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A B S T R A C T

This paper is devoted to constructing approximate solutions for the classical Keller–Segel model governing
chemotaxis. It consists of a system of nonlinear parabolic equations, where the unknowns are the average
density of cells (or organisms), which is a conserved variable, and the average density of chemoattractant.

The numerical proposal is made up of a crude finite element method together with a mass lumping
technique and a semi-implicit Euler time integration. The resulting scheme turns out to be linear and decouples
the computation of variables. The approximate solutions keep lower bounds – positivity for the cell density and
nonnegativity for the chemoattractant density–, are bounded in the 𝐿1(𝛺)-norm, satisfy a discrete energy law,
and have a priori energy estimates. The latter is achieved by means of a discrete Moser–Trudinger inequality.
As far as we know, our numerical method is the first one that can be encountered in the literature dealing
with all of the previously mentioned properties at the same time. Furthermore, some numerical examples are
carried out to support and complement the theoretical results.
. Introduction

.1. Aims

In 1970/71 Keller and Segel [1,2] attempted to derive a set of equa-
ions for modeling chemotaxis – a biological process through which an
rganism (or a cell) migrates in response to a chemical stimulus being
ttractant or repellent. It is nowadays well-known that the work of
eller and Segel turned out to be somehow biologically inaccurate since

heir equations provide unrealistic solutions; a little more precisely,
olutions that blow up in finite time. Such a phenomenon does not
ccur in nature. Even though the original Keller–Segel equations are
ess relevant from a biological point of view, they are mathematically
f great interest.

Much of work for the Keller–Segel equations has been carried out
n developing purely analytical results, whereas there are very few
umerical results in the literature. This is due to the fact that solving
umerically the Keller–Segel equations is a challenging task because
heir solutions exhibit many interesting mathematical properties which
re not easily adapted to a discrete framework. For instance, solutions
o the Keller–Segel equations satisfy lower bounds (positivity and non-
egativity) and enjoy an energy law, which is obtained by testing
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the equations against non linear functions. Cross-diffusion mechanisms
governing the chemotactic phenomena are the responsible for the fact
that the Keller–Segel equations are so difficult to analyze not only
theoretically but also numerically.

In spite of being a limited model, it is hoped that developing and
analyzing numerical methods for the classical Keller–Segel equations
may open new roads to deeper insights and better understandings
for dealing with the numerical approximation of other chemotaxis
models — biologically more realistic, but which are, however, inspired
on the original Keller–Segel formulation. In a nutshell, these other
chemotaxis models are modifications of the Keller–Segel equations
in order to avoid the non-physical blow up of solutions and hence
produce solutions being closer to chemotaxis phenomena. For these
other chemotaxis models, it is recommended the excellent surveys of
Hillen and Painter [3], Horstamann [4,5], and, more recently, Bellomo,
Bellouquid, Tao, and Winkler [6]. In these surveys the authors reviewed
to date as to when they were written the state of art of modeling
and mathematical analysis for the Keller–Segel equations and their
variants.

It is our aim in this work to design a fully discrete algorithm for the
classical Keller–Segel equations based on a finite element discretization
whose discrete solutions satisfy lower and a priori bounds.
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1.2. The Keller–Segel equations

Let 𝛺 ⊂ R2 be a bounded domain, with 𝒏 being its outward-
irected unit normal vector to 𝛺, and let [0, 𝑇 ] be a time interval. Take
= (0, 𝑇 ] ×𝛺 and 𝛴 = (0, 𝑇 ] × 𝜕𝛺. Then the boundary-value problem

or the Keller–Segel equations reads a follows. Find 𝑢 ∶ 𝑄̄ → (0,∞) and
∶ 𝑄̄→ [0,∞) satisfying

{

𝜕𝑡𝑢 − 𝛥𝑢 = −∇ ⋅ (𝑢∇𝑣) in 𝑄,
𝜕𝑡𝑣 − 𝛥𝑣 = 𝑢 − 𝑣 in 𝑄,

(1)

ubject to the initial conditions

(0) = 𝑢0 and 𝑣(0) = 𝑣0 in 𝛺, (2)

nd the boundary conditions

𝑢 ⋅ 𝒏 = 0 and ∇𝑣 ⋅ 𝒏 = 0 on 𝛴. (3)

Here 𝑢 is the average density of organisms (or cells), which is a
onserved variable, and 𝑣 is the average density of chemical sign, which

is a nonconserved variable.
System (1) was motivated by Keller and Segel [1] describing the ag-

gregation phenomena exhibited by the amoeba Dictyostelium discoideum
due to an attractive chemical substance referred to as chemoattractant,
which is generated by the own amoeba and is, nevertheless, degraded
by living conditions. Moreover, diffusion is also presented in the motion
of amebae and chemoattractant.

The diffusion phenomena performed by cells and chemoattractant
are modeled by the terms −𝛥𝑢 and −𝛥𝑣, respectively, whereas the
aggregation mechanism is described by the term −∇ ⋅ (𝑢∇𝑣). It is
this nonlinear term that is the major difficulty in studying system
(1). Further the production and degradation of chemoattractant are
associated with the term 𝑢 − 𝑣.

Concerning the mathematical analysis for system (1), Nagai, Senba,
and Yoshida [7] proved existence, uniqueness and regularity of solu-
tions under the condition ∫𝛺 𝑢0(𝒙) d𝒙 ∈ (0, 4𝜋). In proving this, a variant
of Moser–Tridinguer’s inequality was used. In the particular case that 𝛺
be a ball, the above-mentioned condition becomes ∫𝛺 𝑢0(𝒙) d𝒙 ∈ (0, 8𝜋).
Herrero and Velázquez [8] dealt with the first blow-up framework by
constructing some radially symmetric two-dimensional solutions which
blow up within finite time. The next progress in this sense with 𝛺
being non-radial and simply connected was the work of Horstmann
and Wang [9] who found some unbounded solutions provided that
∫𝛺 𝑢0(𝒙) d𝒙 > 4𝜋 and ∫𝛺 𝑢0(𝒙) d𝒙 ∉ {4𝑘𝜋 | 𝑘 ∈ N}. So far there is no sup-
porting evidence as to whether such solutions may evolve to produce
a blow-up phenomenon within finite time or whether, on the contrary,
may increase to infinity with time. In three dimensions, Winkler [10]
proved that there exist radially symmetric solutions blowing up in finite
time for any value of ∫𝛺 𝑢0(𝒙) d𝒙.

The main tool [10] in proving blow-up solutions is the energy law
which stems from system (1). Nevertheless, an inadequate approxima-
tion of lower bounds can trigger off oscillations of the variables, which
can lead to spurious, blow-up solutions.

Concerning the numerical analysis for system (1), very little is
said about numerical algorithms which keep lower bounds, are 𝐿1(𝛺)-
bounded and have a discrete energy law. Proper numerical treatment
of these properties is made difficult by the fact that the non-linearity
occurs in the highest order derivative. Numerical algorithms are mainly
designed so as to keep lower bounds and to be mass-preserving. We
refer the reader to [11–16]. We were pointed out by a referee the
paper [17]. In it, the authors rewrote system (1) by using several ad hoc
auxiliary variables so that the resulting discontinuous Galerkin method
fulfilled a discrete energy law, but no lower bounds were proved. As
far as we are concerned, there is no numerical method facing lower

bounds as well as a discrete energy law. s

70
1.3. Notation

We collect here as a reference some standard notation used through-
out the paper. For 𝑝 ∈ [1,∞], we denote by 𝐿𝑝(𝛺) the usual Lebesgue
space, i.e.,

𝐿𝑝(𝛺) = {𝑣 ∶ 𝛺 → R ∶ 𝑣 Lebesgue-measurable,∫𝛺
|𝑣(𝒙)|𝑝d𝒙 <∞}.

r
∞(𝛺) = {𝑣 ∶ 𝛺 → R ∶ 𝑣 Lebesgue-measurable, ess sup

𝒙∈𝛺
|𝑣(𝒙)| <∞}.

This space is a Banach space endowed with the norm ‖𝑣‖𝐿𝑝(𝛺) =
(∫𝛺 |𝑣(𝒙)|𝑝 d𝒙)1∕𝑝 if 𝑝 ∈ [1,∞) or ‖𝑣‖𝐿∞(𝛺) = ess sup𝒙∈𝛺 |𝑣(𝒙)| if 𝑝 = ∞. In
articular, 𝐿2(𝛺) is a Hilbert space. We shall use (𝑢, 𝑣) = ∫𝛺 𝑢(𝒙)𝑣(𝒙)d𝒙
or its inner product and ‖ ⋅ ‖ for its norm.

Let 𝛼 = (𝛼1, 𝛼2) ∈ N2 be a multi-index with |𝛼| = 𝛼1 + 𝛼2, and let 𝜕𝛼
e the differential operator such that

𝛼 =
( 𝜕
𝜕𝑥1

)𝛼1( 𝜕
𝜕𝑥2

)𝛼2
.

For 𝑚 ≥ 0 and 𝑝 ∈ [1,∞), we consider 𝑊 𝑚,𝑝(𝛺) to be the Sobolev
pace of all functions whose 𝑚 derivatives are in 𝐿𝑝(𝛺), i.e.,
𝑚,𝑝(𝛺) = {𝑣 ∈ 𝐿𝑝(𝛺) ∶ 𝜕𝑘𝑣 ∈ 𝐿2(𝛺) ∀ |𝑘| ≤ 𝑚}

associated to the norm

‖𝑓‖𝑊 𝑚,𝑝(𝛺) =

(

∑

|𝛼|≤𝑚
‖𝜕𝛼𝑓‖𝑝𝐿𝑝(𝛺)

)1∕𝑝

for 1 ≤ 𝑝 <∞,

and

‖𝑓‖𝑊 𝑚,𝑝(𝛺) = max
|𝛼|≤𝑚

‖𝜕𝛼𝑓‖𝐿∞(𝛺) for 𝑝 = ∞.

or 𝑝 = 2, we denote 𝑊 𝑚,2(𝛺) = 𝐻𝑚(𝛺). Moreover, we make of use the
pace

2
𝑁 (𝛺) = {𝑣 ∈ 𝐻2(𝛺) ∶ ∫𝛺

𝑣(𝒙) d𝒙 = 0 and 𝜕𝒏𝑣 = 0 on 𝜕𝛺},

or which is known that ‖𝑣‖𝐻2
𝑁 (𝛺) and ‖𝛥𝑣‖ are equivalent norms.

.4. Outline

The remainder of this paper is organized in the following way. In
he next section we state our finite element space and some tools.
n particular, we prove a discrete version of a variant of Moser–
rudinger’s inequality. In Section 3, we apply our ideas to discretize
ystem (1) in space and time for defining our numerical method and
ormulate our main result. Next is Section 4 dedicated to demonstrating
ower bounds, a discrete energy law, and a priori bounds all of which
re local in time for approximate solutions. This is accomplished in a
eries of lemmas where the final argument is an induction procedure on
he time step so as to obtain the above mentioned properties globally
n time. Finally, in Section 5, we consider two numerical examples
egarding blow-up and non blow-up scenarios.

. Technical preliminaries

This section is mainly devoted to setting out the hypotheses and
ome auxiliary results concerning the finite element space that will use
hroughout this work.

.1. Hypotheses

We construct the finite element approximation of (1) under the
ollowing assumptions on the domain, the mesh, and the finite element

pace.
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(H1) Let 𝛺 be a convex, bounded domain of R2 with a polygonal
boundary, and let 𝜃𝛺 be the minimum interior angle at the
vertices of 𝜕𝛺.

(H2) Let {ℎ}ℎ>0 be a family of acute, shape-regular, quasi-uniform
triangulations of 𝛺 made up of triangles, so that 𝛺 = ∪𝑇∈ℎ𝑇 ,
where ℎ = max𝑇∈ℎ ℎ𝑇 , with ℎ𝑇 being the diameter of 𝑇 . More
precisely, we assume that

(a) there exists 𝛼 > 0, independent of ℎ, such that

min{diam𝐵𝑇 ∶ 𝑇 ∈ ℎ} ≥ 𝛼ℎ,

where 𝐵𝑇 is the largest ball contained in 𝑇 , and
(b) there exists 𝛽 > 0 such that every angle between two

edges of a triangle 𝑇 is bounded by 𝜋
2 − 𝛽.

Further, let ℎ = {𝒂𝑖}𝑖∈𝐼 be the coordinates of the nodes of ℎ.
(H3) Associated with ℎ is the finite element space

𝑋ℎ =
{

𝑥ℎ ∈ 𝐶0(𝛺) ∶ 𝑥ℎ|𝑇 ∈ 1(𝑇 ), ∀𝑇 ∈ ℎ
}

,

where 1(𝑇 ) is the set of linear polynomials on 𝑇 . Let {𝜑𝒂}𝒂∈ℎ
be the standard basis functions for 𝑋ℎ.

