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Abstract

Overlapping Additive Schwarz (OAS) preconditioners are here constructed for isogeometric collo-
cation discretizations of the system of linear elasticity in both two and three space dimensions.
Isogeometric collocation methods are recent variants of isogeometric analysis based on the numer-
ical approximation of the strong form of partial differential equations at appropriate collocation
points. Numerical results in two and three dimensions show that two-level OAS preconditioners
are scalable in the number of subdomains N , quasi-optimal with respect to the mesh size h and
optimal with respect to the spline polynomial degree p. Moreover, two-level OAS preconditioners
are more robust than one-level OAS and non-preconditioned GMRES solvers when the material
tends to the incompressible limit, as well as in the presence of strong deformation of the NURBS
geometry.

1. Introduction

Isogeometric analysis (IGA) is a numerical methodology, first introduced in [29], for the ap-
proximation of partial differential equations (PDEs). IGA is based on using Non-Uniform Rational
B-Splines (NURBS), a standard in the Computer Aided Design (CAD) community, not only as
basis functions representing CAD geometries, but also as the basis for the discrete solution space
of PDEs.

Among the advantages of this approach with respect to the finite element method, we mention
in particular the exact representation of CAD geometries and the greater control of the regularity
of the discrete space. Indeed, spaces of global Ck regularity can be easily implemented, yielding
fewer degrees of freedom, better performance in case of vibrations, easier approximation of higher
order problems and other advantages, see e.g. [22]. For a theoretical convergence analysis of IGA
approximations of PDEs, we refer to [5] and the recent review [7]. Thanks to its flexibility, IGA
has been successfully applied in diverse fields such as fluid dynamics [6, 28], structural mechanics
[2], electromagnetics [16], computational electrocardiology [17], wave equations [53].

Assembling the stiffness matrices arising from isogeometric Galerkin approximations of PDEs
might become computationally very expensive when the spline polynomial degree increases due
to high-order quadrature rules. In order to speedup the stiffness matrices assembly, isogeometric
collocation methods have been proposed in [1, 2, 34]. The main advantages of the collocation
approach are that building the collocation stiffness matrix requires only one evaluation per basis
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function and the associated linear system turns out to be sparser than in the Galerkin case. We
refer to [46] for a comparison of the computational cost of collocation and Galerkin IGA techniques.

The linear systems arising from IGA discretizations of elliptic problems can be very ill-conditioned
when the spline polynomial degree p increases and the development of efficient IGA solvers is a quite
challenging issue in both Galerkin and collocation IGA. While research on domain decomposition
solvers for IGA is a relatively recent field compared with the more established field of finite and
spectral element solvers, some works have been proposed. Overlapping Additive Schwarz (OAS)
preconditioners for Galerkin IGA approximations of scalar elliptic equations have been constructed
and analyzed in [8], and then extended to linear elasticity and Stokes equations in [9], whereas
OAS preconditioners for collocation IGA approximations of scalar elliptic equations have been in-
troduced in [11]. Balancing Domain Decomposition by Constraints (BDDC) preconditioners for
Galerkin IGA have been studied in [10, 13, 14, 43]. In addition to our previous works, we also
mention [15, 18, 19] on BPX preconditioners, [31, 32, 39] on IGA multigrid, [35, 36, 37, 38] on IGA
Discontinuous Galerkin methods, and [40, 48, 49, 42] on other IGA solvers. A recent comparison
between spectral elements and IGA discretizations and solvers can be found in [33].

The main novelty of the present work is to develop scalable OAS preconditioners for collocation
IGA approximations of the linear elasticity system. This extends our previous works on standard
Galerkin IGA discretizations for scalar elliptic problems [8], linear elasticity and Stokes systems
[9], and on collocation IGA for scalar elliptic problems only [11]. OAS preconditioners are based
on a geometric decomposition of the computational domain into overlapping subdomains. A one-
level OAS (OAS(1)) preconditioner is first constructed and it consists of solving concurrently a local
collocation problem on each overlapping subdomain. The resulting algorithm is completely parallel.
However, it is well known, see e.g. [47, 50], that the performance of one-level preconditioners
deteriorates when the number of subdomains increases, because they are not scalable. Thus, we
also propose a two-level preconditioner (OAS(2)) which employs, in addition to the local problems,
a coarse collocation problem. Since the isogeometric collocation system is non-symmetric, these
OAS preconditioners are accelerated by the GMRES iterative method. In our numerical study,
we first investigate how the GMRES iteration counts depend on the mesh size h and number of
subdomains N . We also study the behavior of the solvers in terms of the polynomial degree p,
regularity index k, the Poisson ratio ν, as well as in the presence of domain deformation. We
find that two-level OAS preconditioners are scalable in N , quasi-optimal with respect to the IGA
subdomain to mesh size ratio H/h (i.e. with iteration counts which depend sublinearly on H/h)
and optimal with respect to the IGA polynomial degree p (i.e. with iteration counts which are
independent of p). Moreover, two-level OAS preconditioners are more robust than one-level OAS
and non-preconditioned GMRES solvers when the material tends to the incompressible limit, as
well as in the presence of strong deformation of the NURBS geometry.

The present paper is organized as follows. In Section 2, we give a brief presentation of B-splines
and NURBS. Section 3 introduces isogeometric collocation methods where the choice of collocation
points is discussed. In Section 4, we present the proposed overlapping domain decomposition
preconditioners. The results of several numerical tests in two and three dimensions are reported in
Section 5.

2. B-splines and NURBS

In this section, we describe briefly B-splines, NURBS, the basics of IGA and an introduction
to the proposed discretization method. For more details on NURBS and IGA, we refer to [44, 45]
and [29], respectively.

