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Abstract

We design a virtual element method for the numerical treatment of the two-dimensional parabolic variational
inequality problem on unstructured polygonal meshes. Due to the expected low regularity of the exact
solution, the virtual element method is based on the lowest-order virtual element space that contains the
subspace of the linear polynomials defined on each element. The connection between the nonnegativity of
the virtual element functions and the nonnegativity of the degrees of freedom, i.e., the values at the mesh
vertices, is established by applying the Maximum and Minimum Principle Theorem. The mass matrix is
computed through an approximate L2 polynomial projection, whose properties are carefully investigated
in the paper. We prove the well-posedness of the resulting scheme in two different ways that reveal the
contractive nature of the VEM and its connection with the minimization of quadratic functionals. The
convergence analysis requires the existence of a nonnegative quasi-interpolation operator, whose construction
is also discussed in the paper. The variational crime introduced by the virtual element setting produces
five error terms that we control by estimating a suitable upper bound. Numerical experiments confirm the
theoretical convergence rate for the refinement in space and time on three different mesh families including
distorted squares, nonconvex elements, and Voronoi tesselations.

Keywords: Parabolic variational inequalities, Virtual element method, Maximum and Minimum Principle,
Nonnegative quasi-interpolant,Oblique projection operators Time-dependent problems

1. Introduction

Variational inequalities have been an active research field in the last decades and has found many im-
portant applications in finance and engineering [10, 50, 57]. For example, they are used in the formulation
of the one-phase Stefan problem [58]. The Allen—Cahn equation, one of the models of the kinetics of grain
growth in polycrystals, can be treated as a parabolic variational inequality [23]. The American put option
problem [49] becomes a one-phase Stefan problem after a suitable change of variable [48]. The electrochem-
ical machine problem is also modeled using variational inequalities [39]. Static contact problems, frictional
contact problems, and thermal expansion problems can be described using variational inequalities, cf. [32].
The numerical approximation of the solution to variational inequalities has also been a challenging area of
research since both the design of numerical methods and the convergence analysis are not straightforward [45].

The Galerkin approach and, in particular, the finite element method (FEM) has proven to be quite
effective to this purpose. The linear Galerkin FEM for the time-dependent parabolic variational inequality
(with zero obstacle) was originally proposed in [47]. In this paper, which is the most pertinent to our current
work, a priori error estimates in the L∞ norm are derived assuming that the solution is in L∞

(
0, T ;W 2,p(Ω)

)
and its first derivative in time is in L∞

(
0, T ;H1

0 (Ω)
)
∩L∞

(
0, T ;L∞(Ω)

)
(we explain this notation and provide

a formal definition of these functional spaces later in this section). A priori estimates in the L2 norm are also
derived for the Galerkin method in [41] assuming that the solution is in L2(0, T ;L2(Ω)) and under certain
regularity assumptions on the angles of each element of the triangulations. In [64], L2 error estimates are
derived for a fully discrete scheme based on the θ-method in time. Inspired by the American put option
problem, a posteriori error estimates are studied in [53]. In [19], the Authors derive error estimates for
the parabolic variational inequality problem in the uniform norm. Moreover, in [3, 21, 46, 59], mathematical
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models of the parabolic obstacle problem related to the American put option problem and the Stefan problem
are investigated.

In this work, we consider the approach that was originally proposed in [47] for solving a parabolic varia-
tional inequality on triangular meshes and study how to generalize it to polygonal meshes using the virtual
element method (VEM) [2, 11]. Designing Galerkin schemes for meshes with polygonal elements in 2D and
polyhedral elements in 3D has been a major topic in the numerical literature of partial differential equations
of the last two decades. Several classes of numerical methods have been designed that are suitable to meshes
with elements having very general geometric shapes. Other than the VEM, a surely nonexhaustive list in-
cludes the polygonal/polyhedral finite element method (PFEM) [22, 60, 61], the mimetic finite difference
method (MFD) [13, 14, 51], the hybridizable discontinuous Galerkin (HDG) method and the hybrid high-
order (HHO) method [34, 36–38]. Pertinent to the topic of our work are also the papers of References [6, 7].

The virtual element method was proposed as a variational reformulation of the mimetic finite difference
method of References [13, 26] for the Poisson equation, and later extended to the numerical approximation
of general elliptic equations [12], elasticity problems [54], eigenvalue problems [33, 42, 55, 56], Stokes and
Navier-Stokes equations [4, 15, 18, 28, 43], and the Cahn-Hilliard equations [5]. Furthermore, the mixed
formulation [27] the nonconforming formulation [9, 30, 31], and the enriched formulation [20] have been
proposed and a posteriori error estimations [16, 17, 29, 35] have been derived for mesh adaptivity. VEM for
anisotropic polygonal discretizations are also found in [8].

The VEM satisfies a Galerkin-type orthogonalization property on polynomial subspaces and can be seen
as a generalization of the FEM on arbitrary polytopal meshes. The finite dimensional approximation spaces
consist of polynomial and nonpolynomial functions that satisfy a partial differential equation locally defined
on the mesh elements. The nonpolynomial functions are not known inside the elements, but the degrees of
freedom of the virtual element functions are carefully chosen so that some polynomial projection operators
are computable. These projection operators make it possible to design computable bilinear forms for the
discrete variational formulation. Since an explicit knowledge of the virtual element functions is not required
in the practical implementation, such “virtual” setting works for very general shaped polytopal elements. For
example, nonconvex elements and elements with hanging nodes are admissible and the latter do not require
any special treatment.

Due to the expected low regularity of the solution, our method is based on the lowest-order approximation
space proposed in [2, 11]. The degrees of freedom are the vertex values and our VEM coincides with the FEM
of Reference [47] on all triangular meshes. The generalization to the virtual element framework is nontrivial
and the design of an effective VEM and its analysis is challenging for several reasons that we illustrate below.
First, the variational formulation is given on the subset of the nonnegative virtual element functions, which
we identify with those functions of the virtual element space whose degrees of freedom, i.e., the vertex values,
are nonnegative. The property that a function with nonnegative vertex values is nonnegative is obvious for
a linear polynomial interpolating such values on a triangular element. However, to prove that such property
holds for a virtual element function on a polygonal element is a nontrivial task. In fact, such functions are
not generally known in closed form, but only as the solutions of an elliptic partial differential equation that
is locally set on the polygonal element. We address this issue by noting that the lowest-order virtual element
space consists of functions that are harmonic inside each element and have a continuous piecewise linear trace
on the elemental boundary given by the interpolation of the vertex values. Consequently, we can prove the
nonnegativity property by invoking the Maximum and Minimum Principle Theorem [44]. According to this
theorem, a nonconstant harmonic function on a compact set of points, e.g., a (closed) polygonal element,
must take its maximum and minimum value on the boundary. If all its vertex values are nonnegative, so
is their piecewise linear interpolation on the elemental boundary and the function itself inside the element.
Unfortunately, we cannot apply this theorem to the modified (“enhanced”) virtual element space introduced
in [2] as its functions are no longer harmonic. This fact poses a major issue to the design of our VEM since
we need an L2-like orthogonal projector for the calculation of the mass matrix in the discretization of the
time derivative term. To address this issue, we design a different projector, which is still computable from
the degrees of freedom of the space and is orthogonal with respect to an approximate L2 inner product. We
carefully characterize the approximation properties of this operator to prove the convergence of the VEM,
estimate the approximation error and derive the convergence rate for the refinement in time and space.

We also prove the well-posedness of the numerical method, i.e., existence and uniqueness of the virtual
element solution, in two different ways. The first proof reveals the contractive nature of the scheme, which
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motivates an iterative implementation at every time step from a practical viewpoint. The second proof gen-
eralizes a minimization argument briefly mentioned in [47] to the new virtual element framework proposed in
this work and establishes a clear connection between the VEM and the minimization of quadratic functionals.

To carry out the theoretical analysis and prove the convergence of the VEM, we investigate how the virtual
element reformulation impacts on the original convergence proof of Reference [47]. A major ingredient of
the latter is the existence of a nonnegative quasi-interpolation operator for functions that are only H1-
regular as, for example, the derivative in time of the parabolic inequality solution. To address this point,
we generalize the construction of such operator in [47], so that it can work on polygonal elements with the
desired nonnegativity property. Finally, we identify the new terms that arise from the “variational crime”
introduced by the virtual element method and provide an upper bound for all of them.

The numerical experiments confirm the validity of our approach by solving a manufactured solution prob-
lem on very general meshes including distorted square elements, nonconvex elements and Voronoi tesselations.
The experimental convergence rates reflects the convergence rates expected from the theoretical analysis.

The outline of the paper is as follows. In the rest of this section, we introduce some background material
from functional analysis and the notation used in the paper. In Section 2, we discuss the continuous weak
formulation of the mathematical model. In Section 3, we present our virtual element method for the parabolic
inequality problem. In Section 4, we introduce some technical lemmas and detail the construction of the quasi-
interpolation nonnegative operator for the convergence analysis. In Section 5, we prove the convergence of
the method and derive the a priori error estimate. In Section 6, we assess the performance of the method
on three different families of polygonal meshes. In Section 7, we summarize our results and offer the final
remarks.

1.1. Notation

In the rest of this section, we introduce some background material from functional analysis as a few basic
definitions of functional spaces, inner products, norms and seminorms. The notation adopted in this paper
is consistent with Reference [1] for the Sobolev and Hilbert spaces and Reference [40] for the Bochner spaces.

