization. Our second approach better respects the functional analytic
structure, working in a weightedH(div)×L2 inner product. Here, we obtain a
mesh-independent bound that is also far less dependent on other parameters
at the expense of a more complicated operator to invert as a preconditioner.

3.1. Mass matrices: block diagonal

A simple approach that may help for small time steps is to precondition
the linear system with the block diagonal matrix

PM =

[
M̃ 0

0 β

ǫ2
M

]
, (11)

where

M̃ij =

(
1

H
ψj , ψi

)
(12)

is the mass-like matrix obtained from the 1
H
-weighted inner product of the

Vh basis functions and M is as in (10).
This is motivated by the observing that the bilinear form a from (8) is

continuous and coercive on discrete subspaces of (L2)2 × L2, although the
constants depend on the discretization parameters h and k as well as the
physical parameters. We define the norm

‖u‖22 = ‖u‖21
H

+
β

ǫ2
‖η‖2, (13)

where ‖u‖21
H

=
(

1
H
u, u

)
. The the inner product for this norm generates the

matrices in (11).
Establishing well-posedness of variational problems for the bilinear form

a follows from demonstrating continuity and inf-sup estimates in H(div) ×
L2. However, we can study the mass matrix preconditioner (11) by means
of establishing continuity and coercivity of a on finite element subspaces
equipped with the L2 norms. This analysis is somewhat nonstandard, but
it establishes an alternate proof of solvability of the discrete system and
more importantly, allows us to demonstrate mesh-independence of (11) as a
preconditioner subject to a CFL-like restriction on k.
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Proposition 3.1. Let

κ = 4max

{
1 + C∗k +

f ∗k

ǫ
,

√
βk

ǫCIH∗h

}
(14)

Then, the bilinear form a satisfies

a(u,v) ≤ κ‖u‖2‖v‖2. (15)

and

a(u,u) ≥ ‖u‖22 (16)

Proof. We begin with the continuity estimate (15).

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w)

≤
(
1 + C∗k +

f ∗k

ǫ

)
‖u‖ 1

H

‖v‖ 1

H

+
β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖+ βk

ǫ2
‖η‖‖∇ · v‖.

Applying the inverse estimate to the divergences and converting to the 1
H
-

weighted norm now gives

a(u,v) ≤
(
1 + C∗k +

f ∗k

ǫ

)
‖u‖ 1

H

‖v‖ 1

H

+
β

ǫ2
‖η‖‖w‖+ βk

CIhH∗ǫ2
‖u‖ 1

H

‖w‖+ βk

CIhH∗ǫ2
‖η‖‖v‖ 1

H

.

The result follows by absorbing
√
β/ǫ into the norm of ‖w‖ and ‖η‖ in

the third and fourth term and then recognizing each term as bounded by
κ‖u‖‖v‖.

The rescaling of the second equation to produce the bilinear form a makes
the coercivity estimate rather simple. Noting that u⊥ · u = 0 pointwise and
that the divergence terms in a(u,u) cancel, we have

a(u,u) =

(
1

H
u, u

)
+

(
Ck

H
u, u

)
+
βk

ǫ2
(η, η)

≥ (1 + C∗k) ‖u‖21
H

+
β

ǫ

2

‖η‖2

≥ ‖u‖22.

9



It is possible to achieve slightly better constants (e.g. through more care-
ful use of discrete Cauchy-Schwarz), but the main issue remains: The con-
ditioning of the system (continuity divided by coercivity constants) depends
on the discretization (as well as physical) parameters, scaling like k

h
. For a

fixed time step, the conditioning degrades like h−1, and so preconditioning
with weighted mass matrices is only scalable if one also imposes a CFL-like
time step restriction. Moreover, even including some weights in the norm,
we still have quite a bit of parameter dependence in our estimate.

