
ar
X

iv
:2

01
2.

15
26

6v
2 

 [
m

at
h.

O
C

] 
 2

6 
Ju

l 2
02

1

Error bounds for port-Hamiltonian model and controller

reduction based on system balancing

July 27, 2021

Tobias Breiten

Institute of Mathematics

Technische Universität Berlin

Straße des 17. Juni 136, 10623 Berlin, Germany

tobias.breiten@tu-berlin.de

Riccardo Morandin

Institute of Mathematics

Technische Universität Berlin

Straße des 17. Juni 136, 10623 Berlin, Germany

morandin@math.tu-berlin.de

Philipp Schulze

Institute of Mathematics

Technische Universität Berlin

Straße des 17. Juni 136, 10623 Berlin, Germany

pschulze@math.tu-berlin.de

Abstract

We study linear quadratic Gaussian (LQG) control design for linear port-Hamiltonian sys-
tems. To this end, we exploit the freedom in choosing the weighting matrices and propose a
specific choice which leads to an LQG controller which is port-Hamiltonian and, thus, in par-
ticular stable and passive. Furthermore, we construct a reduced-order controller via balancing
and subsequent truncation. This approach is closely related to classical LQG balanced trun-
cation and shares a similar a priori error bound with respect to the gap metric. By exploiting
the non-uniqueness of the Hamiltonian, we are able to determine an optimal pH representation
of the full-order system in the sense that the error bound is minimized. In addition, we dis-
cuss consequences for pH-preserving balanced truncation model reduction which results in two
different classical H∞-error bounds. Finally, we illustrate the theoretical findings by means of
two numerical examples.

Keywords: port-Hamiltonian systems, model order reduction, LQG control design, error bounds

1 Introduction

Many physical processes can naturally be represented as passive systems, i.e., dynamical systems
that do not internally produce energy. This system class has been studied in great detail in the
seminal works [44, 45, 46] where various system theoretic characterizations have been given, among
them one based on the well-knownKalman-Yakubovich-Popov linear matrix inequality (KYP-LMI).
Despite its long history, the interest in passivity-based control technique is still unabated, see,
e.g., [40, 41] for a detailed introduction and an overview of existing results. More recently, a
particular focus has been on the port-Hamiltonian (pH) representation of passive systems which
not only paves the way for an especially targeted analysis of classical control techniques but also for
compositional modelling, see, e.g., [10, 42] or specifically robust port-Hamiltonian representations
[2, 24]. Port-Hamiltonian modeling has been first developed to provide a unified framework for
systems belonging to different physical domains, by using energy as their ‘lingua franca’. Even
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without taking into consideration multi-physics systems, port-Hamiltonian modeling offers several
advantages, including passivity and stability properties as consequence of the underlying structure,
structure-preserving interconnection allowing for modularized modeling, and structure-preserving
methods for space- and time-discretization [4, 5, 20, 26, 37].

While a port-Hamiltonian representation naturally allows for passivity-based control strategies
such as control by interconnection [40], it is well-known that general controllers do not preserve the
port-Hamiltonian structure. For example, a classical linear quadratic Gaussian (LQG) controller
will generally not preserve stability or passivity such that the weighting and covariance matrices
have to be modified accordingly, see [16, 22]. The obvious downside of these specific choices is that
the original interpretation of the matrices is lost and these rather serve as additional degrees of
freedom to preserve the underlying structure. Based on the detailed structural analysis from [48],
in [49, 50] the authors have proposed different choices of weighting matrices in order to enforce
LQG controllers to be port-Hamiltonian.

Since passive or port-Hamiltonian systems often are inherently infinite-dimensional [18], an
efficient implementation of control techniques makes the use of reduced-order surrogate models
inevitable. For a general introduction to the field of model order reduction, we refer to, e.g., [1].
Similar to control approaches, classical model reduction techniques will, in general, not preserve
the structure within the reduction process. As a remedy, a variety of structure-preserving model
reduction approaches have been suggested in the literature. Since an exhaustive overview of all
methods is out of the scope of this article, we only refer to [11, 14, 33, 47] which are most relevant
for our presentation. Let us however also point to the recent thesis [21] for a more detailed overview
of structure-preserving port-Hamiltonian model reduction. Let us also mention that for passive
systems, the method of positive real balanced truncation is known to be structure-preserving and,
additionally, allows for an a priori error bound [15, 23]. On the other hand, classical LQG balancing
[8, 27] will, similar to the controller itself, not lead to a reduced-order port-Hamiltonian system.
While remedies exist [33, 50], enforcing structure-preservation will typically destroy computable
a priori error bounds. This is also true for structure-preserving modifications of the classical
balanced truncation method. In [48, Section 3.4.1], the author has derived an error bound for effort-
constraint balanced truncation, but the error bound relies on an auxiliary system and cannot be
computed a priori. Also structure-preserving balanced truncation for the different but still related
class of second-order systems, cf. [6, 34], lacks computable a priori error bounds.

The paper is organized as follows. In Section 2, we recall the necessary background on port-
Hamiltonian systems as well as balancing-based model order reduction. Section 3 studies (reduced-
order) LQG controller design for port-Hamiltonian systems. In Section 4, we combine results on
standard LQG balanced truncation with a recent observation on error bounds in the context of
Lyapunov inequalities. Since in the particular case considered here, the particular pH represen-
tation is relevant, we further show how to minimize these error bounds in terms of an extremal
solution of the KYP-LMI. We briefly discuss some new consequences for classical balanced trunca-
tion of port-Hamiltonian systems. Specifically, we derive an error bound for certain spectral factors
of the Popov function and subsequently explain the influence of the particular pH representation,
leading to a (theoretical) way to minimize these error bounds. Based on some numerical examples,
in Section 5 we illustrate our main theoretical findings. Appendix A reviews the recent approach
from [50] and provides two examples showing that the resulting controller will generally not be
port-Hamiltonian. Furthermore, we compare the reduced-order models and controllers obtained
by the new approach with the ones obtained by the approach from [50] and observe that the
reduced-order models are equivalent, whereas the reduced-order controllers differ.

2 Preliminaries

In this section, we collect some well-known results on port-Hamiltonian systems as well as balancing-
based model order reduction. For a more detailed discussion of these topics, we refer to other
references such as, e.g., [1, 2, 13, 33, 44, 45, 46].
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2.1 Port-Hamiltonian systems

Let us consider a pH system of the form

ẋ = (J −R)Q︸ ︷︷ ︸
:=A

x+Bu, x(0) = 0,

y = B⊤Q︸ ︷︷ ︸
:=C

x,
(1)

where J,R,Q ∈ Rn×n, B ∈ Rn×m and J⊤ = −J , R = R⊤ � 0, Q = Q⊤ ≻ 0, together with a
Hamiltonian function H(x) = 1

2x
⊤Qx. Throughout this article, we assume the system (1) to be

minimal, i.e., the matrix pairs (A,B) and (A,C) to be controllable and observable, respectively.
In particular, this implies that (A,B) and (A,C) are stabilizable and detectable, respectively. It is
well-known that, by taking the Hamiltonian as an energy storage function, for t1 ≥ 0 the following
dissipation inequality holds:

H(x(t1)) −H(x(0)) =

∫ t1

0

(
y(s)⊤u(s)− x(s)⊤QRQx(s)

)
ds ≤

∫ t1

0

y(s)⊤u(s) ds, (2)

for arbitrary trajectories x(·) of (1). Systems which possess a storage function satisfying such an
inequality are called passive and cannot produce energy internally and, in particular, are stable
(though not necessarily asymptotically stable). Furthermore, passive systems are dissipative with
supply rate y⊤u, see [45, 46] for more details on dissipative systems. Another important property
of port-Hamiltonian systems with Hamiltonian function 1

2x
⊤Qx is that X = Q is a solution to the

KYP-LMI:

W (X) =

[
−A⊤X −XA C⊤ −XB

C −B⊤X 0

]
� 0, X = X⊤ � 0, (3)

since

W (Q) =

[
−A⊤Q−QA C⊤ −QB

C −B⊤Q 0

]
=

[
2QRQ 0

0 0

]
� 0.

On the other hand, if X = X⊤ ≻ 0 is a solution of the KYP-LMI (3), then the system (1) can be
equivalently written as

ẋ = (JX −RX)Xx+Bu, x(0) = 0,

y = B⊤Xx,
(4)

where JX = 1
2 (AX

−1 −X−1A⊤) = −J⊤
X and RX = − 1

2 (AX
−1+X−1A⊤) = R⊤

X � 0. This system
is thus again port-Hamiltonian, but with respect to the Hamiltonian function HX(x) = 1

2x
⊤Xx,

that is in general different from H(x). Therefore, the representation of passive systems via a pH
structure (1) is not unique. In particular, there exist minimalXmin and maximalXmax solutions s.t.
for every solution X to (3), it holds that 0 � Xmin � X � Xmax. While the system is equivalent,
the new Hamiltonian HX(x) may not have the same relevance as one associated with a particular
solution of (3). For example, in [2] the authors investigate a maximally robust (w.r.t. the passivity
radius) representation based on what is called the analytic center. As will be shown later, for the
purpose of model reduction, the extremal solutions Xmin and Xmax are of special interest.

Another important property of port-Hamiltonian systems is that they maintain their structure
when a state space transformation is applied. In fact, if T ∈ Rn×n is an invertible matrix, then by
applying the change of variable x̃ = Tx we obtain the equivalent system

˙̃x = (J̃ − R̃)Q̃x̃+ B̃u, x̃(0) = 0,

y = B̃⊤Q̃x̃,
(5)

where J̃ = TJT⊤ = −J̃⊤, R̃ = TRT⊤ = R̃⊤ � 0, Q̃ = T−⊤QT−1 = Q̃⊤ ≻ 0, and B̃ = TB. We
will then have Ã = (J̃ − R̃)Q̃ = TAT−1. Note that the Hamiltonian function H̃(x̃) = 1

2 x̃
⊤Q̃x̃ =

1
2x

⊤Qx is still the same. Thus, state space transformations do not destroy the port-Hamiltonian
structure and we will make use of this property when discussing balancing methods in the upcoming
sections.
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Similarly, a Petrov–Galerkin projection P = VW⊤ of the form Ap = W⊤AV , Bp = W⊤B,
Cp = CV with QV = WQp for a matrix Qp = Q⊤

p ≻ 0 and W⊤V = Ip leads to a projected
port-Hamiltonian system of the form

ẋp = (Jp −Rp)Qpxp +Bpu, xp(0) = 0,

y = B⊤
p Qpxp,

(6)

where x ≈ V xp, Jp = W⊤JW , Rp = W⊤RW , and Bp = W⊤B, with Hamiltonian function
Hp(xp) =

1
2x

⊤
p Qpxp.

Due to the minimality of (1), passivity is equivalent to positive realness, i.e., the transfer
function G(s) = C(sIn −A)−1B is analytic in the open right half plane C+ and satisfies

G(s)∗ +G(s) � 0 for all s ∈ C+. (7)

If all eigenvalues of A are in the open left half plane, then positive realness can be equivalently
characterized by the positive semidefiniteness of the so-called Popov function Φ(s) = G(−s)⊤+G(s)
on the imaginary axis. Let us consider the following factorization of the Popov function Φ(s) (see,
e.g., [46]):

Φ(s) =
[
B⊤(−sIn −A⊤)−1 Im

]
W (X)

[
(sIn −A)−1B

Im

]
. (8)

In particular, if X is a solution to (3), then there exists LX ∈ Rn×k, k ≤ n such that

Φ(s) =
[
B⊤(−sIn −A⊤)−1 Im

] [L⊤
X

0

] [
LX 0

] [(sIn −A)−1B

Im

]
. (9)

We will later on focus on a specific factorization of the form (9) that will be associated with

[
−AY − Y A⊤ B − Y C⊤

B⊤ − CY 0

]
� 0, Y = Y ⊤ � 0, (10)

i.e., the dual version of (3).