1.1.1. Functional spaces

Let ω be an open, bounded, connected subset of R2. We consider a real number p such that 1 ≤ p <∞
and an integer number k ≥ 1. We denote the Sobolev space of the real-valued, p-integrable functions defined
on ω by Lp(ω), and the Sobolev space of the real-valued, essentially bounded functions defined on ω by
L∞(ω). We denote the subspace of functions of Lp(ω) whose weak derivatives of order up to k are also in
Lp(ω) by W k,p(ω). For p = 2, we prefer the notation Hk(ω). We recall that L2(ω) and Hk(ω) are Hilbert
spaces when endowed with the inner products

(φ, ψ)ω :=

∫
ω

φ(x)ψ(x)dx ∀φ, ψ ∈ L2(ω), (1)

(φ, ψ)k,ω :=
∑
|α|≤k

∫
ω

Dαφ(x)Dαψ(x)dx ∀φ, ψ ∈ Hk(ω), k ≥ 1, (2)

and the induced norms ‖ψ‖0,ω = (ψ,ψ)
1/2
ω and ‖ψ‖k,ω = (ψ,ψ)

1/2
k,ω. All integrals must be intended in the sense

of the Lebesgue integration theory and we may use the abbreviation “a.e.” for “almost everywhere” whenever
a pointwise property holds except for a subset of points with zero Lebesgue measure. In the formulation of
the method, ω can be a mesh element (see the next subsection) or the whole computational domain Ω. In
the last case, we omit the subscript Ω and use (φ, ψ), (φ, ψ)k, ‖ψ‖k and |ψ|k instead of (φ, ψ)Ω, (φ, ψ)k,Ω,
‖ψ‖k,Ω and |ψ|k,Ω.

Let T > 0 be a real number and (X, ‖ · ‖X) a normed space, where X can be L2(Ω) or Hk(Ω), k ≥ 1.
The Bochner space Lp(0, T ;X) is the space of functions v such that the sublinear functional

‖v‖Lp(0,T ;X) =


(∫ T

0

‖v(t)‖pX dt

)1/p

1 ≤ p <∞,

ess supt∈[0,T ] ‖v(t)‖X , p =∞,
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is a finite norm for almost every t ∈ [0, T ]. According with this notation, we also denote the space of the
continuous functions from [0, T ] to X by C(0, T ;X).

Throughout the paper, we use the letter “C” to denote a strictly positive constant that can take a
different value at any occurrence. The constant C is independent of the mesh size parameter h and the time
step ∆t that will be introduced in the next sections. However, C may depend on the other parameters of
the differential problem and its virtual element discretization such as the domain shape, the mesh regularity
constant and the coercivity and continuity constants of the bilinear forms used in the variational formulation.

1.1.2. Mesh notation and regularity assumptions

For the exposition sake, we assume that the computational domain Ω is an open, bounded, polygonal
subset of R2 with Lipschitz boundary Γ. Let T = {Ωh}h be a family of mesh decompositions Ωh of Ω
uniquely identified by the value of the mesh size parameter h ∈ H. Here, H is a suitable subset of the
real line R having zero as its unique accumulation point. Every mesh Ωh is a collection of nonoverlapping,
open, polygonal elements denoted by E and forming a finite covering of Ω, i.e., Ω =

⋃
E∈Ωh

E. The polygonal

elements are nonoverlapping in the sense that the intersection of the closures in R2 of any pair of them

E,E′ ∈ Ωh has area equal to zero, i.e.,
∣∣E∩E′∣∣ = 0. Accordingly, the intersection of their boundaries ∂E∩ ∂E′

is either the empty set, or the subset of common vertices, or the subset of shared edges (including the edge
vertices). Every polygon E has a nonintersecting boundary denoted by ∂E and formed by straight edges e,
area |E|, center of gravity xE = (xE, yE)T and diameter hE = maxx,y∈E |x − y|. As usual, the maximum of
the diameters of the elements in a mesh Ωh provides the value of the mesh size h, e.g., h = maxE∈Ωh hE.
Consistently with this notation, he is the length |e| of edge e and xe = (xe, ye)

T is the position vector of the
midpoint of edge e.

In the formulation of the VEM, we require that all the meshes Ωh satisfy the following mesh regularity
assumption.

(M) There exists a real, strictly positive constant ρ > 0, which is independent of h, such that:

(M1) every element E ∈ Ωh is star-shaped with respect to a ball of radius greater than ρhE;

(M2) for every element E ∈ Ωh, the length he of every edge e ⊂ ∂E satisfies he ≥ ρhE.

An admissible mesh that satisfies assumptions (M1)-(M2) may have elements with a very general geometric
shape. However, the star-shapedness property (M1) implies that the polygonal elements are simply connected
subsets of R2, and the scaling assumption (M2) implies that the elements cannot become too skewed and the
number of edges in each elemental boundary is uniformly bounded over the whole mesh family {Ωh}h.

1.1.3. Polynomial spaces

We denote the linear space of polynomials of degree ` = 0, 1 defined on the element E or the edge e by
P`(E) and P`(e), respectively, and we conveniently set P−1(E) = {0}. Space P1(E) is the span of the scaled
monomials defined as:

m1(x, y) = 1, m2(x, y) =
x− xE
hE

, m3(x, y) =
y − yE
hE

∀(x, y) ∈ E. (3)

Similarly, P1(e) is the span of the monomials µ1(s) = 1, µ2(s) = (s− se)/he, where s ∈ e is a local coordinate
on edge e, and se is the position of the edge midpoint xe in such a local cordinate system. We let P1(Ωh)
denote the linear space of the piecewise discontinuous polynomials that are globally defined on Ω and such
that q|E ∈ P1(E) for all elements E ∈ Ωh.

In the VEM formulation, we make use of the elliptic projection operator Π∇,E : H1(E) → P1(E), which
is defined on every mesh element E so that, for all v ∈ H1(E), the linear polynomial Π∇,Ev is the solution to
the variational problem(

∇(Π∇,Ev − v),∇q
)
E

= 0 ∀q ∈ P1(E) and P 0,E
(
Π∇,Ev − v) = 0. (4)
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In (4), P 0,Ev is the projection of v onto the constant polynomials given by

P 0,Ev :=
1

|∂E|

∫
∂E

v(x)dx. (5)

Accordingly, we define the global elliptic projection operator Π∇ : H1(Ω)→ P1(Ωh) as the operator satisfying(
Π∇v

)
|E = Π∇,E

(
v|E
)

for every mesh element E.

For the sake of reference, we also define the orthogonal projection operator Π0,E : L2(E) → P1(E) with
respect to the inner product in L2(E), although we will not use it in the formulation of the method. The
orthogonal projection Π0,Ev of a function v ∈ L2(E) is the linear polynomial solving the variational problem:(

Π0,Ev − v, q
)
E

= 0 ∀q ∈ P1(E). (6)

Accordingly, we define the global orthogonal projection operator Π0 : L2(Ω) → P1(Ωh) as the operator
satisfying

(
Π0v

)
|E = Π0,E

(
v|E
)

for every mesh element E.

2. Parabolic Variational Inequality

We let K =
{
v ∈ H1

0 (Ω) : v ≥ 0 a.e. in Ω
}

be the subset of the nonnegative functions in H1
0 (Ω). We also

consider the positive real number T representing the final integration time and the time interval J = [0, T ],
and introduce the bilinear form

a(v, w) =

∫
Ω

∇v(x) · ∇w(x)dx ∀v, w ∈ H1(Ω). (7)

This bilinear form is coercive and continuous on H1
0 (Ω). So, there exists two real, positive constants α and

M such that that α ‖v‖21 ≤ a(v, v) and a(v, w) ≤M ‖v‖1 ‖w‖1 for all v, w in H1
0 (Ω). We search the solution

u(t) to the parabolic variational inequality problem for a given right-hand side source term f and initial state
u0, which reads as

Find u(t) : J → K such that, for almost every t ∈ J it holds that(
∂u

∂t
, v − u

)
+ a(u, v − u) ≥ (f, v − u) ∀v ∈ K, (8a)

u(0) = u0. (8b)

The solution u exists and is unique [25] under the assumptions

(A1) f ∈ C
(
J ;L∞(Ω)

)
;

(A2) ∂f/∂t ∈ L2
(
J ;L∞(Ω)

)
;

(A3) u0 ∈W 2,∞(Ω) ∩ K.

In particular, if assumptions (A1)-(A3) are true, solution u is such that:

u ∈ L∞
(
0, T ;W 2,p(Ω)

)
for 1 ≤ p <∞, (9a)

∂u

∂t
∈ L∞

(
0, T ;H1

0 (Ω)
)
∩ L∞

(
0, T ;L∞(Ω)

)
, (9b)(

∂+u

∂t
, v − u

)
+ a(u, v − u) ≥ (f, v − u) ∀v ∈ K, t ∈ J, (9c)

where ∂+u/∂t denotes the right-hand derivative of u with respect to t. Moreover, u satisfies the partial
differential equations

∂+u

∂t
= ∆u+ f a.e. on Ω+(t), (10a)

∂+u

∂t
= max(f, 0) a.e. on Ω0(t), (10b)
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where, for almost every t ∈ J , Ω+(t) =
{
x ∈ Ω : u(x, t) > 0

}
and Ω0(t) =

{
x ∈ Ω : u(x, t) = 0

}
.

Finally, we partition the time interval [0, T ] into N equally spaced subintervals Jn =
[
tn, tn+1

]
having

size ∆t = tn+1 − tn = T/N , and let m(Γn) denote the area of the set

Γn = ∪
t∈Jn

Ω+(t) ∪ Ω+(tn+1) \ Ω+(t) ∩ Ω+(tn+1). (11)

Our last assumption is that

(A4)
∑N−1
n=0 m(Γn) ≤ C for some real, positive constant C independent of h and ∆t.

This assumption together with (A1)-(A3) will be used in the convergence analysis of the method that we
perform in Section 5.

3. Virtual element approximation

Let Vh be a conforming finite dimensional subspace of H1
0 (Ω) that will be referred to as the virtual

element space. Let mh(·, ·), ah(·, ·) : Vh × Vh → R be the virtual element approximation of the L2 inner
product (·, ·) and the bilinear form a(·, ·). Let fh be the element of (Vh)′, the dual space of Vh, such
that (fh, ·) : Vh → R is a virtual element approximation of the linear functional (f, ·) (we use the same
symbol fh to denote the Ritz representative of fh in Vh). Then, we introduce the finite-dimensional subset
Kh = Vh ∩ K =

{
vh ∈ Vh : vh ≥ 0 in Ω

}
of the virtual element functions that are nonnegative in Ω.

We denote the evaluation of a time-dependent quantity w(t) at tn by wn = w(tn), and define the discrete
difference operator ∂wn =

(
wn+1 − wn

)
/∆t, which provides the time variation of {w(tn)}n in the time

interval
[
tn, tn+1

]
.