3.2. Weighted-norm preconditioning

The mesh-dependence in our estimate comes from invoking the inverse as-
sumption in order to obtain L2 estimates. Our bilinear form is not coercive
on subspaces of H(div)×L2, but we can prove that it still defines a bounded
operator with bounded inverse in a weighted norm that nearly eliminates pa-
rameter dependence. Such techniques appear for other applications [23, 24]
as well, and are based on defining a suitable (parameter-dependent) inner
product in which the problem is well-behaved rather than algebraic consid-
erations such as merely selecting the block diagonal or triangular part of the
system matrix [25, 26, 27]

We can equip H(div) with the following weighted norm

‖u‖2a = ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 (17)

and, as previously, L2 with the norm

‖η‖2b =
β

ǫ2
‖η‖2. (18)

We then equip the product space H(div)× L2 with the norm

|||u|||2 = |||(u, η)|||2 = ‖u‖2a + ‖η‖2b

= ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 + β

ǫ2
‖η‖2

(19)

This norm is derived from a weighted inner product

((u,v)) = ((1 + Ck) u, v) 1

H

+ (u, v) +
k2β

ǫ2
(∇ · u,∇ · v) + β

ǫ2
(η, w) . (20)
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Discretizing this bilinear form on mixed function spaces Vh × Wh yields a
block-diagonal preconditioning matrix:

P =

[
PVh

0
0 PWh

]
, (21)

where the first block handles the parameter-weighted H(div) inner product
and the second is just the standard Wh mass matrix scaled by β

ǫ2
. We have

(PVh
)ij = ((1 + Ck)ψj , ψi) 1

H

+ (ψj , ψi) +
k2β

ǫ2
(∇ · ψj ,∇ · ψi) ,

(PWh
)ij =

β

ǫ2
(φj, φi) .

(22)

In the lowest-order case (either on triangles or squares), Wh consists of
piecewise constants so that PWh

is simply a diagonal matrix. Since the top
left block discretizes a differential operator, applying P−1

Vh
will constitute the

bulk of the cost in applying the preconditioner. Options based on geometric
or algebraic multigrid are available, and we discuss these more later.

The following result shows the boundedness of a in this norm, with mild
dependence on parameters, which we discuss below.

Theorem 3.1. For all u = (u, η) and v = (v, w) in H(div)×L2, the bilinear

form a satisfies

a(u,v) ≤ K|||u||||||v|||, (23)

where constant K = Kk,ǫ = max
{
2, 1 + k

ǫ

}
.

Proof. The proof is a direct calculation using Cauchy-Schwarz, the isometry
of ·⊥, and upper bounds on some of the spatially varying coefficients

a(u,v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
Ck

H
u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w)

≤ ‖(1 + Ck)u‖ 1

H

‖(1 + Ck)v‖ 1

H

+
f ∗k

ǫ
‖u‖ 1

H

‖v‖ 1

H

+
βk

ǫ2
‖η‖‖∇ · v‖+ β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖.

(24)

11



Now, we can write

‖u‖ 1

H

≤ 1√
1 + C∗k

‖(1 + Ck)u‖ 1

H

≤ ‖(1 + Ck)u‖ 1

H

and recalling that |f ∗| ≤ 1,

a(u,v) ≤
(
1 +

k

ǫ

)
‖(1 + Ck)u‖ 1

H

‖(1 + Ck)v‖ 1

H

+
βk

ǫ2
‖η‖‖∇ · v‖+ β

ǫ2
‖η‖‖w‖+ βk

ǫ2
‖∇ · u‖‖w‖.

(25)

Now, we recognize the right-hand side as the dot product of



√
(1 + k

ǫ
)‖(1 + Ck)u‖ 1

H√
β

ǫ
‖η‖√

β

ǫ
‖η‖

k
√
β

ǫ
‖∇ · u‖




t 


√
(1 + k

ǫ
)‖(1 + Ck)v‖ 1

H

k
√
β

ǫ
‖∇ · v‖√
β

ǫ
‖w‖√

β

ǫ
‖w‖



,

whence discrete Cauchy-Schwarz gives

a(u,v) ≤
[(

1 +
k

ǫ

)
‖(1 + Ck)u‖21

H

+
k2β

ǫ2
‖∇ · u‖2 + 2β

ǫ

2

‖η‖2
] 1

2

×
[(

1 +
k

ǫ

)
‖(1 + Ck)v‖21

H

+
k2β

ǫ2
‖∇ · v‖2 + 2β

ǫ

2

‖w‖2
] 1

2

,

(26)

and the result follows from a simple bound.