2.2. Auxiliary results

Our first result is concerned with the sign of the entries of the rigid
matrix.

Proposition 2.1. Let 𝛺 be a polygonal. Consider 𝑋ℎ to be constructed
over ℎ being acute. Then, for each 𝑇 ∈ ℎ with vertices {𝒂1,𝒂2,𝒂3}, there
xists a constant 𝐶neg > 0, depending on 𝛽, but otherwise independent of ℎ

and 𝑇 , such that

∫𝑇
∇𝜑𝒂𝑖 ⋅ ∇𝜑𝒂𝑗 d𝒙 ≤ −𝐶neg (4)

or all 𝒂𝑖,𝒂𝑗 ∈ 𝑇 with 𝑖 ≠ 𝑗, and

∫𝑇
∇𝜑𝒂𝑖 ⋅ ∇𝜑𝒂𝑖d𝒙 ≥ 𝐶neg (5)

or all 𝒂𝑖 ∈ 𝑇 .

A proof of (4) and (5) can be found in [18].
Both local and global finite element properties for 𝑋ℎ will be

eeded such as inverse estimates and bounds for the interpolation error.
e first recall some local inverse estimates. See [19, Lem. 4.5.3] or

20, Lem. 1.138] for a proof.

roposition 2.2. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed over
ℎ being quasi-uniform. Then, for each 𝑇 ∈ ℎ and 𝑝 ∈ [2,∞], there exists
constant 𝐶inv > 0, independent of ℎ and 𝑇 , such that, for all 𝑥ℎ ∈ 𝑋ℎ,

∇𝑥ℎ‖𝐿𝑝(𝑇 ) ≤ 𝐶inv ℎ
−1
‖𝑥ℎ‖𝐿𝑝(𝑇 ) (6)

nd

∇𝑥ℎ‖𝐿∞(𝑇 ) ≤ 𝐶inv ℎ
− 2
𝑝
‖∇𝑥ℎ‖𝐿𝑝(𝑇 ). (7)

Concerning global inverse inequalities, we need the following.

Proposition 2.3. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed over
ℎ being quasi-uniform. Then for each 𝑝 ∈ [2,∞], there exists a constant
inv > 0, independent of ℎ, such that, for all 𝑥ℎ ∈ 𝑋ℎ,

𝑥ℎ‖𝐿∞(𝛺) ≤ 𝐶inv ℎ
−1
‖𝑥ℎ‖, (8)

∇𝑥ℎ‖𝐿𝑝(𝛺) ≤ 𝐶inv ℎ
−1
‖𝑥ℎ‖𝐿𝑝(𝛺), (9)

∇𝑥ℎ‖𝐿𝑝(𝛺) ≤ 𝐶inv ℎ
−2( 12−

1
𝑝 )
‖∇𝑥ℎ‖𝐿2(𝛺), (10)

nd

∇𝑥ℎ‖𝐿∞(𝛺) ≤ 𝐶inv ℎ
− 2
𝑝
‖∇𝑥ℎ‖𝐿𝑝(𝛺). (11)
 a
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We introduce ℎ ∶ 𝐶(𝛺) → 𝑋ℎ, the standard nodal interpolation
operator, such that ℎ𝜂(𝒂) = 𝜂(𝒂) for all 𝒂 ∈ ℎ. Associated with ℎ, a
discrete inner product on 𝑋ℎ is defined by

(𝑥ℎ, 𝑥̄ℎ)ℎ = ∫𝛺
ℎ(𝑥ℎ(𝒙)𝑥̄ℎ(𝒙)) d𝒙.

We also introduce

‖𝑥ℎ‖ℎ = (𝑥ℎ, 𝑥ℎ)
1
2
ℎ .

Local and global error bounds for ℎ are as follows (c.f. [19, Thm. 4.4.4]
or [20, Thm. 1.103] for a proof).

Proposition 2.4. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed over
ℎ being quasi-uniform. Then, for each 𝑇 ∈ ℎ, there exists 𝐶app > 0,
independent of ℎ and 𝑇 , such that

‖𝜑 − ℎ𝜑‖𝐿1(𝑇 ) ≤ 𝐶appℎ
2
‖∇2𝜑‖𝐿1(𝑇 ) ∀𝜑 ∈ 𝑊 2,1(𝑇 ). (12)

Proposition 2.5. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed
over ℎ being quasi-uniform. Then it follows that there exists 𝐶app > 0,
independent of ℎ, such that

‖∇(𝜑 − ℎ𝜑)‖𝐿2(𝛺) ≤ 𝐶appℎ‖𝛥𝜑‖𝐿2(𝛺) ∀𝜑 ∈ 𝐻2(𝛺). (13)

Corollary 2.6. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed over
ℎ being quasi-uniform. Let 𝑛 ∈ N. Then it follows that there exist three
positive constants 𝐶app, 𝐶com, and 𝐶sta, independent of ℎ, such that

‖𝑥𝑛ℎ − ℎ(𝑥𝑛ℎ)‖𝐿1(𝛺) ≤ 𝐶app𝑛(𝑛 − 1)ℎ2 ∫𝛺
|𝑥ℎ(𝒙)|𝑛−2|∇𝑥ℎ(𝒙)|2 d𝒙, (14)

𝑥ℎ𝑥ℎ − ℎ(𝑥ℎ𝑥ℎ)‖𝐿1(𝛺) ≤ 𝐶comℎ ‖𝑥ℎ‖𝐿2(𝛺) ‖∇𝑥ℎ‖𝐿2(𝛺) (15)

and

‖𝑥𝑛ℎ‖𝐿1(𝛺) ≤ ‖ℎ(𝑥𝑛ℎ)‖𝐿1(𝛺) ≤ 𝐶sta‖𝑥
𝑛
ℎ‖𝐿1(𝛺), (16)

where 𝐶sta depends on 𝑛.

Proof. Let 𝑇 ∈ ℎ and compute

∇2(𝑥𝑛ℎ) = 𝑛(𝑛 − 1)𝑥𝑛−2ℎ

𝑑
∑

𝑖,𝑗=1
𝜕𝑖𝑥ℎ𝜕𝑗𝑥ℎ on 𝑇 .

hen, from (12) and the above identity, we have

𝑥𝑛ℎ − ℎ(𝑥𝑘ℎ)‖𝐿1(𝑇 ) ≤ 𝐶appℎ2𝐾‖∇
2(𝑥𝑛ℎ)‖𝐿1(𝑇 )

≤ 𝐶app𝑛(𝑛 − 1)ℎ2 ∫𝑇
|𝑥ℎ(𝒙)|𝑛−2|∇𝑥ℎ(𝒙)|2 d𝒙.

umming over 𝑇 ∈ ℎ yields (14). The proof of (15) follows very closely
he arguments of (14) for 𝑛 = 2. The first part of assertion (16) is

simple application of Jensen’s inequality, whereas the second part
ollows from (14) on using Hölder’s inequality, (9) for 𝑝 = 𝑛 and, later
n, reverse Minkowski’s inequality. □

The proof of the following proposition can be found in [21]. It is a
eneralization of a Moser–Trudinger-type inequality.

roposition 2.7 (Moser–Trudinger). Let 𝛺 be polygonal with 𝜃𝛺 being the
inimum interior angle at the vertices of 𝛺. Then there exists a constant
𝛺 > 0 depending on 𝛺 such that for all 𝑢 ∈ 𝐻1(𝛺) with ‖∇𝑢‖ ≤ 1 and
𝛺 𝑢(𝒙) d𝒙 = 1, it follows that

∫𝛺
𝑒𝛼|𝑢(𝒙)|

2
d𝒙 ≤ 𝐶𝛺 , (17)

here 𝛼 ≤ 2𝜃𝛺.

orollary 2.8. Let 𝛺 be polygonal with 𝜃𝛺 being the minimum interior

ngle at the vertices of 𝜕𝛺. Consider 𝑋ℎ to be constructed over ℎ being
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quasi-uniform. Let 𝑢ℎ ∈ 𝑋ℎ with 𝑢ℎ > 0. Then it follows that there exists a
constant 𝐶MT > 0, independent of ℎ, such that

∫𝛺
ℎ(𝑒𝑢ℎ(𝒙)) d𝒙 ≤ 𝐶𝛺(1 + 𝐶MT‖∇𝑢ℎ‖2)𝑒

1
8𝜃𝛺

‖∇𝑢ℎ‖2 +
1
|𝛺|

‖𝑢ℎ‖𝐿1(𝛺)
.

(18)

Proof. From (14), we have

∫𝛺
ℎ(𝑒𝑢ℎ(𝒙)) d𝒙 = ∫𝛺

(1 + 𝑢ℎ(𝒙)) d𝒙 +
∞
∑

𝑛=2

1
𝑛! ∫𝛺

ℎ(𝑢𝑛ℎ(𝒙))d𝒙

≤
∞
∑

𝑛=0

1
𝑛! ∫𝛺

𝑢𝑛ℎ(𝒙) d𝒙

+
∞
∑

𝑛=2

𝐶app𝑛(𝑛 − 1)ℎ2

𝑛! ∫𝛺
|∇𝑢ℎ(𝒙)|2𝑢𝑛−2ℎ (𝒙) d𝒙

= ∫𝛺
(1 + 𝐶appℎ

2
|∇𝑢ℎ(𝒙)|2)𝑒𝑢ℎ(𝒙) d𝒙.

(19)

Let 𝑣ℎ =
𝑢ℎ − 𝑚
‖∇𝑢ℎ‖

with 𝑚 = 1
|𝛺|

∫𝛺 𝑢ℎ(𝒙) d𝒙. Young’s inequality gives

ℎ = ‖∇𝑢ℎ‖𝑣ℎ + 𝑚 ≤ 1
8𝜃𝛺

‖∇𝑢ℎ‖2 + 2𝜃𝛺|𝑣ℎ|
2 + 𝑚. (20)

Thus, combining (19) and (20) yields, on noting (11) for 𝑝 = 2 and
(17), that

∫𝛺
ℎ(𝑒𝑢ℎ(𝒙)) d𝒙 ≤ 𝑒

1
8𝜃𝛺

‖∇𝑢ℎ‖2+𝑚

∫𝛺
(1 + 𝐶appℎ

2
‖∇𝑢ℎ(𝒙)‖2|∇𝑣ℎ(𝒙)|2)

𝑒2𝜃𝛺 |𝑣ℎ(𝒙)|2 d𝒙

≤ 𝑒
1

8𝜃𝛺
‖∇𝑢ℎ‖2+𝑚(1 + 𝐶app𝐶inv‖∇𝑢ℎ(𝒙)‖2)

×∫𝛺
𝑒2𝜃𝛺 |𝑣ℎ(𝒙)|2 d𝒙

≤ 𝐶𝛺(1 + 𝐶app𝐶inv‖∇𝑢ℎ(𝒙)‖2)𝑒
1

8𝜃𝛺
‖∇𝑢ℎ‖2+𝑚. □

An (average) interpolation operator into 𝑋ℎ will be required in
rder to properly initialize our numerical method. We refer to [22,23].

roposition 2.9. Let 𝛺 be polygonal. Consider 𝑋ℎ to be constructed
ver ℎ being quasi-uniform. Then there exists an (average) interpolation
perator ℎ from 𝐿1(𝛺) to 𝑋ℎ such that

ℎ𝜓‖𝑊 𝑠,𝑝(𝛺) ≤ 𝐶sta‖𝜓‖𝑊 𝑠,𝑝(𝛺) for 𝑠 = 0, 1 and 1 ≤ 𝑝 ≤ ∞, (21)

nd

ℎ(𝜓) − 𝜓‖𝑊 𝑠,𝑝(𝛺) ≤ 𝐶appℎ
1+𝑚−𝑠

‖𝜓‖𝑊 𝑚+1,𝑝(𝛺) for 0 ≤ 𝑠 ≤ 𝑚 ≤ 1. (22)

Moreover, let −𝛥ℎ be defined from 𝑋ℎ to 𝑋ℎ as

− (𝛥ℎ𝑥ℎ, 𝑥̄ℎ)ℎ = (∇𝑥ℎ,∇𝑥̄ℎ) for all 𝑥̄ℎ ∈ 𝑋ℎ, (23)

nd let 𝑥(ℎ) ∈ 𝐻2
𝑁 (𝛺) be such that

{

−𝛥𝑥(ℎ) = −𝛥ℎ𝑥ℎ in 𝛺,
𝜕𝒏𝑥(ℎ) = 0 on 𝜕𝛺.