The virtual element approximation Unh to u(tn) is the solution of the following discrete problem: Find
{Unh }n=0,...,N with Unh ∈ Kh for every n = 0, 1, . . . , N such that

mh

(
∂Unh , vh − Un+1

h

)
+ ah

(
Un+1
h , vh − Un+1

h

)
≥
(
fn+1
h , vh − Un+1

h

)
, (12)

for every vh ∈ Kh with the initial solution field U0
h satisfying∥∥U0

h − u0

∥∥
0
≤ Ch. (13)

This section is devoted to the definition of Vh, the construction of the bilinear forms mh(·, ·) and ah(·, ·)
and the linear functional (fh, ·), and the characterization of their approximation properties. Furthermore, a
possible choice of the initial approximation of u0, i.e., U0

h , which satisfies (13), is provided by could be chosen
as U0

h = Ihu0, where Ih is the interpolation operator that will be defined in Section 4.2.

3.1. Virtual element spaces

Following [11], we define the virtual element space Vh(E) on every element E ∈ Ωh as

Vh(E) =
{
vh ∈ H1(E) ∩ C (E) : vh|∂E ∈ C (∂E), vh|e ∈ P1(e) ∀e ∈ ∂E, ∆vh = 0 in E

}
. (14)

The global virtual element space Vh is given by gluing together in a conforming way the elemental spaces
Vh(E):

Vh :=
{
vh ∈ H1

0 (Ω) : vh|E ∈ Vh(E) ∀E ∈ Ωh

}
. (15)

On every element E ∈ Ωh, we consider the subset of the nonnegative virtual element functions:

Kh(E) =
{
vh ∈ Vh(E) : vh ≥ 0 in E

}
⊂ H1

0 (E). (16)

It is immediate to see that vh|E ∈ Kh(E) for all E ∈ Ωh if and only if vh ∈ Kh, since Kh = Vh∩K is the subset
of the nonnegative virtual element functions globally defined on Ω.
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A virtual element function vh is uniquely characterized in every element E by its values at the elemental
vertices, so that we can take such values as the degrees of freedom of the method. A proof of this unisolvence
property is found in [11]. The degrees of freedom of the functions in the global space Vh and its subset Kh are
given by collecting the values at all the mesh vertices. Their unisolvence in Vh follows from their unisolvence
in each elemental space. Moreover, a function vh ∈ Kh(E) also belongs to Vh(E), so it is uniquely defined
by its vertex values, but these values must be nonnegative to reflect the property that vh(x) ≥ 0 for every
x ∈ E. This property, which is crucial in the construction of our VEM, is stated in the following lemma.

Lemma 3.1 (Nonnegative characterization of Kh(E)). Let E denote an element of mesh Ωh satisfying
the mesh assumptions (M1)-(M2). Then, a virtual element function vh ∈ Vh(E) belongs to Kh(E) if and only
if its values at the vertices of E are nonnegative.

Proof. The evaluation of a nonnegative function vh ∈ Vh(E) at the vertices of E is obviously nonnegative.
In turn, the edge trace vh|e for each edge e is nonnegative if the values of vh at the vertices of e ⊂ ∂E are
nonnegative since the trace is given by the linear interpolation of such vertex values. Then, the lemma is a
consequence of the Maximum and Minimum Principle Theorem, see [44], which implies that all nonconstant
harmonic functions defined on the nonempty compact subset E of R2 attains their maximum and minimum
values on the boundary of E.

This result is readily extended to the whole set Kh in the next corollary.

Corollary 3.2. Under mesh assumptions (M1)-(M2), a virtual element function vh ∈ Vh belongs to Kh if
and only if its values at the mesh vertices are nonnegative.

Proof. The assertion of the lemma trivially follows from the previous lemma and the definition of the degrees
of freedom of a virtual element function in the subset Kh.

The polynomial space P1(E) is a linear subspace of Vh(E) and the subset of the nonnegative linear
polynomials must belong to Kh(E). Moreover, Lemma 3.1 implies that a linear polynomial whose vertex
values are nonnegative must be nonnegative.

A major property of the elemental space Vh(E) is that the elliptic projection Π∇,Evh of the virtual element
function vh defined in (4) is computable from the degrees of freedom of vh. In the spirit of the VEM, we will
use this projection operator to define the discrete bilinear form ah(·, ·), see the next subsection. Instead, the
orthogonal projection Π0,Evh is noncomputable from the degrees of freedom of the virtual element function
vh. Following [2], we could consider the “enhanced” virtual element space:

Ṽh(E) =
{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ P1(e) ∀e ∈ ∂E,

∆vh ∈ P1(E), (vh −Π∇,Evh, q)E = 0 ∀q ∈ P1(E)
}
. (17)

In such a space, the orthogonal projection Π0,Evh coincides with the elliptic projection Π∇,Evh. However, a
fundamental property of our construction is that a virtual element function with all positive (nonnegative)
values at the vertices of E must be positive (nonnegative) in E. We can readily prove this property for the
harmonic functions of space (14) by resorting to the Maximum and Minimum Principle Theorem [44] as in

the proof of Lemma 3.1, but not for the nonharmonic functions of space Ṽh(E) in (17). So, to define the
bilinear form mh(·, ·) we need to use a different polynomial reconstruction, which is based on the alternative
projection operator of the next subsection.

The next two lemmas establish the local approximation properties of the virtual element interpolation
operator and a polynomial approximation operator. These approximation properties hold under the mesh
regularity assumptions (M1)-(M2), cf. [11]. We omit their proof as they are standard results from the
literature.

Lemma 3.3. Let E be a polygonal element of a mesh Ωh satisfying assumptions (M1)-(M2). Then, there
exists a real, positive constant C such that for all v ∈ H2(E) the virtual element interpolant vI ∈ Vh(E),
which is the function in Vh(E) with the same vertex values of v, is such that

‖v − vI‖0,E + hE|v − vI |1,E ≤ Ch2
E|v|2,E. (18)

The constant C is independent of the local mesh size hE but may depend on the mesh regularity constant ρ.
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We outline that if a function v ∈ H2(E) ∩ C (E) is nonnegative in E, than its interpolant vI ∈ Vh(E) must
also be nonnegative as a consequence of Lemma 3.1, and it belongs to Kh(E). In Section 4, we discuss the
construction of a nonnegative quasi-interpolation operator since in the convergence analysis of Section 5 we
must cope with functions that are only H1-regular.

Lemma 3.4. Let E be a polygonal element of a mesh Ωh satisfying assumptions (M1)-(M2). Then, there
exists a real, positive constant C such that for all v ∈ Hm(E), m = 1, 2, there exists a polynomial functions
vπ ∈ P1(E) such that

‖v − vπ‖0,E + hE|v − vπ|1,E ≤ ChmE |v|m,E. (19)

The constant C is independent of the local mesh size hE but may depend on the mesh regularity constant ρ.

3.2. The projection operator Π̃E

Consider the discrete inner product in Vh(E):

[
vh, wh

]
E

= |E|
NE∑
i=1

vh(xi)wh(xi) ∀vh, wh ∈ Vh(E), (20)

where NE is the number of vertices of E, and xi = (xi, yi)
T , i = 1, . . . , NE, is the coordinate vector of the

i-th vertex of element E. Then, for every vh ∈ Vh(E), we define Π̃Evh as the linear polynomial that solves the
projection problem: [

vh − Π̃Evh, q
]
E

= 0 ∀q ∈ P1(E). (21)

This projection operator is computable from the degrees of freedom of vh. Indeed, we consider the expansion
of Π̃Evh on the scaled monomial basis of P1(E):

Π̃Evh = ζ1m1 + ζ2m2 + ζ3m3, (22)

with ζi ∈ R, i = 1, 2, 3. Then, we introduce matrix D, which collects the degrees of freedom of mi on its i-th
column, so that

D =



m1(x1) m2(x1) m3(x1)

m1(x2) m2(x2) m3(x2)

...
...

m1(xNE) m2(xNE) m3(xNE)

 =



1
x1 − xE
hE

y1 − yE
hE

1
x2 − xE
hE

y2 − yE
hE

...
...

...

1
xNE − xE

hE

yNE − yE
hE


. (23)

A straightforward calculation allows us to reformulate (21) in the vector form:(
DTD

)
ζ = Dvh, (24)

where ζ = (ζ1, ζ2, ζ3)T and vh =
(
vh(x1), vh(x2), . . . , vh(xNE)

)T
. We note that the 3 × 3-sized matrix DTD

is such that rank(DTD) = rank(D) = 3, so it is nonsingular. Therefore, the solution ζ of (24) is given by

ζ =
(
DTD

)−1
DTvh.

The next lemma characterizes the properties of the projection operator Π̃E.

Lemma 3.5 (Properties of Π̃E). Let E be an element of mesh Ωh satisfying mesh assumptions (M1)-(M2)

and Π̃E the projection operator defined in (21). Then,

(i) Π̃E is invariant on the linear polynomials, i.e., Π̃Eq = q for every q ∈ P1(E), and, thus, idempotent,

i.e.,
(
Π̃E
)2

= Π̃E;
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(ii) Π̃E is bounded in L2(E), i.e.,
∥∥Π̃Evh

∥∥
0,E
≤ C ‖vh‖0,E for every vh ∈ Vh(E) and some real, positive

constant C independent of hE.

Proof. (i). Since Π̃E is a linear operator, to prove that it is invariant on the linear polynomials, we only

need to prove that it is invariant on the scaled monomials (3), i.e., Π̃Emi = mi, i = 1, 2, 3. We note that the
vector collecting the degrees of freedom of mi coincides with the i-th column of matrix D, which we indicate

by col(mi). Let ei be the vector of the canonical basis of RN
E

having the i-th entry equal to 1 and all other

entries equal to 0, so that col(mi) = Dei. The coefficient vector ζi of Π̃Emi in expansion (22) is given by a
straightforward application of the projection matrix (DTD)−1DT to col(mi):

ζi = (DTD)−1DT col(mi) = (DTD)−1DTDei = ei.

Substituting ζi = ei in (22) yields Π̃Emi = mi. Then, the invariance of Π̃E on the linear polynomials implies

that
(
Π̃E
)2
vh = Π̃E

(
Π̃Evh

)
= Π̃Evh for all vh ∈ Vh(E) since Π̃Evh ∈ P1(E).