2.2 Balancing-based and effort-constraint model order reduction

The concept of system balancing goes back to [29, 30] and relies on the infinite-time controlla-
bility and observability Gramians Lc,Mo associated with a linear (asymptotically) stable system
characterized by (A,B,C). These Gramians satisfy the following Lyapunov equations:

ALc + LcA
⊤ +BB⊤ = 0,

A⊤Mo +MoA+ C⊤C = 0.
(11)

The main idea of balancing-based model order reduction now is to find a specific state space trans-
formation (A,B,C) ; (TAT−1, TB,CT−1) that allows one to simultaneously measure the amount
of controllability and observability in the system. This is possible since in the new coordinates,
the Gramians are given by TLcT

⊤ and T−⊤MoT
−1, allowing one to construct an appropriate

contragredient transformation such that

TLcT
⊤ = T−⊤MoT

−1 = Σ = diag(σ1, . . . , σn).

In fact, the so-called square root balancing method (see, e.g., [1, 13]) yields such a transformation
via:

T = Σ− 1
2Z⊤LMo

, T−1 = L⊤
Lc
UΣ− 1

2 ,

where we have the following singular value and Cholesky decompositions

LLc
L⊤
Mo

= UΣZ⊤, Lc = L⊤
Lc
LLc

, Mo = L⊤
Mo

LMo
.
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For an already balanced model (A,B,C), consider then the partitioning:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
.

A reduced-order model (Ar, Br, Cr) is constructed by truncation, i.e., choosing (A11, B1, C1). In
the particular case of (1), a straightforward implementation of this approach will generally not
preserve the port-Hamiltonian structure. As a remedy, in [33], the authors have proposed a so-
called effort-constraint reduction method which is based on a (balanced) partitioning of (1) of the
form:

Jb =

[
J11 J12
J21 J22

]
, Rb =

[
R11 R12

R21 R22

]
, Qb =

[
Q11 Q12

Q21 Q22

]
, Bb =

[
B1

B2

]
. (12)

The reduced-order model is then defined as

Jr = J11, Rr = R11, Qr = Q11 −Q12Q
−1
22 Q21, Br = B1, Cr = B⊤

r Qr. (13)

Note in particular that with Q = Q⊤ ≻ 0 it also holds that the Schur complement is positive
definite, i.e., Qr = Q⊤

r ≻ 0. Furthermore, it can be noted that this reduced-order model can be
obtained via Petrov–Galerkin projection P = VbW

⊤
b applied to the balanced system, with W⊤

b =[
Ir 0

]
and V ⊤

b =
[
Ir −Q12Q

−1
22

]
, satisfying W⊤

b Vb = Ir and QbVb = WbQr, or equivalently a

Petrov–Galerkin projection P = VW⊤ applied to the original system, with W⊤ = W⊤
b T and V =

T−1Vb (see subsection 2.1). Hence, by construction the reduced-order model is port-Hamiltonian.
This structure-preservation however comes with the loss of a (classical) H∞-error bound. Let us
remark that in [50], the authors have derived an a posteriori error bound which makes use of an
auxiliary system. Under certain assumptions on R and B, in Section 5, we modify the balancing
approach such that an a priori error bound, analogous to the classical one, is valid. Furthermore,
we establish a connection to balancing of a spectral factorization of the Popov function. Finally,
we mention that the method of positive real balanced truncation [17] aims at the preservation of
passivity and relies on balancing the (dual) extremal solutions to (3).

3 Port-Hamiltonian reduced LQG control design

In this section, given a port-Hamiltonian system (1), our interest is the design of a controller

ẋc = Acxc +Bcuc, xc(0) = 0,

yc = Ccxc,
(14)

with (Ac, Bc, Cc) ∈ Rnc×nc × Rnc×m × Rm×nc such that the dynamics x(·), xc(·) satisfy a desired
behavior, e.g., are associated with the solution of an optimal control problem. It is well-known,
see, e.g., [40, Section 7], that if (Ac, Bc, Cc) is a pH system, the resulting closed loop system allows
for a pH formulation if a power-conserving interconnection of the form u = −yc and uc = y is used.
Note however that classical LQG control design would result in

Ac = A−BR̃−1B⊤Pc − PfC
⊤R−1

f C, Bc = PfC
⊤R−1

f , Cc = R̃−1B⊤Pc (15)

where Pc and Pf are solutions to the following control and filter Riccati equations

A⊤Pc + PcA− PcBR̃−1B⊤Pc + Q̃ = 0, (16)

APf + PfA
⊤ − PfC

⊤R−1
f CPf +Qf = 0. (17)

Since such controllers generally do not preserve the pH structure (for a stability violation, we refer
to [19]), we suggest a particular choice of the weighting matrices R̃,Rf , Q̃ and Qf and consider the

solutions P̂c and P̂f of

A⊤P̂c + P̂cA− P̂cBB⊤P̂c + C⊤C = 0, (18)

AP̂f + P̂fA
⊤ − P̂fC

⊤CP̂f +BB⊤ + 2R = 0. (19)
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The choice R̃ = Rf = I is mainly for simplicity and could be taken into account when a scaling of
the input weights would be of further interest. Let us emphasize that our method is inspired by the
approach proposed in [50] and the above modification of the LQG weights is based on ideas similar
to those in [22, 48]. In Appendix A we review the method from [50] and provide two examples which
show that the resulting controller may generally not be realized as a port-Hamiltonian system.

With the particular relation between the covariance and weighting matrices from (18) and (19),

the solution P̂c satisfies the KYP-LMI (3) such that the controller is port-Hamiltonian.

Theorem 1. Let a minimal port-Hamiltonian system (1) be given by (J,R,Q,B). If P̂c and P̂f are
the unique stabilizing solutions of (18) and (19), respectively, then the associated LQG controller
defined by

Âc = A−BB⊤P̂c − P̂fC
⊤C, B̂c = P̂fC

⊤, Ĉc = B⊤P̂c

is port-Hamiltonian. In particular, with the Hamiltonian function Hc(xc) =
1
2x

⊤
c P̂cxc, a pH real-

ization of the controller is as follows:

Ĵc =
1
2 (ÂcP̂−1

c − P̂−1
c Â⊤

c ), R̂c =
1
2 (P̂

−1
c Q+ In)BB⊤(P̂−1

c Q+ In)
⊤, Q̂c = P̂c, B̂c = B.

Proof. Note that due to the stabilizability and detectability of the system, the equations (18) and

(19) have unique stabilizing solutions P̂c and P̂f , respectively. In fact, it holds that P̂f = Q−1 since

AQ−1 +Q−1A⊤ −Q−1C⊤CQ−1 + 2R+BB⊤

= (J −R)QQ−1 +Q−1Q⊤(J⊤ −R⊤)−Q−1QBB⊤QQ−1 + 2R+BB⊤ = 0.

This, however, justifies the following derivations

Â⊤
c P̂c + P̂cÂc = (A−BB⊤P̂c − P̂fC

⊤C)⊤P̂c + P̂c(A−BB⊤P̂c − P̂fC
⊤C)

= A⊤P̂c + P̂cA− P̂cBB⊤P̂c − P̂cBB⊤P̂c − C⊤CP̂fP̂c − P̂cP̂fC
⊤C

= −C⊤C − P̂cBB⊤P̂c − C⊤CQ−1P̂c − P̂cQ
−1C⊤C

= −(C⊤ + P̂cB)(C⊤ + P̂cB)⊤ � 0.

We further obtain that

B̂⊤
c P̂c = (P̂fC

⊤)⊤P̂c = CQ−1P̂c = B⊤P̂c = Ĉc.

We conclude that Â⊤
c P̂c + P̂cÂc � 0 as well as B̂⊤

c P̂c = Ĉc such that P̂c = P̂⊤
c � 0 satisfies

[
−Â⊤

c P̂c − P̂cÂc Ĉ⊤
c − P̂cB̂c

Ĉc − B̂⊤
c P̂c 0

]
� 0.

Since (A,C) is observable, it further holds that P̂c ≻ 0. Due to the discussion in subsection 2.1,
we can conclude that (Ac, Bc, Cc) is port-Hamiltonian with respect to the Hamiltonian function

Hc(xc) = 1
2x

⊤
c P̂cxc. In particular, the matrices Ĵc and R̂c can be constructed as outlined in

subsection 2.1.

Remark 2. Note that since P̂f = Q−1 the controller is of the form:

ẋc = (A−BB⊤P̂c −BC)xc +Buc, xc(0) = 0,

yc = B⊤P̂cxc.

In particular, the system matrix Âc combines the feedback structure of a classical linear quadratic
regulator uc = −BB⊤P̂cxc with that of a simple output feedback uc = −BCxc.

Remark 3. Theorem 1 states that the LQG controller based on the control Riccati equation (18)
and the modified filter Riccati equation (19) is port-Hamiltonian. We note that a similar result can
be obtained by modifying the control Riccati equation. More precisely, by choosing the weighting
matrices Q̃ = C⊤C + 2QRQ and Qf = BB⊤, the resulting Gramian Pc is simply given by Pc = Q

and the resulting LQG controller is port-Hamiltonian with Hamiltonian 1
2x

⊤
c P−1

f xc. This choice

of the weighting matrix Q̃ = C⊤C +2QRQ also permits a physical interpretation as it corresponds
to an optimal control problem where the LQR cost is given by the sum of the squared input norm,
the squared output norm, and (twice) the dissipated energy, cf. (2). This cost function leads to an
LQR control which is simply given by the output feedback u = −B⊤Pcx = −B⊤Qx = −y.
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3.1 Structure-preserving LQG balanced truncation for port-Hamiltonian
systems

With regard to a numerical implementation for large-scale systems, let us further derive a reduced
port-Hamiltonian controller which replaces (Âc, B̂c, Ĉc) by a surrogate model. This is done in

three steps: first, the system is transformed into a balanced form (12) such that P̂f = P̂c = Σ =
diag(σ1, . . . , σn). Subsequently, a reduced-order model is obtained by the effort-constraint method:

˙̂xr = (Ĵr − R̂r)Q̂rx̂r + B̂ru, x̂r(0) = 0,

ŷr = Ĉrx̂r,
(20)

where (Ĵr, R̂r, Q̂r, B̂r, Ĉr) are as in (13). Finally, a reduced controller (Âcr, B̂cr, Ĉcr) is constructed
according to Theorem 1. The entire procedure is summarized in Algorithm 1.

Algorithm 1 pH-preserving LQG reduced controller design

Input: J,R,Q ∈ Rn×n, B ∈ Rn×m as in (1) with minimal (A,B,C)

Output: Reduced-order LQG controller (Âcr, B̂cr, Ĉcr)

1: Compute P̂c and P̂f = Q−1 solving (18) and (19).

2: Compute T ∈ Rn×n defined by T P̂fT
⊤ = T−⊤P̂cT

−1 = diag(σ1, . . . , σn).
3: Balance the system Jb = TJT⊤, Rb = TRT⊤, Qb = T−⊤QT−1 and Bb = TB.
4: Obtain the reduced system (Âr, B̂r, Ĉr) by the effort-constraint method.

5: Compute the reduced-order LQG controller (Âcr, B̂cr, Ĉcr) based on Theorem 1 for

(Âr, B̂r, Ĉr).