(24)

rom elliptic regularity theory, the well-posedness of (24) is ensured
y the convexity assumption stated in (H1) and

𝑥(ℎ)‖𝐻2
𝑁 (𝛺) ≤ 𝐶‖ − 𝛥ℎ𝑥ℎ‖. (25)

ee [24] for a proof.

roposition 2.10. Let 𝛺 be a convex polygon. Consider 𝑋ℎ to be con-
tructed over ℎ being quasi-uniform. Then there exists a constant 𝐶Lap > 0,
ndependent of ℎ, such that

∇(𝑥(ℎ) − 𝑥ℎ)‖𝐿2(𝛺) ≤ 𝐶Lapℎ‖𝛥ℎ𝑥ℎ‖𝐿2(𝛺). (26)

roof. We refer the reader to [18] for a proof which uses (13) and
15). □
 

72
orollary 2.11. Let 𝛺 be a convex polygon. Consider 𝑋ℎ to be constructed
ver ℎ being quasi-uniform. Then, for each 𝑝 ∈ [2,∞], there exists a
onstant 𝐶sta > 0, independent of ℎ, such that

∇𝑥ℎ‖𝐿𝑝(𝛺) ≤ 𝐶sta‖ − 𝛥ℎ𝑥ℎ‖. (27)

roof. The triangle inequality gives

∇𝑥ℎ‖𝐿𝑝(𝛺) ≤ ‖∇𝑥ℎ − ∇ℎ𝑥(ℎ)‖𝐿𝑝(𝛺) + ‖∇ℎ𝑥(ℎ)‖𝐿𝑝(𝛺)

nd hence applying (10), (26), (25), (22), (21), and Sobolev’s inequality
ields (27). □

. Presentation of main result

We now define our numerical approximation of system (1). Assume
hat (𝑢0, 𝑣0) ∈ 𝐻1(𝛺) ×𝐻2(𝛺) with 𝑢0 > 0 and 𝑣0 ≥ 0 a. e. in 𝛺.

We begin by approximating the initial data (𝑢0, 𝑣0) by (𝑢0ℎ, 𝑣
0
ℎ) ∈ 𝑋2

ℎ
s follows. Define
0
ℎ = ℎ𝑢0, (28)

hich satisfies

0
ℎ > 0 a. e. in 𝛺, ‖𝑢0ℎ‖𝐿1(𝛺) ≤ 𝐶sta‖𝑢0‖𝐿1(𝛺) and ‖𝑢0ℎ‖ ≤ 𝐶sta‖𝑢0‖

(29)

nd
0
ℎ = ℎ𝑣0, (30)

hich satisfies
𝑣0ℎ ≥ 0 a. e. in 𝛺, ‖𝑣0ℎ‖𝐻1(𝛺) ≤ 𝐶‖𝑣0‖𝐻1(𝛺) and
‖𝛥ℎ𝑣

0
ℎ‖ ≤ 𝐶‖𝛥𝑣0‖.

(31)

Given 𝑁 ∈ N, we let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑇 be a uniform
artitioning of [0,T] with time step 𝑘 = 𝑇

𝑁 . To simplify the notation we

define the time-increment operator 𝛿𝑡𝜙𝑛+1ℎ =
𝜙𝑛+1ℎ −𝜙𝑛ℎ

𝑘 .
Known (𝑢𝑛ℎ, 𝑣

𝑛
ℎ) ∈ 𝑋ℎ ×𝑋ℎ, find (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∈ 𝑋ℎ ×𝑋ℎ such that

𝛿𝑡𝑢
𝑛+1
ℎ , 𝑥ℎ)ℎ + (∇𝑢𝑛+1ℎ ,∇𝑥ℎ) = (∇𝑣𝑛ℎ, 𝑢

𝑛+1
ℎ ∇𝑥ℎ) (32)

nd

𝛿𝑡𝑣
𝑛+1
ℎ , 𝑥ℎ)ℎ + (∇𝑣𝑛+1ℎ ,∇𝑥ℎ) + (𝑣𝑛+1ℎ , 𝑥ℎ)ℎ = (𝑢𝑛+1ℎ , 𝑥ℎ)ℎ (33)

or all 𝑥ℎ ∈ 𝑋ℎ.
It should be noted that scheme (32)–(33) combines a finite element

ethod together a mass-lumping technique to treat some terms and
semi-implicit time integrator. The resulting scheme is linear and

ecouples the computation of 𝑢𝑛+1ℎ and 𝑣𝑛+1ℎ .
In order to carry out our numerical analysis we must rewrite the

hemotaxis term by using a barycentric quadrature rule as follows. Let
∈ ℎ and consider 𝒃𝑇 ∈ 𝑇 to be the barycenter of 𝑇 . Then let 𝑢𝑛+1ℎ

be the interpolation of 𝑢𝑛+1ℎ into 𝑋0
ℎ, with 𝑋0

ℎ being the space of all
iecewise constant functions over ℎ, defined by

𝑢𝑛+1ℎ |𝑇 = 𝑢𝑛+1ℎ (𝒃𝑇 ). (34)

As a result, one has

(∇𝑣𝑛ℎ, 𝑢
𝑛+1
ℎ ∇𝑥ℎ) =

∑

𝑇∈𝐾
|𝑇 |∇𝑣𝑛ℎ ⋅ ∇𝑥ℎ𝑢

𝑛+1
ℎ (𝒃𝑇 ) = (∇𝑣𝑛ℎ, 𝑢

𝑛+1
ℎ ∇𝑥ℎ). (35)

Let us define

0(𝑢ℎ, 𝑣ℎ) =
1
2
‖𝑣ℎ‖

2
ℎ +

1
2
‖∇𝑣ℎ‖2 − (𝑢ℎ, 𝑣ℎ)ℎ + (log 𝑢ℎ, 𝑢ℎ)ℎ, (36)

2 ̃ 2

1(𝑢ℎ, 𝑣ℎ) = ‖𝑢ℎ‖ℎ + ‖𝛥ℎ𝑣ℎ‖ . (37)
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𝑢

and, for each 𝜀, 𝛿 ∈ (0, 1),

𝜀,𝛿
0 (𝑢0ℎ, 𝑣

0
ℎ) ∶=

1
𝛿𝑒

+
‖𝑢0ℎ‖𝐿1(𝛺)

𝛿

×
(

𝐶𝛺
𝜀

+ 𝜀 +
(1 + 𝛿)
|𝛺|

(‖𝑣0ℎ‖𝐿1(𝛺) + ‖𝑢0ℎ‖𝐿1(𝛺))
)

. (38)

Associated with the above definitions, consider

0(𝑢ℎ, 𝑣ℎ) =
1
𝛿
0(𝑢ℎ, 𝑣ℎ) +𝛿,𝜀

0 (𝑢ℎ, 𝑣ℎ),

1(𝑢ℎ, 𝑣ℎ) = (1 + 1
𝛿
)0(𝑢ℎ, 𝑣ℎ) +𝛿,𝜀

0 (𝑢ℎ, 𝑣ℎ) + 2
|𝛺|

𝑒
,

and

2(𝑢ℎ, 𝑣ℎ) = 0(𝑢ℎ, 𝑣ℎ) + 0(𝑢ℎ, 𝑣ℎ) + 1(𝑢ℎ, 𝑣ℎ).

inally, define

(𝑢ℎ, 𝑣ℎ) = 𝑒2(𝑢ℎ ,𝑣ℎ)+𝑇
1
2 

1
2
2 (𝑢ℎ ,𝑣ℎ)(0(𝑢ℎ, 𝑣ℎ)+𝐶𝑇3

1(𝑢ℎ, 𝑣ℎ)+𝐶𝑇 ‖𝑢ℎ‖𝐿1(𝛺)),

The definition of the above quantities will be apparent later.
We are now prepared to state the main result of this paper.

Theorem 3.1. Assume that hypotheses (H1)–(H3) are satisfied. Let
(𝑢0, 𝑣0) ∈ 𝐻1(𝛺) ×𝐻2

𝑁 (𝛺) with 𝑢0 > 0 such that ‖𝑢0‖𝐿1(𝛺) ∈ (0, 4𝜃𝛺) and
𝑣0 ≥ 0, and take 𝑢0ℎ > 0 and 𝑣0ℎ ≥ 0 defined by (28) and (30), respectively.
Assume that (ℎ, 𝑘) fulfill
𝑘
ℎ2

 (𝑢0ℎ, 𝑣
0
ℎ) <

1
2𝐶

(39)

nd

1− 2
𝑝 

1
2 (𝑢0ℎ, 𝑣

0
ℎ) <

𝐶neg

𝐶
. (40)

Then the sequence {(𝑢𝑚ℎ , 𝑣
𝑚
ℎ )}

𝑁
𝑚=0 computed via (32) and (33) satisfies the

following properties, for all 𝑚 ∈ {0,… , 𝑁}:

• Lower bounds:

𝑢𝑚ℎ (𝒙) > 0 (41)

and

𝑣𝑚ℎ (𝒙) ≥ 0 (42)

for all 𝒙 ∈ 𝛺,
• 𝐿1(𝛺)-bounds:

‖𝑢𝑚ℎ ‖𝐿1(𝛺) = ‖𝑢0ℎ‖𝐿1(𝛺) (43)

and

‖𝑣𝑚ℎ ‖𝐿1(𝛺) ≤ ‖𝑣0ℎ‖𝐿1(𝛺) + ‖𝑢0ℎ‖𝐿1(𝛺). (44)

• A discrete energy law:

0(𝑢𝑚ℎ , 𝑣
𝑚
ℎ ) + 𝑘

𝑚
∑

𝑟=1
(‖𝛿𝑡𝑣𝑟ℎ‖

2
ℎ + 𝑘‖

− 1
2

ℎ (𝑢𝑟ℎ)∇𝑢
𝑟
ℎ −

1
2
ℎ (𝑢

𝑟
ℎ)∇𝑣

𝑟−1
ℎ ‖

2)

≤ 0(𝑢0ℎ, 𝑣
0
ℎ),

(45)

where ℎ is defined in (61).

Moreover, if we are given ℎ such that

𝐶ℎ1−
2
𝑝 1(𝑢0ℎ, 𝑣

0
ℎ) ≤

5
12
, (46)

t follows that

1(𝑢𝑚ℎ , 𝑣
𝑚
ℎ ) +

𝑘
2

𝑚
∑

𝑟=1
(‖∇𝑢𝑟ℎ‖

2 + ‖∇𝛥ℎ𝑣𝑟ℎ‖
2) ≤  (𝑢0ℎ, 𝑣

0
ℎ). (47)
73
Remark 3.2. The constant 𝐶 is not easy to compute in practice. Hence
(39) and (40) should only be seen as theoretical conditions, meaning
that 𝑘∕ℎ2 and ℎ2−

1
𝑝 have to be sufficiently small to reach (41) and (42)

on (0, 𝑇 ].

As system (32)–(33) is linear, existence follows from uniqueness.
The latter is an immediate outcome of a priori bounds for (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ).

4. Proof of main result

In this section we address the proof of Theorem 3.1. Rather than
prove en masse the estimates in Theorem 3.1, because all of them are
connected, we have divided the proof into various subsections for the
sake of clarity. The final argument will be an induction procedure on
𝑛 relied on the semi-explicit time discretization employed in (32).

4.1. Lower bounds and a discrete energy law

We first demonstrate lower bounds for (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) and, as a conse-
quence of this, a discrete local-in-time energy law is established.