(ii). Finally, we are left to prove that Π̃E is a bounded operator with an inequality constant that is independent
of hE. Consider the discrete norm

|||vh|||2E =
[
vh, vh

]
E

= |E|
NE∑
i=1

|vh(xi)|2 = |E| |vh|2, (25)

which is induced by the discrete inner product (20). We observe that Π̃E is a continuous operator, i.e.,∣∣∣∣∣∣Π̃Evh
∣∣∣∣∣∣
E
≤ |||vh|||E for every vh ∈ Vh(E). Indeed, Π̃E is the orthogonal projection operator with respect to the

inner product (20) and its operator norm is supvh∈Vh(E)\{0}
∣∣∣∣∣∣Π̃Evh

∣∣∣∣∣∣
E
/|||vh|||E = 1. The norm defined in (25)

is spectrally equivalent to the L2 norm, so that there exist two strictly positive constant ξ∗ and ξ∗ such that

ξ∗ ‖vh‖0,E ≤ |||vh|||E ≤ ξ
∗ ‖vh‖0,E ∀vh ∈ Vh(E). (26)

The two norms ‖vh‖0,E and |||vh|||E have the same scaling with respect to hE because of the explicit dependence
of norm ||| · |||E on |E|. Therefore, the two constants ξ∗ and ξ∗ may depend on the geometric shape of E but

must be independent of hE. Then, we use the left inequality of (26), the continuity of Π̃E, and the right
inequality of (26), and we find that∥∥Π̃Evh

∥∥
0,E
≤ (ξ∗)

−1
∣∣∣∣∣∣Π̃Evh

∣∣∣∣∣∣
E
≤ (ξ∗)

−1
∣∣∣∣∣∣vh∣∣∣∣∣∣E ≤ ξ∗

ξ∗
‖vh‖0,E .

We complete the proof by setting C = (ξ∗/ξ∗) and noting that this constant is independent of hE.

To characterize the approximation properties of the projection operator Π̃E, we apply sistematically the
result in [24, Theorem 2], which will be referred hereafter as the Bramble-Hilbert lemma. For future reference
in our paper, we report the statement of this result below, with a few, very minor changes to adapt it to our
notation and setting. In the next subsection, we will also use the Bramble-Hilbert lemma to characterize the
approximation of the right-hand side functional (f, ·) by (fh, ·), cf. Lemma 3.15.

Lemma 3.6 (Bramble-Hilbert lemma). Let E be a polygonal element with diameter hE satisfying mesh
assumptions (M1)-(M2). Let F be a linear functional on W k,p(E) which satisfies

(i) |F (u)| ≤ C ‖u‖k,p,E for all u ∈W k,p(E) with C independent of hE and u and

(ii) F (p) = 0 for all p ∈ Pk−1(E).

Then, |F (u)| ≤ C1h
k
E |u|k,p,E for all u ∈W k,p(E) with C1 independent of hE and u.

Proof. This lemma is an immediate consequence of [24, Theorem 2], which is set for a domain R (with
diameter ρ) that satisfies the strong cone property, see [1, Section 4.6 (The cone condition)]. A polygonal
element E satisfying mesh assumptions (M1)-(M2) also satisfies such a geometric condition on the boundary
∂E, so that we can identify R with E and ρ with hE.
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Lemma 3.7 (1 - Approximation property of Π̃E). Let E be a polygonal element satisfying mesh as-
sumptions (M1)-(M2). There exists a real, positive constant C independent of hE such that for all virtual
element functions vh ∈ Vh(E) and polynomials q ∈ P1(E) it holds that∣∣(vh − Π̃Evh, q)E

∣∣ ≤ C h2
E |q|1,E |vh|1,E . (27)

Proof. Let Π̃E,∗ : Vh(E) → Vh(E) denote the adjoint operator of Π̃E with respect to the inner product in
L2(E), which is formally defined as(

Π̃E,∗vh, wh

)
E

=
(
vh, Π̃

Ewh

)
E
∀vh, wh ∈ Vh(E). (28)

This operator projects onto the orthogonal complement of ker(Π̃E) =
{
vh ∈ Vh(E) | Π̃Evh = 0 in E

}
. In fact,

from its definition and the second property in (i) of Lemma 3.5, i.e., (Π̃E)2 = Π̃E, we immediately see that(
Π̃E,∗wh, vh − Π̃Evh

)
E

=
(
wh, Π̃

E
(
vh − Π̃Evh

))
E

=
(
wh, Π̃

Evh −
(
Π̃E
)2
vh

)
E

= 0,

which holds for all vh, wh ∈ Vh(E). Then, we note that (Π̃E,∗q, 1)E = (q, Π̃E(1))E = (q, 1)E for all q ∈ P1(E)

since Π̃E(1) = 1 from property (i) of Lemma 3.5. Therefore, for any linear polynomial q, the cell average of

q and Π̃E,∗q, respectively denoted by q and Π̃E,∗q are equal.

For any linear polynomial q defined on E, we now consider the linear functional F E
q (·) : Vh(E)→ R given

by F E
q (vh) = (vh−Π̃Evh, q)E/

∥∥q − Π̃E,∗q
∥∥

0,E
. The continuity of (·, ·)E implies the boundedness of F E

q (·), which

is condition (i) in Lemma 3.6,. In fact, it holds that∣∣∣(vh − Π̃Evh, q)E

∣∣∣ =
∣∣∣(vh − Π̃Evh, q − Π̃E,∗q)E

∣∣∣ ≤ ∥∥vh − Π̃Evh
∥∥

0,E

∥∥q − Π̃E,∗q
∥∥

0,E

≤
(
‖vh‖0,E +

∥∥Π̃Evh
∥∥

0,E

) ∥∥q − Π̃E,∗q
∥∥

0,E
≤ (1 + ξ∗/ξ∗)‖vh‖0,E

∥∥q − Π̃E,∗q
∥∥

0,E
, (29)

where ξ∗ and ξ∗ are the constants of the equivalence relation (26). Inequality (29) immediately implies that
F E
q (vh) ≤ (1 + ξ∗/ξ∗) ‖vh‖0,E. Property (i) of Lemma 3.5 implies that F E

q (p) = 0 for all p ∈ P1(E), which is
condition (ii) of Lemma 3.6. The Bramble-Hilbert lemma with k = 1 and p = 2 implies that∣∣F E

q (vh)
∣∣ ≤ C1hE |vh|1,E ∀vh ∈ Vh(E),

and, consequently, ∣∣∣(vh − Π̃Evh, q)E

∣∣∣ ≤ C1hE |vh|1,E
∥∥q − Π̃E,∗q

∥∥
0,E

∀vh ∈ Vh(E). (30)

To complete the proof of the lemma, we are left to estimate
∥∥q − Π̃E,∗q

∥∥
0,E

. To this end, we add and

subtract q = Π̃E,∗q and use the triangular inequality to find that∥∥q − Π̃E,∗q
∥∥

0,E
≤ ‖q − q‖0,E +

∥∥Π̃E,∗q − Π̃E,∗q
∥∥

0,E
≤ ChE |q|1,E . (31)

In (31) we used the inequality |Π̃E,∗q|1,E ≤ C |q|1,E, which is still a consequence of the fact that Π̃E,∗ is a
bounded operator and the equivalence of (semi)norms with the same kernel in finite dimensional spaces. The
assertion of the lemma follows by applying (31) to (30).

Lemma 3.8 (2 - Approximation property of Π̃E). Let E be a polygonal element satisfying mesh as-
sumptions (M1)-(M2). Then, there exists a real, positive constant C independent of h such that for all
virtual element functions vh ∈ Vh it holds that∥∥vh − Π̃Evh

∥∥
0,E
≤ ChE|vh|1,E. (32)
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Proof. Let vh ∈ Vh and consider its restriction to the element E ∈ Ωh. Consider the linear functional

F E
w(vh) =

(
vh − Π̃Evh, w

)
E
/‖w‖0,E for some given function w ∈ L2(E)\{0}. Then, condition (i) of Lemma 3.6

is satisfied since the application of the Cauchy-Schwarz inequality and the boundedness of Π̃E yield

∣∣F E
w(vh)

∣∣ ≤ ∥∥vh − Π̃Evh
∥∥

0,E
‖w‖0,E

‖w‖0,E
≤
∥∥vh∥∥0,E

+
∥∥Π̃Evh

∥∥
0,E
≤ (1 + ξ∗/ξ∗) ‖vh‖0,E .

Moreover, condition (ii) of Lemma 3.6 is satisfied since Π̃E is invariant on all the linear polynomials and, so,
F E
w(q) = 0 for all q ∈ P1(E). Since vh ∈ Vh(E) ⊂ H1(E), the Bramble-Hilbert lemma (with p = 2 and k = 1)

yields ∣∣F E
w(vh)

∣∣ ≤ C1hE |vh|1,E ∀vh ∈ Vh(E).

Recalling the definition of the L2(E) norm and using this inequality we obtain the upper bound

∥∥vh − Π̃Evh
∥∥

0,E
= sup
w∈L2(E)\{0}

(
vh − Π̃Evh, w

)
E

‖w‖0,E
= sup
w∈L2(E)\{0}

∣∣F E
w(vh)

∣∣ ≤ C1hE |vh|1,E ,

which is the assertion of the lemma.

Remark 3.9. Estimate (32) is optimal for the virtual element functions having a local H1(E)-regularity and
a global H1(Ω)-regularity. Clearly, for all functions vh ∈ Vh(E) ∩H2(E), the Bramble-Hilbert lemma would
provide an error estimates proportional to h2

E |vh|2,E.

3.3. The virtual element bilinear form mh(·, ·)
Now, we have all the ingredients for the construction of the discrete bilinear form mh(·, ·). We assume

that this bilinear form is the sum of elemental contributions

mh(uh, vh) =
∑
E∈Ωh

mE
h(uh, vh), (33)

where we define each local term as

mE
h(uh, vh) =

(
Π̃Euh, Π̃

Evh

)
E

+ SE
m

(
(I − Π̃E)uh, (I − Π̃E)vh

)
. (34)

In (34), the bilinear form SE
m(·, ·) : Vh × Vh → R can be any computable, symmetric and positive definite

bilinear form such that

σ∗(vh, vh)E ≤ SE
m(vh, vh) ≤ σ∗(vh, vh)E ∀vh ∈ Vh(E) ∩ ker

(
Π̃E
)
, (35)

where ker
(
Π̃E
)

=
{
v ∈ H1(E) ∩ C (E) : Π̃Ev = 0

}
is the kernel of the projection operator Π̃E, and σ∗ and σ∗

are two real, positive constants independent of h (and E).