2



2.1. B-spline functions and spaces

Univariate B-splines are scalar piecewise polynomials functions defined on R, obtained as linear
combinations of B-spline basis functions, introduced below. Denote as knot vector a set of non-
decreasing real numbers representing coordinates in the parametric space, i.e. the unit interval,

{ξ1 = 0, ..., ξn+p+1 = 1}, (1)

where p is the polynomial degree of the B-spline and n is the number of basis functions (and control
points) necessary to describe it. We call patch the interval (ξ1, ξn+p+1). The knot vector is denoted
as uniform if its knots are uniformly-spaced and non-uniform otherwise. The maximal multiplicity
of a knot is p+ 1. A knot vector is called open if its first and last knots have multiplicity p+ 1. In
the following, we always employ open knot vectors. We recall that B-spline basis functions resulting
from open knot vectors are interpolatory at the end points of the parametric interval Î := (0, 1),
but in general they are not interpolatory at interior knots.

Given a knot vector, univariate B-spline basis functions are defined recursively.
For p = 0, i.e. the piecewise constants case, we set

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(2)

Then, for p ≥ 1 :

Np
i (ξ) =


ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ) if ξi ≤ ξ < ξi+p+1

0 otherwise,

(3)

where we assume 0
0 := 0 in order to incorporate repeated knots. It follows that the generic

basis function Np
i has support Θi := supp(Np

i ) = (ξi, ξi+p+1), i = 1, 2, .., n. The B-spline
basis functions are linearly independent and they form a partition of unity. Figure 1 shows an
example consisting of n = 9 cubic basis functions generated from the simple open knot vector
ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

If all interior knots are not repeated, thus if they have multiplicity 1, then the B-spline basis
functions are Cp−1-continuous. If a knot has multiplicity α, the basis is Ck-continuous, with
k = p− α, at that knot. Finally, the univariate B-spline space is defined by

Ŝh = span{Np
i (ξ), i = 1, . . . , n}. (4)

Multi-dimensional B-spline functions are easily constructed by tensor products. Here we con-
sider the two-dimensional case for simplicity and the higher-dimensional case is analogous. Let
Ω̂ := (0, 1) × (0, 1) be the two-dimensional parametric space. Consider the knot vectors {ξ1 =
0, ..., ξn+p+1 = 1} and {η1 = 0, ..., ηm+q+1 = 1}, and a net of n×m control points Ci,j . Univariate
B-spline basis functions Np

i and M q
j (with i = 1, ..., n and j = 1, ...,m) of degree p and q, respec-

tively, are defined from the knot vectors. The bivariate B-spline basis on Ω̂ is then defined by tensor
product as

Bp,q
i,j (ξ, η) = Np

i (ξ)M q
j (η).

We remark that the two knot vectors {ξ1 = 0, ..., ξn+p+1 = 1} and {η1 = 0, ..., ηm+q+1 = 1} generate
a mesh of rectangular elements in the parametric space. As done in (4), we can now define the
bivariate B-spline space as

Ŝh = span{Bp,q
i,j (ξ, η), i = 1, . . . , n, j = 1, . . . ,m}. (5)
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Figure 1: Cubic basis functions formed from ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}. For various r, V̂1 is the

span of basis functions drawn with dash-dot and solid lines and V̂2 is the span of basis functions drawn with solid and
dashed lines, in two subdomains Î1 = (0, 1/2) and Î2 = (1/2, 1) of Î. In particular, the basis functions in common
are those drawn with a solid line. The small rectangles on the x-axis denote the Greville abscissae associated with
the knot vector ξ.

2.2. NURBS functions and spaces

Univariate NURBS basis functions of degree p are given by

Rpi (ξ) =
Np
i (ξ)ωi∑n

ı̂=1N
p
ı̂ (ξ)ωı̂

=
Np
i (ξ)ωi

w(ξ)
, (6)

where the denominator w(ξ) =
∑n

ı̂=1N
p
ı̂ (ξ)ωı̂ ∈ Ŝh is called the weight function.

A NURBS curve is then defined by

C(ξ) =
n∑
i=1

Rpi (ξ)Ci, (7)

where Ci ∈ R2 are control points.
Analogously to the B-spline case, NURBS basis functions on the two-dimensional parametric

space Ω̂ = (0, 1)× (0, 1) are defined by

Rp,qi,j (ξ, η) =
Bp,q
i,j (ξ, η)ωi,j∑n

ı̂=1

∑m
̂=1B

p,q
ı̂,̂ (ξ, η)ωı̂,̂

=
Bp,q
i,j (ξ, η)ωi,j

w(ξ, η)
, (8)

where the denominator w(ξ, η) is the weight function. The continuity and support of NURBS basis
functions are the same as for B-splines and NURBS spaces are the span of the basis functions (8).

Given a single-patch domain Ω ⊂ R2 associated with a net of n ×m control points Ci,j ∈ R2,

we introduce the geometrical map F : Ω̂→ Ω

F(ξ, η) =

n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Ci,j . (9)

The space of NURBS scalar fields on the domain Ω is defined by the isoparametric approach as
the span of the push-forward of the basis functions (8)

Nh := span{Rp,qi,j ◦ F
−1, with i = 1, . . . , n; j = 1, . . . ,m}. (10)
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The physical space elements are the images of the elements in the parametric space, therefore
the physical mesh on Ω is

Th = {F((ξi, ξi+1)× (ηj , ηj+1)), with i = 1, . . . , n+ p, j = 1, . . . ,m+ q} , (11)

(the empty elements are not considered).
For further details and a complete presentation of NURBS functions, we refer the interested

reader to the book by Farin [27].