Lemma 4.1 (Lower Bounds). Assume that (H1)–(H3) are satisfied. Let
𝑢𝑛ℎ > 0 and 𝑣𝑛ℎ ≥ 0 and let

‖𝛥ℎ𝑣
𝑛
ℎ‖

2 ≤  (𝑢0ℎ, 𝑣
0
ℎ). (48)

Then if one chooses (ℎ, 𝑘) satisfying (39) and (40), it follows that the
solution pair (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∈ 𝑋2

ℎ computed via (32) and (33) is lower
bounded, i.e, for all 𝒙 ∈ 𝛺,

𝑢𝑛+1ℎ (𝒙) > 0 (49)

and

𝑣𝑛+1ℎ (𝒙) ≥ 0. (50)

roof. Since 𝑢𝑛+1ℎ and 𝑣𝑛+1ℎ are piecewise linear polynomial functions,
t will suffice to prove that (49) and (50) hold at the nodes. To do this,
et 𝑇 ∈ ℎ be a fixed triangle with vertices {𝒂1,𝒂2,𝒂3}, and choose two
f them, i.e. 𝒂𝑖,𝒂𝑗 ∈ 𝑇 with 𝑖 ≠ 𝑗. Then, from (6) for 𝑝 = ∞, (7), (27),
nd (48), we have on noting (35) that

𝑇
𝜑𝒂𝑖∇𝑣

𝑛
ℎ ⋅ ∇𝜑𝒂𝑗 d𝒙 = ∫𝑇

𝜑𝒂𝑖 (𝒃𝑇 )∇𝑣
𝑛
ℎ ⋅ ∇𝜑𝒂𝑗 d𝒙

≤ |𝑇 |‖𝜑𝒂𝑖‖𝐿∞(𝑇 )‖∇𝑣𝑛ℎ‖𝐿∞(𝑇 )‖∇𝜑𝒂𝑗 ‖𝐿∞(𝑇 )

≤ 𝐶ℎ‖∇𝑣𝑛ℎ‖𝐿∞(𝑇 ) ≤ 𝐶ℎ1−
2
𝑝
‖∇𝑣𝑛ℎ‖𝐿𝑝(𝑇 )

≤ 𝐶ℎ1−
2
𝑝
‖𝛥ℎ𝑣𝑛ℎ‖𝐿2(𝛺) ≤ 𝐶ℎ1−

2
𝑝 

1
2 (𝑢0ℎ, 𝑣

0
ℎ).

(51)

If we now compare (4) with (51), we find on recalling (40) that

∫𝑇
∇𝜑𝒂𝑖 ⋅ ∇𝜑𝒂𝑗 d𝒙 − ∫𝑇

𝜑𝒂𝑖∇𝑣
𝑛
ℎ ⋅ ∇𝜑𝒂𝑗 d𝒙

≤ −𝐶neg + 𝐶ℎ
1− 2

𝑝 
1
2
0 (𝑢0ℎ, 𝑣

0
ℎ) < 0

and on summing over 𝑇 ∈ supp𝜑𝒂𝑖 ∩ supp𝜑𝒂𝑗 that

(∇𝜑𝒂𝑖 ,∇𝜑𝒂𝑗 ) − (𝜑𝒂𝑖∇𝑣
𝑛
ℎ,∇𝜑𝒂𝑗 ) < 0. (52)

nalogously, we have, from (5), that

∇𝜑𝒂𝑖 ,∇𝜑𝒂𝑖 ) − (𝜑𝒂𝑖∇𝑣
𝑛
ℎ,∇𝜑𝒂𝑖 ) > 0 (53)

olds under assumption (40).
Let 𝑢min

ℎ ∈ 𝑋ℎ be defined as
min
ℎ =

∑

𝒂∈ℎ

𝑢−ℎ (𝒂)𝜑𝒂,

where 𝑢−ℎ (𝒂) = min{0, 𝑢𝑛+1ℎ (𝒂)}. Analogously, one defines 𝑢max
ℎ ∈ 𝑋ℎ as

𝑢max
ℎ =

∑

𝒂∈ℎ

𝑢+ℎ (𝒂)𝜑𝒂,

where 𝑢+(𝒂) = max{0, 𝑢𝑛+1(𝒂)}. It is easy to check that 𝑢𝑛+1 = 𝑢min+𝑢max.
ℎ ℎ ℎ ℎ ℎ
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Set 𝑥̄ℎ = 𝑢min
ℎ in (32) using (35) to get

(𝛿𝑡𝑢𝑛+1ℎ , 𝑢min
ℎ )ℎ + (∇𝑢𝑛+1ℎ ,∇𝑢min

ℎ ) − (𝑢𝑛+1ℎ ∇𝑣𝑛ℎ,∇𝑢
min
ℎ ) = 0. (54)

Our goal is to show that 𝑢min
ℎ ≡ 0. Indeed, note that

𝑢𝑛+1ℎ , 𝑢min
ℎ )ℎ = (𝑢min

ℎ + 𝑢max
ℎ , 𝑢min

ℎ )ℎ = ‖𝑢min
ℎ ‖

2
ℎ.

and hence

(𝛿𝑡𝑢𝑛+1ℎ , 𝑢min
ℎ )ℎ = 1

𝑘
‖𝑢min

ℎ ‖

2
ℎ −

1
𝑘
(𝑢𝑛ℎ, 𝑢

min
ℎ ) ≥ ‖𝑢min

ℎ ‖

2
ℎ, (55)

where we have used the fact that 𝑢𝑛ℎ > 0. One can further write

(∇𝑢𝑛+1ℎ ,∇𝑢min
ℎ ) − (𝑢𝑛+1ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ )

=(∇𝑢max
ℎ ,∇𝑢min

ℎ ) − (𝑢max
ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ )

+ (∇𝑢min
ℎ ,∇𝑢min

ℎ ) − (𝑢min
ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ ),

whereupon we deduce from (52) and (53) that

(∇𝑢max
ℎ ,∇𝑢min

ℎ ) − (𝑢max
ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ )

=
∑

𝒂≠𝒂̃∈ℎ

𝑢max
ℎ (𝒂)𝑢min

ℎ (𝒂̃)
[

(∇𝜑𝒂,∇𝜑𝒂̃) − (𝜑𝒂∇𝑣𝑛ℎ,∇𝜑𝒂̃)
]

+
∑

𝒂∈ℎ

𝑢max
ℎ (𝒂)𝑢min

ℎ (𝒂)
[

(∇𝜑𝒂,∇𝜑𝒂) − (𝜑𝒂∇𝑣𝑛ℎ,∇𝜑𝒂)
]

≥ 0,

since 𝑢max
ℎ (𝒂)𝑢min

ℎ (𝒂̃) ≤ 0 and 𝑢max
ℎ (𝒂)𝑢min

ℎ (𝒂) = 0. Therefore,

(∇𝑢min
ℎ ,∇𝑢min

ℎ )− (𝑢min
ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ ) ≤ (∇𝑢𝑛+1ℎ ,∇𝑢min

ℎ )− (𝑢𝑛+1ℎ ∇𝑣𝑛ℎ,∇𝑢
min
ℎ ) (56)

As a result, we infer on applying (55) and (56) into (54) that

‖𝑢min
ℎ ‖

2
ℎ + 𝑘‖∇𝑢

min
ℎ ‖

2 ≤ 𝑘(𝑢min
ℎ ∇𝑣𝑛ℎ,∇𝑢

min
ℎ ).

But inequalities (8), (16) for 𝑛 = 2, (27) for 𝑝 = 2, (48), and (39) allow
us to estimate

‖𝑢min
ℎ ‖

2
ℎ + 𝑘‖∇𝑢

min
ℎ ‖

2 ≤ 𝑘‖𝑢min
ℎ ‖𝐿∞(𝛺)‖∇𝑣𝑛ℎ‖𝐿2(𝛺)‖∇𝑢min

ℎ ‖

2

≤ 𝐶 𝑘
ℎ2

 (𝑢0ℎ, 𝑣
0
ℎ)‖𝑢

min
ℎ ‖

2
ℎ +

𝑘
2
‖∇𝑢min

ℎ ‖

2

≤ 1
2
‖𝑢min

ℎ ‖

2
ℎ +

𝑘
2
‖∇𝑢min

ℎ ‖

2;

thereby

‖𝑢min
ℎ ‖

2
ℎ ≤ 0,

which, in turn, implies that 𝑢min
ℎ ≡ 0 and hence 𝑢𝑛+1ℎ ≥ 0. It remains to

prove that indeed 𝑢𝑛+1ℎ > 0. We proceed by contradiction. Let 𝒂 ∈ ℎ
be such 𝑢𝑛+1ℎ (𝒂) = 0. Substitute 𝑥̄ℎ = 𝜑𝒂 into (32) to arrive at

0 < 𝑢𝑛ℎ(𝒂)∫𝛺
𝜑𝒂 = (∇𝑢𝑛+1ℎ ,∇𝜑𝒂) − (∇𝑣𝑛ℎ, 𝑢

𝑛+1
ℎ ∇𝜑𝒂)

=
∑

𝒂≠𝒂∈ℎ

𝑢𝑛+1ℎ (𝒂)
{

(∇𝜑𝒂,∇𝜑𝒂) − (𝜑𝒂∇𝑣𝑛ℎ,∇𝜑𝒂)
}

≤ 0.

In the last line we have utilized (52) and the fact that 𝑢𝑛+1ℎ ≥ 0. This
ives a contradiction.

It is now a simple matter to show that (50) holds. It completes the
roof. □

We are now concerned with obtaining 𝐿1(𝛺) bounds for (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ).
In particular, we will see that Eq. (32) is mass-preserving.

Lemma 4.2 (𝐿1(𝛺)-Bounds). Under the conditions of Lemma 4.1, the
iscrete solution pair (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∈ 𝑋2

ℎ computed via (32) and (33) fulfills

‖𝑢𝑛+1ℎ ‖𝐿1(𝛺) = ‖𝑢0ℎ‖𝐿1(𝛺) (57)

nd

𝑣𝑛+1ℎ ‖𝐿1(𝛺) ≤ ‖𝑣0ℎ‖𝐿1(𝛺) + ‖𝑢0ℎ‖𝐿1(𝛺). (58)

roof. On choosing 𝑥ℎ = 1 in (32), it follows immediately after a
elescoping cancellation that

𝑢𝑛+1(𝒙) d𝒙 = 𝑢0 (𝒙) d𝒙. (59)
∫𝛺 ℎ ∫𝛺 ℎ
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onsequently, we get that (57) holds from (49) and (29). Now let 𝑥ℎ = 1
in (33) to get

∫𝛺
𝑣𝑛+1ℎ (𝒙) d𝒙 + 𝑘∫𝛺

𝑣𝑛+1ℎ (𝒙) d𝒙 = ∫𝛺
𝑣𝑛ℎ(𝒙) d𝒙 + 𝑘∫𝛺

𝑢𝑛+1ℎ (𝒙) d𝒙.

simple calculation shows that

𝛺
𝑣𝑛+1ℎ (𝒙) d𝒙 = 1

(1 + 𝑘)𝑛+1 ∫𝛺
𝑣0ℎ(𝒙) d𝒙 +

(

∫𝛺
𝑢0ℎ(𝒙) d𝒙

) 𝑛+1
∑

𝑗=1

𝑘
(1 + 𝑘)𝑗

,

where we have used (59). Inequality (58) is proved by applying
(50). □

Once the positivity of 𝑢𝑛+1ℎ has been proved, we are in a position to
reformulate equation (32) so as to be able to obtain a discrete energy
law, which exactly mimics its counterpart at the continuous level.

Lemma 4.3. Under the conditions of Lemma 4.1. Eq. (32) can be
equivalently written as

(𝛿𝑡𝑢𝑛+1ℎ , 𝑥ℎ)ℎ + (∇𝑢𝑛+1ℎ ,∇𝑥ℎ) = (∇𝑣𝑛ℎ,ℎ(𝑢𝑛+1ℎ )∇𝑥ℎ), (60)

where ℎ(𝑢𝑛+1ℎ ) ∈ R2×2 is a piecewise constant, diagonal matrix defined as
follows. Let 𝑇 ∈ ℎ. Then there exist two pairs (𝒂𝑇

𝑢𝑖
,𝒂𝑇

𝑢𝑖
) ∈ 𝑇 2, 𝑖 = 1, 2, such

hat

ℎ(𝑢𝑛+1ℎ )|𝑇 ]𝑖𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
)

𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
)) − 𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
))

if 𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
) ≠ 0,

𝑢𝑛+1ℎ (𝒃𝑇 ) if 𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
) = 0,

(61)

where 𝑓 (𝑠) = 𝑠 log 𝑠 − 𝑠.

Proof. We must identify ℎ(𝑢𝑛+1ℎ ) ≡ 𝐼2𝑢
𝑛+1
ℎ , where 𝐼2 is the 2 × 2

identity matrix. To do so, first observe that 𝑓 ′(𝑠) = log 𝑠. Then it is
easy to see that, for each 𝜀 > 0 and 𝑐 ∈ (0,∞), there exist two points
0 < 𝑢 < 𝑢 such that |𝑢 − 𝑢| < 𝜀, with 𝑢 ≤ 𝑐 ≤ 𝑢, so that

𝑓 ′(𝑢) − 𝑓 ′(𝑢)
𝑢 − 𝑢

= 1
𝑐
.