The discrete bilinear form mE
h(·, ·) has the two crucial properties:

- stability : for every virtual element function vh ∈ Vh(E), the following stability inequality holds

µ∗(vh, vh)E ≤ mE
h(vh, vh) ≤ µ∗(vh, vh)E, (36)

where we can set µ∗ = max(1, σ∗) and µ∗ = min(1, σ∗), cf. [11];

- (weak) linear consistency : for every pair of linear polynomials p, q ∈ P1(E) it holds that

mE
h(p, q) = (p, q)E. (37)
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Property (36) is a consequence of the definition of the bilinear form mE
h(·, ·), the stability property (35) of

SE
m(·, ·), and the fact that the norm ||| · |||E induced by [·, ·]E is spectrally equivalent to the L2 norm ‖ · ‖0,E

induced by (·, ·)E, cf. (26). Property (37) is more restrictive than the usual consistency property of the VEM
as it states the exactness of the bilinear form mE

h(·, ·) when both its entries are linear polynomials. Therefore,
condition (37) is weaker than the usual consistency property of the VEM, which states that a discrete bilinear
form must be exact if at least one of the entries (but not necessarily both) is a linear polynomial. For this
reason, we refer to (37) as the weak consistency of the method. It is worth noting that the stronger exactness
property of the VEM holds for the discrete inner product (20):[

Π̃Evh, Π̃
Eq
]
E

=
[
Π̃Evh, q

]
E

=
[
vh, q

]
E
∀vh ∈ Vh(E), ∀q ∈ P1(E),

as Π̃E is an orthogonal projector for [·, ·]E but an oblique one for the regular L2 inner product. Lemma 3.11 at

the end of this section characterizes the ”obliqueness” of Π̃E by proving that the discrepancy of the consistency
property scales as

∣∣mE
h(vh, q)− (vh, q)E

∣∣ = |E| O(h2
E) for any sufficiently regular vh and linear polynomial q.

As mE
h(·, ·) is a symmetric and positive definite bilinear form, it is an inner product and the following

lemma stating its continuity stems out of an application of the Cauchy-Schwarz inequality.

Lemma 3.10 (Continuity). Let mh(·, ·) be the bilinear form defined by (33)-(34). Then, there exists a
positive constant C independent of h such that

mh(vh, wh) ≤ C ‖vh‖0 , ‖wh‖0

for every vh, wh ∈ Vh.

Proof. First, the left inequality of the stability condition (36) implies that for every element E, the symmetric
bilinear form mE

h(·, ·) is coercive, and, thus, an inner product on Vh(E). We apply the Cauchy-Schwarz
inequality and the right inequality of the stability condition (36) to obtain

mE
h(vh, wh) ≤

(
mE
h(vh, vh)

) 1
2
(
mE
h(wh, wh)

) 1
2 ≤ µ∗ ‖vh‖0,E ‖wh‖0,E .

The assertion of the lemma follows by adding all the elemental inequalities and using again the Cauchy-
Schwarz inequality to obtain

mh(vh, wh) =
∑
E∈Ωh

mE
h(vh, wh) ≤ µ∗

∑
E∈Ωh

‖vh‖0,E ‖wh‖0,E

≤ µ∗
(∑

E∈Ωh

‖vh‖20,E

) 1
2
(∑

E∈Ωh

‖wh‖20,E

) 1
2

= µ∗ ‖vh‖0 ‖wh‖0 ,

and, finally, setting C = µ∗, which is independent of hE.

As previously noted, it generally holds that mE
h(vh, q) 6= (vh, q)E for a nonpolynomial function vh ∈ Vh(E)

and a polynomial q ∈ P1(E). We characterize the consistency discrepancy in the final Lemmas 3.11 and 3.13
and prove that it locally scales as |E| O(h2

E) and globally scales as O(h2). As we will prove in the analysis
of Section 5, this behavior is optimal with respect to h. Finally, we characterize the discrepancy in the
consistency of the virtual element bilinear functional mE

h(·, q) with respect to the inner product (·, q)E for any

linear polynomial q that is due to the use of Π̃E in first term of definition (34). We refer to the quantity

ME
h(vh, q) = mE

h(vh, q)− (vh, q)E

as the local consistency discrepancy for the bilinear form mE
h(·, ·). By considering all the mesh elements E,

we define the global consistency discrepancy as a function of vh ∈ Vh and q ∈ P1(Ωh):

Mh(vh, q) =
∑
E∈Ωh

(
mE
h(vh, q)− (vh, q)E

)
= mh(vh, q)− (vh, q). (38)

We prove a bound to control the local consistency discrepancy for an element E in the following lemma.

12



Lemma 3.11 (Local consistency discrepancy). Let E be a polygonal element satisfying mesh assump-
tions (M1)-(M2). For all virtual element functions vh ∈ Vh(E) and polynomials q ∈ P1(E) it holds that∣∣ME

h(vh, q)
∣∣ =

∣∣mE
h(vh, q)− (vh, q)E

∣∣ ≤ C h2
E|q|1,E|vh|1,E. (39)

Proof. First, we note that for every linear polynomial definition (34), the polynomial invariance property (i)
of Lemma 3.5 implies that

mE
h(vh, q) = (Π̃Evh, Π̃

Eq)E = (Π̃Evh, q)E,

so that the consistency discrepancy becomes

mE
h(vh, q)− (vh, q)E = (Π̃Evh − vh, q)E.

The assertion of the lemma follows from the approximation property of Π̃E stated in Lemma 3.7.

According to Lemma 3.11, the local consistency discrepancy for an element E is proportional to |E| O(h2
E)

since both |q|1,E and |vh|1,E in the right-hand side of (39) are proportional to |E|1/2. In view of Lemma 3.11,
we can also prove an upper bound for the global consistency discrepancy defined in (38), which will be useful
in the analysis of Section 5.

Remark 3.12. In Lemma (3.11), we proved an upper bound for the local consistency discrepancy of the
term Mh(vh, q), where vh is a virtual function and q is a polynomial. Note that vh is globally H1 regular
and locally a harmonic function on polygonal elements including non-convex elements. Hence, the minimal
regularity for the virtual element function is H

3
2−ε(P ) for all ε > 0. However, the derivation of the error

estimate only assumes that vh ∈ H1(E).

Lemma 3.13 (Global consistency discrepancy). Let Mh : Vh × P1(Ωh) → R be the bilinear form de-
fined in (38). Then, for all vh ∈ Vh and q ∈ P1(Ωh) it holds that

|Mh(vh, q)| ≤ Ch2|q|1,h|vh|1, (40)

using the broken Sobolev seminorm |q|21,h =
∑

E∈Ωh
|q|21,E.

Proof. This lemma is an immediate consequence of Lemma 3.11. Indeed, we sum all the local inequalites of
the right-hand side of (39); then, we note that hE ≤ h for all E ∈ Ωh, and use the Cauchy-Schwarz inequality
and the definition of the seminorms | · |1,h and | · |1:

|Mh(vh, q)| ≤
∑
E∈Ωh

∣∣mE
h(vh, q)− (vh, q)E

∣∣ ≤ C ∑
E∈Ωh

h2
E|q|1,E|vh|1,E = Ch2|q|1,h|vh|1.

Using the same argument as for the local case (see the comment after Lemma 3.11), we see that the consistency
discrepancy is roughly proportional to |Ω| O(h2).

3.4. The virtual element bilinear form ah(·, ·)
We assume that the bilinear form ah(·, ·) is given by the sum of elemental contributions

ah(uh, vh) =
∑
E∈Ωh

aEh(uh, vh), (41)

where we define each local term as

aEh(uh, vh) = aE(Π∇,Euh,Π
∇,Evh) + SE

a

(
(I −Π∇,E)uh, (I −Π∇,E)vh

)
. (42)

In (42), the bilinear form SE
a (·, ·) : Vh(E) × Vh(E) → R can be any computable, symmetric and positive

definite bilinear form such that

γ∗a
E(vh, vh) ≤ SE

a (vh, vh) ≤ γ∗aE(vh, vh) ∀vh ∈ Vh(E) ∩ ker
(
Π∇,E

)
, (43)

where ker
(
Π∇,E

)
=
{
v ∈ H1(E) : Π∇,Ev = 0 in E

}
is the kernel of the projection operator Π∇,E and γ∗ and

γ∗ are two real, positive constants independent of h (and E).
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Remark 3.14. From (35) and (43), we deduce that the stabilizers SEm(·, ·) and SEa (·, ·) are spectraly equivalent
to the bilinear forms (·, ·)E and aE(·, ·), respectively. In other words, SE

m(·, ·) and SE
a (·, ·) must scale as (·, ·)E

and aP (·, ·). Accordingly, we considered the following choice of stabilizers

SE
m(Ξi,Ξj) = |E|

Ndof∑
z=1

dofsz
(
Ξi
)
dofsz

(
Ξj
)
,

SE
a (Ξi,Ξj) =

Ndof∑
z=1

dofsz
(
Ξi
)
dofsz

(
Ξj
)
,

where {Ξi} is the i-th canonical basis function of the virtual element space Vh(E) and function dofs(

(
z
)
·)

returns the z-th degree of freedom of its argument.

The discrete bilinear form aEh(·, ·) satisfies the following properties:

- stability : for every virtual element function vh ∈ Vh(E), the following stability inequality holds

α∗a
E(vh, vh) ≤ aEh(vh, vh) ≤ α∗aE(vh, vh) ∀vh ∈ Vh(E), (44)

where we can set α∗ = max(1, γ∗) and α∗ = min(1, γ∗), cf. [11];

- linear consistency : for all vh ∈ Vh(E) and q ∈ P1(E) it holds that

aEh(vh, q) = aE(vh, q). (45)

The constants α∗ and α∗ in (44) are independent of h. The linear consistency is an immediate consequence
of the fact that the stabilization term SE

a (·, ·) in (42) is zero if one of its entries uh or vh is a linear polynomial
and Π∇,E is the orthogonal projection with respect to the (semi) inner product in H1(E).