Note that the Coriolis term fk

ǫ
(u⊥, v), which is skew and on the diago-

nal leaves the term scaled by k
ǫ
so that we do not obtain total parameter-

independence. We can interpret this bound as saying that the Rossby number
ǫ induces a time scale, independent of h, that must be resolved in order to
obtain a robust continuity estimate. More precisely,

Corollary 3.1. For any M ≥ 2 and ǫ > 0, there exists k0 such that for any

k ≤ k0,
a(u,v) ≤M |||u||||||v|||.

Next, we bound the inverse of the operator induced by a by means of
an inf-sup condition. Unlike our continuity estimate, this is completely
parameter-independent.
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Theorem 3.2. The bilinear form a satisfies the estimate

inf
u6=0

sup
v

a(u,v) ≥
√
3

6
. (27)

Proof. We let u = (u, η) be given and put v = (v, w) = (u, η + k∇ · u) so
that

a(u,v) =

(
1

H
u, u

)
+

(
fk

ǫH
u⊥, u

)
− βk

ǫ2
(η,∇ · u)

+

(
Ck

H
u, u

)
+
β

ǫ2
(η, η + k∇ · u) + βk

ǫ2
(∇ · u, η + k∇ · u)

= ‖(1 + Ck)u‖21
H

+
β

ǫ2
‖η‖2 + k2β

ǫ2
‖∇ · u‖2 + kβ

ǫ2
(η,∇ · u).

(28)

The last term is readily bounded below by − β

2ǫ2
(‖η‖2 + k2‖∇ · u‖2) so that

a(u,v) ≥ ‖(1 + Ck)u‖21
H

+
β

2ǫ2
‖η‖2 + k2β

2ǫ2
‖∇ · u‖2 ≥ 1

2
|||u|||2. (29)

Now, we have that

|||v|||2 = ‖(1 + Ck)u‖21
H

+
k2β

ǫ2
‖∇ · u‖2 + β

ǫ2
‖η + k∇ · u‖2

≤ ‖(1 + Ck)u‖21
H

+ 3
β

ǫ2
‖∇ · u‖2 + 2

β

ǫ2
‖η‖2

≤ 3|||u|||2,

(30)

and combining this with (29) gives the result.

Because the spectral radius of a matrix is bounded above by any natural
norm, these results prove that the eigenvalues of P−1A are bounded below by
a constant (in fact,

√
3
6
) independently of the mesh size and all the physical

constants. The eigenvalues of P−1A are further bounded above the greater
of 2 and 1 + k

ǫ
, which can degrade as the Rossby number decreases.

3.3. Dropping the damping term from the preconditioner

In [11], we consider energy and error analysis of a possibly degenerate
nonlinear damping term, where the term Cu in (2) is replaced by a more
general g(u). Typical use cases have a power law such as g(u) = |u|p−1u,
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modified to have linear growth for large u (at least as a technical assumption).
In this case, g(u) tends to zero as |u| does so that the effective damping
decays.

Carrying out the same manipulations that leads to (8) for nonlinear damp-
ing leads to the nonlinear variational form

F (u;v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
k

H
g(u), v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(31)

Newton-type methods require the Jacobian of this system. Linearizing
about some state u0 = (u0, η0), we have

Ju0
(u;v) =

(
1

H
u, v

)
+

(
fk

ǫH
u⊥, v

)
− βk

ǫ2
(η,∇ · v)

+

(
k

H
g′(u0)u, v

)
+
β

ǫ2
(η, w) +

βk

ǫ2
(∇ · u, w) .

(32)

All of the analysis carried out in [11] required monotonicity of g, so that
g′ > 0. In this case, (32) takes the same form as (8) with C ↔ g′(u0). As a
result, our theory carries over directly to preconditioning each Newton step
provided that the Riesz map (20) is updated at each iteration (of each time
step).