Let 𝑇 ∈ ℎ and choose 𝑐 = 𝑢𝑛+1ℎ (𝒃𝑇 ). We are allowed to choose 𝜀 small
nough such that

≥ min
𝑡∈(−1,1)

𝑢𝑛+1ℎ (𝒃𝑇 + 𝑟𝒃𝑇 𝒆𝑖𝑡) ≠ max
𝑡∈(−1,1)

𝑢𝑛+1ℎ (𝒃𝑇 + 𝑟𝒃𝑇 𝒆𝑖𝑡) ≥ 𝑢,

where 𝑟𝒃𝑇 = 𝑑𝑖𝑠𝑡(𝒃𝑇 , 𝜕𝑇 ) and 𝒆𝑖 is the i𝑡ℎ vector of the canonical basis
of R2. Therefore, there exists a pair (𝒂𝑇

𝑢𝑖
,𝒂𝑇

𝑢𝑖
) such that 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
) = 𝑢 and

𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) = 𝑢 and hence one defines

[ℎ(𝑢𝑛+1ℎ )|𝑇 ]𝑖𝑖 =
𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
)

𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
)) − 𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
))
.

In the case that min𝑡∈(−1,1) 𝑢𝑛+1ℎ (𝒃𝑇 +𝑟𝒃𝑇 𝒆𝑖𝑡) = max𝑡∈(−1,1) 𝑢𝑛+1ℎ (𝒃𝑇 +𝑟𝒊𝑇 𝒆𝑖𝑡),
ne defines

ℎ(𝑢𝑛+1ℎ )|𝑇 ]𝑖𝑖 = 𝑢𝑛+1ℎ (𝒃𝑇 ).

his completes the proof. □

It is now shown that system (32)–(33) enjoys a discrete energy law
ocally in time.

emma 4.4 (A Discrete Energy Law). Under the conditions of Lemma 4.1,
he discrete solution (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∈ 𝑋2

ℎ computed via (32) and (33) satisfies

0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) − 0(𝑢𝑛ℎ, 𝑣
𝑛
ℎ) + 𝑘‖𝛿𝑡𝑣

𝑛+1
ℎ ‖

2
ℎ

+𝑘‖
− 1

2
ℎ (𝑢𝑛+1ℎ )∇𝑢𝑛+1ℎ −

1
2
ℎ (𝑢

𝑛+1
ℎ )∇𝑣𝑛ℎ‖

2 ≤ 0
(62)

where  (⋅, ⋅) is defined in (36).
0
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a

(

Proof. First of all, recall that 𝑓 (𝑠) = 𝑠 log 𝑠−𝑠; therefore, we are allowed
to compute 𝑓 ′(𝑢𝑛+1ℎ ) due to (49). Select 𝑥ℎ = ℎ𝑓 ′(𝑢𝑛+1ℎ )−𝑣𝑛ℎ in (60) and
𝑥ℎ = 𝛿𝑡𝑣𝑛+1ℎ in (33) to get

(𝛿𝑡𝑢𝑛+1ℎ , 𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ)ℎ + (∇𝑢𝑛+1ℎ ,∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ))
−(∇𝑣𝑛ℎ,ℎ(𝑢𝑛+1ℎ )∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ)) = 0

(63)

and

1
2𝑘

(‖𝑣𝑛+1ℎ ‖

2
ℎ + ‖∇𝑣𝑛+1ℎ ‖

2) − 1
2𝑘

(‖𝑣𝑛ℎ‖
2
ℎ + ‖∇𝑣𝑛ℎ‖

2)

+ 1
2𝑘

‖𝑣𝑛+1ℎ − 𝑣𝑛ℎ‖
2
ℎ +

1
2𝑘

‖∇(𝑣𝑛+1ℎ − 𝑣𝑛ℎ)‖
2 + ‖𝛿𝑡𝑣

𝑛+1
ℎ ‖

2
ℎ − (𝑢𝑛+1ℎ , 𝛿𝑡𝑣

𝑛+1
ℎ )ℎ = 0.

(64)

We next pair some terms from (63) and (64) in order to handle them
together. It is not hard to see that

− (𝛿𝑡𝑢𝑛+1ℎ , 𝑣𝑛ℎ)ℎ − (𝑢𝑛+1ℎ , 𝛿𝑡𝑣
𝑛+1
ℎ )ℎ = −1

𝑘
(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ −

1
𝑘
(𝑢𝑛ℎ, 𝑣

𝑛
ℎ)ℎ. (65)

In view of (61), there holds

𝜕𝑥𝑖ℎ(𝑓
′(𝑢𝑛+1ℎ )) =

𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
)) − 𝑓 ′(𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
))

[𝒂𝑇
𝑢𝑖
− 𝒂𝑇

𝑢𝑖
]𝑖

,

since ℎ is piecewise linear. As a result, one deduces from (61) that

∇ℎ𝑓 ′(𝑢𝑛+1ℎ ) = −1
ℎ (𝑢𝑛+1ℎ )∇𝑢𝑛+1ℎ .

Therefore,

(∇𝑢𝑛+1ℎ ,∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ)) = (∇𝑢𝑛+1ℎ ,−1
ℎ (𝑢𝑛+1ℎ )∇𝑢𝑛+1) − (∇𝑢𝑛+1ℎ ,∇𝑣𝑛ℎ)

nd

∇𝑣𝑛ℎ,ℎ(𝑢𝑛+1ℎ )∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ)) = (∇𝑣𝑛ℎ,∇𝑢
𝑛+1
ℎ ) − (∇𝑣𝑛ℎ,ℎ(𝑢𝑛+1ℎ )∇𝑣𝑛ℎ),

which imply that

(∇𝑢𝑛+1ℎ ,∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ)) − (∇𝑣𝑛ℎ,ℎ(𝑢𝑛+1ℎ )∇(ℎ𝑓 ′(𝑢𝑛+1ℎ ) − 𝑣𝑛ℎ))

= ‖
− 1

2
ℎ (𝑢𝑛+1ℎ )∇𝑢𝑛+1ℎ −

− 1
2

ℎ (𝑢𝑛+1ℎ )∇𝑣𝑛ℎ‖
2.

(66)

A Taylor polynomial of 𝑓 round 𝑢𝑛+1ℎ evaluated at 𝑢𝑛ℎ yields

𝑓 (𝑢𝑛ℎ) = 𝑓 (𝑢𝑛+1ℎ ) − 𝑓 ′(𝑢𝑛+1ℎ )(𝑢𝑛+1ℎ − 𝑢𝑛ℎ) +
𝑓 ′′(𝑢𝑛+𝜃ℎ )

2
(𝑢𝑛+1ℎ − 𝑢𝑛ℎ)

2,

where 𝜃 ∈ (0, 1) such that 𝑢𝑛+𝜃ℎ = 𝜃𝑢𝑛+1ℎ + (1 − 𝜃)𝑢𝑛ℎ. Hence,

(𝜕𝑡𝑢𝑛+1ℎ , 𝑓 ′(𝑢𝑛+1ℎ ))ℎ = 1
𝑘
(𝑓 (𝑢𝑛+1ℎ ), 1)ℎ −

1
𝑘
(𝑓 (𝑢𝑛+1ℎ ), 1)ℎ

+ 𝑘
2
(𝑓 ′′(𝑢𝑛+𝜃ℎ ), (𝛿𝑡𝑢𝑛+1ℎ )2)ℎ.

In fact, one can write the above expression as

(𝜕𝑡𝑢𝑛+1ℎ , 𝑓 ′(𝑢𝑛+1ℎ ))ℎ = (𝑢𝑛+1ℎ , log 𝑢𝑛+1ℎ )ℎ−(𝑢𝑛ℎ, log 𝑢
𝑛
ℎ)ℎ+𝑘(𝑓

′′(𝑢𝑛+𝜃ℎ ), (𝛿𝑡𝑢𝑛+1ℎ )2)ℎ

(67)

owing to

∫𝛺
𝑢𝑛+1ℎ (𝒙) d𝒙 = ∫𝛺

𝑢𝑛ℎ(𝒙) d𝒙.

On adding (63) and (64), we verify (62) from (65), (66), and
(67). □

4.2. A priori bounds

Now that we have accomplished the discrete energy law (62) for
system (32)–(33), our goal is to derive a priori energy bounds. It will
be no means obvious since 0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) does not provide directly any
control over 𝑢𝑛+1ℎ and 𝑣𝑛+1ℎ . The key ingredient will be the discrete
Moser–Trudinger inequality (18).
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Lemma 4.5 (Control of (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ). Assume that the conditions of
Lemma 4.1 are satisfied. Let 𝑢0 ∈ 𝐻1(𝛺) such that ‖𝑢0‖𝐿1(𝛺) ∈ (0, 4𝜃𝛺).
Then there exist 𝛿, 𝜀 ∈ (0, 1) such that

(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ ≤ 1
𝛿
0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) +𝜀,𝛿

0 (𝑢0ℎ, 𝑣
0
ℎ), (68)

where 0(⋅, ⋅) and 𝜀,𝛿
0 (⋅, ⋅) are given in (36) and (38), respectively.

Proof. Let 𝛿, 𝜀 ∈ (0, 1) such that

(1 + 𝛿)2[8𝜃𝛺𝐶MT𝜀 + 1]‖𝑢0‖𝐿1(𝛺)

8𝜃𝛺
≤ 1

2
. (69)

Using Jensen’s inequality and invoking (57), one finds

− log∫𝛺
ℎ(𝑒

(1+𝛿)𝑣𝑛+1ℎ (𝒙))
‖𝑢0ℎ‖𝐿1(𝛺)

d𝒙 = − log
∑

𝒂∈ℎ

𝑒(1+𝛿)𝑣
𝑛+1
ℎ (𝒂)

𝑢𝑛+1ℎ (𝒂)

𝑢𝑛+1ℎ (𝒂)

‖𝑢0ℎ‖𝐿1(𝛺)

×∫𝛺
𝜑𝒂(𝒙) d𝒙

≤
∑

𝒂∈ℎ

− log

(

𝑒(1+𝛿)𝑣
𝑛+1
ℎ (𝒂)

𝑢𝑛+1ℎ (𝒂)

)

𝑢𝑛+1ℎ (𝒂)

‖𝑢0ℎ‖𝐿1(𝛺)

×∫𝛺
𝜑𝑎(𝒙) d𝒙

= − 1 + 𝛿
‖𝑢0ℎ‖𝐿1(𝛺)

(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ

+ 1
‖𝑢0ℎ‖𝐿1(𝛺)

(log 𝑢𝑛+1ℎ , 𝑢𝑛+1ℎ )ℎ

and hence

−(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ + (log 𝑢𝑛+1ℎ , 𝑢𝑛+1ℎ )ℎ ≥ 𝛿(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ

+‖𝑢0ℎ‖𝐿1(𝛺) log ‖𝑢0ℎ‖𝐿1(𝛺)

−‖𝑢0ℎ‖𝐿1(𝛺) log

×∫𝛺
ℎ(𝑒

(1+𝛿)𝑣𝑛+1ℎ (𝒙)) d𝒙.

In virtue of (18), we can bound

log∫𝛺
ℎ(𝑒

(1+𝛿)𝑣𝑛+1ℎ (𝒙)) d𝒙 ≤ log
(

𝐶𝛺(1 + 𝐶MT(1 + 𝛿)2‖∇𝑣𝑛+1ℎ ‖

2)
)

+
(1 + 𝛿)2

8𝜃𝛺
‖∇𝑣𝑛+1ℎ ‖

2 + 1 + 𝛿
|𝛺|

‖𝑣𝑛+1ℎ ‖𝐿1(𝛺)

= log(
𝐶𝛺
𝜀

)

+ log
(

𝜀(1 + 𝐶MT(1 + 𝛿)2‖∇𝑣𝑛+1ℎ ‖

2)
)

+
(1 + 𝛿)2

8𝜃𝛺
‖∇𝑣𝑛+1ℎ ‖

2 + 1 + 𝛿
|𝛺|

‖𝑣𝑛+1ℎ ‖𝐿1(𝛺)

≤
𝐶𝛺
𝜀

+ 𝜀 + 𝐶MT𝜀(1 + 𝛿)2‖∇𝑢𝑛+1ℎ ‖

2

+
(1 + 𝛿)2

8𝜃𝛺
‖∇𝑣𝑛+1ℎ ‖

2 + 1 + 𝛿
|𝛺|

‖𝑣𝑛+1ℎ ‖𝐿1(𝛺).