3.5. Right-hand side functional

In this section, we omit to indicate the explicit dependence on t in f(t) and the corresponding approxi-
mation fh(t) to simplify the notation. To approximate in space the right-hand side of (8a), we first split the
linear functional (f, ·) in the summation of elemental terms (f, ·)E. Then, we approximate every elemental
term (f, ·)E by the virtual element linear functional (fh, ·)E, so that

(fh, vh) =
∑
E∈Ωh

(fh, vh)E ∀vh ∈ Vh. (46)

The local linear functional (fh, vh)E is defined as follows

(fh, vh)E = (f, Π̃Evh)E, (47)

i.e., by taking Π̃Evh instead of vh in every polygonal cell E. The integral in the right-hand side is clearly

computable since the projection Π̃Evh is computable from the degrees of freedom of vh. We characterize this
approximation in the following lemma.

Lemma 3.15. Let f ∈ H1(Ω). Under assumptions (M1)-(M2), there exists a real, positive constant C
independent of h such that for every vh ∈ Vh it holds that

|(f − fh, vh)| ≤ Ch2|f |1|vh|1. (48)

Proof. Let E be a mesh element. Starting from (47), we add and subtract the polynomial approximation fπ,
use the Cauchy-Schwarz inequality, and the result of Lemmas 3.4 and 3.7, to obtain the inequality chain

(f − fh, vh)E =
(
f, vh − Π̃Evh

)
E

=
(
f − fπ, vh − Π̃Evh

)
E

+
(
fπ, vh − Π̃Evh

)
E

≤ ‖f − fπ‖0,E
∥∥vh − Π̃Evh

∥∥
0,E

+ Ch2
E|fπ|1,E |vh|1,E ≤ Ch2

E|f |1,E |vh|1,E.

The assertion of the lemma follows by adding all elemental inequalities and using again the Cauchy-Schwarz
inequality.
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3.6. Well-posedness

Well-posedness is established in Theorem 3.16, which is the major result of this subsection. This theorem
states the existence and uniqueness of the solution Un+1

h of the fully discrete scheme (12) at every time
iteration n. We provide two distinct proofs of this theorem to highlight two different aspects of the virtual
element method. The first proof is based on an application of the Contraction Mapping Theorem after a
reformulation of the parabolic variational inequality problem as the fixed point problem of a contractive
mapping. This property makes it possible to implement the method through inner iterations that are per-
formed at every time step to update the solution in time. The second proof is based on the minimization
of a quadratic functional on the convex set Kh. We propose this alternative proof because it extends the
argument that is briefly mentioned in [47] to the virtual element setting and provides an hint for a practical
algorithmic implementation based on solving a minimization problem at any time iteration.

Theorem 3.16 (Well-posedness). Let U0
h be the initial solution at time t = 0 satisfying (13). Then, at

every time step tn+1 for 0 ≤ n ≤ N − 1, the solution Un+1
h of the fully discrete scheme (12) exists and is

unique.

Proof 1 - Well-posedness using the Contraction Mapping Theorem. We rewrite the parabolic
inequality (12) in the following form

mh(Un+1
h , Un+1

h − vh) + ∆tah(Un+1
h , Un+1

h − vh) ≤ ∆t(fn+1
h , Un+1

h − vh) +mh(Unh , U
n+1
h − vh). (49)

Then, we introduce the bilinear form

Ah
(
Un+1
h , vh

)
= mh(Un+1

h , vh) + ∆tah(Un+1
h , vh). (50)

For any fixed Un+1
h ∈ Vh, the mapping vh 7→ Ah

(
Un+1
h , vh

)
is linear and bounded from above in view of

the right inequalities in (36) and (44), and thus, belongs to the dual space (Vh)′. Therefore, we can find an
operator B : Vh → (Vh)′ such that BUn+1

h is the Riesz representative of Ah
(
Un+1
h , ·

)
in Vh. Formally, we can

write that
(
BUn+1

h , vh
)

= Ah
(
Un+1
h , vh

)
for all vh ∈ Vh. The stability conditions (36) and (44) implies that

B is also bounded from below and from above. So, there exists two real positive constants C∗ and C∗ such
that

C∗ ‖vh‖20 ≤ (Bvh, vh) ≤ C∗ ‖vh‖20 ∀vh ∈ Vh.

The constants C∗ and C∗ only depend on µ∗, µ∗, α
∗, α∗, and ∆t, but are independent of h. Analogously,

there exists an element bh ∈ Vh such that

(bh, U
n+1
h − vh) = ∆t(fn+1

h , Un+1
h − vh) +mh(Unh , U

n+1
h − vh). (51)

Using (50) and (51), we reformulate the parabolic variational inequality (12) as:

Find Un+1
h ∈ Kh such that:

(
BUn+1

h , Un+1
h − vh

)
≤ (bh, U

n+1
h − vh) ∀vh ∈ Kh. (52)

We add and subtract Un+1
h and introduce a real factor β > 0 such that(

β
(
bh − BUn+1

h

)
+ Un+1

h − Un+1
h , vh − Un+1

h

)
≤ 0. (53)

Let P : Vh → Kh be the projection operator on Kh such that for any ω ∈ Vh, Pω is the solution to the
variational inequality

(ω − Pω, vh − Pω) ≤ 0 ∀vh ∈ Kh. (54)

By comparing (53) and (54), we identify ω = β
(
bh − BUn+1

h

)
+ Un+1

h and Pω = Un+1
h . Therefore, solving

(52) is equivalent to solving the nonlinear problem:

Find Un+1
h ∈ Kh such that: Un+1

h = P
(
βbh − βBUn+1

h + Un+1
h

)
.

15



Now, we introduce the affine mapping

Gβ(v) = P
(
βbh − βBv + v). (55)

Using (55), we finally reformulate the parabolic variational inequality problem as the fixed point problem:

Find Un+1
h ∈ Kh such that: Gβ(Un+1

h ) = Un+1
h . (56)

The fixed point exists and is unique in view of the Contraction Mapping Theorem since Gβ(·) is a contractive
mapping. To prove this statement, we consider two arbitrary functions v1, v2 ∈ Kh. Then, from definition
(55) and noting that P is bounded, we obtain

‖Gβ(v1)− Gβ(v2)‖0 ≤
∥∥(βbh − βBv1 + v1

)
−
(
βbh − βBv2 + v2

)∥∥
0

≤
∥∥βB(v2 − v1)− (v2 − v1

)∥∥
0
.

A straightforward calculation using the boundedness of operator B yields:

‖Gβ(v1)− Gβ(v2)‖20 ≤ β
2 ‖B(v2 − v1)‖20 + ‖v2 − v1‖20 − 2β(B(v2 − v1), v2 − v1)

≤
(
1 + β2(C∗)2 − 2βC∗

)
‖v2 − v1‖20 .

Mapping Gβ(·) is a contraction by setting
(
1 + β2(C∗)2 − 2βC∗

)
< 1, i.e., by choosing β ∈

(
0, 2C∗

(C∗)2

)
. The

application of the Contraction Mapping Theorem immediately imply that Gβ(·) has precisely one fixed point,
which is the solution of (56). This fixed point is Un+1

h , the virtual element solution at time tn+1. On iterating
this argument at every time step shows that problem (12) is well-posed.

Proof 2 - Well-posedness using the minimization theory. First, we rewrite inequality (12) as

mh(Un+1
h , vh − Un+1

h ) + ∆tah(Un+1
h , vh − Un+1

h ) ≥ mh(Unh , vh − Un+1
h ) + ∆t (fh, vh − Un+1

h ), (57)

and introduce the same bilinear form

Ah(Un+1
h , vh) = mh(Un+1

h , vh) + ∆tah(Un+1
h , vh)

of the previous proof. From the left inequalities in (36) and (44), it follows that Ah(·, ·) is coercive on Kh,

i.e., α ‖vh‖21 ≤ Ah(vh, vh) for all vh ∈ Kh with α = min(µ∗,∆tα∗) (we recall that Kh = Vh ∩ K ⊂ H1
0 (Ω)).

As in the previous proof, the continuity of mh(·, ·) and the Cauchy-Schwarz inequality imply that the right-
hand side of (57) is a linear continuous functional on Vh for any fixed Unh and fn+1

h . Therefore, by the Ritz
Representation Theorem, there exists an element bh ∈ Vh such that

(bh, zh) = mh(Unh , zh) + ∆t(fn+1
h , zh) ∀zh ∈ Vh.

Then, we introduce the quadratic functional

I(zh) = mh(zh, zh) + ∆tah(zh, zh)− 2(bh, zh) = Ah(zh, zh)− 2(bh, zh),

and we set d = inf
zh∈Kh

I(zh). Using the coercivity of Ah(·, ·), the Cauchy-Schwarz inequality, noting that

‖·‖0 ≤ ‖·‖1, and finally using the Young inequality with the real parameter α, we find that

I(zh) ≥ α ‖zh‖21 − 2 ‖bh‖0 ‖zh‖0 ≥ α ‖zh‖
2
1 − 2 ‖bh‖1 ‖zh‖1 ≥ α ‖zh‖

2
1 − (1/α) ‖bh‖21 − α ‖zh‖

2
1

= −(1/α) ‖bh‖21 ,

which implies that d ≥ −(1/α) ‖bh‖21 > −∞. Let n denote a positive integer number. Since d = inf
zh∈Kh

I(zh),

for each 1/n we can find a virtual element function zn ∈ Kh such that

d ≤ I(zn) < d+ 1/n. (58)
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We denote the sequence of virtual element functions zn ∈ Kh that satisfies (58) for n → ∞ by {zn}n≥1.
Now, we consider m,n ∈ N, we use again the coercivity of Ah(·, ·) and the identity 4(bh, zn) + 4(bh, zm) −
8(bh, (zn + zm)/2) = 0, to find that

α ‖zn − zm‖21 ≤ Ah(zn − zm, zn − zm)

= 2Ah(zn, zn) + 2Ah(zm, zm)− 4Ah
(
(zn + zm)/2, (zn + zm)/2)

= 2I(zn) + 2I(zm)− 4I
(
(zn + zm)/2

)
≤ 2(1/n+ 1/m),

which implies that the minimizing sequence {zn}n≥1 is a Cauchy sequence. Since all zn ∈ Kh and Kh is a
closed subset of Vh, then Kh contains the limit point of zn for n→∞. We denote such limit point by z, so,
formally it holds that zn → z as n → ∞. Moreover, it holds that I(zn) → I(z) and condition (58) implies
that I(z) = d. For any vh ∈ Kh and real number ε ∈ [0, 1], the vertex values of the convex combination
z + ε(vh − z) must be nonnegative, so this function also belongs to ∈ Kh and Kh is a convex set. Since I(·)
attains its minimum at z, it also holds that I(z + ε(vh − z)) ≥ I(z) for any 0 ≤ ε ≤ 1, or equivalently, that

d

dε
I
(
z + ε(vh − z)

)
|ε=0
≥ 0. (59)

From a direct calculation, we obtain that

d

dε
I
(
z + ε(vh − z)

)
= 2εAh(z, vh − z) + ε2Ah(vh − z, vh − z)− 2ε(bh, vh − z).