It turns out that due to the particular choice of the weighting matrix Qf = BB⊤ +2R and the
resulting relation P̂f = Q−1, the reduced-order model (20) can equivalently be obtained by simple
truncation.

Theorem 4. Let a minimal port-Hamiltonian system (1) be given by (J,R,Q,B) and let (Âr , B̂r, Ĉr)

be the corresponding reduced-order model obtained in Algorithm 1. Then (Âr , B̂r, Ĉr) has a port-

Hamiltonian realization. Moreover, (Âr, B̂r, Ĉr) can be obtained by simple truncation of a system

that is balanced w.r.t. P̂c and P̂f as in (18) and (19), respectively.

Proof. The fact that (Âr , B̂r, Ĉr) has a port-Hamiltonian realization immediately follows from its
construction by the effort-constraint reduction technique. Note that for the balanced model it
holds that P̂c = P̂f = Σ. As mentioned in the proof of Theorem 1, we have that P̂f = Q−1

b , i.e.,
Qb = diag( 1

σ1
, . . . , 1

σn
). Hence, we conclude that Qb is diagonal such that the Schur complement

in (13) reads Qr = Q11 −Q12Q
−1
22 Q21 = Q11 which shows the second assertion.

The relation P̂f = Q−1 yields some additional beneficial implications with regard to the com-
putation of the reduced-order matrices Ĵr, R̂r and Q̂r. According to the general idea of square
root balancing, let us assume that we have the decompositions

T = Σ− 1
2Z⊤LP̂c

, T−1 = L⊤
P̂f
UΣ− 1

2 ,

where

LP̂f
L⊤
P̂c

= UΣZ⊤, Q−1 = P̂f = L⊤
P̂f
LP̂f

, P̂c = L⊤
P̂c
LP̂c

. (21)

The balanced system then is given by applying the change of variable xb = Tx as in (5), leading
to Ab = TAT−1, Bb = TB, Cb = CT−1 and the port-Hamiltonian formulation:

Jb = TJT⊤, Rb = TRT⊤, Qb = T−⊤QT−1 = Σ−1.

We can therefore construct the reduced pH formulation by the Petrov–Galerkin projection P =
VW⊤ with V ⊤ =

[
Ir 0

]
T−⊤ and W⊤ =

[
Ir 0

]
T applied to (A,B,C), i.e.,

Âr = W⊤AV, B̂r = W⊤B, Ĉr = CV,

Ĵr = W⊤JW, R̂r = W⊤RW, Q̂r = (W⊤Q−1W )−1 = Σ−1
1 .

(22)
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This representation will be of particular interest in section 5, where we provide an error bound
that involves a reduced factorization of R̂r, cf. Remark 19.

Remark 5. With the previous considerations, we conclude that the reduced-order model (Âr , B̂r, Ĉr)
results (and itself is balanced) from the truncation of a system that is balanced w.r.t. the Gramians

P̂c and P̂f , respectively. We point out that the representation corresponds to a rather simple mod-
ification of classical LQG balanced truncation (by adding the term 2R) which will be utilized below
to derive a suitably modified error bound in the gap metric.

3.2 PH formulation in co-energy variables

For many applications, a pH formulation as in (1) may lead to limitations and it often turns out
to be beneficial to consider a differential-algebraic formulation. While a detailed analysis of the
differential-algebraic case is out of the scope of this article, below we discuss required modifications
of the Gramians defined in (18) and (19) in the particular case of a formulation in the co-energy
variables z := Qx. Starting from the description in (1), this leads to the formulation

Eż = (J −R)z +Bu, z(0) = 0,

y = B⊤z,
(23)

of an implicitly given pH system, where E = Q−1 = E⊤ ≻ 0, with the Hamiltonian function
H̃(z) = 1

2z
⊤Ez. Note in particular that this formulation has the additional advantage of being

linear in the defining matrices (E, J,R). Based on well-known LQG control theory for generalized
state space systems (e.g., [25]), it is natural to replace (18) by

(J −R)⊤P̃cE + E⊤P̃c(J −R)− E⊤P̃cBB⊤P̃cE +BB⊤ = 0. (24)

With regard to port-Hamiltonian structure of a controller, instead of (19) we consider

(J −R)P̃fE
⊤ + EP̃f(J −R)⊤ − EP̃fBB⊤P̃fE

⊤ +BB⊤ + 2R = 0. (25)

On the one hand, after left- and right-multiplication of (24) by Q, we get again (18), thus P̃c = P̂c.

On the other hand, it is clear that P̃f = Q = E−1 is the solution of (25).
With a slight modification of the arguments used in the proof of Theorem 1, we have the

following result.

Corollary 6. Let (E, J,R,B) define a minimal implicit port-Hamiltonian system of the form (23).

If P̃c and P̃f are the unique stabilizing solutions of (24) and (25), respectively, then the associated
LQG controller defined by

Ẽc = P̃−1
c , Ãc = P̃−1

f E−1(J −R−BB⊤P̃cE − EP̃fBB⊤)E−1P̃−1
c , B̃c = B, C̃c = B⊤

is a port-Hamiltonian system in co-energy variable formulation.

Proof. Since Ẽc = P̃−1
c = Ẽ⊤

c ≻ 0, we only have to prove that Ãc + Ã⊤
c � 0. Since P̃f = E−1, one

easily deduces that

EP̃c(Ãc + Ã⊤
c )P̃cE = EP̃c(J −R) + (J −R)⊤P̃cE − 2EP̃cBB⊤P̃cE − EP̃cBB⊤ −BB⊤P̃cE =

= −EP̃cBB⊤P̃cE −BB⊤ − EP̃cBB⊤ −BB⊤P̃cE =

= −(In + EP̃c)BB⊤(In + EP̃c)
⊤ � 0,

therefore Ãc + Ã⊤
c � 0, as requested.

Alternatively to the proof of Corollary 6, it can be easily shown that the associated LQG
controller corresponds to a co-energy formulation of the LQG controller that we constructed in
Theorem 1. Thus, it is clearly port-Hamiltonian.
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4 An error bound for pH-LQG reduced-order controllers

As mentioned in Remark 5, the reduced model from Algorithm 1 can be interpreted as a variant
of LQG balanced truncation where the constant term BB⊤ is extended by the term 2R. It is
thus obvious to study possible error bounds w.r.t. the gap metric. Some considerations in this
direction have been given in [48]. In contrast to the latter work, here we follow the reasoning in [9]
and therefore aim at showing that the reduced Gramians satisfy two Lyapunov inequalities which
will yield an error bound (for the closed loop dynamics). Note that the idea of using Lyapunov
inequalities instead of Lyapunov equations to derive an error bound can already be found for linear
time-varying systems in [35]. From now on we assume that Σ is the balanced Gramian solving the

equations (18) and (19) such that the reduced-order model (Âr, B̂r, Ĉr) results from truncation of
the associated balanced system (A,B,C).

4.1 Error bounds for standard LQG balanced truncation

While the gap metric is standard in the context of LQG balanced truncation, cf. [8, 23, 27, 28], for
a self-contained presentation, let us recall some well-known concepts regarding system norms and
coprime factorizations that can be found in, e.g., [7, 23, 36, 43, 51]. The Hardy spaces Hp,m

∞ and
Hp,m

2 are defined by

Hp,m
2 :=

{
F : C+ → Cp×m | F is analytic, ‖F‖H2

:=

(
sup
σ>0

∫ ∞

−∞

‖F (σ + ıω)‖2F dω

) 1
2

< ∞
}
,

Hp,m
∞ :=

{
F : C+ → Cp×m | F is analytic, ‖F‖H∞

:= sup
z∈C+

‖F (σ + ıω)‖2 < ∞
}
.

Let us further introduce RHp,m
∞ and RHp,m

∞ consisting of matrix valued real rational functions
that additionally are in Hp,m

∞ and Hp,m
2 , respectively. Based on the stabilizing solution of (18) we

may construct a normalized right coprime factorization of the form

G(s) = C(sIn −A)−1B = N(s)M(s)−1, (26)

where M ∈ RHm,m
∞ , N ∈ RHm,m

2 and the (control) closed loop matrix AP̂c
are given as follows:

N(s) = C(sIn −AP̂c
)−1B, M(s) = Im −B⊤P̂c(sIn −AP̂c

)−1B, AP̂c
= A−BB⊤P̂c.

Here, right coprimeness means that there exist transfer functions X,Y ∈ RHm,m
∞ such that

X(s)M(s) + Y (s)N(s) = I.

The normalization property is understood as the identity

M(−s)⊤M(s) +N(−s)⊤N(s) = I.

The relevance of such factorizations is that they relate to the graph of the transfer function G(s) =
N(s)M(s)−1 :

im

[
M

N

]
=

{[
Mf

Nf

]
: f ∈ Hm,1

2

}
⊂ H2m,1

2 .

Moreover, for two transfer functions G1, G2 with normalized coprime factorizations
[
M1

N1

]
and

[
M2

N2

]
,

the gap metric can be defined (see [36]) as follows

δgap(G1, G2) = max
{
~δgap(G1, G2), ~δgap(G2, G1)

}
,

where the directed gap ~δgap(G1, G2) is given by

~δgap(G1, G2) = inf
Π∈Hm,m

∞

∥∥∥∥
[
M1

N1

]
−
[
M2

N2

]
Π

∥∥∥∥
H∞

.
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For classical LQG balanced truncation (i.e. when R = 0 in (19)), we have an error bound of the
form

~δgap(G, Ĝr) ≤
∥∥∥∥∥

[
M

N

]
−
[
M̂r

N̂r

]∥∥∥∥∥
H∞

:= sup
z∈C+

∥∥∥∥∥

[
M(z)
N(z)

]
−
[
M̂r(z)

N̂r(z)

]∥∥∥∥∥
2

≤ 2

n∑

i=r+1

θi, (27)

where θi =
σi√
1+σ2

i

and σi =

√
λi(P̂fP̂c) are the so-called LQG characteristic values and where

[
M̂r

N̂r

]

is a normalized right coprime factorization of the transfer function of the reduced-order model. Let
us further emphasize that this gap metric error bound is particularly useful for analyzing the closed
loop behavior of the associated reduced LQG controller. For more details on specific closed loop
estimates, we refer to, e.g., [43].

4.2 Lyapunov inequalities for structure-preserving LQG balanced trun-
cation

Let us return to the general case where R � 0 in (19) and establish an error bound structurally
identical to (27). For this purpose, in what follows we exploit an approach from [9] (similar to the
arguments provided in [35]) where specific Lyapunov inequalities have been used to derive classical

error bounds. Note that P̂c satisfies

A⊤
P̂c
P̂c + P̂cAP̂c

+ C⊤C + P̂cBB⊤P̂c = 0. (28)

In other words, P̂c coincides with the observability Gramian of the system

ẇ = AP̂c
w +Bu, w(0) = 0,

y =

[
−B⊤P̂c

C

]

︸ ︷︷ ︸
C

P̂c

w +

[
Im
0

]
u (29)

which is a realization of [MN ]. In the standard case, i.e. using Qf = BB⊤, the controllability

Gramian of this system is given by (In+P̂fP̂c)
−1P̂f (see, e.g., [8]) and, thus, balancing the matrices

P̂f and P̂c will also transform the controllability and observability Gramians of [MN ] into diagonal
(though not necessarily equal) form. The following proposition shows that in our setting, i.e. using

Qf = BB⊤ + 2R, the matrix (In + P̂f P̂c)
−1P̂f is in general no longer the controllability Gramian

of (29), but it still satisfies at least an associated Lyapunov inequality.