Therefore,

−(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ + (log 𝑢𝑛+1ℎ , 𝑢𝑛+1ℎ )ℎ ≥ 𝛿(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ + ‖𝑢0ℎ‖𝐿1(𝛺)

log ‖𝑢0ℎ‖𝐿1(𝛺)

−‖𝑢0ℎ‖𝐿1(𝛺)(
𝐶𝛺
𝜀

+ 𝜀)

−𝐶MT𝜀(1 + 𝛿)2‖𝑢0ℎ‖𝐿1(𝛺)‖∇𝑣
𝑛+1
ℎ ‖

2

−
(1 + 𝛿)2‖𝑢0ℎ‖𝐿1(𝛺)

8𝜃𝛺
‖∇𝑣𝑛+1ℎ ‖

2

−
(1 + 𝛿)‖𝑢0ℎ‖𝐿1(𝛺)

‖𝑣𝑛+1‖ 1 .

|𝛺|

ℎ 𝐿 (𝛺)
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𝑥



t

C
L

‖

C



I
𝑥

A

G

On recalling (36) and on noting (69), it follows from 𝑥 log 𝑥 > − 1
𝑒 for

> 0 that

0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ≥ 1
2
‖𝑣𝑛+1ℎ ‖

2
ℎ +

1
2
‖∇𝑣𝑛+1ℎ ‖

2 + 𝛿(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ

+‖𝑢0ℎ‖𝐿1(𝛺)

(

log ‖𝑢0ℎ‖𝐿1(𝛺) −
𝐶𝛺
𝜀

− 𝜀
)

−
(1 + 𝛿)2[8𝜃𝛺𝐶MT𝜀 + 1]‖𝑢0‖𝐿1(𝛺)

8𝜃𝛺
‖∇𝑣𝑛+1ℎ ‖

2

−
(1 + 𝛿)‖𝑢0ℎ‖𝐿1(𝛺)

|𝛺|

‖𝑣𝑛+1ℎ ‖𝐿1(𝛺)

≥ 1
2
‖𝑣𝑛+1ℎ ‖

2
ℎ + 𝛿(𝑢

𝑛+1
ℎ , 𝑣𝑛+1ℎ )ℎ −

1
𝑒

−‖𝑢0ℎ‖𝐿1(𝛺)

(

𝐶𝛺
𝜀

+ 𝜀 +
(1 + 𝛿)
|𝛺|

‖𝑣𝑛+1ℎ ‖𝐿1(𝛺)

)

.

Finally, we have, from (58), that

𝛿(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ ≤ 0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) + 1
𝑒

+‖𝑢0ℎ‖𝐿1(𝛺)

( 𝐶𝛺
𝜀

+ 𝜀

+
(1 + 𝛿)
|𝛺|

(‖𝑣0ℎ‖𝐿1(𝛺) + ‖𝑢0ℎ‖𝐿1(𝛺))
)

;

hus, proving the result. □

The following is an immediate consequence of Lemma 4.5.

orollary 4.6 (Control of ‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺)). Under the conditions of
emma 4.1, there holds

𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺) ≤ (1 + 1
𝛿
)0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) +𝜀,𝛿

0 (𝑢0ℎ, 𝑣
0
ℎ) + 2

|𝛺|

𝑒
. (70)

Proof. Write

‖𝑢𝑛+1ℎ log 𝑢𝑛+1‖𝐿1(𝛺) = −∫𝛺
𝑢𝑛+1ℎ (𝒙) log− 𝑢𝑛+1(𝒙) d𝒙

+ ∫𝛺
𝑢𝑛+1ℎ (𝒙) log+ 𝑢𝑛+1(𝒙) d𝒙.

(71)

learly, from − 1
𝑒 ≤ 𝑥 log 𝑥 ≤ 0 for 𝑥 ∈ [0, 1], one gets

− ∫𝛺
𝑢𝑛+1ℎ (𝒙) log− 𝑢𝑛+1(𝒙) d𝒙 ≤ |𝛺|

𝑒
. (72)

By the definition of 0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ), one can easily deduce from (68) that

∫𝛺
𝑢𝑛+1ℎ (𝒙) log+ 𝑢𝑛+1(𝒙) d𝒙 ≤ 0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )

−∫𝛺
𝑢𝑛+1ℎ (𝒙) log− 𝑢𝑛+1(𝒙) d𝒙

+ (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ

≤ (1 + 1
𝛿
)0(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )

+𝜀,𝛿
0 (𝑢0ℎ, 𝑣

0
ℎ) +

|𝛺|

𝑒
.

(73)

Thus, inserting (72) and (73) into (71) yields (70). □

At this point a local-in-time, a priori bound for 𝑢𝑛+1ℎ and 𝑣𝑛+1ℎ on
which an induction procedure will be applied is derived.

Lemma 4.7 (A Priori Bounds). Suppose that the conditions of Lemma 4.1
are fulfilled. Let (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∈ 𝑋2

ℎ be the discrete solution computed via
(32) and (33). Then there holds

1(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) − 1(𝑢𝑛ℎ, 𝑣
𝑛
ℎ) + 2𝑘‖𝛥ℎ𝑣𝑛+1ℎ ‖

2

+𝑘(𝛾,ℎ
1 (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )‖∇𝑢𝑛+1ℎ ‖

2 + 1
2
‖∇𝛥ℎ𝑣𝑛+1ℎ ‖

2)

≤ 𝐶 𝑘
(

‖𝛿𝑡𝑣𝑛+1ℎ ‖ℎ + ‖𝛿𝑡𝑣𝑛+1ℎ ‖

2
ℎ

)

‖𝑢𝑛+1ℎ ‖

2
ℎ

+𝐶 𝑘‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺) + 𝐶𝑘‖𝑢
0
ℎ‖𝐿1(𝛺),

(74)

where 1(⋅, ⋅) is defined in (37) and

𝛾,ℎ
1 (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ∶= 4

3
− 𝛾 − 𝛾3‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺) − 𝐶ℎ

1− 2
𝑝  (𝑢0ℎ, 𝑣

0
ℎ).
76
Proof. Set 𝑥ℎ = 𝑢𝑛+1ℎ in (32) to obtain

‖𝑢𝑛+1ℎ ‖

2
ℎ − ‖𝑢𝑛ℎ‖

2
ℎ + ‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖

2
ℎ +2𝑘‖∇𝑢𝑛+1ℎ ‖

2 = 2 𝑘(∇𝑣𝑛ℎ, 𝑢
𝑛+1
ℎ ∇𝑢𝑛+1ℎ ). (75)

Consider 𝑇 ∈ ℎ and let 𝒃𝑇 be its barycenter to write

𝑢𝑛+1ℎ (𝒃𝑇 ) = 𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) + ∇𝑢𝑛+1ℎ |𝑇 ⋅ (𝒃𝑇 − 𝒂𝑇

𝑢𝑖
)

and

𝑢𝑛+1ℎ (𝒃𝑇 ) = 𝑢𝑛+1ℎ (𝒂𝑇𝑢𝑖 ) + ∇𝑢𝑛+1ℎ |𝑇 ⋅ (𝒃𝑇 − 𝒂𝑇𝑢𝑖 );

thereby,

𝑢𝑛+1ℎ (𝒃𝑇 ) =
1
2
(𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
)+𝑢𝑛+1ℎ (𝒂𝑇𝑢𝑖 ))+

1
2
∇𝑢𝑛+1ℎ |𝑇 ⋅((𝒃𝑇 −𝒂𝑇𝑢𝑖 )+(𝒃

𝑇 −𝒂𝑇𝑢𝑖 )). (76)

To deal with the right-hand side of (75), we proceed as follows. Let us
write

(∇𝑣𝑛ℎ, 𝑢
𝑛+1
ℎ ∇𝑢𝑛+1ℎ ) =

2
∑

𝑖=1

∑

𝑇∈ℎ
∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ𝑢
𝑛+1
ℎ (𝒃𝑇 )𝜕𝒙𝑖𝑢

𝑛+1
ℎ d𝒙. (77)

Thus, on substituting (76) into (77), we arrive at

∫𝑇
𝜕𝒙𝑖𝑣

𝑛
ℎ𝑢
𝑛+1
ℎ (𝒃𝑇 )𝜕𝒙𝑖𝑢

𝑛+1
ℎ d𝒙 = ∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ𝑢
𝑛+1
ℎ (𝒃𝑇 )

𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
)

(𝒂𝑇
𝑢𝑖
− 𝒂𝑇

𝑢𝑖
)𝑖

d𝒙

= 1
2 ∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ(𝑢

𝑛+1
ℎ (𝒂𝑇

𝑢𝑖
) + 𝑢𝑛+1ℎ (𝒂𝑇𝑢𝑖 ))

𝑢𝑛+1ℎ (𝒂𝑇
𝑢𝑖
) − 𝑢𝑛+1ℎ (𝒂𝑇

𝑢𝑖
)

(𝒂𝑇
𝑢𝑖
− 𝒂𝑇

𝑢𝑖
)𝑖

d𝒙

+ ∫𝑇
𝜕𝒙𝑖𝑣

𝑛
ℎ∇𝑢

𝑛+1
ℎ ⋅ ((𝒃𝑇 − 𝒂𝑇

𝑢𝑖
)

+ (𝒃𝑇 − 𝒂𝑇𝑢𝑖 ))𝜕𝒙𝑖𝑢
𝑛+1
ℎ d𝒙

= 1
2 ∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ𝜕𝒙𝑖ℎ(𝑢

𝑛+1
ℎ )2 d𝒙

+ ∫𝑇
𝜕𝒙𝑖𝑣

𝑛
ℎ∇𝑢

𝑛+1
ℎ ⋅ ((𝒃𝑇 − 𝒂𝑇

𝑢𝑖
)

+ (𝒃𝑇 − 𝒂𝑇𝑢𝑖 ))𝜕𝒙𝑖𝑢
𝑛+1
ℎ d𝒙,

which combined with (77) shows that

(∇𝑣𝑛ℎ, 𝑢
𝑛+1
ℎ ∇𝑢𝑛+1ℎ ) = 1

2
(∇𝑣𝑛+1ℎ ,∇ℎ(𝑢𝑛+1ℎ )2)

+1
2
(∇(𝑣𝑛ℎ − 𝑣

𝑛+1
ℎ ),∇ℎ(𝑢𝑛+1ℎ )2)

+
2
∑

𝑖=1

∑

𝑇∈ℎ
∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ∇𝑢

𝑛+1
ℎ ⋅ (𝒃𝑇 − 𝒂𝑇

𝑢𝑖
)𝜕𝒙𝑖𝑢

𝑛+1
ℎ d𝒙

+
2
∑

𝑖=1

∑

𝑇∈ℎ
∫𝑇

𝜕𝒙𝑖𝑣
𝑛
ℎ∇𝑢

𝑛+1
ℎ ⋅ (𝒃𝑇 − 𝒂𝑇𝑢𝑖 )𝜕𝒙𝑖𝑢

𝑛+1
ℎ d𝒙

∶= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

(78)

t remains to bound each term of (78). We first proceed with 𝐼1. Choose
ℎ = 1

2ℎ(𝑢
𝑛+1
ℎ )2 in (33) to write

𝐼1 = −1
2
(𝛿𝑡𝑣𝑛+1ℎ ,ℎ(𝑢𝑛+1ℎ )2)ℎ −

1
2
(𝑣𝑛+1ℎ ,ℎ(𝑢𝑛+1ℎ )2)ℎ

+1
2
(𝑢𝑛+1ℎ ,ℎ(𝑢𝑛+1ℎ )2)ℎ

∶= 𝐽1 + 𝐽2 + 𝐽3.

n estimate for 𝐽1 is easily computed from (16) for 𝑛 = 2, 4 and the

agliardo–Nirenberg interpolation ‖𝑥ℎ‖𝐿4(𝛺) ≤ 𝐶‖𝑥ℎ‖
1
2
‖𝑥ℎ‖

1
2
𝐻1(𝛺)

. It is
given by

𝐽1 ≤ 𝐶‖𝛿𝑡𝑣𝑛+1ℎ ‖ℎ‖𝑢𝑛+1ℎ ‖

2
𝐿4(𝛺)

≤ 𝐶‖𝛿𝑡𝑣𝑛+1ℎ ‖ℎ(‖∇𝑢𝑛+1ℎ ‖‖𝑢𝑛+1ℎ ‖ℎ + ‖𝑢𝑛+1ℎ ‖

2
ℎ)

≤ 𝐶(‖𝛿 𝑣𝑛+1‖ + ‖𝛿 𝑣𝑛+1‖2 )‖𝑢𝑛+1‖2 +
𝛾
‖∇𝑢𝑛+1‖,2
𝑡 ℎ ℎ 𝑡 ℎ ℎ ℎ ℎ 4 ℎ
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𝛾̃

(

𝐽

I

𝐼

𝐼

C

‖

4

i
{
T

b
s

(
t

𝑢

a

𝑢

L

‖

a

‖

I



w



A

(

a

‖

A

𝑘

𝛾

≤

G



T

f



h



where 𝛾 > 0 is a constant to be adjusted later on. From (49) and (50),
we know that 𝐽2 ≤ 0. For 𝐽3, we use the interpolation ‖𝑥ℎ‖𝐿3(𝛺) ≤

‖∇𝑥ℎ‖
2
3
‖𝑥ℎ log |𝑥ℎ|‖

1
3
𝐿1(𝛺)

+𝐶𝛾̃‖𝑥ℎ log |𝑥ℎ|‖𝐿1(𝛺) +𝐶𝛾̃‖𝑥ℎ‖
1
3
𝐿1(𝛺)

for 𝛾̃ > 0

see [7, Lemma 3.5]) and (16) for 𝑛 = 3 to obtain

3 ≤ 𝐶‖𝑢𝑛+1ℎ ‖

3
𝐿3(𝛺)

≤ 𝛾3

2
‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺)‖∇𝑢

𝑛+1
ℎ ‖

2

+𝐶‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖

3
𝐿1(𝛺)

+ 𝐶‖𝑢𝑛+1ℎ ‖𝐿1(𝛺).

nequality (9) for 𝑝 = 2 shows that

2 = −𝑘
2
(∇𝛿𝑡𝑣𝑛+1ℎ ,∇ℎ(𝑢𝑛+1ℎ )2)

≤ 𝐶 𝑘
ℎ2

‖𝛿𝑡𝑣
𝑛+1
ℎ ‖ℎ‖𝑢

𝑛+1
ℎ ‖

2
𝐿4(𝛺)

≤ 𝐶 𝑘
ℎ2

(‖𝛿𝑡𝑣𝑛+1ℎ ‖ℎ + ‖𝛿𝑡𝑣
𝑛+1
ℎ ‖

2
ℎ)‖𝑢

𝑛+1
ℎ ‖

2
ℎ +

𝛾
4
‖∇𝑢𝑛+1ℎ ‖

2.