Rearranging the terms and dividing by ε yield

Ah(z, vh − z) ≥ (bh, vh − z)− (ε/2)Ah(vh − z, vh − z). (60)

Finally, we set ε = 0 in (60) and we find that z is the solution of (57), and, hence, of (12) if we identify
Un+1
h = z.

4. Technical lemmas

In subsection 4.1, we prove some technical lemmas, while in subsection 4.2, we discuss the construction of
the nonnegative quasi-interpolation operator for H1-regular functions. The results of these lemmas are used
in the convergence analysis of Section 5.

4.1. Preliminary technical lemmas

Lemma 4.1 (1 - Summation by parts). Let
(
X, (·, ·)X

)
be an inner product space on R, and {qn}n a

finite ordered sequence of elements of X labeled by the integer index n = 0, . . . , N for some positive integer
N . Then, for every M = 1, . . . , N , the following identity holds:

2

M−1∑
n=0

(qn+1 − qn, qn+1)X =

M−1∑
n=0

(qn+1 − qn, qn+1 − qn)X + (qM , qM )X − (q0, q0)X . (61)

Proof. First, we note that

(qn+1 − qn, qn+1 − qn)X = (qn+1, qn+1)X + (qn, qn)X − 2(qn, qn+1)X

= 2(qn+1, qn+1)X − (qn+1, qn+1)X + (qn, qn)X − 2(qn, qn+1)X

= 2(qn+1 − qn, qn+1)X − (qn+1, qn+1)X + (qn, qn)X .
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Then, we add all the terms for n = 0, . . . ,M − 1 to obtain:

M−1∑
n=0

(qn+1 − qn, qn+1 − qn)X = 2

M−1∑
n=0

(qn+1 − qn, qn+1)X −
M−1∑
n=0

(
(qn+1, qn+1)X − (qn, qn)X

)
.

The assertion of the lemma follows by noting that the second term on the right is the telescopic sum

M−1∑
n=0

(
(qn+1, qn+1)X − (qn, qn)X

)
= (qM , qM )X − (q0, q0)X ,

and rearranging the terms of the resulting identity.

Lemma 4.2 (2 - Summation by parts). Let
(
X, (·, ·)X

)
be an inner product space on R, and {qn}n and

{pn}n be two finite ordered sequences of elements of X labeled by the integer index n = 0, . . . , N for some
positive integer N . Then, it holds that

N−1∑
n=0

(qn+1 − qn, pn+1)X = −
N−1∑
n=0

(qn, pn+1 − pn)X + (qN , pN )X − (q0, p0)X . (62)

Proof. We note that

(qn+1 − qn, pn+1)X + (qn, pn+1 − pn)X = (qn+1, pn+1)X − (qn, pn)X .

Then, we add both sides for n = 0 to N − 1 and note that the right-hand side is a telescopic sum.

Lemma 4.3. Let
(
X, ‖ · ‖X

)
be a normed space on R. Consider a function q ∈ L∞(0, T ;X)∩C (0, T ;X) and

a finite ordered sequence {qn}n of discrete values of q(t) ∈ X taken at successive instants tn, n = 0, . . . , N ,
e.g., qn = q(tn). Let ∆tn = tn+1 − tn be the size of the (n + 1)-th time interval

[
tn, tn+1

]
and note that

T =
∑N−1
n=0 ∆tn. Then, it holds that

N−1∑
n=0

∆tn ‖qn‖X ≤ T ‖q‖L∞(0,T ;X) .

Proof. The following chain of inequalities holds

N−1∑
n=0

∆tn ‖qn‖X ≤ max
0≤n≤N−1

‖qn‖X
N−1∑
n=0

∆tn ≤ T ess supt∈[0,T ] ‖q(t)‖X = T ‖q‖L∞(0,T ;X) ,

which is the assertion of the lemma.

4.2. Nonnegative quasi-interpolation operator

According to (9b), the time derivative of the exact solution ∂u/∂t is only in H1(Ω), so we cannot use
the interpolation operator of Lemma 3.3, which assumes the H2 regularity. So, in this section we discuss
the construction of a quasi-interpolant operator for H1-regular functions that satisfies the condition that
the interpolation is nonnegative in Ω if the function to be interpolated is nonnegative almost everywhere
in Ω. For this construction, we proceed as in [47], although an alternative proof is possible by following
the guidelines depicted in Reference [55], which we report in the final appendix. For the construction of the
quasi-interpolant operator, we first increase the regularity of the function that must be interpolated through
a smoothness operator, and, then, we apply the standard virtual element interpolation to the smoothed
function. This strategy is detailed by the two lemmas from [47] that we report below omitting the proof
as it is the same and referring the interested reader to the original publication. The generalization to the
virtual element setting is immediate since the proof of Lemma 4.4 in [47] is actually independent of the
way the domain is partitioned and the same argument works for triangular and polygonal meshes. Then,
in Lemma 4.5, we can apply the virtual element interpolation operator of Lemma 3.3. The resulting quasi-
interpolation operator has optimal approximation property and, thanks to Lemma 3.1, has the desidered
nonnegativity property. We slightly modified the statement of the lemmas to adapt them to our notation
and assumptions.
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Lemma 4.4. For every mesh Ωh satisfying assumptions (M1)-(M2), there is a linear operator Sh : H1
0 (Ω)→

H2(Ω) ∩H1
0 (Ω), such that

(i) ‖Shv‖k ≤ Ch−j ‖v‖k−j;

(ii) ‖v − Shv‖j ≤ Chk−j ‖v‖k, j = 0, 1, k = 1, 2;

(iii) Shv ≥ 0 on Ω if v ≥ 0 a.e. on Ω.

Proof. See [47, Lemma 1].

Lemma 4.5. Let Ωh be a mesh partitionings of the computational domain Ω satisfying assumptions (M1)-
(M2). For all v ∈ H1

0 (Ω), let Ihv =
(
Shv

)
I

be the function in Vh that interpolates Shv at the vertices of Ωh.
Then,

(i) ‖v − Ihv‖j ≤ Chk−j ‖v‖k, j = 0, 1, k = 1, 2

(ii) Ihv ∈ Kh if v ∈ K.

Proof. See [47, Lemma 2].

Remark 4.6 (Nonnegativity of Ih). The nonnegativity of the quasi-interpolation operator Ih follows from
Lemma 3.1 and (iii) of Lemma 4.4. In fact, if v ∈ H1

0 (Ω) is almost everywhere nonnegative, then the smoothed
function Shv is nonnegative on Ω, and its quasi-interpolant Ihv belongs to Kh.

The following lemmas provides two approximation results about the quasi-interpolation operator that will
be used in the convergence analysis of Section 5.

Lemma 4.7. There exists a real, positive constant C independent of h and ∆t, such that for all v ∈
L2
(
0, T ;H1(Ω)

)
it holds that

∆t

N−1∑
n=0

∥∥v(tn+1)− Ihv(tn+1)
∥∥2

0
≤ Ch2 ‖v‖2

L2
(

0,T ;H1(Ω)
) , (63)

where, for tn+1 ∈ [0, T ], the function Ihv(tn+1) is the quasi-interpolant of v(tn+1) defined through the con-
struction of Lemmas 4.4-4.5 on a mesh Ωh satisfying assumptions (M1)-(M2).

Proof. This lemma is a straightforward consequence of Lemma 4.5 (set j = 0, k = 1) and the norm definition
in the Bochner space L2

(
0, T ;H1(Ω)

)
.

Lemma 4.8. There exists a real, positive constant C independent of h and ∆t, such that for all v ∈
L2
(
0, T ;H1(Ω)

)
it holds that

∆t

N−1∑
n=0

∥∥∂(v(tn)− Ihv(tn)
)∥∥2

0
≤ Ch2

∥∥∥∥∂v∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
) (64)

where, for tn+1 ∈ [0, T ], the function Ihv(tn+1) is the quasi-interpolant of v(tn+1) defined through the con-
struction of Lemmas 4.4-4.5 on a mesh Ωh satisfying assumptions (M1)-(M2).

Proof. Denote η(t) = v(t)− Ihv(t). We use the abbreviation ηn = η(tn) and recall that ∂ηn =
(
ηn+1 − ηn

)
/

∆t. A direct calculation shows that

‖∂ηn‖20 =

∫
Ω

|∂ηn|2 dx dy =

∫
Ω

∣∣∣∣ηn+1 − ηn

∆t

∣∣∣∣2 dx dy =
1

∆t2

∫
Ω

∣∣∣∣∣
∫ tn+1

tn

∂η

∂t
dt

∣∣∣∣∣
2

dx dy

≤ 1

∆t

∫
Ω

∫ tn+1

tn

∣∣∣∣∂η∂t
∣∣∣∣2 dt =

1

∆t

∫ tn+1

tn

(∫
Ω

∣∣∣∣∂η∂t
∣∣∣∣2 dx dy

)
dt =

1

∆t

∫ tn+1

tn

∥∥∥∥∂η∂t
∥∥∥∥2

0

dt. (65)
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Then, we note that the quasi-interpolation operator commutes with the derivative in time,

∂η

∂t
(tn) =

∂

∂t

(
1− Ih

)
v(t)|t=tn =

(
1− Ih

)∂v
∂t

(tn).

So, by using again Lemma 4.5 with j = 0 and k = 1 we find that∥∥∥∥∂ηn∂t
∥∥∥∥

0

≤ Ch
∥∥∂v
∂t (tn)

∥∥
1
,

where the constant C is independent of h and ∆t. Substituting this error bound in (65) and adding the
resulting inequality over all time intervals

[
tn, tn+1

]
conclude the proof of the lemma.