Proposition 7. Let (J,R,Q,B) define a minimal port-Hamiltonian system of the form (1) and

let P̂c and P̂f denote the unique stabilizing solutions to the control and filter Riccati equations (18)

and (19), respectively. For the system (29) and L = (In + P̂fP̂c)
−1P̂f it holds that

AP̂c
L+ LA⊤

P̂c
+BB⊤ � 0. (30)

Proof. Using P̂f = P̂⊤
f and P̂c = P̂⊤

c , one easily verifies that L = L⊤. Hence, instead of (30) we
may show that

AP̂c
L⊤ + LA⊤

P̂c
+BB⊤ � 0.

Since In + P̂fP̂c is invertible, this is however equivalent to showing that

(In + P̂fP̂c)AP̂c
P̂f + P̂fA

⊤
P̂c
(In + P̂cP̂f) + (In + P̂fP̂c)BB⊤(In + P̂cP̂f) � 0.
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We now obtain

(In + P̂fP̂c)AP̂c
P̂f + P̂fA

⊤
P̂c
(In + P̂cP̂f) + (In + P̂fP̂c)BB⊤(In + P̂cP̂f)

= (In + P̂fP̂c)AP̂f + P̂fA
⊤(In + P̂cP̂f)

− (In + P̂fP̂c)BB⊤P̂cP̂f − P̂fP̂cBB⊤(In + P̂cP̂f)

+BB⊤ + P̂fP̂cBB⊤ +BB⊤P̂cP̂f + P̂fP̂cBB⊤P̂cP̂f

= AP̂f + P̂fA
⊤ +BB⊤

− P̂fP̂cBB⊤P̂cP̂f + P̂fP̂cAP̂f + P̂fA
⊤P̂cP̂f

= −2R+ P̂f

(
C⊤C + P̂cA+A⊤P̂c − P̂⊤

c BB⊤P̂c

)
P̂f = −2R � 0.

We are ready to state an error bound for a reduced-order model obtained either by Algorithm
1 or (equivalently) by balanced truncation w.r.t. the Gramians Pc and Pf from Appendix A.

Theorem 8. Let (J,R,Q,B) define a minimal port-Hamiltonian system of the form (1) which is

balanced w.r.t. the stabilizing solutions of (18) and (19). Furthermore, let (Âr , B̂r, Ĉr) be a reduced-

order model obtained by Algorithm 1. Denote the balanced Gramians P̂f = P̂c = Σ = diag(Σ1,Σ2),

where Σ2 = diag(σr+1, . . . , σn). If [MN ] and
[
M̂r

N̂r

]
are the associated right coprime factorizations

as specified in (29), then

∥∥∥∥∥

[
M

N

]
−
[
M̂r

N̂r

]∥∥∥∥∥
H∞

≤ 2

n∑

i=r+1

σi√
1 + σ2

i

. (31)

Proof. The proof uses almost the exact same arguments as given in [9]. In contrast to the latter

reference, here the matrices P̂c and L satisfying the Lyapunov (in)equalities do not coincide. While
this only requires minor modifications in the reasoning from [9], for self-consistency we provide a
full proof of the assertion.

First note that since (A,B,C) is balanced, from the above considerations, it follows that

L = (In + P̂fP̂c)
−1P̂f = (In +Σ2)−1Σ = diag

(
σi

1 + σ2
i

)
, i = 1, . . . , n,

as well as

A⊤
P̂c
Σ+ ΣAP̂c

+ C⊤
P̂c
CP̂c

= 0, AP̂c
L+ LA⊤

P̂c
+BB⊤ � 0. (32)

Similarly, for the reduced-order surrogate of (29) which is defined by

ÂΣ = Âr − B̂rB̂
⊤
r Σ1, B̂Σ = B̂r, ĈΣ =

[
−B̂⊤

r Σ1

Ĉr

]

we conclude that

Â⊤
ΣΣ1 +Σ1ÂΣ + Ĉ⊤

Σ ĈΣ = 0, ÂΣL1 + L1Â
⊤
Σ + B̂ΣB̂

⊤
Σ � 0. (33)

where L1 = diag( σi

1+σ2
i

), i = 1, . . . , r.

Since the H∞-norm is the L2-L2-induced norm between inputs and outputs (e.g., [1, Section
5]), we thus focus on the two systems

ẇ = AP̂c
w +Bu, w(0) = 0, y = CP̂c

w +

[
Im
0

]
u,

˙̂wr = ÂΣŵr + B̂Σu, ŵr(0) = 0, ŷr = ĈΣŵr +

[
Im
0

]
u.

11



Since by assumption (A,B,C) is balanced, i.e., P̂f = Σ = P̂c we also obtain

AP̂c
= A−BB⊤Σ =

[
A11 A12

A21 A22

]
:=

[
Âr ∗
∗ ∗

]
−
[
B̂r

B2

] [
B̂r

B2

]⊤ [
Σ1 0
0 Σ2

]
=

[
Âr − B̂rB̂

⊤
r Σ1 ∗

∗ ∗

]

CP̂c
:=

[
C1 C2

]
=

[
−B̂⊤

r Σ1 ∗
Ĉr ∗

]
.

In other words, the reduced right coprime factorization (ÂΣ, B̂Σ, ĈΣ) is obtained by truncating
the original right coprime factorization (AP̂c

, B, CP̂c
). With the state vector w = [w1

w2
] being

partitioned accordingly, we obtain

d

dt
〈w1 − ŵr,Σ1(w1 − ŵr)〉 = 2〈w1 − ŵr,Σ1[A11, A12]

[
w1 − ŵr

w2

]
〉

d

dt
〈w2,Σ2w2〉 = 2〈w2,Σ2(A21w1 +A22w2 +B2u)〉.

Note that it holds that y − ŷr = CP̂c

[
w1−ŵr

w2

]
which we use to show

−‖y − ŷr‖2 = −
[
w1 − ŵr

w2

]⊤
C⊤

P̂c
CP̂c

[
w1 − ŵr

w2

]
=

[
w1 − ŵr

w2

]⊤
(A⊤

P̂c
Σ+ ΣAP̂c

)

[
w1 − ŵr

w2

]

= 2(w1 − ŵr)
⊤Σ1

[
A11 A12

] [w1 − ŵr

w2

]
+ 2w⊤

2 Σ2

[
A21 A22

] [w1 − ŵr

w2

]
.

Combining all of the previous results leads to

−‖y − ŷr‖2
d

dt
〈w1 − ŵr,Σ1(w1 − ŵr)〉+

d

dt
〈w2,Σ2w2〉 − 2w⊤

2 Σ2(A21ŵr + B2u)

and finally

∫ T

0

‖y(t)− ŷr(t)‖2 dt ≤ 2

∫ T

0

w2(t)
⊤Σ2(A21ŵr(t) +B2u(t)) dt. (34)

Still following [9], we want to show that

4

∫ T

0

‖u(t)‖2 dt ≥ 2

∫ T

0

w2(t)
⊤L−1

2 (A21ŵr(t) +B2u(t)) dt), (35)

where L2 = diag( σi

1+σ2
i

), i = r + 1, . . . , n. From (32) it follows that

L−1AP̂c
+A⊤

P̂c
L−1 + L−1BB⊤L−1 � 0

which due to Schur complement properties also implies that

[L−1AP̂c
+A⊤

P̂c

L−1 L−1B

B⊤L−1 −Im

]
� 0.

This can be rewritten as follows

[
0 0
0 Im

]
�

[
AP̂c

B

In 0

]⊤ [
0 L−1

L−1 0

] [
AP̂c

B

In 0

]
.

Let us multiply the previous inequality with
[
(w1 + ŵr)

⊤ w⊤
2 2u⊤

]
and

[
w1+ŵr

w2

2u

]
to obtain

4‖u‖2 ≥ 2(w1 + ŵr)
⊤L−1

1 (
[
A11 A12

] [w1 + ŵr

w2

]
+ 2B1u)

+ 2w⊤
2 L−1

2 (
[
A21 A22

] [w1 + ŵr

w2

]
+ 2B2u).
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As before, we obtain

d

dt
(w1 + ŵr)

⊤L−1
1 (w1 + ŵr) = 2(w1 + ŵr)

⊤L−1
1 (

[
A11 A12

] [w1 + ŵr

w2

]
+ 2B1u)

d

dt
(w⊤

2 L−1
2 w2) = 2w⊤

2 L−1
2 (A21w1 +A22w2 +B2u).

Combining the last three (in)equalities leads to

4‖u‖2 ≥ d

dt
((w1 + ŵr)

⊤L−1
1 (w1 + ŵr)) +

d

dt
(w⊤

2 L−1
2 w2) + 2w⊤

2 L−1
2 (A21ŵr +B2u).

Integration and using w(0) = 0, ŵr(0) = 0 yields (35).

If Σ2 = σν , then L2 = σν

1+σ2
ν

. Multiplication of (35) with
σ2
ν

1+σ2
ν

implies

4σ2
ν

1 + σ2
ν

∫ T

0

‖u(t)‖2 dt ≥ 2

∫ T

0

w2(t)
⊤ σ2

ν

1 + σ2
ν

L−1
2 (A21ŵr(t) +B2u(t)) dt)

= 2

∫ T

0

w2(t)
⊤Σ2(A21ŵr(t) +B2u(t)) dt) ≥

∫ T

0

‖y(t)− ŷr(t)‖2 dt.

We can now proceed recursively and truncate step by step one after the other state such that finally
we obtain

‖y − ŷr‖L2([0,T ];Rm) ≤ 2(θr+1 + · · ·+ θn)‖u‖L2([0,T ];Rm),

where θi =
σi√
1+σ2

i

, for i = r + 1, . . . , n. As the previous bound is independent of the time T , we

can consider its limit T → ∞ which shows the assertion.

Remark 9. Note that the final arguments remain valid if Σ2 = σνI, i.e., in the case where some
of the characteristic values appear multiple times. In this sense, the original formulation from [9]
is beneficial since the summation in the error bound only includes distinct characteristic values.
For R = 0, the two Gramians coincide with the ones used in classical LQG balanced truncation.
While due to the special pH structure this would result in a purely Hamiltonian system, the right
coprime framework could still be followed as long as (J,B,C) is minimal.

Remark 10. The error bound in Theorem 8 scales with the σi values which are the square roots
of the eigenvalues of P̂fP̂c. In particular, we observe that these values are invariant under simi-
larity transformations, which follows from the fact that any similarity transformation based on an
invertible matrix T leads to the transformed Gramians P f = T P̂fT

⊤ and Pc = T−⊤P̂cT
−1 which

satisfy
P fPc = T P̂fP̂cT

−1.

Thus, P fPc and P̂fP̂c have the same eigenvalues and, hence, the σi values are invariant under
similarity transformations. For the special case R = 0, these coincide with the classical LQG
characteristic values, cf. subsection 4.1.

4.3 Minimizing the error bound - choosing the right Q

While the error bound in Theorem 8 is structurally the same as in classical LQG balanced trun-
cation, the characteristic values are derived from a filter Riccati equation including the additional
term 2R. Since we have seen that this specific choice of the covariance matrix implies P̂f = Q−1,
the question arises whether there exists a particularly good pH representation in the sense that
the error bound provided in Theorem 8 is minimized. With this in mind, first note that the error
bound is determined by the eigenvalues of the matrix

LP̂c = (In + P̂f P̂c)
−1P̂f P̂c = (In +Q−1P̂c)

−1Q−1P̂c = (Q+ P̂c)
−1P̂c.