On the other hand, many preconditioners such as algebraic multigrid can
be relatively expensive to initialize, so that it is helpful to reuse the same
bilinear form between successive linear solves as the damping changes. We
drop the damping term in the bilinear form in (20) to define

((u,v))∗ = (u, v) 1

H

+
k2β

ǫ2
(∇ · u,∇ · v) + β

ǫ2
(η, w), (33)

and an associated norm
|||u|||2∗ ≡ ((u,u)). (34)

This norm is, at the cost of some dependence on C∗, equivalent to |||·|||

Proposition 3.2. For all u = (u, η) ∈ Vh ×Wh,

1
1+C∗k

|||u|||2 ≤ |||u|||2∗ ≤ |||u|||2 (35)

14



Proof. The proof is elementary and uses that 1+Ck
1+C∗k

≤ 1 ≤ 1 + Ck in the
definition of ((·, ·)).

Theorems 3.1 and 3.2 can be readily restated using this norm:

Corollary 3.2. For all u,v ∈ H(div)× L2,

a(u,v) ≤ K∗|||u|||∗|||v|||∗, (36)

where K∗ = (1 + C∗k)max{2, 1 + k
ǫ
}, and the inf-sup constant of a with

respect to |||·|||∗ is also at least
√
3
6
.

Typically, the linear damping is small compared to the other effects in the
equation so that the effective bounds on the preconditioner are essentially
unchanged. Much as with the Rossby number, the time step can be reduced
to accommodate large C∗ if it becomes a problem.

4. Numerical results

We have implemented a mixed finite element discretization of the tide
model and developed all of our preconditioners within the Firedrake frame-
work [28]. Firedrake is an automated system for the solution of PDE using
the finite element method. It allows users to specify the variational form of
their problems using the Unifed Form Language (UFL) in Python [29], gen-
erates efficient low-level code for the evaluation of operators, and interfaces
tightly with PETSc for scalable algebraic solvers. Firedrake also allows users
to specify UFL for preconditioning operator that is distinct from that for the
problem being solved, and we make use of this facility. A sample listing is
shown in Figure 1.

In our initial experiments, we test the results of Theorems 3.1 and 3.2. We
test our methods on a simple square domain and put damping coefficient C,
Coriolis parameter f , and bathymetry H all equal 1, the Burger number β =
0.1 and Rossby number ǫ = 0.1. Initially, we divide the unit square into an
N×N mesh of squares, each subdivided into two right triangles, and use Vh×
Wh as the lowest-order Raviart-Thomas and discontinuous piecewise constant
spaces. We vary the mesh size h, and the time step k over relatively wide
ranges, as shown in the figures below. In each case, we solve the linear system
using GMRES preconditioned with P from (21) as well as the discretization
of the simplified inner product in (33). To verify the efficacy of each P , we
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✞ ☎
from firedrake import *

mesh = UnitSquareMesh(16, 16)

V = FunctionSpace(mesh , "RT", 1)

Q = FunctionSpace(mesh , "DG", 0)

Z = V * Q

x, y = SpatialCoordinate(mesh)

k = Constant (k)

Eps = Constant (eps)

Beta = Constant (0.1)

C = Constant (1.0)

f = Constant (1.0)

beps2 = Beta / Eps **2

up = Function (Z)

v, q = TestFunctions(Z)

u, p = split(up)

F = (inner(u, v) * dx

+ k / Eps * f * inner(perp(u),v) * dx

- k * beps2 * inner (p, div(v)) * dx

+ C * k * inner(u,v) * dx

+ beps2 * inner(p, q) * dx

+ k * beps2 * inner (div(u), q) * dx

- beps2 * inner(sin (pi*x)*cos(pi*y),q)*dx)

uu , pp = TrialFunctions(Z)