3. Isogeometric analysis and collocation methods

3.1. The linear elasticity problem

We consider an elastic material body Ω ⊂ Rd, d = 2, 3, that is obtained by the NURBS
geometrical map (9), that is, Ω = F(Ω̂). Let u be the displacement field and f be the body force
density. We consider the linear elastic deformation problem

divCε(u) + f = 0 in Ω (12)

Here, ε(u) is the symmetric gradient of u and the fourth order tensor C is defined by

Cτ = 2µτ + λtr(τ )I (13)

for all second order tensors τ , and tr(τ ) is the trace of τ . µ = µ(x) ≥ µ0 > 0 is the shear modulus,
0 ≤ ν = ν(x) < 1/2 the Poisson’s ratio, and λ = 2µν

1−2ν .

Let ΓD and ΓN be two open subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. We
suppose that the body is clamped on ΓD and it is subjected to a given traction g : ΓN → Rd. In
other words, we impose the displacement boundary condition on ΓD

u = 0 on ΓD,

and the traction boundary condition on ΓN

Cε(u) · n = g on ΓN ,

where n is the unit outward normal at each point of the boundary.

3.2. Isogeometric collocation methods

We now define the isogeometric approximation spaces in 2D, the 3D cases being analogous. For
simplicity, we consider only a pure displacement problem, that is, ΓD = ∂Ω. As observed in our
previous work [5], discrete space with homogeneous Dirichlet boundary conditions can be obtained
by eliminating the first and last function in each coordinate. Hence, we define the spline space in
parameter space Ω̂ as

V̂h = [Ŝh ∩H1
0 (Ω̂)]d = [span{Bp,q

i,j (ξ, η), i = 2, . . . , n− 1, j = 2, . . . ,m− 1}]d,

while the NURBS space in physical space Ω is defined as

Vh = [Nh ∩H1
0 (Ω)]d = [span{Rp,qi,j ◦ F

−1, i = 2, . . . , n− 1; j = 2, . . . ,m− 1}]d. (14)

Next, we recall the isogeometric collocation method for the pure displacement problem (12), see
[1, 2, 46] for more details. To simplify the presentation, we consider the case where the collocation
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points are chosen to be the Greville abscissae see [24]. The collocation points play a crucial role
in the stability and good behavior of the discrete problem: the Demko abscissae [25] and Galerkin
superconvergent points [41] can be alternatively selected as other collocation points. We show a
comparison of these three choices of collocation points in the numerical results of Sec. 5, Table 2.

We denote by ξi, i = 1, ..., n, the Greville abscissae associated to the knot vector {ξ1, ..., ξn+p+1}:

ξi
.
= (ξi+1 + ξi+2 + ...+ ξi+p)/p , (15)

(see, e.g. Figure 1). Analogously, ηj , j = 1, ...,m, denote the Greville abscissae associated to the
knot vector {η1, ..., ηm+q+1}. By tensor product, we define the collocation points τij in the physical
domain Ω:

τij = F(τ̂ij) , τ̂ij = (ξi, ηj) ∈
(
Ω̂
)
,

for i = 1, ..., n, j = 1, ...,m.
The isogeometric collocation problem with Greville abscissae reads:

Find uh ∈ Vh such that:

divCε(uh)(τij) + f(τij) = 0 i = 2, ..., n− 1, j = 2, ...,m− 1 ,

uh(τij) = 0 (i, j) ∈ ({1, n} × {1, ...,m}) ∪ ({1, ..., n} × {1,m}) .
(16)

Problems involving different boundary conditions can be dealt with similarly. Throughout the
paper, we assume that the ensuing discrete spline and NURBS spaces are at least C2 so that
the equations in (16) are well defined. This means that cubic or higher degree polynomials are
considered (i.e., p ≥ 3) and the number of repetitions of any internal knot never exceeds p − 2.
Even in weaker regularity cases, IGA collocation methods can be easily modified (see [2] for details).

Many open issues remain in the mathematical theory of isogeometric collocation methods in
higher dimensions, although several numerical tests in the literature show the stability and conver-
gence of the method for many problems of practical interest.

4. Overlapping Schwarz preconditioners

We now introduce overlapping additive Schwarz (OAS) preconditioners for the IGA collocation
problem (16).

4.1. Subdomains and subspace decomposition

The subdomains and subspace decomposition is built first for the space spanned by spline
functions in parameter space and then is extended by the geometrical map to the NURBS space in
the physical domain. We start in one spatial dimension and then extend the construction to higher
dimensions using the tensor product structure. Given a knot vector {ξ1 = 0, ..., ξn+p+1 = 1}, we
select a subset {ξik : 1 ≤ k ≤ N + 1} of interface knots where ξi1 = 0, ξiN+1 = 1 and ξik ≤ ξik+1

.
This subset induces a decomposition of the closure of the reference interval(

Î
)

= [0, 1] =
( ⋃
k=1,..,N

Îk

)
, with Îk = (ξik , ξik+1

),

which we assume to have similar characteristic diameters Hk := diam(Îk) ≈ H, 1 ≤ k ≤ N . To
each internal interface knot ξik , 2 ≤ k ≤ N , we associate an index 2 ≤ sk ≤ N − 1 that satisfies
both sk < ik < sk + p+ 1 and sk < sk+1 (such index sk always exists; if it is not unique, any of the
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possible choices will work). The support of the associated basis function Np
sk intersects both Îk−1

and Îk.
Let us define r ∈ N as an integer counting the basis functions shared by adjacent subdomains,

which we call the overlap index in the following. We can then define both an overlapping domain
decomposition of Î and an overlapping space decomposition of V̂ as follows. We introduce the
index sets

Θk = {j ∈ N : sk − r ≤ j ≤ sk+1 + r} k = 1, 2, .., N,

with 1 ≤ j ≤ s2 + r for Θ1 and sN − r ≤ j ≤ n for ΘN . Then we define the local spaces

V̂k = span{Np
j (ξ) : j ∈ Θk} k = 1, 2, .., N, (17)

with the analogous exception for V̂1 and V̂N (see, e.g. Figure 1), and the overlapping subdomains
Î ′k =

⋃
Np

j ∈V̂k
supp(Np

j ) = (ξsk−r, ξsk+1+r+p+1), with the analogous exception for Î ′1 and Î ′N .