Since P̂c = P̂⊤
c ≻ 0, we may consider a Cholesky decomposition P̂c = L⊤

P̂c

LP̂c
such that:

θi =

√
λi(LP̂c) =

√
λi(LP̂c

LP̂cL
−1

P̂c

) =
√
λi(LP̂c

(Q+ P̂c)−1L⊤
P̂c

). (36)
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Following [2], let us assume that X = X⊤ ≻ 0 is a solution to (3) and consider the associated
alternative pH representation (4). Since (18) only depends on (A,B,C) its solution is independent

of RX and still given by P̂c. On the other hand, (19) explicitly depends on RX , which for X 6= Q

will generally be affected by the previous transformation. In particular, for θi, we have achieved
the following transformation

θi =
√
λi(LP̂c

(Q + P̂c)−1L⊤
P̂c

) →
√
λi(LP̂c

(X + P̂c)−1L⊤
P̂c

)) = θ̂i.

Assume now that Xmax = X⊤
max ≻ 0 is the maximal solution to (3). Hence, it holds that Xmax � Q

as well as

Xmax + P̂c � Q+ P̂c ≻ 0

also implying that

0 ≺ (Xmax + P̂c)
−1 � (Q+ P̂c)

−1.

Using the Courant-Fischer-Weyl min-max principle ([12, Theorem 8.1.2]) allows us to conclude
that

θ2i = λi(LP̂c
(Q + P̂c)

−1L⊤
P̂c
))

= min
Xi⊂R

n

dim(Xi)=i

max
z∈Xi

‖z‖=1

z⊤(LP̂c
(Q + P̂c)

−1L⊤
P̂c
))z

≥ min
Xi⊂R

n

dim(Xi)=i

max
z∈Xi

‖z‖=1

z⊤(LP̂c
(X + P̂c)

−1L⊤
P̂c
))z

= λi(LP̂c
(X + P̂c)

−1L⊤
P̂c
)) = θ̂2i .

The previous considerations suggest to first replace (1) with the alternative representation (4) by
computing the maximal solution Xmax to (3) in order to minimize the error bound in Theorem
8. Let us emphasize that such a computation is numerically demanding and the results first of all
are of theoretical nature. Furthermore, it should be noted that the transformation corresponds to
choosing a different Hamiltonian, that might in turn have a different physical meaning. Whether
this affects positively or negatively the method depends on the specific application.

Remark 11. In this subsection, we demonstrated that exchanging the weighting matrix BB⊤+2R
by BB⊤ + 2RXmax

yields the Gramian P̂f = X−1
max instead of P̂f = Q−1. This approach allows for

an alternative interpretation of the proposed balancing procedure. To this end, we point out that
the Gramian P̂f = X−1

max is not only the unique stabilizing solution of the modified filter algebraic
Riccati equation (19) with weighting matrix BB⊤ + 2RXmax

, but it is also the minimal solution
of the dual KYP-LMI (10). Thus, the proposed balancing procedure can be regarded as a mixture
between classical LQG balanced truncation and positive real balanced truncation, in the sense that
we balance the stabilizing solution of the algebraic Riccati equation (18) and the minimal solution
of the dual KYP-LMI (10). A similar mixed approach has been proposed in [39], where the solution
of a Lyapunov equation and the solution of an algebraic Riccati equation have been balanced.

5 Consequences for standard balanced truncation

In this section, we briefly discuss how the above framework can be used to modify standard balanced
truncation for port-Hamiltonian systems such that analogous results and error bounds hold true.
Note that for balanced truncation realized within the effort-constraint reduction framework (see
[33]), in [50] the authors have derived an error bound based on an auxiliary system. Our approach
is different in the sense that in specific situations, a classical balanced truncation error bound can
be shown to hold true. As is common in the context of balanced truncation, we assume in this
section that A = (J − R)Q is asymptotically stable, i.e., all eigenvalues of A lie in the open left
half plane.

The main idea is to transfer the previous concepts to the setting of standard balanced truncation.
In particular, we propose to replace the constant term BB⊤ by 2R in the standard controllability
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Lyapunov equation and, thus, to balance the system with respect to the solutions of the (modified)
controllability and observability Lyapunov equations

ALc + LcA
⊤ + 2R = 0,

A⊤Mo +MoA+ C⊤C = 0.
(37)

With this specific choice of the constant term 2R in the first equation, one immediately verifies
that Lc = Q−1 for a pH system (1). Consequently, in balanced coordinates, it holds that

AbΠ+ΠA⊤
b + 2Rb = 0,

A⊤
b Π+ΠAb + C⊤

b Cb = 0,

where Π = diag(π1, . . . , πn). In particular, we have Qb = Π−1 such that an effort-constraint
reduced-order model satisfies

Qr = Qb11 −Qb12Q
−1
b22Qb21 = Qb11 = diag

(
1

π1
, . . . ,

1

πr

)
.

Note that an effort-constraint reduced-order model automatically is port-Hamiltonian and is further
obtained by simple truncation of a system balanced w.r.t. modified system Gramians. With regard
to an error bound as in Theorem 8, we make an additional assumption on R and B. We summarize
our findings in the following result.

Corollary 12. Let (J,R,Q,B) with asymptotically stable A = (J − R)Q define a minimal port-
Hamiltonian system of the form (1) which is balanced w.r.t. the solutions of (37). Furthermore,

let (Âr, B̂r, Ĉr) be a reduced-order model obtained by truncation of (A,B,C) and let c > 0 be such
that cR � 1

2BB⊤. Besides, the balanced Gramians are denoted by Mo = Lc = Π = diag(Π1,Π2),

where Π2 = diag(πr+1, . . . , πn). If G(·) = C( · In −A)−1B and Ĝr(·) = Ĉr( · Ir − Âr)
−1B̂r are the

associated transfer functions, then

‖G− Ĝr‖H∞
≤ 2

√
c

n∑

i=r+1

πi. (38)

Moreover, the reduced-order model (Âr, B̂r, Ĉr) is port-Hamiltonian.

Proof. Note that the assumption on R and B implies that for Λ = cΠ, we have

0 = c(AΠ +ΠA⊤ + 2R) = AΛ + ΛA⊤ + 2cR � AΛ + ΛA⊤ +BB⊤.

The proof then follows along the lines of the proof of Theorem 8 with L, P̂f being replaced by
Lc,Mo, and is thus omitted here.

We proceed with a discussion on the condition cR � 1
2BB⊤ that appears in Corollary 12. First

of all, we investigate necessary and sufficient conditions for the existence of such a c > 0.

Lemma 13. Let R ∈ Rn×n with R = R⊤ � 0 and B ∈ Rn×m be two matrices. Then there
exists a constant c > 0 such that cR � 1

2BB⊤ if and only if Im(B) ⊆ ker(R)⊥ or, equivalently,
Im(B) ⊆ Im(R).

Proof. Since R is symmetric, it is well-known that ker(R)⊥ = Im(R). Therefore it is sufficient to
prove the first statement. Suppose first that there exists such a c > 0. Let z1 = Bu for some
u ∈ Rm be a generic element of Im(B), and let z2 ∈ ker(R): we need to show that z⊤1 z2 = 0. Since

0 = z⊤2 Rz2 ≥
1

2c
z⊤2 BB⊤z2 =

1

2c
‖B⊤z2‖22 ⇒ B⊤z2 = 0,

we deduce that z⊤1 z2 = u⊤B⊤z2 = 0, thus Im(B) ⊆ ker(R)⊥.
Suppose now that Im(B) ⊆ ker(R)⊥. Note that ker(B⊤) = ker(BB⊤), since z⊤BB⊤z =

‖B⊤z‖22 for all z ∈ Rn. In particular, Im(BB⊤) = ker(BB⊤)⊥ = ker(B⊤)⊥ = Im(B) ⊆ Im(R).
Let

U⊤RU =

[
Λ 0
0 0

]
, 0 ≺ Λ ∈ Rk×k diagonal, U⊤U = In
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be the SVD of R, and let λm > 0 be the minimum diagonal entry of Λ. Since Im(BB⊤) ⊆ Im(R),
we clearly have

U⊤BB⊤U =

[
S 0
0 0

]
, S = S⊤ ∈ Rk×k.

In particular, ‖S‖2 = ‖BB⊤‖2 = ‖B‖22, and for any z = (z1, z2) ∈ Rn = Rk+(n−k) we have

z⊤U⊤ 1

2
BB⊤Uz =

1

2
z⊤1 Sz1 ≤

1

2
‖S‖2z⊤1 z1 ≤ ‖B‖22

2λm

z⊤1 Λz1 =
‖B‖22
2λm

z⊤U⊤RUz.

Since U is invertible, this is equivalent to cR � 1
2BB⊤, with c =

‖B‖2
2

2λm
.

In other words, Lemma 13 states that the condition of Corollary 12 is satisfied exactly when
the input port (represented by B) interacts directly with the dissipation port (represented by R).
In particular, intuition tells us that, if the condition holds, any small input will be damped by the
dissipation of the system and will preserve the pH structure, while if the condition fails, there are
small inputs that will insert new energy in the system, without that the dissipation can immediately
act on that. We formalize this intuition with the following result.

Proposition 14. Let a port-Hamiltonian system (1) be given by (J,R,Q,B), and consider output
feedbacks of the form u = Fy = FB⊤Qx with a feedback matrix F ∈ Rm×m, leading to the closed
loop system

ẋ = (J −R+BFB⊤)Qx. (39)

Then a constant c > 0 satisfies the condition cR � 1
2BB⊤ if and only if (39) is port-Hamiltonian

with respect to Q for all feedback matrices F with ‖F‖2 ≤ 1
2c .

Proof. Let α = 1
2c > 0, so that the two conditions are R � αBB⊤ and ‖F‖2 ≤ α. Let F be

a generic feedback matrix with ‖F‖2 ≤ α. If we split F = Fs + Fk into its symmetric part
Fs =

1
2 (F + F⊤) and skew-symmetric part Fk = 1

2 (F − F⊤), we can rewrite (39) as

ẋ =
(
(J +BFkB

⊤)− (R−BFsB
⊤)

)
Qx = (JF −RF )Qx.

It is clear that this system is pH with respect to Q if and only if RF = R⊤
F � 0.

Suppose first that R � αBB⊤: then the feedback matrix F = Fs = αIm satisfies ‖F‖2 = α

but produces a closed loop system that is not pH with respect to Q, since RF = R − αBB⊤ � 0.
Suppose now that R � αBB⊤. Note that ‖Fs‖2 = 1

2‖F + F⊤‖2 ≤ ‖F‖2 ≤ α, therefore we can
assume without loss of generality that F = F⊤ = Fs. Since F is symmetric, there exist a matrix
G = G⊤ � 0 such that F � G and ‖G‖2 = ‖F‖2 ≤ α, that can be constructed by taking the
spectral decomposition of F and replacing all negative eigenvalues with their absolute value, and a
matrix S = S⊤ � 0, such that G = S2 and ‖S‖22 = ‖G‖2 ≤ α, that can be constructed by replacing
the eigenvalues of G with their square root. In particular, we have

z⊤BFB⊤z ≤ z⊤BGB⊤z = z⊤BS2B⊤z = ‖SB⊤z‖22 ≤ ‖S‖22‖B⊤z‖22 ≤ αz⊤BB⊤z ≤ z⊤Rz,

i.e., RF = R −BFB⊤ � 0, as requested.