Jpc = (( Constant (1.0) + C * k) * inner (uu ,v)*dx

+ k**2 * beps2 * inner(div(uu),div(v)) *dx

+ beps2 * inner (pp ,q)*dx)

bcs = [DirichletBC (Z.sub (0), 0, ’on_boundary ’)]

solve (F==0, up , bcs=bcs , Jp=Jpc)

solver .solve ()
✝ ✆

Figure 1: Sample Firedrake code for solving the tide model using the Riesz map (20) as
a preconditioner. The user can optionally pass a Python dictionary containing PETSc
options into the solve function.
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simply apply P−1 using a sparse direct factorization at first (see Figure 2
for the solver dictionary we pass to solve in that case). These results are
plotted in Figure 3. We observe that for each k, the iteration count seems
to be bounded above independent of the mesh size. For the moderately-
sized k, the iteration count seems to be larger than for either very small
or very large k, which means the iterations also seem to vary beneath a k-
independent bound as well. Comparing Figure 3a to 3b, we see that removing
the damping term from the preconditioner leads to a possible slight increase
in iteration count.

✞ ☎
param_lu = {"mat_type ": "aij ",

"snes_type ": "ksponly ",

"ksp_type ": "gmres ",

"ksp_gmres_restart": 100,

"pc_type ": "lu"

}
✝ ✆

Figure 2: Firedrake solver parameter dictionary, internally mapped to PETSc options,
indicating that the matrices will be assembled in standard sparse format, that the problem
is linear (bypassing Newton), setting GMRES as the Krylov solver, and applying the
inverse of the preconditioning matrix via LU factorization.

Nothing in our analysis depended on the particularities of the approxi-
mating space, and we repeated the experiment for RT2 × dP1 (Figure 4) and
RTc1 × dQ0 (Figure 5). The results have the same flavor and differ only
slightly in the particular iteration counts compared to Figure 3.

We perform a second set of experiments, now fixing the mesh at N = 128
and studying the iteration count as function of ǫ and k. These results are
shown in Figures 7,8,9. This shows that, for fixed k, increasing ǫ also increases
the iteration count. On the other hand, for fixed ǫ, one finds the largest
iteration counts for intermediate values of the time step. Much as the mesh-
dependence study, we remark that varying the discretization order and cell
shape has little effect on the results.
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(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 3: Iteration count versus mesh refinement under various k values for C = f = 1,
β = 0.1, and ǫ = 0.01. The unit square is divided into an N × N mesh of squares, each
subdivided into two right triangles. Lowest-order Raviart-Thomas discretization is used.
The iteration counts are largest for moderate k and decrease as k is either very large or
small. Also, removing the damping term (right) from the weighted inner product leads to
a small increase in iteration count.

Now, we consider inexact application of the inverse of the top left block
of our preconditioner by some kind of multi-level method Instead of typical
pointwise smoothers for problems in H1, the geometric multigrid of Arnold,
Falk, and Winther in [30] requires one to solve local problems on cells sur-
rounding vertex patches. This approach is accessible in Firedrake through
the high-level solver interface described in [31] and the pcpatch package
developed under PETSc [32]. Kolev and Vassilevski [33] also present al-
gebraic multigrid approach. Originally for H(curl), their method readily
adapts to two-dimensional H(div) problems. This is an algebraic auxiliary
space method based on [34] that requires the user to set a discrete gradi-
ent operator and mesh vertex coordinates and internally solves a (possibly
algebraically derived) Poisson-type equation. The hypre implementation is
available through PETSc, and we have also developed a Python wrapper that
extracts the mesh vertices and computes a discrete gradient for each mesh
and configures the underlying PETSc preconditioner appropriately. However,
we report only results using the geometric multigrid variant here.
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Figure 4: Experiment in Figure 3 is repeated, except with the next-to-lowest Raviart-
Thomas elements. Since the bilinear form (20) is also discretized in this space, very little
changes relative to the lowest-order case.

In our results, instead of applying the inverse of PVh
via LU factorization

at each outer iteration, we apply a single sweep of full multigrid using four
levels of refinement. On each level, we apply one step of Richardson smooth-
ing using the vertex-patch preconditioner described in [30, 32]. A sparse
direct method is used on the coarsest mesh. The PETSc paramters are the
same as used for the H(div) Riesz map in [32]. Because our sample problems
are not large enough for the asymptotic complexity of multigrid to beat the
sparse direct solve, we continue to only report iteration counts rather than
timings.
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(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 5: Experiment in Figure 3 is again repeated, except with lowest Raviart-Thomas
elements on squares. Again, little changes relative to the triangular case.