It is clear that these subspaces {V̂k}Nk=1 form an overlapping space decomposition of the spline

space V̂ and the subdomains Î ′k form an overlapping decomposition of the domain Î. The number
of basis functions in common (in the univariate case) among adjacent local subspaces is 2r + 1.
For instance, r = 0 expresses the minimal overlap consisting of just one common basis function
between neighboring local subspaces.

The subdomains Îk determine a coarse mesh and the corresponding knot vector

ξ0 = {ξ1, ξ2, . . . , ξp, ξi1 , ξi2 , ξi3 , . . . , ξiN−1 , ξiN , ξiN+1 , ξn+2 . . . , ξn+p+1}, (18)

such that the distance between adjacent distinct knots is of the order H, ξ1 = · · · = ξp = ξi1 = 0
and ξiN+1 = ξn+2 = · · · = ξn+p+1 = 1. The associated coarse spline space is defined to be

V̂0 := ŜH = span{N0,p
i (ξ), i = 1, ..., Nc}.

V̂0 is a subspace of Ŝh since it has the same degree p as Ŝh.
In two spatial dimension, we define subdomains and overlapping subdomains by tensor products

as

Îk = (ξik , ξik+1
), Îl = (ηjl , ηjl+1

), Ω̂kl = Îk × Îl 1 ≤ k ≤ N, 1 ≤ l ≤M.

In addition, taking the indices {sk}Nk=2 associated to {ξik}Nk=2 and the analogous indices {sl}Ml=2

associated to {ηjl}Ml=2, we define the local index sets

Θkl = {(i, j) ∈ N2 : sk − r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r}, 1 ≤ k ≤ N, 1 ≤ l ≤M,

which yield the local and coarse subspaces

V̂kl = span{Bp,q
i,j (ξ, η) : (i, j) ∈ Θkl},

V̂0 = span{
◦
B
p,q

i,j :
◦
B
p,q

i,j (ξ, η) := N0,p
i (ξ)M0,q

j (η), i = 1, ..., Nc, j = 1, ...,Mc}.

These subspaces can be extended by the push-forward to the NURBS space V in the physical
domain Ω. Therefore the local subspaces and the coarse space are, up to the usual exceptions for
the boundary subdomains,

Vkl = span{Rp,qi,j ◦ F
−1 : (i, j) ∈ Θkl},

V0 = span{
◦
R
p,q

i,j ◦ F−1 :=

 ◦
B
p,q

i,j
◦
ωi,j

w

 ◦ F−1, i = 1, ..., Nc, j = 1, ...,Mc},

where w is the weight function, see (8). The image of the subdomains in parameter space are the
subdomains in physical space

Ωkl = F(Ω̂kl).
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4.2. Matrix form of overlapping additive Schwarz preconditioners

Still focusing on the 2D case for simplicity, we construct the preconditioned Schwarz operator
as follows.

Local problems. For k = 1, .., N , and l = 1, ..,M , let the local restriction matrices Rkl : V → Vkl
be defined as the transpose of the natural embedding matrices RTkl : Vkl → V and let Akl be the
square matrix associated to the local collocation problems:

find uklh ∈ Vkl such that

divCε(uklh )(τij) + f(τij) = 0 (i, j) ∈ Θi
kl ,

uklh (τij) = 0 (i, j) ∈ Θ∂
kl,

where
Θi
kl =

{
(i, j) ∈ Θkl : (i, j) /∈ ({1, n} × {1, ...,m}) ∪ ({1, ..., n} × {1,m})

}
Θ∂
kl = Θkl\Θi

kl,

are the internal and boundary index sets. If A is the global collocation matrix associated to the
original problem (16), it is easy to see that the local matrices coincide with

Akl = Rkl AR
T
kl. (19)

Coarse problem. In the analogy to (19), we consider a nested coarse space defining the coarse
matrix by

A0 = R0 AR
T
0 , (20)

where RT0 is the interpolation matrix from the coarse space V0 to the fine NURBS space V . This
coarse matrix corresponds to a collocation problem where each equation in the linear system can
be viewed as a weighted sum of the collocation problem of the differential equation on more than
one point. Different kinds of coarse problems could be used as well, see e.g. [11] for the scalar
elliptic case.

The proposed Overlapping Additive Schwarz (OAS) operator can be written in matrix form as

TOAS = BOASA,

where the OAS preconditioner BOAS can be the one-level version if we consider only the local
problems or the two-level version if we consider both local and coarse problems:

BOAS = BOAS(1) =
∑N

k=1

∑M
l=1R

T
klA

−1
kl Rkl

BOAS = BOAS(2) = RT0 A
−1
0 R0 +

∑N
k=1

∑M
l=1R

T
klA

−1
kl Rkl,

(21)

The higher-dimensional case is analogous. An advantage of collocation IGA is that the assembly of
the matrices Akl, A0 and A is much cheaper than in Galerkin IGA (see [46]), since the collocation
matrices are sparser than their Galerkin counterparts.