We treat 𝐼3 and 𝐼4 together. Thus,

3 + 𝐼4 ≤ 𝐶ℎ‖∇𝑣𝑛ℎ‖𝐿∞(𝛺)‖∇𝑢𝑛+1ℎ ‖

2 ≤ 𝐶ℎ1−
2
𝑝
‖∇𝑣𝑛ℎ‖𝐿𝑝(𝛺)‖∇𝑢𝑛+1ℎ ‖

2

≤ 𝐶ℎ1−
2
𝑝
‖𝛥ℎ𝑣𝑛ℎ‖‖∇𝑢

𝑛+1
ℎ ‖

2 ≤ 𝐶ℎ1−
2
𝑝  (𝑢0ℎ, 𝑣

0
ℎ)‖∇𝑢

𝑛+1
ℎ ‖

2.

In the above we used (11), (27), and (48). The estimates for the 𝐼𝑖’s
applied to (75) lead to

‖𝑢𝑛+1ℎ ‖

2
ℎ − ‖𝑢𝑛ℎ‖

2
ℎ + ‖𝑢𝑛+1ℎ − 𝑢𝑛ℎ‖

2
ℎ + 2𝑘‖∇𝑢𝑛+1ℎ ‖

2

≤ 𝐶(1 + 𝑘
ℎ2

)𝑘(‖𝛿𝑡𝑣𝑛+1ℎ ‖ℎ + ‖𝛿𝑡𝑣
𝑛+1
ℎ ‖

2
ℎ)‖𝑢

𝑛+1
ℎ ‖

2
ℎ

+ 𝑘
(

𝛾 + 𝛾3‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖𝐿1(𝛺) + 𝐶ℎ
1− 2

𝑝  (𝑢0ℎ, 𝑣
0
ℎ)
)

‖∇𝑢𝑛+1ℎ ‖

2

+𝐶𝑘‖𝑢𝑛+1ℎ log 𝑢𝑛+1ℎ ‖

3
𝐿1(𝛺)

+ 𝐶𝑘‖𝑢𝑛+1ℎ ‖𝐿1(𝛺).

(79)

hoose 𝑥ℎ = −𝛥2𝑣𝑛+1ℎ in (33) to get

𝛥ℎ𝑣𝑛+1ℎ ‖

2
ℎ − ‖𝛥ℎ𝑣𝑛ℎ‖

2
ℎ + ‖𝛥ℎ(𝑣𝑛+1ℎ − 𝑣𝑛ℎ)‖

2
ℎ

+2𝑘‖∇𝛥ℎ𝑣𝑛+1ℎ ‖

2
ℎ + 2𝑘‖𝛥ℎ𝑣𝑛+1ℎ 𝑣𝑛+1ℎ ‖

2
ℎ = 2𝑘(∇𝑢𝑛+1ℎ ,∇𝛥ℎ𝑣𝑛+1ℎ )

≤ 𝑘( 4
3
‖∇𝑢𝑛+1ℎ ‖

2

+3
2
‖∇𝛥ℎ𝑢𝑛+1ℎ ‖

2).

(80)

The proof follows by use of (79) and (80). □

.3. Induction argument

The essential step to finishing up the proof of Theorem 3.1 is an
nduction argument on 𝑛. We need to verify that the overall sequence
𝑢𝑚ℎ }

𝑁
𝑚=0 provided by system (32)–(33) accomplishes the estimates from

heorem 3.1.
Observe first that  (𝑢0ℎ, 𝑣

0
ℎ) is uniformly bounded with regard to ℎ,

ecause of (29) and (31), and hence we are allowed to choose (ℎ, 𝑘)
atisfying (39) and (40).

∙ Case (𝑚 = 1). We want to prove Theorem 3.1 for 𝑚 = 1. Inequality
48) holds trivially, since  (𝑢0ℎ, 𝑣

0
ℎ) is bounded independently of (ℎ, 𝑘);

hereby, from (49) and (50), we obtain, for 𝑛 = 0, that, for all 𝒙 ∈ 𝛺,

1
ℎ(𝒙) > 0 (81)

nd

1
ℎ(𝒙) ≥ 0. (82)

ikewise, we have, by (57) and (58) for 𝑛 = 0, that

𝑢1ℎ‖𝐿1(𝛺) = ‖𝑢0ℎ‖𝐿1(𝛺)

nd

1 0 0
𝑣ℎ‖𝐿1(𝛺) ≤ ‖𝑣ℎ‖𝐿1(𝛺) + ‖𝑢ℎ‖𝐿1(𝛺).
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n view of (81) and (82), inequality (62) for 𝑛 = 0 shows that

0(𝑢1ℎ, 𝑣
1
ℎ) − 0(𝑢0ℎ, 𝑣

0
ℎ) + 𝑘‖𝛿𝑡𝑣

1
ℎ‖

2
ℎ

+𝑘‖
− 1

2
ℎ (𝑢1ℎ)∇𝑢

1
ℎ −

1
2
ℎ (𝑢

1
ℎ)∇𝑣

0
ℎ‖

2 ≤ 0

hich, in turn, gives

0(𝑢1ℎ, 𝑣
1
ℎ) ≤ 0(𝑢0ℎ, 𝑣

0
ℎ). (83)

pplying (83) to (68) and (70) for 𝑛 = 0 yields that

𝑢1ℎ, 𝑣
1
ℎ)ℎ ≤ 1

𝛿
0(𝑢0ℎ, 𝑣

0
ℎ) +𝛿,𝜀

0 (𝑢0ℎ, 𝑣
0
ℎ)

∶= 0(𝑢0ℎ, 𝑣
0
ℎ),

(84)

nd

𝑢1ℎ log 𝑢
1
ℎ‖𝐿1(𝛺) ≤ (1 + 1

𝛿
)0(𝑢0ℎ, 𝑣

0
ℎ) +𝜀,𝛿

0 (𝑢0ℎ, 𝑣
0
ℎ) + 2

|𝛺|

𝑒
∶= 1(𝑢0ℎ, 𝑣

0
ℎ).

(85)

s a result of applying (84) and (85) to (62) for 𝑛 = 0, we find

‖𝛿𝑡𝑣1ℎ‖
2
ℎ ≤ 0(𝑢0ℎ, 𝑣

0
ℎ) − 0(𝑢1ℎ, 𝑣

1
ℎ)ℎ

≤ 0(𝑢0ℎ, 𝑣
0
ℎ) + 0(𝑢0ℎ, 𝑣

0
ℎ) + 1(𝑢0ℎ, 𝑣

0
ℎ)

∶= 2(𝑢0ℎ, 𝑣
0
ℎ).

Selecting 𝛾 to be sufficiently small such that

+ 𝛾32(𝑢0ℎ, 𝑣
0
ℎ) ≤

5
12

(86)

and recalling (46), this implies, from (83), that

𝛾,ℎ
1 (𝑢1ℎ, 𝑣

1
ℎ) ≥

4
3
− 𝛾 − 𝛾32(𝑢0ℎ, 𝑣

0
ℎ) − 𝐶ℎ

1− 1
𝑝 1(𝑢0ℎ, 𝑣

0
ℎ) ≥

1
2
;

thus, one can find upon using (74) for 𝑛 = 0 that

1(𝑢1ℎ, 𝑣
1
ℎ) − 1(𝑢0ℎ, 𝑣

0
ℎ) + 2𝑘‖𝛥ℎ𝑣1ℎ‖

2 + 𝑘
2
(‖∇𝑢1ℎ‖

2 + ‖∇𝛥ℎ𝑣1ℎ‖
2)

𝐶𝑘(‖𝛿𝑡𝑣1ℎ‖ℎ + ‖𝛿𝑡𝑣
1
ℎ‖

2
ℎ)‖𝑢

1
ℎ‖

2 + 𝐶𝑘3
1(𝑢

0
ℎ, 𝑣

0
ℎ) + 𝐶𝑘‖𝑢

0
ℎ‖𝐿1(𝛺).

(87)

rönwall’s inequality now provides the bound

1(𝑢1ℎ, 𝑣
1
ℎ) +

𝑘
2
(‖∇𝑢1ℎ‖

2 + ‖∇𝛥ℎ𝑣1ℎ‖
2) ≤  (𝑢0ℎ, 𝑣

0
ℎ).

heorem 3.1 is therefore verified for 𝑚 = 1.
∙ Case 𝑚 = 𝑛 + 1. Assume that the bounds in Theorem 3.1 are valid

or all 𝑚 ∈ {1,… , 𝑛}. Consequently, it follows that

1(𝑢𝑛ℎ, 𝑣
𝑛
ℎ)+

𝑘
2

𝑛
∑

𝑟=1
(‖∇𝑢𝑟ℎ‖

2 + ‖∇𝛥ℎ𝑣𝑟ℎ‖
2)

≤ 1(𝑢0ℎ, 𝑣
0
ℎ) + 𝐶 𝑘

𝑛
∑

𝑟=1

(

‖𝛿𝑡𝑣
𝑟
ℎ‖ℎ + ‖𝛿𝑡𝑣

𝑟
ℎ‖

2
ℎ

)

‖𝑢𝑟ℎ‖
2 (88)

+ 𝐶 𝑘
𝑛
∑

𝑟=1

(

3
1(𝑢

0
ℎ, 𝑣

0
ℎ) + ‖𝑢0ℎ‖𝐿1(𝛺)

)

olds on the basis of
𝛾,ℎ
1 (𝑢𝑚ℎ , 𝑣

𝑚
ℎ ) ≥

1
2

for all 𝑚 ∈ {0,… , 𝑛}.