As a final example, we consider a problem with nonlinear damping. In
particular, we choose g(u) = |u|2u in (31) (this bypasses numerical wrinkles
in differentiating through the singularity of quadratic damping). Our typical
use case is in time-stepping, where the solution at the previous time step
serves as an initial guess for Newton iteration. To imitate having a close
initial guess, we seed Newton’s method with the solution of the linear, un-
damped problem. In each case, we observed that Newton requires but a single
iteration to converge, suggesting that there is not a significant need to split
the nonlinear term from the rest of the equation for implicit time-stepping
to be effective.

5. Conclusions

We have developed effective weighted-norm preconditioners for a mixed fi-
nite element/Crank-Nicolson discretization of the linearized rotating shallow
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Figure 6: Experiment in Figure 3 is again repeated, except second-order trimmed serendip-
ity elements on squares. Again, little changes relative to the triangular case.

water equations with (possibly nonlinear) damping. These preconditioners
are based on defining a suitable inner product in which the operators are
bounded with bounded inverse in a relatively paramater-independent way.
These estimates in turn control the spectrum of the preconditioned operator.
Our estimates remain dependent on the ratio k

ǫ
, although this seems relatively

benign in practice. Moreover, inexactly applying the preconditioner through
a multigrid sweep and neglecting damping terms in the inner product lead
to further simplifications with only mild effects on iteration count.

This work suggests many future research directions. Since our theory
and numerical observations both seem independent of mesh type and dis-
cretization order, we hope to apply these preconditioners to unstructured
quadrilateral elements such as Arbogast-Correa [35]. Moreover, our tech-
niques should be applicable to more complex tide models that might include
additional nonlinearities or layering.

References

[1] C. Garrett, E. Kunze, Internal tide generation in the deep ocean, Annu.
Rev. Fluid Mech. 39 (2007) 57–87.

21



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

ǫ = 0.1 0.01 0.001

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 7: Iteration count with weighted-norm preconditioning as a function of k and ǫ on
a 128×128 mesh divided into right triangles using lowest-order Raviart-Thomas elements.
Note that for a fixed k, the iteration count increases with decreasing ǫ. As in Figure 3,
removing the damping term from the preconditioner leads to a very slight increase in
iteration count.

[2] W. Munk, C. Wunsch, Abyssal recipes II: energetics of tidal and wind
mixing, Deep-Sea Research Part I 45 (12) (1998) 1977–2010.

[3] H. Weller, T. Ringler, M. Piggott, N. Wood, Challenges facing adaptive
mesh modeling of the atmosphere and ocean, Bulletin of the American
Meteorological Society 91 (1) (2010) 105–108.

[4] R. Comblen, J. Lambrechts, J.-F. Remacle, V. Legat, Practical eval-
uation of five partly discontinuous finite element pairs for the non-
conservative shallow water equations, Int. J. Num. Meth. Fluid. 63 (6)
(2010) 701–724.

[5] C. Cotter, D. Ham, Numerical wave propagation for the triangular
P1DG-P2 finite element pair, Journal of Computational Physics 230 (8)
(2011) 2806 – 2820. doi:DOI:10.1016/j.jcp.2010.12.024.

[6] D. Y. Le Roux, Dispersion relation analysis of the PNC
1 − P1 finite-

element pair in shallow-water models, SIAM Journal on Scientific Com-
puting 27 (2) (2005) 394–414.

22

http://dx.doi.org/DOI: 10.1016/j.jcp.2010.12.024


10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

ǫ = 0.1 0.01 0.001

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 8: Repeating experiment in Figure 7 with next-to-lowest order elements, showing
little change in results.