Other types of preconditioners (for instance, general multiplicative, hybrid ones and projection-
like operators T̃kl associated with inexact local solvers) could be used (see [47, 50] for further
details), and will need future research. We can also see this preconditioning process as replacing
the discrete system Au = f with the preconditioned system

TOASu = g, (22)

which can be solved by a Krylov subspace method with right-hand side g = BOASf .
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We remark that, although the original problem is self-adjoint, the global matrix A and the
preconditioned operator are in general non-symmetric. Therefore, we use the GMRES iterative
method instead of the conjugate gradient method in the solution process.

The numerical results reported in the next section indicate that our OAS solver for IGA collo-
cation has scalability and convergence rates analogous to its IGA Galerkin counterpart. Therefore,
we conjecture that an analogous convergence rate bound holds:
Conjecture. The GMRES iteration counts to solve the OAS preconditioned system (22) up to a
given tolerance for the relative residual is bounded by

iterOAS ≤ Cg
(H
rh

)
,

where g is a sublinear function, C is a constant independent of N,h,H, r but not of p, k. We are
currently unable to carry out a theoretical analysis of this conjecture since spectral bounds of the
IGA collocation operators, as well as their basic approximation properties, are still open problems
in the IGA collocation case.

5. Numerical results

The linear elasticity systems arising from the IGA collocation discretization are solved by the
GMRES method with the 1-level (OAS(1)) and 2-level (OAS(2)) overlapping additive Schwarz
preconditioners defined in (21), starting from a zero initial guess and a 10−6 reduction of the relative
residual as stopping criterion. Our Matlab code is based on the isogeometric library GeoPDEs
[23, 52] and all numerical tests have been run on a Linux workstation.

We investigate numerically the OAS GMRES convergence rate (i.e. the GMRES iteration
counts with the OAS preconditioner) for two- and three-dimensional linear elasticity problems with
respect to the following parameters:

� the isogeometric mesh size h;

� the spline polynomial degree p;

� the global spline regularity k;

� the number of subdomains N ;

� the subdomain characteristic size H;

� the overlap index r.

We consider three numerical tests to study the numerical performance of our preconditioner
for linear elasticity problems on various domains Ω ⊂ R2, described below and we then consider a
three-dimensional scalability test.

� (Parametric domain) The geometry and the solution are given by

Ω = (0, 1)2 ⊂ R2, ΓD = ∂Ω,

u =
(
sin(2πx) sin(2πy) sin(2πx) sin(2πy)

)t
� (Quarter-ring domain) A non-homogeneous Dirichlet boundary value problem of linear elas-

ticity has the exact solution

u =
(

1
3E

(
(1− ν)r + 4(1+ν)

r

)
cos θ 1

3E

(
(1− ν)r + 4(1+ν)

r

)
sin θ

)t
9



where (r, θ) is the polar coordinating system in the quarter-ring domain Ω := {(x1, x2) : 1 <
x2

1 + x2
2 < 4, x1 > 0, x2 > 0} with ΓD = ∂Ω.

� (Curved domains) We take the exact solutions u subject to the body force f =
(
0 1

)t
on the

boomerang-shaped domains presented in Figure 3 with ΓD = ∂Ω.

5.1. Test 1: 2D weak scalability test

We start performing a weak scalability test on the unit square, by increasing the number of
subdomains N and refining the mesh size h, while keeping fixed the ratio H/h = 8, thus the same
computational load per subdomain. We consider Greville collocation points, spline parameters
p = 3, k = 2 and p = 4, k = 3, and overlap index r = 0. The results are reported in Table 1.

We first observe that the IGA collocation method, in terms of the L∞ norm, converges with
the expected rate (see [1]), that is 2 for p = 3, k = 2 and 4 for p = 4, k = 3. Only the OAS(2)
preconditioner exhibits a scalable behavior, because the GMRES iteration counts remain bounded
from above independently of N , while OAS(1) iteration counts increase with N .

A fair performance comparison between OAS(1) and OAS(2) preconditioners should be done
by means of parallel computations. However, our Matlab implementation is serial. Therefore, in
order to mimick a parallel computation, we divide the CPU times needed for the solution of the
local problems, which is the parallel part of the algorithm, by the number of subdomains. The
results reported in Table 1 show that the CPU times of the OAS(2) preconditioner remain bounded
when N increases, while the CPU times of OAS(1) preconditioner increase significantly, because
the iterations are not scalable.

5.2. Test 2: 2D scalability in N and quasi-optimality in H/h

Table 2 reports the GMRES iteration counts of the OAS(1) and OAS(2) preconditioners on
the unit square, where three types of collocation points (Greville, Demko and superconvergent)
are taken into account, with p = 3, k = 2 and two overlap indices (r = 0 and r = 1). Tables 3
and 4 display additional results for p = 4, k = 3 (square domain) and p = 3, k = 2 (quarter-ring
domain), respectively. The results show the scalability of the OAS(2) preconditioner, because when
N is increasing while keeping fixed the ratio H/h (moving along the diagonal of the tables), the
iteration counts remain bounded from above by a constant independent of N ; see also Figure 2. On
the other hand, the OAS(1) preconditioner is not scalable, because the iteration counts grow with
N (again moving along the diagonals of the tables). We also observe that moving instead along the
tables rows (i.e. varying the ratio H/h for fixed N), a less than linear dependence of the OAS(2)
preconditioner on the ratio H/h; see also the plots in Figure 2.