It should be stressed that Proposition 14 does not provide necessary conditions for the port-
Hamiltonian system to admit structure-preserving output feedback. In fact, any output feedback
of the form u = Fy with F + F⊤ � 0 will lead to a closed loop port-Hamiltonian system of the
form ẋ = (J̃ − R̃)Qx, with J̃ = J + 1

2B(F − F⊤)B⊤ and R̃ = R − 1
2B(F + F⊤)B⊤ satisfying

J̃ = −J̃⊤ and R̃ = R̃⊤ � 0, regardless of the form of R and B, and of the magnitude of ‖F‖2.
In fact, Proposition 14 provides conditions for the existence of output feedback with bounded

norm that destroys the port-Hamiltonian structure. This can for example be useful in one of the
following scenarios: if we expect disturbances in the output feedback, in which case c can provide
a measure of robustness, or if we are actually interested in destabilizing the system.

Remark 15. It is clear that, given two matrices R = R⊤ � 0 and B, the set

Ω(R,B) =
{
c ∈ R | cR � 1

2BB⊤
}
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is either empty or a closed infinite left-bounded interval of the form [c,∞), where c ≥ 0. Note that
in the cases we are interested in we actually have c > 0 since c = 0 would imply B = 0. Since the
error bound in Corollary 12 holds for any c ∈ Ω, we are particularly interested in the optimal value
c, or equivalently α = 1

2c , for which the error bound is minimal.
One way to find the optimal α is offered by Lemma 13. Since R = R⊤ � 0, there exists an

invertible matrix P ∈ Rn×n, such that

P⊤RP =

[
Ik 0
0 0

]
, with P = U

[
Λ− 1

2 0
0 In−k

]

where U,Λ are as in the proof of Lemma 13. If there exists a constant c > 0 satisfying the condition,
then because of the same Lemma we have

P⊤BB⊤P =

[
Λ− 1

2SΛ− 1
2 0

0 0

]
=

[
Ŝ 0
0 0

]
,

where S = S⊤ ≥ 0 is again as in the proof of Lemma 13. Let now Ŝ = V ⊤Λ̂V be the spectral
decomposition of Ŝ, where V ⊤V = In and Λ̂ � 0 is diagonal. Then it is clear that

R � αBB⊤ ⇐⇒ P⊤RP � αP⊤BB⊤P ⇐⇒ Ik � αŜ ⇐⇒ Ik � αΛ̂,

therefore the optimal α is the reciprocal of the largest eigenvalue of P⊤BB⊤P .
The optimal value α has in particular a nice interpretation. Due to Proposition 14: it represents

the radius of structure-preservation of the pH system (1) under output feedback, for a fixed Q. A
possible strategy to decrease the error bound is then to consider a different pH representation, given
by a different matrix X (see (4)), such that the radius of structure-preservation is larger. Changing
Q unfortunately will in general also change the values πi, therefore it is not always clear whether
maximizing the radius of structure-preservation is a good solution.

When there is no c > 0 such that the condition cR � 1
2BB⊤ is satisfied, we might want to look

for a different error bound. Similarly as in (8), for every Y = Y ⊤ ∈ Rn×n, we may decompose the
Popov function as

Φ(s) =
[
C(sIn −A)−1 Im

] [−AY − Y A⊤ B − Y C⊤

B⊤ − CY 0

]

︸ ︷︷ ︸
:=Ŵ (Y )

[
(−sIn −A⊤)−1C⊤

Im

]
. (40)

In particular, if Y is such that Ŵ (Y ) � 0, a Cholesky decomposition yields

Φ(s) =
[
C(sIn − A)−1 Im

] [L⊤
Y

0

] [
LY 0

] [(−sIn −A⊤)−1C⊤

Im

]

= C(sIn −A)−1L⊤
Y LY (−sIn −A⊤)−1C⊤ = V (s)V (−s)⊤,

where V (·) = C(·In −A)−1L⊤
Y denotes a spectral factor of the Popov function Φ. For a pH system

(1), we immediately have the solution Y = Q−1 with the property:

−AY − Y A⊤ = −AQ−1 −Q−1A⊤ = −(J −R)− (J⊤ −R) = 2R.

Hence, with the Cholesky decomposition 2R = L⊤
RLR, we obtain the spectral factor V (·) = C(·In−

A)−1L⊤
R. With regard to balancing of the solutions to (37), observe that this corresponds to classical

balanced truncation of a system described by V (·) = C(·In −A)−1L⊤
R. As a consequence, we have

the following result.

Corollary 16. Let (J,R,Q,B) with asymptotically stable A = (J − R)Q and minimal (A,R,C)
define a port-Hamiltonian system of the form (1) which is balanced w.r.t. the solutions of (37). Fur-

thermore, let (Âr , B̂r, Ĉr) be a reduced-order model obtained by truncation of (A,B,C). Besides, the
balanced Gramians are denoted by Mo = Lc = Π = diag(Π1,Π2), where Π2 = diag(πr+1, . . . , πn).

If V (·) = C(·In − A)−1L⊤
R and V̂r(·) = Ĉr(·Ir − Âr)

−1L̂⊤
R̂r

are spectral factors of the associated

Popov function, then

‖V − V̂r‖H∞
≤ 2

n∑

i=r+1

πi. (41)

Moreover, the reduced-order model (Âr, B̂r, Ĉr) is port-Hamiltonian.
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Remark 17. While the previous result does not require any condition for B, it is based on min-
imality of the triple (A,R,C). This is however a less restrictive assumption than the one from
Corollary 12. Indeed, if (A,B,C) is minimal and if there exists c > 0 as in Corollary 12, then with
Lemma 13 it follows that (A,R,C) is also minimal. Moreover, it is well-known that minimality
can always be ensured by a low rank square root balancing transformation, see, e.g., [38, Theorem
2.2], [32, Section 4.1] and [3].

Remark 18. The bound (41) is structurally similar to the well-known bounded real balanced trun-
cation error bound for the stable minimum phase spectral factors, see [31].

Remark 19. For the error bound (41), it is crucial that L⊤
R and L̂⊤

R̂r

have the same number of

columns since otherwise a comparison in the H∞-norm does not make sense. A naive computation
of L̂⊤

R̂r

would limit the number of columns by the reduced system dimension and, hence, would

generally be smaller than the number of columns of L⊤
R. On the other hand, from (22) it makes

sense to define L̂⊤
R̂r

via L̂⊤
R̂r

= W⊤L⊤
R which automatically ensures identical number of columns.

Following the discussion in Section 4.3, we may again ask whether there exists a particularly
good pH representation such that the previous error bounds are minimized. With this in mind, it is
obvious to minimize the eigenvalues λi(MoLc) = λi(MoQ

−1). If Y = Q−1 is such that Ŵ (Y ) � 0,
it then follows that X = Y −1 = Q is a solution to (3) and vice versa. Consequently, if X is a
maximal solution to (3) and the system is replaced by the alternative pH formulation (4), then the
error bound will be minimal. This will be further illustrated in the numerical examples.

Similarly as in Remark 11, we note that the approach outlined in the last paragraph can be
viewed as a mixed balancing procedure, where the solution of the observability Lyapunov equation
in (37) is balanced with the minimal solution of the dual KYP-LMI (10). Consequently, this
approach coincides with the balancing procedure presented in [39]. In contrast to [39], we are not
only able to show that the reduced-order models are port-Hamiltonian and, thus, passive, but also
to derive two computable a priori error bounds, which hold under some additional assumptions on
the dissipation matrix R, cf. Corollaries 12 and 16.

6 Numerical examples

In this section, we provide two numerical examples that naturally lead to port-Hamiltonian sys-
tems. Let us emphasize that the focus of this section is on illustrating the theory rather than
demonstrating that the new methods outperform existing ones or than applying the methods to
large-scale systems. Thus, we only consider systems of moderate state space dimension and focus
on the error bounds and on demonstrating the influence of the different choices for the Hamiltonian
on these bounds.

All simulations were generated on an Intel i5-9400F@ 4.1 GHz x 6, 64 GB RAM, MATLAB® version
R2019b.

With regard to the implementation of the individual methods, the following remarks are in
order:

• For obtaining the stabilizing solutions to Riccati equations, we relied on the MATLAB®

built-in routine icare. Similarly, for the computations of theH∞-errors, we used the Control
System Toolbox.

• The extremal solutions to the KYP-LMI (3) were computed by a regularization (see [46,
Theorem 2]) approach based on an artificial feedthrough term D + D⊤ = 10−12Im which
allowed to replace the LMI

[
−A⊤X −XA C⊤ −XB

C −B⊤X D +D⊤

]
� 0

by the Riccati equation associated with the Schur complement, i.e.,

A⊤X +XA+ (C⊤ −XB)(D +D⊤)−1(C −B⊤X) = 0.
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• In order to avoid numerically ill-conditioned operations such as, e.g., the computation of the
Schur complement in the effort-constraint reduction method, cf. (13), numerically minimal
realizations have been computed in a preprocessing step. For this, we utilized the approach
from Section 5 due to its structure and Hamiltonian preserving nature with a truncation
threshold εtrunc = 10−11, cf. Remark 17.

6.1 A scalable mass-spring-damper system

The first example is a scalable multiple-input and multiple-output mass-spring-damper system
that has been introduced in [14]. The system consist of two inputs u1, u2 acting as external forces
applied to the first two masses of the system. In view of the port-Hamiltonian framework, the
outputs y1, y2 are the velocities of the masses. We refrain from a more detailed discussion and
instead refer to the original presentation in [14]. For our numerical simulations, we follow the
parameters used in the latter reference and define the masses mi, spring constants ki and damping
constants ci as mi = 4, ki = 4, and ci = 1 for all i = 1, . . . , n. Here, we use a system consisting
of ℓ = 500 masses, resulting in an original system of dimension n = 1000 defined by the matrices
(J,R,Q,B).

In Figure 1, we show the results obtained for the method from Theorem 8 for three different
port-Hamiltonian realizations as discussed in Section 4.3. In particular, besides the canonical
Hamiltonian function H(x) = 1

2x
⊤Qx resulting from the modelling, we also include the results for

a Hamiltonian corresponding to the extremal solutions Xmin and Xmax to (3). Furthermore, we
include a comparison to the classical version of LQG balanced truncation. The observations are as

follows. As seen in Figure 1a, the error bounds for
∥∥∥[MN ]−

[
M̂r

N̂r

]∥∥∥
H∞

follow the actual behavior of

the error. Moreover, as predicted by the discussion in Section 4.3, the error bound clearly depends
on the chosen Hamiltonian, with the maximal solution of (3) being favorable compared to other
choices. The minimal solution of (3) yields a closed loop error (bound) that is almost stagnating.
While error and error bound for LQG balanced truncation is smallest, let us recall that the reduced
controllers will generally not be port-Hamiltonian.

For investigating the effect on the open-loop behavior, we further show in Figure 1b the standard
H∞-error for the different methods. Note that neither for the method from Theorem 8 nor for
LQG balanced truncation, an error bound is available for this open loop behavior. We also include
reduced-order models obtained by effort-constraint balancing w.r.t. the standard LQG Riccati
equations, since these are guaranteed to be port-Hamiltonian as well. The conclusions are similar
to the closed loop behavior, indicating that if the maximal solution to the KYP-LMI (3) defines
the Hamiltonian, the approximability of the systems is maximized.

6.2 Damped wave propagation

In this subsection we consider the set of linear partial differential equations

a∂tp(t, x) = −∂xq(t, x), for all (t, x) ∈ (0, tend)× (0, ℓ), (42)

b∂tq(t, x) = −∂xp(t, x)− dq(t, x), for all (t, x) ∈ (0, tend)× (0, ℓ), (43)

which describe the damped propagation of pressure waves in a pipeline, see for instance [11].
The unknowns of this system are the mass flow q and the relative pressure p, where the latter
one represents the deviation of the absolute pressure p̃ to a constant reference pressure p̃0, i.e.,
p := p̃ − p̃0. Furthermore, a, b ∈ R>0 are parameters derived from the properties of the fluid and
from the geometry of the pipeline, cf. [11]. Besides, the dissipation within the pipeline is modelled
by the damping parameter d ∈ R>0. Finally, tend denotes the length of the considered time interval
and ℓ the length of the pipe.