[7] D. Le Roux, V. Rostand, B. Pouliot, Analysis of numerically induced
oscillations in 2D finite-element shallow-water models part I: Inertia-
gravity waves, SIAM J. Sci. Comput. 29 (1) (2007) 331–360.

[8] D. Y. Le Roux, B. Pouliot, Analysis of numerically induced oscillations
in two-dimensional finite-element shallow-water models part II: Free
planetary waves, SIAM journal on scientific computing 30 (4) (2009)
1971–1991.

[9] V. Rostand, D. Le Roux, Raviart-Thomas and Brezzi-Douglas-Marini
finite-element approximations of the shallow-water equations, Int. J.
Num. Meth. Fluids 57 (8) (2008) 951–976.

[10] C. J. Cotter, R. C. Kirby, Mixed finite elements for global tide models,
Numerische Mathematik 133 (2) (2016) 255–277.

[11] C. J. Cotter, P. J. Graber, R. C. Kirby, Mixed finite elements for global
tide models with nonlinear damping, Numerische Mathematik 140 (4)
(2018) 963–991.

[12] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algo-

23



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

k

ǫ = 0.1 0.01 0.001

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 9: Iteration count with weighted-norm preconditioning as a function of k and ǫ on
a 128× 128 mesh of squares using lowest-order Raviart-Thomas elements. Again, results
are nearly identical to the two triangular cases.

rithm for solving nonsymmetric linear systems, SIAM Journal on Scien-
tific and Statistical Computing 7 (3) (1986) 856–869.

[13] D. N. Arnold, R. S. Falk, R. Winther,
Preconditioning in H(div) and applications, Math. Comput. 66 (219)
(1997) 957–984. doi:10.1090/S0025-5718-97-00826-0.
URL http://dx.doi.org/10.1090/S0025-5718-97-00826-0

[14] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer-
Verlag New York, Inc., 1991.

[15] P. A. Raviart, J. M. Thomas, A mixed finite element method for 2nd
order elliptic problems, in: Mathematical aspects of finite element meth-
ods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975),
Springer, Berlin, 1977, pp. 292–315. Lecture Notes in Math., Vol. 606.

[16] D. N. Arnold, A. Logg, Periodic table of the finite elements, SIAM News
47 (9) (2014) 212.

[17] D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus,

24

http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx.doi.org/10.1090/S0025-5718-97-00826-0
http://dx.doi.org/10.1090/S0025-5718-97-00826-0


2
4

2
5

2
6

2
7

5

10

15

20

N

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

2
4

2
5

2
6

2
7

5

10

15

20

N

k = 100 10−1 10−2 10−3 10−4 10−5 10−6

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 10: Iteration count versus mesh refinement under various k values for C = f = 1,
β = 0.1, and ǫ = 0.01 using lowest-order triangular Raviart-Thomas elements. Instead of
inverting PVh

by LU factorization, however, a single full multigrid cycle is used. Comparing
to Figure 3 reveals a slight increase in iteration count in exchange for forgoing the sparse
direct factorization.

homological techniques, and applications, Acta Numerica 15 (1) (2006)
1–155.

[18] A. Gillette, T. Kloefkorn, V. Sanders, Computational serendipity and
tensor product finite element differential forms, The SMAI Journal of
Computational Mathematics 5 (2019) 1–21.

[19] A. Gillette, T. Kloefkorn, Trimmed serendipity finite element differential
forms, Mathematics of Computation 88 (316) (2019) 583–606.

[20] R. C. Kirby, T. T. Kieu, Symplectic-mixed finite element approxima-
tion of linear acoustic wave equations, Numerische Mathematik 130 (2)
(2015) 257–291.

[21] R. C. Kirby, From functional analysis to iterative methods, SIAM Re-
view 52 (2) (2010) 269–293.

[22] K.-A. Mardal, R. Winther, Preconditioning discretizations of systems of

25



2
4

2
5

2
6

2
7

5

10

15

N

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

2
4

2
5

2
6

2
7

5

10

15

N

k = 100 10−1 10−2 10−3 10−4 10−5 10−6

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 11: Iteration count versus mesh refinement under various k values for C = f =
1, β = 0.1, and ǫ = 0.01 using lowest-order Raviart-Thomas elements on squares. A
full multigrid cycle using four levels, as in Figure 10, is used instead of sparse direct
factorization of PVh

, again resulting in a slight increase in iteration count.

partial differential equations, Numerical Linear Algebra with Applica-
tions 18 (1) (2011) 1–40.