5.3. Test 3: solver performance when ν → 0.5

Next, we consider the behavior of the non-preconditioned scheme and two OAS preconditioners
for the almost incompressible elasticity system with the Poisson ratio ν increasing toward 0.5 and
and fixed Young modulus E = 1e+6. The system on the quarter ring is discretized with N = 4×4
subdomains, ratio H/h = 8 and minimal overlap r = 0. Here we use the spline discretization
parameters p = 3, k = 2. As expected in the primal formulation, the test results presented in
Table 5 deteriorate for all the three methods, even though OAS(2) preconditioner has a better
performance. It is well-known that a mixed reformulation of the elasticity system would be a good
remedy for the locking phenomenon (such a study is beyond the scope of the present paper).
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p = 3, k = 2, unit square domain

OAS(1) OAS(2)
N 1/h err rate it. time it. time

2× 2 16 1.54e-2 - 12 1.75e-2 11 1.75e-2
4× 4 32 3.90e-3 1.98 27 2.19e-2 16 1.31e-2
6× 6 48 1.70e-3 2.05 38 3.83e-2 16 1.78e-2
8× 8 64 9.74e-4 1.94 48 3.16e-2 16 1.23e-2

10× 10 80 6.24e-4 2.00 59 5.20e-2 15 1.54e-2
12× 12 96 4.33e-4 2.00 70 5.90e-2 14 1.38e-2
14× 14 112 3.18e-4 2.00 82 7.17e-2 13 1.32e-2
16× 16 128 2.44e-4 1.98 93 4.97e-2 13 8.10e-3

p = 4, k = 3, unit square domain

OAS(1) OAS(2)
N 1/h err rate it. time it. time

2× 2 16 1.04e-4 - 12 5.00e-2 10 4.50e-2
4× 4 32 6.92e-6 3.91 21 5.81e-2 14 4.19e-2
6× 6 48 1.39e-6 3.96 30 1.09e-1 14 5.39e-2
8× 8 64 4.46e-7 3.95 38 9.30e-2 13 3.39e-2

10× 10 80 1.84e-7 3.97 47 1.17e-1 13 3.64e-2
12× 12 96 8.90e-8 3.98 55 2.02e-1 12 5.01e-2
14× 14 112 4.82e-8 3.98 64 1.95e-1 12 4.19e-2
16× 16 128 2.83e-8 3.99 73 1.60e-1 11 2.85e-2

Table 1: Test 1, 2D weak scalability on the unit square, Greville collocation points. Error in L∞ norm with respect to
exact solution (err), convergence rate (rate), GMRES iteration counts (it.) and CPU times in seconds (time), varying
the number of subdomains N and mesh size 1/h, while keeping fixed the ratio H/h = 8, the overlap parameter r = 0,
E = 1, ν = 0.3.
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Figure 2: Test 2, 2D scalability in N and quasi-optimality in H/h. 2-level OAS preconditioners with overlap r = 0
(p = 3, k = 2 and p = 4, k = 3) spline spaces on the unit square domain, Greville collocation points. GMRES
iteration counts for increasing number of subdomains N and fixed H/h = 4 (left panel), and for increasing ratio H/h
and fixed N = 4× 4 (right panel).
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p = 3, k = 2, unit square domain

OAS(1) - Greville collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 10 9 12 11 15 13 18 16 20 18 16 21
4× 4 - - 19 14 27 19 36 27 48 37 65 48
8× 8 - - - - 34 22 48 34 67 49 93 69

16× 16 - - - - - - 65 42 93 65 168 95
32× 32 - - - - - - - - 159 83 259 164
64× 64 - - - - - - - - - - 417 236

OAS(2) - Greville collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 10 11 11 11 13 12 15 14 16 16 18 18
4× 4 - - 14 13 16 14 19 16 23 19 26 23
8× 8 - - - - 13 13 16 13 18 15 21 18

16× 16 - - - - - - 11 12 13 11 15 13
32× 32 - - - - - - - - 9 11 10 9
64× 64 - - - - - - - - - - 8 9

OAS(1) - Demko collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 10 9 12 11 15 13 18 16 20 18 16 21
4× 4 - - 19 14 27 19 36 27 48 37 65 48
8× 8 - - - - 34 23 48 34 67 49 93 69

16× 16 - - - - - - 65 43 93 65 168 95
32× 32 - - - - - - - - 159 85 259 164
64× 64 - - - - - - - - - - 418 240

OAS(2) - Demko collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 10 11 11 11 13 12 15 14 16 16 18 18
4× 4 - - 14 13 16 14 19 16 23 19 26 23
8× 8 - - - - 13 13 16 13 18 15 21 18

16× 16 - - - - - - 11 12 13 11 15 13
32× 32 - - - - - - - - 9 11 10 9
64× 64 - - - - - - - - - - 8 9

OAS(1) - Superconvergent collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 12 10 15 12 18 15 20 18 23 20 22 23
4× 4 - - 21 17 29 21 39 29 51 39 63 49
8× 8 - - - - 39 27 54 38 72 53 94 71

16× 16 - - - - - - 74 51 106 72 144 101
32× 32 - - - - - - - - 149 102 248 146
64× 64 - - - - - - - - - - 386 278

OAS(2) - Superconvergent collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 11 13 12 12 14 12 16 15 18 17 19 18
4× 4 - - 15 14 16 14 19 16 22 19 27 23
8× 8 - - - - 15 16 16 13 19 15 21 18

16× 16 - - - - - - 13 16 13 12 15 13
32× 32 - - - - - - - - 12 15 11 11
64× 64 - - - - - - - - - - 10 13