In addition to the partial differential equations (42) and (43), we consider homogeneous initial
conditions as well as the boundary conditions

p(t, 0) = u1(t), p(t, ℓ) = u2(t), for all t ∈ (0, tend)

with given functions u1 and u2.
For the semi-discretization in space we use the mixed finite element method as outlined in the

appendix of [11]. To this end, we decompose the computational domain [0, ℓ] by an equidistant
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mesh with N inner grid points and mesh width h = ℓ
N+1 . Based on this mesh, the relative pressure

p(t, ·) is approximated by a piecewise constant function and the mass flow q(t, ·) by a piecewise
linear function. As a result, we obtain after Galerkin projection the linear system of ordinary
differential equations

[
aM1 0
0 bM2

] [
ṗh(t)
q̇h(t)

]
=

[
0 −D

D⊤ −dM2

] [
ph(t)
qh(t)

]
+

[
0
B2

]
u(t). (44)

Here, the vectors ph(t) ∈ RN+1 and qh(t) ∈ RN+2 contain the coefficients of p(t, ·) and q(t, ·) with
respect to the corresponding finite element bases. Furthermore, the coefficient matrices are given
by M1 = hIN+1,

M2 =
h

6




2 1 0 · · · 0 0

1 4 1
. . .

...
...

0 1 4
. . . 0 0

...
. . .

. . .
. . . 1 0

0 · · · 0 1 4 1
0 · · · 0 0 1 2




∈ R(N+2)×(N+2), B2 =




1 0
0 0
...

...
0 0
0 −1



∈ R(N+2)×2, and

D =




−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1



∈ R(N+1)×(N+2).

By adding the output equation

y(t) =
[
0 B⊤

2

] [ph(t)
qh(t)

]
, (45)

we observe that the system (44) and the output equation (45) form a port-Hamiltonian system in
generalized state space form as in (23). We summarize this system as

Eż(t) = (J̃ − R̃)z(t) + B̃u(t) (46a)

y(t) = B̃⊤z(t) (46b)

with

z(t) =

[
ph(t)
qh(t)

]
, E =

[
aM1 0
0 bM2

]
, J̃ =

[
0 −D

D⊤ 0

]
, R̃ =

[
0 0
0 dM2

]
, and B̃ =

[
0
B2

]
.

Finally, we transform (46) to a pH system of the form (1) in the following way. We first compute
the Cholesky decomposition E = LL⊤, transform the state via x = L⊤z and multiply (46a) from
the left by L−1. This leads to the matrices Q = I2N+3, J = L−1J̃L−⊤, R = L−1R̃L−⊤, and
B = L−1B̃. Especially, we obtain a sparse matrix Q, but in general dense matrices J and R.
However, since the first diagonal block of R̃ is 0 and the second one a multiple of M2, the matrix
R is also block diagonal with the diagonal blocks 0 and d

b
IN+2. Thus, the matrix R is sparse for

the example at hand and, furthermore, since the first block of B is 0 and since the second diagonal
block of R is positive definite, there exists c ∈ R>0 such that cR � 1

2BB⊤. Hence, the assumptions
of Corollary 12 are satisfied and we can employ the corresponding error bound.

For the numerical experiments we set a = 1, b = 1, d = 50, and ℓ = 1. Furthermore, the
number of internal grid points is chosen as N = 500 which results in a state space dimension of
1003. The resulting full-order model is used for illustrating the findings of Section 5. In particular,
we investigate the influence of choosing different Hamiltonians, as mentioned in the paragraph after
Remark 19, and we compare the errors with the proposed error bounds. In particular, in the case of
the canonical Hamiltonian function 1

2x
⊤Qx, the constant c from Corollary 12 can be calculated by

computing the largest eigenvalue of 1
2BB⊤ and dividing it by d

b
. Here, we exploited again that the

second diagonal block of R is a multiple of the identity matrix. However, this reasoning does not
apply when we change the Hamiltonian, and thus R, as discussed in subsection 4.3. In this case,
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the assumptions of Corollary 12 may be violated and this is in fact what we observe numerically
for the example at hand. Thus, there is no error bound available for ‖G − Ĝr‖H∞

in the cases
where we replace Q by Xmax or Xmin in the Hamiltonian.

In Figure 2 we depict the errors in the transfer function and in the spectral factors of the
Popov function over the dimension of the reduced-order models. When comparing the errors with
the respective error bounds, we observe that there is a good agreement between their qualitative
behaviors. Furthermore, we find in Figure 2b that the choice of the Hamiltonian plays an important
role for the error bound as predicted by the theory. Since the decay of the actual error resembles
the decay of the corresponding error bound in this example, the choice of the Hamiltonian can also
be observed to have a significant influence on the actual errors.

In addition to the approach introduced in Section 5, we also show the corresponding H∞

error decays for the effort-constraint reduction method and for positive real balanced truncation
(positive real BT) in Figure 2a. We choose them as reference methods since they are the schemes
most related to our new approach in the sense that they are balanced-based model reduction
techniques which preserve the port-Hamiltonian structure. For the example at hand, we observe
that the error decay of positive real balanced truncation is similar to the one by our approach when
using the Hamiltonian corresponding to Xmax. On the other hand, the effort-constraint reduction
yields reduced-order models with larger errors which are of the same order of magnitude as the
ones obtained by our approach using the Hamiltonian based on Xmin.

7 Conclusion

In this paper we propose new balancing-based methods for controller design and for model order
reduction which preserve the structure of linear time-invariant port-Hamiltonian systems without
algebraic constraints. To this end, we first derive a modified LQG balancing approach which
ensures that the resulting LQG controller is port-Hamiltonian, by properly choosing the weighting
matrices in the algebraic Riccati equations. Based on this balancing, we introduce a corresponding
model reduction method to obtain a low-dimensional port-Hamiltonian controller. In this context,
we also present an a priori error bound in the gap metric, which is structurally the same as the one
for standard LQG balanced truncation. Moreover, we show that the error bound can be improved
by replacing the canonical Hamiltonian by one which is based on the maximal solution of the
associated KYP linear matrix inequality.

In addition to the modified LQG balancing approach, we also derive a modification of standard
balanced truncation in order to ensure preservation of the port-Hamiltonian structure. For this
method, we derive an error bound w.r.t. the spectral factors of the associated Popov function.
For the case that a certain condition on the dissipation port and the input port of the full-order
model is satisfied, we also present an a priori bound for the H∞ error of the transfer function.
Furthermore, we give an intuitive interpretation of the mentioned condition by showing its relation
to the existence of a structure-preserving output feedback. Finally, the new methods and the
corresponding error bounds are illustrated by means of two numerical examples: A mass-spring-
damper system and a semi-discretized damped wave equation.

Based on the findings of this paper, an interesting next step is the generalization to port-
Hamiltonian differential-algebraic equation systems. This would allow to also construct low-
dimensional port-Hamiltonian controllers for systems with algebraic constraints. Furthermore, we
mainly focus on the theory in this paper, whereas an efficient and robust numerical implementation
is not addressed. These practical considerations are certainly an interesting research direction for
the future in order to explore the applicability and competitiveness of the new approaches.
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A Q-conjugated LQG (reduced) control design

Our choice of the weighting matrices R̃, Rf , Q̃ and Qf leading to (18) and (19) is heavily inspired
by [50] where the authors propose a different set of matrices to enforce the resulting controller to be
port-Hamiltonian. In this appendix, we review this method and provide two examples which show
that the controller obtained with this approach may generally not be realized as a port-Hamiltonian
system. Concerning the reduced-order model obtained by the associated (modified) LQG balanced
truncation method, we provide a connection to the new approach from Section 3. In particular,
one implication of our discussion is that the reduced models from Algorithm 1 and 2 share the
same error bound.

Let us begin by recalling the precise result concerning port-Hamiltonian control design in The-
orem 20 and the corresponding model/controller reduction method in Algorithm 2.

Theorem 20. [50, Theorem 7] Denote the LQG Gramians Pf , solution of the filter Riccati equation
(17) and Pc, solution of the control Riccati equation (16). Consider the LQG problem with the
following relation between the covariance matrix Rf and the weighting matrix R̃ = Rf and with the
following relation between the covariance matrix Qf and the weighting matrix Q̃:

Qf = Q−1(2QJ⊤Pc + 2PcJQ + Q̃)Q−1. (47)

In this case the LQG Gramians satisfy the following relation:

PcQ
−1 = QPf . (48)

Furthermore, assuming that the port-Hamiltonian system is stable, the control Riccati equation (16)
and the filter Riccati equation (17) admit a unique solution, the LQG controller is passive and the
closed loop system can be written as the feedback interconnection of the port-Hamiltonian system
(1) with the port-Hamiltonian realization of the LQG controller.

Algorithm 2 Q-conjugated LQG reduced controller design ([50])

Input: J,R,Q, Q̃ ∈ Rn×n, B ∈ Rn×m, R̃ ∈ Rm×m

Output: Reduced-order LQG controller (Acr, Bcr, Ccr)
1: Choose Rf = R̃ and Qf as in (47) and compute Pc and Pf = Q−1PcQ

−1 solving (16) and (17).
2: Compute T ∈ Rn×n defined by TPfT

⊤ = T−⊤PcT
−1 = diag(σ1, . . . , σn).

3: Balance the system Jb = TJT⊤, Rb = TRT⊤, Qb = T−⊤QT−1, and Bb = TB.
4: Proceed to the reduction by using the effort-constraint method accordingly to (13).
5: Compute (Acr, Bcr, Ccr) for (Ar, Br, Cr) based on (15) and Theorem 20.

The main idea in [50] is to exploit relation (48) such that the controller (14) with (Ac, Bc, Cc)
as in (15) is characterized by the same quadratic Hamiltonian function H(x) = 1

2x
⊤Qx that defines

the original system (1). In more detail, note that

Ac = A−BR̃−1B⊤Pc − PfC
⊤R−1

f C

= A−BR̃−1B⊤QPfQ− PfQBR̃−1B⊤Q

= (J − (R+BR̃−1B⊤QPf + PfQBR̃−1B⊤)︸ ︷︷ ︸
=:Rc

)Q,

Cc = R̃−1B⊤Pc = R−1
f B⊤QPfQ = B⊤

c Q.

In [50], the authors claim that Rc is symmetric positive definite, rendering the controller port-
Hamiltonian. The argument provided is that an LQG controller yields a stable closed loop system,
implying Rc = R⊤

c ≻ 0. Let us emphasize that while the LQG controller produces a stable closed
loop system, the controller itself does not generally have to be stable, see [19]. Additionally,
consider the following example

A =

[
1 2
−2 −2

]
=

[
0 2
−2 0

]
−
[
−1 0
0 2

]
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which shows that asymptotic stability of A = J − R does not (automatically) yield a positive
definite R but might require a change of the Hamiltonian matrix Q = Q⊤ ≻ 0. In the following we
provide two examples showing that the statement of the above theorem is generally false, even for
the particular choice Q̃ = C⊤C.

Example 21 (Ac unstable for general Q̃). Consider a port-Hamiltonian system (1) where

J =

[
0 0
0 0

]
, R =

[
1 0
0 1

]
, Q =

[
2 1
1 1

]
, B =

[
1 0
2 1

]
.