Then we want to prove Theorem 3.1 for 𝑚 = 𝑛 + 1. Indeed, by the
induction hypothesis (47) for 𝑚 = 𝑛, it is clear that (48) holds; therefore,
one has (49) and (50). That inequalities (43) and (44) are satisfied for
𝑚 = 𝑛 + 1 is simply by noting (57) and (58). Combining (62) and the
induction hypothesis (45) for 𝑚 = 𝑛, we deduce (45) for 𝑚 = 𝑛 + 1,
which implies

max
𝑚∈{0,…,𝑛+1}

0(𝑢𝑚ℎ , 𝑣
𝑚
ℎ ) ≤ 0(𝑢0ℎ, 𝑢

0
ℎ). (89)

As a result of this, we have, by (68) and (70), that

(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ )ℎ ≤ 0(𝑢0ℎ, 𝑣
0
ℎ) (90)

and

‖𝑢𝑛+1 log 𝑢𝑛+1‖ ≤  (𝑢0 , 𝑣0 ). (91)
ℎ ℎ 𝐿1(𝛺) 1 ℎ ℎ
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𝑘

i

a



s

𝑢

(
d

w

(
b

Moreover, it follows from (45) for 𝑚 = 𝑛 + 1 that
𝑛+1
∑

𝑟=0
‖𝛿𝑡𝑣

𝑟
ℎ‖

2
ℎ ≤ 2(𝑢0ℎ, 𝑣

0
ℎ), (92)

n view of (90) and (91).
Once again if 𝛾 is chosen to be small enough such that (86) holds

nd condition (46) is invoked, one finds

𝛾,ℎ
1 (𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) ≥ 4

3
− 𝛾 − 𝛾32(𝑢0ℎ, 𝑣

0
ℎ) − 𝐶ℎ

1− 1
𝑝 1(𝑢0ℎ, 𝑣

0
ℎ) ≥

1
2

owing to (89). We thus infer from (74) combined with (88) that

1(𝑢𝑛+1ℎ , 𝑣𝑛+1ℎ ) + 𝑘
2

𝑛+1
∑

𝑟=1
(‖∇𝑢𝑟ℎ‖

2 + ‖∇𝛥ℎ𝑣𝑟ℎ‖
2)

≤ 1(𝑢0ℎ, 𝑣
0
ℎ) + 𝐶 𝑘

𝑛+1
∑

𝑟=1
(‖𝛿𝑡𝑣𝑟ℎ‖ℎ + ‖𝛿𝑡𝑣

𝑟
ℎ‖

2
ℎ)‖𝑢

𝑟
ℎ‖

2

+ 𝐶 𝑘
𝑛+1
∑

𝑟=1

(

3
1(𝑢

0
ℎ, 𝑣

0
ℎ) + 𝐶𝑘‖𝑢

𝑟
ℎ‖𝐿1(𝛺)

)

and hence Grönwall’s inequality provides (47) for 𝑚 = 𝑛+1 when used
(92).

5. Computational experiments

The computational experiments are meant to support and comple-
ment the theoretical results in the earlier sections in two different
settings. On the one hand, we regard initial data 𝑢0 under the condition
∫𝛺 𝑢0(𝒙) d𝒙 ∈ (0, 4𝜋), which give solutions remaining bounded over
time. On the other hand, we use a particularly demanding test where a
finite time blowup is expected. For this latter numerical test, it must be
said that the blowup setting is out of reach from our analysis since (47)
is not satisfied for blowup solutions; therefore, lower bounds cannot be
guaranteed. Nevertheless, the results are striking with regard to lower
bounds since they fail very close to the expecting blowup time for not
so small discrete parameters.

All the computations were performed with the help of the
FreeFem++ framework [25].

5.1. Non-blowup setting

As the domain we take the square 𝛺 = [−1∕2, 1∕2]2. The evolution
tarts from the bell-shaped initial data

0 = 𝐶𝑢𝑒
−𝐶𝑢(𝑥2+𝑦2) and 𝑣0 = 𝐶𝑣𝑒

−𝐶𝑣(𝑥2+(𝑦−0.5)2), (93)

which conditions fulfill a homogeneous Neumann boundary condition
approximately.2 It should be noticed that 𝑢0 is centered at the origin
0, 0), whereas 𝑣0 is centered at the midpoint of the top edge of the
omain.

From now on, it is assumed that the constants 𝐶𝑣 and 𝐶𝑢 are the
same. Then, for each 𝐶𝑢, one can compute that ∫𝛺 𝑢0(𝒙) d𝒙 ∈ (0, 4𝜋);
therefore, problem (1) with (2)–(3) has a unique, smooth solution. As
a result of this experiment, we expect diffusion and chemotaxis transfer
of cells (the 𝑢 component of the solution) from the center of the domain
toward the top edge, where the highest concentration of chemical agent
(the 𝑣 component of the solution) is found.

For the spacial discretization, we introduce the 1 finite element
space 𝑋ℎ associated with an acute mesh ℎ defined as follows. From an
𝑁square×𝑁square uniform grid, obtained by dividing 𝛺 into macroele-
ments consisting of squares, we construct the mesh ℎ by splitting
each macroelement into 14 acute triangles as indicated in Fig. 1. This
way, for 𝑁square = 50, we define a mesh consisting of 35,000 acute
triangles and 17,701 vertices with mesh size ℎ ≃ 0.0101247. Selecting

2 If 𝐶𝑢 and 𝐶𝑣 are quite small, the Neumann boundary condition on (𝑢0, 𝑣0)
is not approximately null. For this reason, we only take 𝐶𝑢 bigger or equal to
40.
 d

78
Fig. 1. Reference macrolement, composed of 14 acute triangles.

𝐶𝑢 = 70, we compute 𝑁 = 50 time iterations using scheme (32)–(33)
ith time step 𝑘 = 10−4. Snapshots of the simulations at times 𝑡𝑛 = 0,

2.5 ⋅ 10−3 and 5 ⋅ 10−3 are collected in Fig. 2. The same test is repeated
for 𝐶𝑢 ∈ {40, 50, 60}, checking that positivity of the numerical solution
is preserved over time iterations. In all these cases, the qualitative
behavior expected in chemotaxis phenomena is obtained.

Positivity of 𝑢𝑛+1ℎ breaks if 𝐶𝑢 grows beyond 𝐶𝑢 ≃ 70, but 𝑣𝑛+1ℎ re-
mains positive. Note that, as 𝐶𝑣 = 𝐶𝑢 is increased, ‖∇𝑣0ℎ‖𝐿∞(𝛺) becomes
larger and larger, with 𝑣0 defined in (93); consequently, ‖∇𝑣𝑛ℎ‖𝐿∞(𝛺)
does at least for the first time steps. Therefore, computing 𝑢𝑛+1ℎ using
(32) turns out to be more demanding. Fig. 3 (top) plots the values
{min𝒙∈𝛺 𝑢𝑛ℎ(𝒙) , 𝑛 = 0,… , 50} for 𝐶𝑢 ∈ {70, 80, 90, 100}. Positivity is
recovered once ‖∇𝑣𝑛ℎ‖𝐿∞(𝛺) becomes small enough.

This loss of positivity for large values of 𝐶𝑢 is not in contradiction
to (41) in Theorem 3.1, since (39) and (40) are not fulfilled for those
cases.3 Moreover it is remarkable that, for 𝐶𝑢 ≃ 70, 𝑢𝑛+1ℎ keeps positiv-
ity, even when (39) and (40) are quite far from being verified. In fact,
 (𝑢0ℎ, 𝑣

0
ℎ) takes huge values, which exceed the capacity of floating point

standards. These huge values stem from ‖∇𝑣0ℎ‖ ≃ 7, 687.66, which gives
2(𝑢0ℎ, 𝑣

0
ℎ) ≃ 23, 411.5, used as an exponent for computing  (𝑢0ℎ, 𝑣

0
ℎ). In

this sense, our numerical experiments suggest that there might be room
for improvement in conditions (39) and (40) of Theorem 3.1.

In order to compare the performance of scheme (32)–(33) using a
non-acute mesh, we consider, as before, a mesh composed of 50 × 50
macroelements as depicted in Fig. 4. This way the theoretical results
shown in this paper may not be applied.

Diffusion and chemotaxis movements are obtained as observed in
Fig. 2 for 𝐶𝑢 = 70, but an earlier lost of positivity as well. In particular,
it is lost from the first time step (minℎ (𝑢

𝑛
ℎ) ≃ −1.39289 ⋅ 10−5 at 𝑡𝑛 =

10−4). Positivity is not completely recovered until 𝑡𝑛 = 0.0018, thereafter
positive values persist with time. Fig. 3 (bottom) displays the evolution
of the values {min𝒙∈𝛺 𝑢𝑛ℎ(𝒙) , 𝑛 = 0,… , 50} for 𝐶𝑢 ∈ {70, 80, 90, 100}.

5.2. Blowup setting

The second suite of tests is focused on a blowup context. We
consider

𝑢0 = 𝐶𝑢𝑒
−0.1𝐶𝑢(𝑥2+𝑦2) and 𝑣0 = 𝐶𝑣𝑒

−0.1𝐶𝑣(𝑥2+𝑦2), (94)

with 𝐶𝑢 = 1000 and 𝐶𝑣 = 500. Thus constructed, initial data are large
enough to expect a finite time blowup for both 𝑢 and 𝑣 components
of the continuous solution to problem (1) with (2)–(3). For details, see
e.g. [26], where the blowup time 𝑡∗ is conjectured to be located in the
time interval (4.4 ⋅ 10−5, 10−4).

3 Since we do not know the exact value of the constant 𝐶 in conditions
39) and (40), we took 𝐶 to be 1. On the other hand, for values of (𝐶𝑢, 𝐶𝑣)
eing small enough, both conditions hold since 𝐹 (𝑢0, 𝑣0) decreases as (𝐶𝑢, 𝐶𝑣)
o. So, positivity is maintained.
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h

Fig. 2. Solution 𝑢𝑛ℎ (colored isolines) and 𝑣ℎ (gray scale background) at three time steps: 𝑡𝑛 = 0, 2.5 ⋅ 10−3 and 5 ⋅ 10−3. Diffusion and chemotaxis transfer of 𝑢𝑛ℎ (cells) towards
ighest concentrations of 𝑣𝑛ℎ can be seen along time. Acute mesh with 𝑁square = 50, 𝑘 = 10−4, initial data parameter: 𝐶𝑢 = 70.
Fig. 3. Plot of minℎ (𝑢
𝑛
ℎ), 𝑛 = 0,…50, where ℎ is an acute mesh (top) or non-acute mesh (bottom). Initial value constants: 𝐶𝑢 = 70, 80, 90, 100.
o

b
m
w

(
Fig. 4. Reference macrolement containing some obtuse triangles (triangles 1, 9, 5 and
11).

When used an acute mesh of macroelements as in Fig. 1 for approxi-

mating such a demanding blowup test, scheme (32)–(33) cannot aspire
79
to achieve positivity over the whole blowup interval. The reason is
that conditions (39) and (40) in Theorem 3.1 are not fulfilled, because
‖𝑢0ℎ‖ and ‖∇𝑣0ℎ‖ are too large (‖𝑢0ℎ‖

2
ℎ = 15,708 and ‖∇𝑣0ℎ‖

2
𝐿2(𝛺)

=
785, 230). However, as in the previous experiments, one does not need
(39) and (40) to hold so as to keep positivity. For instance, a value
𝑁square = 600 suffices to obtain positivity for the overall blowup
interval. Moreover, a value 𝑁square = 100 (ℎ ≃ 0.005) maintains
positivity well into (4.4 ⋅10−5, 10−4). To be more precise, if ℎ is defined
by 100 × 100 macroelements and 𝑘 = 10−6 is chosen, then 𝑢𝑛ℎ > 0
and 𝑣𝑛ℎ > 0 for 𝑡𝑛 ∈ [0, 8.7 ⋅ 10−5). For 𝑡𝑛 = 8.7 ⋅ 10−5 (𝑛 = 88),
ne gets minℎ (𝑢

𝑛
ℎ) = −90.7418. The evolution of 𝑢𝑛ℎ is shown (on a

logarithmic scale) in Fig. 5 for time steps 𝑛 = 0, 30, 60, and 88. A
lowup phenomenon in the center of the domain can be observed: the
aximum value of 𝑢𝑛ℎ grows over time, reaching max(𝑢𝑛ℎ) = 8.85515×105,
hile its support shrinks.

When considering a non-acute mesh of 100 × 100 macroelements
see Fig. 4), we encounter that positivity is only maintained until 𝑡𝑛 =
6.7 ⋅ 10−5. At time 𝑡𝑛 = 6.8 ⋅ 10−5 (𝑛 = 68), minℎ (𝑢

𝑛
ℎ) = −64.2157 and

maxℎ (𝑢
𝑛
ℎ) = 2.16982 × 105. Fig. 6 shows the numerical solution 𝑢𝑛ℎ at

𝑡𝑛 = 6.8 ⋅ 10−5 (left), when positivity is broken for the first time, and at
𝑡𝑛 = 8.7 ⋅10−5 (center), when negative values of order 10−4 are reached.
Otherwise, the numerical solution 𝑢𝑛ℎ associated with an acute mesh

−5
keeps positivity at time 𝑡𝑛 = 8.7 ⋅ 10 (right).
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n

R

Fig. 5. Solution 𝑢𝑛ℎ associated with an acute mesh of 100 × 100 macroelements at time steps 𝑛 = 0, 30, 60, and 88 (when positivity is broken).
Fig. 6. Left: zoomed detail of 𝑢𝑛ℎ associated with a non-acute mesh at 𝑡𝑛 = 6.8 ⋅ 10−5; positivity is broken. Center: 𝑢𝑛ℎ associated with a non-acute mesh at 𝑡𝑛 = 8.7 ⋅ 10−5; deep
egative values appear. Right: 𝑢𝑛ℎ associated with an acute mesh at 𝑡𝑛 = 8.7 ⋅ 10−5, positivity is maintained.
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