Table 2: Test 2, 2D scalability in N and quasi-optimality in H/h. OAS preconditioners on the unit square domain,
Greville, Demko and superconvergent collocation points. GMRES iteration counts varying the number of subdomains
N , mesh size 1/h, overlap parameter r, for fixed p = 3, k = 2, E = 1e+ 6, ν = 0.3.
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p = 4, k = 3, unit square domain

OAS(1) - Greville collocation points
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1
2× 2 10 8 12 10 14 12 16 15 19 17 20 20
4× 4 - - 15 16 21 17 29 23 39 33 53 43
8× 8 - - - - 25 21 38 29 54 43 74 61

16× 16 - - - - - - 48 38 73 55 106 82
32× 32 - - - - - - - - 96 75 196 113
64× 64 - - - - - - - - - - 263 206

OAS(2) - Greville collocation points
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1
2× 2 11 12 10 11 10 10 11 11 11 11 10 12
4× 4 - - 13 14 14 13 17 15 20 18 24 21
8× 8 - - - - 12 14 13 12 16 14 20 17

16× 16 - - - - - - 12 15 11 11 14 12
32× 32 - - - - - - - - 10 14 9 10
64× 64 - - - - - - - - - - 9 12

Table 3: Test 2, 2D scalability in N and quasi-optimality in H/h. OAS preconditioners on the unit square domain,
Greville collocation points. GMRES iteration counts varying the number of subdomains N , mesh size 1/h and the
overlap parameter r, for fixed p = 4, k = 3, E = 1e+ 6, ν = 0.3.

5.4. Test 4: solver dependence on p and k

We then study the performance of the non-preconditioned (NP) and OAS preconditioned GM-
RES solvers with respect to the spline polynomial degree p. The model problem is solved on both
the unit square and quarter-ring domains. We here fix the mesh size h = 1/64 and the number of
subdomains N = 4×4, with overlaps r = 0 and r = 1. The GMRES iteration counts varying p from
3 to 7 and with maximal spline regularity k = p− 1 are reported in Table 6. The iteration counts
of the NP solver increase significantly with p, whereas both OAS(1) and OAS(2) preconditioners
exhibit a robust behavior for increasing degree p.

5.5. Test 5: solver robustness with respect to 2D domain deformation

In this section, we investigate the dependence of the non-preconditioned (NP) and the OAS
preconditioned GMRES solvers on domain deformations. We consider the four physical domains
A,B,C,D, which are increasingly more curved starting from the rectangular domain A as illustrated
in Figure 3. In these tests, the number of subdomains is fixed toN = 4×4, the overlap index is r = 0,
the mesh size is h = 1/64, the NURBS parameters p = 3, k = 2 while Greville and superconvergent
collocation points are considered. Also, we fix the Young modulus E = 1e + 6 and the Poisson
ratio ν = 0.3. The results clearly show a more robust behavior of the OAS preconditioners than
the NP solver when the domain is deformed, since the GMRES iteration counts reported in Table
7 increase (from domain A to domain D) by a factor 3.65 for the NP solver, while the iterations
increase only by a factor 1.9 for the OAS(2) preconditioner.

5.6. Test 6: 3D scalability in N

A 3D scalability test on the unit cube is reported in Table 8 for the non-preconditioned (NP),
OAS(1) and OAS(2) preconditioned GMRES solvers with fixed H/h = 4 and N increasing up to
6 × 6 × 6 subdomains. The problem is discretized by p = 3, k = 2 and the overlap index r = 0.
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p = 3, k = 2, quarter-ring domain

OAS(1) - Greville collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 12 10 17 12 24 18 33 25 44 34
4× 4 - - 25 16 35 25 48 36 66 49
8× 8 - - - - 50 32 70 50 95 70

16× 16 - - - - - - 96 63 151 95
32× 32 - - - - - - - - 200 124

OAS(2) - Greville collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 12 13 16 13 20 17 26 21 34 27
4× 4 - - 18 16 23 18 31 24 39 31
8× 8 - - - - 24 18 31 24 40 32

16× 16 - - - - - - 28 22 37 29
32× 32 - - - - - - - - 29 22

OAS(1) - Superconvergent collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 15 12 19 15 25 20 32 26 42 34
4× 4 - - 27 20 38 27 49 38 64 50
8× 8 - - - - 53 39 72 53 92 70

16× 16 - - - - - - 100 73 138 97
32× 32 - - - - - - - - 190 138

OAS(2) - Superconvergent collocation points

1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128
N r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2 15 14 17 15 21 18 26 22 32 27
4× 4 - - 20 17 25 21 31 26 39 32
8× 8 - - - - 25 21 31 27 39 32

16× 16 - - - - - - 30 24 36 29
32× 32 - - - - - - - - 31 24

Table 4: Test 2, 2D scalability in N and quasi-optimality in H/h. OAS preconditioners on the quarter-ring domain,
Greville and Superconvergent collocation points. GMRES iteration counts varying the number of subdomains N ,
mesh size 1/h and overlap parameter r, for fixed p = 3, k = 2, E = 1e+ 6, ν = 0.3.
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Quarter-ring domain, Greville collocation points

ν p = 3, k = 2 p = 4, k = 3
NP OAS(1) OAS(2) NP OAS(1) OAS(2)

0.30 149 35 23 169 28 21
0.40 169 38 28 178 31 23
0.49 376 67 46 384 45 34
0.499 1284 127 69 1752 74 51
0.4999 2254 190 80 16130 161 88

Table 5: Test 3, OAS performance when ν → 0.5 for E = 1e + 6. Iteration counts of non-preconditioned (NP)
GMRES, 1-level (OAS(1)) and 2-level (OAS(2)) preconditioned GMRES with Greville collocation points. Fixed
1/h = 32, N = 4× 4, H/h = 8.