[23] J. H. Adler, F. J. Gaspar, X. Hu, C. Rodrigo, L. T. Zikatanov, Robust
block preconditioners for Biot’s model, in: International Conference on
Domain Decomposition Methods, Springer, 2017, pp. 3–16.

[24] T. Bærland, J. J. Lee, K.-A. Mardal, R. Winther, Weakly imposed sym-
metry and robust preconditioners for Biot’s consolidation model, Com-
putational Methods in Applied Mathematics 17 (3) (2017) 377–396.

[25] K.-A. Mardal, B. F. Nielsen, X. Cai, A. Tveito, An order optimal solver
for the discretized bidomain equations, Numerical Linear Algebra with
Applications 14 (2) (2007) 83–98.

[26] A. Wathen, D. Silvester, Fast iterative solution of stabilised Stokes sys-
tems. Part I: Using simple diagonal preconditioners, SIAM Journal on
Numerical Analysis 30 (3) (1993) 630–649.

26



2
4

2
5

2
6

2
7

5

10

15

N

It
er
at
io
n
s

(a) Using the bilinear form (20) (in-
cludes damping) as a preconditioner

2
4

2
5

2
6

2
7

5

10

15

N

k = 100 10−1 10−2 10−3 10−4 10−5 10−6

(b) Using the bilinear form (33) (with-
out damping) as a preconditioner

Figure 12: Iteration count versus mesh refinement under various k values for f = 1,
β = 0.1, and ǫ = 0.01 for the nonlinear damping law g(u) = |u|2u.

[27] V. E. Howle, R. C. Kirby, Block preconditioners for finite element dis-
cretization of incompressible flow with thermal convection, Numerical
Linear Algebra with Applications 19 (2) (2012) 427–440.

[28] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini,
A. T. T. McRae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, Fire-
drake: automating the finite element method by composing abstractions,
ACM Transactions on Mathematical Software 43 (3) (2016) 24:1–24:27.
arXiv:1501.01809, doi:10.1145/2998441.

[29] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, G. N. Wells, Uni-
fied form language: A domain-specific language for weak formulations
of partial differential equations, ACM Transactions on Mathematical
Software (TOMS) 40 (2) (2014) 1–37.

[30] D. N. Arnold, R. S. Falk, R. Winther, Multigrid in H(div) and H(curl),
Numerische Mathematik 85 (2) (2000) 197–217.

[31] R. C. Kirby, L. Mitchell, Solver composition across the pde/linear alge-
bra barrier, SIAM Journal on Scientific Computing 40 (1) (2018) C76–
C98. doi:10.1137/17M1133208.

27

http://arxiv.org/abs/1501.01809
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1137/17M1133208


[32] P. E. Farrell, M. G. Knepley, F. Wechsung, L. Mitchell, PCPATCH: soft-
ware for the topological construction of multigrid relaxation methods,
arXiv preprint arXiv:1912.08516.

[33] T. V. Kolev, P. Vassilevski, Parallel H1-based auxiliary space AMG
solver for H(curl) problems, Tech. rep., Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States) (2006).

[34] R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl)
and H(div) spaces, SIAM Journal on Numerical Analysis 45 (6) (2007)
2483–2509.

[35] T. Arbogast, M. R. Correa, Two families ofH(div) mixed finite elements
on quadrilaterals of minimal dimension, SIAM Journal on Numerical
Analysis 54 (6) (2016) 3332–3356.

28


	1 Introduction
	2 Description of finite element tidal model
	3 Preconditioning
	3.1 Mass matrices: block diagonal
	3.2 Weighted-norm preconditioning
	3.3 Dropping the damping term from the preconditioner

	4 Numerical results
	5 Conclusions