Let the weighting matrices for the control and filter Riccati equation (16) and (17) be as follows

R̃ =

[
1 0
0 1

]
= Rf , Q̃ =

[
5 4
4 7

]
.

Note that

A⊤ +A−BB⊤ + Q̃ =

[
−4 −2
−2 −2

]
−
[
1 2
2 5

]
+

[
5 4
4 7

]
=

[
0 0
0 0

]
.

This implies that Pc = I2 leading to

Qf = Q−1(2QJ⊤Pc + 2PcJQ+ Q̃)Q−1 =

[
4 −7
−7 17

]
.

One easily verifies that Pf = Q−1PcQ
−1 =

[
2 −3
−3 5

]
as well as

A

[
2 −3
−3 5

]
+

[
2 −3
−3 5

]
A⊤ −

[
2 −3
−3 5

]
QBB⊤Q

[
2 −3
−3 5

]
+Qf = 0.

For the resulting controller, we obtain

Ac = A−BB⊤Pc − PfQBB⊤Q =

[
2 1

−17 −17

]

which is unstable since λ1(Ac) ≈ 1.0586 and λ2(Ac) ≈ −16.0586, contradicting the assertion from
Theorem 20.

Example 22 ((Ac, Bc, Cc) not pH for Q̃ = C⊤C). Since we obtained the example by numerical
tests, below we only present the first five relevant digits of the matrices. In particular, consider a
pH system (1) where

J ≈




0 4.1002 0.5925
−4.1002 0 −1.9806
−0.5925 1.9806 0


 , R ≈




1.2267 −1.6531 0.2866
−1.6531 3.7295 −0.9714
0.2866 −0.9714 0.2996


 ,

Q = I3, B = C⊤ ≈




1.3703 0.8682 2.1628
−1.2120 −0.8492 −1.9551
0.1859 −0.2009 −0.1078


 .

Choosing R̃ = I3 and Q̃ = C⊤C, the previous system is already balanced in the sense that

Pc = Pf ≈



0.8462 0 0

0 0.5565 0
0 0 0.1416


 .

For the controller (Ac, Bc, Cc) it now holds that

Ac = A−BB⊤Pc − PfC
⊤C = A−BB⊤Pc − PcBB⊤ ≈



−13.5962 15.0479 0.4569
6.8475 −10.4210 −1.1181
−0.7281 2.8430 −0.3241


 ,

Bc = PfC
⊤R−1

f = PcBR̃−1 = C⊤
c ≈




1.1595 0.7346 1.8301
−0.6744 −0.4725 −1.0879
0.0263 −0.0284 −0.0153


 .
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As mentioned before, port-Hamiltonian systems can be characterized via the KYP-LMI (3). Since
here we are interested in (Ac, Bc, Cc) being port-Hamiltonian, we have to find X = X⊤ � 0 such
that

[
−X Ac −A⊤

c X C⊤
c −X Bc

Cc −B⊤
c X 0

]
� 0.

Since Bc = C⊤
c ∈ R3×3 and Bc is regular, it has to hold that X = I3. However, this implies

−Ac −A⊤
c =



27.1922 −21.895 0.2716
−21.895 20.8416 −1.7253
0.2716 −1.7253 0.6481


 6� 0

since the smallest eigenvalue of −Ac −A⊤
c is λmin(−Ac −A⊤

c ) ≈ −0.0445 < 0.

Interestingly, similar to the result from Theorem 4, balancing a pH system according to Algo-
rithm 2 leads to a diagonal form of Qb in (12).

Lemma 23. Let a minimal port-Hamiltonian system (1) be given by (J,R,Q,B) and let Rf =
R̃ = Im, Q̃ = C⊤C and Qf be given as in (47). If Ab = (Jb − Rb)Qb, Bb, and Cb = B⊤

b Qb

are the system matrices of the corresponding system which is balanced w.r.t. Pf and Pc as in (16)
and (17), then Qb = In. In particular, it holds that Qr = Qb11 and, consequently, (Ar , Br, Cr) is
obtained by truncation of (Ab, Bb, Cb).

Proof. For a system balanced w.r.t. (16) and (17), with weighting matrices as in Theorem 20, we
have that

Υ = diag(υ1, . . . , υn) = P̂f = Q−1
b P̂cQ

−1
b = Q−1

b ΥQ−1
b .

Since we assumed (Ab, Bb, Cb) to be a minimal realization, the pair (Ab, Cb) is observable implying
that the solution Pc to the classical control Riccati equation is positive definite. Hence, we conclude
that υi > 0, i = 1, . . . , n as well as

In = Υ− 1
2 (Q−1

b ΥQ−1
b )Υ− 1

2 = (Υ− 1
2Q−1

b Υ
1
2 )(Υ

1
2Q−1

b Υ− 1
2 ) = (Υ− 1

2Q−1
b Υ

1
2 )(Υ− 1

2Q−1
b Υ

1
2 )⊤.

This shows that Υ− 1
2Q−1

b Υ
1
2 is orthogonal. Since Q−1

b = (Q−1
b )⊤ ≻ 0, for its eigenvalues λj we

obtain that

λj(Υ
− 1

2Q−1
b Υ

1
2 ) = λj(Q

−1
b ) ∈ R>0.

Using the orthogonality of Υ− 1
2Q−1

b Υ
1
2 , we conclude that λi(Υ

− 1
2Q−1

b Υ
1
2 ) = 1 for i = 1, . . . , n.

In other words, Υ− 1
2Q−1

b Υ
1
2 = In which also implies that Qb = In. The remaining assertions

immediately follow from the definition of Qr.

Let us emphasize that Lemma 23 implies that balanced truncation w.r.t. the Gramians from [50]
automatically preserves the pH structure of (A,B,C) within the reduced-order model (Ar, Br, Cr).
This is a consequence of the approach implicitly utilizing the effort-constraint reduction framework.
In view of Example 21 and Example 22, a reduced LQG controller (Acr, Bcr, Ccr) will however
generally be not pH.

With the intention of showing that the reduced-order models produced by Algorithm 1 and 2
are state space equivalent, let us note that the balancing matrix T in Algorithm 2 can be specified
explicitly as

T = Υ− 1
2Z⊤Lc, where L⊤

c Lc = Pc, L⊤
f Lf = Pf ,

[
U1 U2

]
︸ ︷︷ ︸

=U

[
Υ1 0
0 Υ2

]

︸ ︷︷ ︸
=Υ

[
Z⊤
1

Z⊤
2

]

︸ ︷︷ ︸
=Z⊤

= LfL
⊤
c .

Moreover, we also have that T−1 = L⊤
f UΥ− 1

2 . From Lemma 23, we already know that Qb = In and,
hence, the reduced model from Algorithm 2 is obtained from a regular Petrov–Galerkin projection
P = VW⊤ of the form

Ar = W⊤AV, Br = W⊤B, Cr = CV,

Jr = W⊤JW, Rr = W⊤RW, Qr = Ir,
(49)
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with V = T−1Vb = L⊤
f U1Υ

− 1
2

1 and W⊤ = W⊤
b T = Υ

− 1
2

1 Z⊤
1 Lc, as in section 2.

The next result shows that the reduced model (Ar, Br, Cr) is state space equivalent to a reduced

model that is obtained by truncation of a system balanced w.r.t. the Gramians P̂c and P̂f , i.e., a
model which is computed by Algorithm 1.

Lemma 24. Let a minimal port-Hamiltonian system (1) be given by (J,R,Q,B) and let Rf =

R̃ = Im, Q̃ = C⊤C, and Qf be given as in (47). Furthermore, let (Âr, B̂r, Ĉr) be the corresponding
reduced-order model obtained from Algorithm 2. Besides, consider a state space transformation of

the form Âr = T̂ArT̂
−1, B̂r = T̂Br, and Ĉr = CrT̂

−1, where T̂ = Υ
1
4

1 , that produces the equivalent

port-Hamiltonian system with Ĵr = T̂ JrT̂ , R̂r = T̂RrT̂ , and Q̂r = T̂−1QrT̂
−1 = Υ

− 1
2

1 . Then it
holds that

ÂrΥ
1
2

1 + Υ
1
2

1 Â
⊤
r −Υ

1
2

1 Ĉ
⊤
r ĈrΥ

1
2

1 + B̂rB̂
⊤
r + 2R̂r = 0,

Â⊤
r Υ

1
2

1 +Υ
1
2

1 Âr −Υ
1
2

1 B̂rB̂
⊤
r Υ

1
2

1 + Ĉ⊤
r Ĉr = 0.

Proof. Recalling that Ar = Jr −Rr and Br = Bb1 = Q⊤
r Bb1 = C⊤

r , we obtain

ÂrΥ
1
2

1 +Υ
1
2

1 Â
⊤
r −Υ

1
2

1 Ĉ
⊤
r ĈrΥ

1
2

1 + B̂rB̂
⊤
r

= T̂ (Jr −Rr)T̂
−1Υ

1
2

1 +Υ
1
2

1 T̂
−1(J⊤

r −R⊤
r )T̂ −Υ

1
2

1 T̂
−1BrB

⊤
r T̂−1Υ

1
2

1 + T̂BrB
⊤
r T̂

= T̂
(
(Jr −Rr) + (Jr −Rr)

⊤ −BrB
⊤
r +BrB

⊤
r

)
T̂

= −2T̂RrT̂ = −2R̂r.

Similarly, we obtain

Â⊤
r Υ

1
2

1 +Υ
1
2

1 Âr −Υ
1
2

1 B̂rB̂
⊤
r Υ

1
2

1 + Ĉ⊤
r Ĉr

= (T̂ (Jr −Rr)T̂
−1)⊤Υ

1
2

1 +Υ
1
2

1 (T̂ (Jr −Rr)T̂
−1)−Υ

3
4

1 BrB
⊤
r Υ

3
4

1 + T̂−1BrB
⊤
r T̂−1

= T̂−1
(
(Jr −Rr)

⊤Υ1 +Υ1(Jr −Rr)−Υ1BrB
⊤
r Υ1 + C⊤

r Cr

)
T̂−1 = 0,

where in the last step we have used that Ar = Jr − Rr, Br = C⊤
r and the fact that Υ1 solves the

control Riccati equation for (Ar, Br, Cr).
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(a) Decay of the H∞-error of the coprime factors for the approach from subsection 3.1 using three dif-
ferent choices for the Hamiltonian. The solid lines represent the respective error bounds as presented in
Theorem 8. As a reference, we also added the error decay for classical LQG balanced truncation and the
corresponding error bound.
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Ĝ

r
‖ H

∞

P̃f = Q−1

P̃f = X−1
min

P̃f = X−1
max

LQG-BT
Effort-Constraint-LQG-BT

(b) Decay of the H∞ error of the transfer function for the approach from subsection 3.1 using three
different choices for the Hamiltonian. As a reference, we also added the error decay for classical LQG
balanced truncation and for the effort-constraint reduction based on balancing the standard LQG Riccati
equations.

Figure 1: Comparison of closed and open loop errors for a mass-spring-damper system with n =
1000.
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(a) Decay of the H∞ error of the transfer function for the approach from Section 5 using three different
choices for the Hamiltonian. The solid line represents the error bound from Corollary 12 for the case of
the canonical Hamiltonian. As a reference, we also added the error decay for effort-constrained reduction
and for positive real balanced truncation.
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(b) Decay of the H∞ error of the spectral factors for the approach from Section 5 using three different
choices for the Hamiltonian. The solid lines represent the respective error bounds as presented in Corollary
16.

Figure 2: Damped wave equation – Error decay for the balancing-based model reduction approach
introduced in Section 5.
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