h = 1/64, N = 4× 4(H/h = 16), Greville collocation points

p unit square domain quarter-ring domain
NP OAS(1) OAS(2) NP OAS(1) OAS(2)

r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

3 220 40 29 22 18 289 48 36 31 24
4 249 32 25 18 16 349 40 31 26 22
5 274 36 27 19 16 417 45 35 27 22
6 376 30 24 17 15 496 39 31 24 21
7 443 33 25 17 15 561 45 34 25 20

Table 6: Test 4, solver dependence on p and k. GMRES iteration counts for increasing polynomial degree p and
the regularity k = p − 1. Non-preconditioned (NP) GMRES, 1-level and 2-level OAS preconditioners with Greville
collocation points on the unit square and quarter-ring domain. Fixed 1/h = 64, N = 4× 4, H/h = 16, overlaps r = 0
and r = 1.
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Figure 3: Test 5, domains for the 2D boomerang test.
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Greville collocation points Superconvergent collocation points
domain NP OAS(1) OAS(2) NP OAS(1) OAS(2)

A 649 36 24 854 47 24
B 932 54 33 1321 55 34
C 1426 55 38 1669 57 39
D 2397 57 46 3117 58 46

Table 7: Test 5, sovler robustness with respect to 2D domain deformations. Iteration counts of non-preconditioned
(NP) GMRES, OAS(1) and OAS(2) preconditioned GMRES with Greville and superconvergent collocation points.
Fixed parameters h = 1/64, N = 4× 4, H/h = 16, p = 3, k = 2, r = 0, E = 1e+ 6, ν = 0.3.

Cube domain, H/h = 4, Greville collocation points

N 1/h p = 2, k = 1 p = 3, k = 2
NP OAS(1) OAS(2) NP OAS(1) OAS(2)

r = 0 r = 1 r = 0 r = 1 r = 0 r = 1 r = 0 r = 1

2× 2× 2 8 26 15 12 16 14 34 18 13 14 16
3× 3× 3 12 39 20 19 17 20 49 25 16 17 17
4× 4× 4 16 52 24 20 16 19 64 31 19 17 17
5× 5× 5 20 65 29 22 16 19 80 38 22 17 17
6× 6× 6 24 77 34 24 16 18 96 44 26 17 17

Table 8: Test 6, 3D scalability with respect to the number of subdomains N . Iteration counts of non-preconditioned
(NP) GMRES, OAS(1) and OAS(2) preconditioners. Greville collocation points and parameters H/h = 4, E = 1e+6,
ν = 0.3.

As a consequence, both h and H are decreasing proportionally as in a weak scaling test. Only the
OAS(2) preconditioner exhibits a scalable behavior, because the GMRES iteration counts remain
bounded from above independently of N , while NP and OAS(1) have iteration counts increasing
with N .

Finally, we study the spectrum of the collocation stiffness matrix and OAS preconditioned
operators, reported in Figure 4 for a 3D test with N = 2 × 2 × 2 subdomains and h = 1/8 (top
panel) and N = 4× 4× 4 subdomains and h = 1/16 (bottom panel). In the top row in each panel,
we see the increasing ill-conditioning of the collocation stiffness matrix, since the eigenvalues grow
unbounded in absolute value with increasing N . The plot in the bottom row in each panel show
instead the scalability of the OAS(2) preconditioner, since the eigenvalues of the preconditioned
system remain confined in a box bounded away from the origin of the complex plane, a condition
which is often associated to fast GMRES convergence (see e.g. [51]). On the contrary, the plots
in the middle row in each panel confirm the non-scalability of OAS(1), since the eigenvalues of the
OAS(1) preconditioned system approach the complex plane origin as N increases.

6. Conclusions

Overlapping Additive Schwarz (OAS) preconditioners for collocation IGA approximations of
linear elasticity equations have been constructed and studied numerically in both two and three
spatial dimensions. The proposed preconditioners relies on a geometric decomposition of the com-
putational domain into overlapping subdomains and solving independent local collocation problems
on the overlapping subdomains, thus obtaining a one-level OAS(1) preconditioner. The two-level
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2× 2× 2 subdomains, h = 1/8

4× 4× 4 subdomains, h = 1/16

Figure 4: Complex eigenvalues (spectrum) of the collocation unpreconditioned and preconditioned operators. Top
panel: 2× 2× 2 subdomains, h = 1/8. Bottom panel: 4× 4× 4 subdomains, h = 1/16. In each panel: spectrum of
the collocation stiffness matrix (first row), one-level OAS(1) preconditioned operator (second row), two-level OAS(2)
preconditioned operator (third row).
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preconditioner (OAS(2)) is obtained by augmenting OAS(1) with an proper collocation coarse
problem based on the coarse subdomain mesh. The resulting discrete linear system arising from
the collocation IGA approximation is non-symmetric, hence the OAS preconditioners are acceler-
ated by the GMRES iterative solver. The results of our numerical study have shown the OAS(2)
quasi-optimality with respect to the ratio H/h and its scalability with respect to the number of
subdomains N . We have also investigated the behavior of the solvers in terms of the polynomial
degree p and regularity index k, showing that, differently from what happens when the OAS solvers
are applied to the IGA Galerkin approach [9], the iteration counts are very robust with respect
to these parameters, even for minimal overlap. Moreover, both OAS solvers are more robust than
the non-preconditioned GMRES solver when the material approaches the incompressibility limit
(ν ≈ 0.5) and with respect to geometric domain deformations.
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