5. Convergence analysis

In the proof of the following theorem, we use the abbreviations u` = u(t`), U `h = Uh(t`), u`π = uπ(t`),
f `h = fh(t`), f ` = f(t`), for ` = n, n + 1,where t` ∈ [0, T ]. Our analysis is built on top of the convergence
analysis that is presented in [47] and actually confirm this result in the framework of the virtual element
method. In the proof, we identify the terms that appear in the original paper and the terms that are the
consequence of the variational crime determined by the virtual element approach, and we provide a estimate
for this latter ones. Resorting to the VEM demands more regularity on the forcing term f than in the
original convergence theorem of Reference [47]. However, this fact is aligned with the virtual element setting
proposed in [2].

Theorem 5.1. Let u be the analytical solution of problem (8a)-(8b) under assumptions (A1)-(A4), and with
a source term f ∈ L∞

(
J ;H1(Ω)

)
. Let Unh ∈ Kh ⊂ Vh be the solution to the virtual element method (12)-(13)

with the construction detailed in Section 3 under the mesh regularity (M1)-(M2). Then, the following estimate
holds:

max
1≤n≤N

‖un − Unh ‖0 +

(
N∑
n=1

∆t|un − Unh |21

) 1
2

≤ C
(

∆t
3
4 + h

)
, (66)

for some real, positive constant C independent of h and ∆t.

Proof. Let ηn = un − Ihun and θn = Unh − Ihun, so that we can rewrite the approximation error as
en = un − Unh = ηn − θn. We start with the identities

mh(∂en, en+1) = mh(∂en, ηn+1)−mh(∂un, θn+1) +mh(∂Unh , θ
n+1) (67a)

ah(en, en+1) = ah(en, ηn+1)− ah(un, θn+1) + ah(Unh , θ
n+1). (67b)

We set v = Un+1
h and t = tn+1 in (9c). Recalling that en+1 = ηn+1 − θn+1, we find that(

∂+un+1

∂t
,−en+1

)
+ a(un+1, θn+1 − ηn+1)− (fn+1, θn+1 − ηn+1) ≥ 0. (68)

Moreover, we set v = Ihu
n+1 in (12) and we obtain:

mh(∂Unh , θ
n+1) + ah(Un+1

h , θn+1) ≤ (fn+1
h , θn+1). (69)

Adding (67a) and (67b) yields:

mh(∂en, en+1) + ah(en, en+1) =
[
mh(∂en, ηn+1)

]
+
[
ah(en, ηn+1)

]
+
[
−mh(∂un, θn+1)− ah(un, θn+1) +mh(∂Unh , θ

n+1) + ah(Unh , θ
n+1)

]
= qn+1

1 + qn+1
2 + qn+1

3 . (70)
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The three terms qn+1
1 , qn+1

2 and qn+1
3 in (70) are identified by the square brackets. We add and subtract

(∂en, ηn+1) to qn+1
1 and a(en, ηn+1) to qn+1

2 , so that we can rewrite the first two terms in the right-hand side
of (70) as:

qn+1
1 = (∂en, ηn+1) +

[
mh(∂en, ηn+1)− (∂en, ηn+1)

]
= pn+1

1 + rn+1
1 , (71)

qn+1
2 = a(en, ηn+1) +

[
ah(en, ηn+1)− a(en, ηn+1)

]
= pn+1

2 + rn+1
2 . (72)

We use inequality (68) and add the left-hand side of (69) to q3 to obtain:

qn+1
3 ≤ −

[
mh(∂un, θn+1) + ah(un, θn+1)

]
+ (fn+1

h , θn+1)

+

(
∂+un+1

∂t
,−en+1

)
+ a(un+1, θn+1 − ηn+1)− (fn+1, θn+1 − ηn+1).

We transform the right-hand side by adding and subtracting (∂un, ηn+1−en+1), recalling the identity θn+1 =
ηn+1 − en+1 and rearranging the terms:

qn+1
3 ≤ (fn+1

h − fn+1, θn+1) +
[
(fn+1, ηn+1)− (∂un, ηn+1)− a(un+1, ηn+1)

]
+

[(
∂+un+1

∂t
,−en+1

)
− (∂un,−en+1)

]
+
[
a(un+1, θn+1)− ah(un, θn+1)

]
+
[
(∂un, θn+1)−mh(∂un, θn+1)

]
= rn+1

3 + pn+1
3 + pn+1

4 + r4 + rn+1
5 . (73)

We substitute (71), (72), and (73) in (70), and by collecting the terms pn+1
i and rn+1

i in two distinct sum-
mations we obtain:

mh(∂en, en+1) + ah(en, en+1) ≤
4∑
j=1

pn+1
j +

5∑
j=1

rn+1
j .

We use the left-hand inequality of stability conditions (36) and (44) to find that

(∂en, en+1) + a(en, en+1) ≤ C̃
4∑
j=1

pn+1
j + C̃

5∑
j=1

rn+1
j , (74)

with C̃ = (min(µ∗, α∗))
−1. Then, we multiply both sides of (74) by ∆t, sum from n = 0 to n = N − 1, apply

Lemma (4.1), cf. (61) with qn = θn, to the left-hand side of the resulting equation, to obtain:

max
1≤n≤N

(
en, en

)
+ ∆t

N−1∑
n=0

a
(
en+1, en+1

)
≤ C̃

(
mh

(
e0, e0

)
+

4∑
j=1

Sj +

5∑
j=1

Rj

)
, (75)

where Sj = ∆t
∑N−1
n=0 pn+1

j and Rj = ∆t
∑N−1
n=0 rn+1

j . The five terms Rj are specific to the VEM setting and
are not present in the analysis of the finite element approximation in [47]. These five terms are indeed due
to the variational “crime“ that we commit by adopting the virtual element approach.

In view of Lemma 4.5, we can estimate the four terms Sj as in Reference [47]. The analysis in Reference [47]
is based on the existence of a nonnegative quasi-interpolation operator with optimal approximation properties.
Such an interpolation operator is needed to estimate the approximation error of terms like ∂u/∂t, for which
we cannot guarantee a regularity better than H1 (unless resorting to specific and much stronger constraints
in the problem formulation). We omit the details of the derivation of the upper bounds of terms Sj as they
can be found in [47]. With a few notational adjustments, as for example, introducing a generic factor ε used
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by the Young inequality, these estimates are

|S1| ≤ 2ε

(
α∆t

N−1∑
n=0

a(en+1, en+1) +
∥∥eN∥∥2

0
+
∥∥e0
∥∥2

0

)

+
C

2ε
h2

(
‖u‖2

L∞
(

0,T ;H1(Ω)
) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
)
)
,

|S2| ≤ 2εα∆t

N−1∑
n=0

a(en+1, en+1) +
C

2ε
h2 ‖u‖2

L∞
(

0,T ;H2(Ω)
) .

|S3| ≤ C h2

(
‖u‖2

L∞
(

0,T ;H2(Ω)
) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
) + ‖f‖2

L∞
(

0,T ;L2(Ω)
)) ,

|S4| ≤ 2ε

N−1∑
n=0

a(en+1, en+1) +
C

2ε
∆t2

(∥∥∥∥∂u∂t
∥∥∥∥
L2
(

0,T ;H1(Ω)
) +

∥∥∥∥∂f∂t
∥∥∥∥
L2
(

0,T ;L2(Ω)
)
)

+ ‖f‖
L∞
(

0,T ;L∞(Ω)
) ( 1

2ε
max

1≤n≤N

∥∥en+1
∥∥2

0
+

∆t

2ε

N−1∑
n=0

a(en+1, en+1) + 2εE

)
,

with

E = ∆t2

(∑
n∈N1

m(Γn)1/2

)2

+ ∆t−1p
∑
n∈N2

m(Γn)2/q

 ,
and where {N1, N2} is a partition of {0, 1, . . . , N−1} in two disjoint subsets as in [47, Eq. (2.16)], m(Γn) is the
measure of Γn defined in (11), and p, q are any two real conjugate indices (1 ≤ p, q ≤ ∞, (1/p) + (1/q) = 1).

Under assumption (A4), it holds that E ≤ C
(

log ∆t−1
)1/2

∆t3/2 for some positive constant independent of
h and ∆t.

Note that
∥∥eN∥∥2

0
≤ max1≤n≤N ‖en‖20 in S1. Also, note that the four terms Sj , j = 1, . . . , 4, provide an

upper bound of the right-hand side of (75) with the following structure

4∑
j=1

|Sj | ≤ C1 ε max
1≤n≤N

‖en‖20 + C2 ε∆t

N−1∑
n=0

a(en+1, en+1) + C3 ε
∥∥e0
∥∥2

0

+ C4(ε)h2

(
‖u‖2

L∞
(

0,T ;H2(Ω)
) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
) + ‖f‖2

L∞
(

0,T ;L2(Ω)
))

+ C5(ε)∆t2

(∥∥∥∥∂u∂t
∥∥∥∥
L2
(

0,T ;H1(Ω)
) +

∥∥∥∥∂f∂t
∥∥∥∥
L2
(

0,T ;L2(Ω)
)
)

+ C6(ε) ‖f‖
L∞
(

0,T ;L∞(Ω)
)E(∆t), (76)

where all constants C`, ` = 1, . . . , 6, are independent of h and ∆t, but for ` = 4, 5, 6 depend on 1/ε. We
denoted the implicit dependence on ∆t in E by writing this term as E(∆t).
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The virtual element variational “crime” requires an estimate of the five additional terms:

R1 = ∆t

N−1∑
n=0

[
mh(∂en, ηn+1)− (∂en, ηn+1)

]

R2 = ∆t

N−1∑
n=0

[
ah(en+1, ηn+1)− a(en, ηn+1)

]

R3 = ∆t

N−1∑
n=0

(fn+1
h − fn+1, θn+1)

R4 = ∆t

N−1∑
n=0

[
a(un+1, θn+1)− ah(un, θn+1)

]

R5 = ∆t

N−1∑
n=0

[
(∂un, θn+1)−mh(∂un, θn+1)

]
Since we are estimating the square of the approximations errors in the left-hand side of (74), we need to

prove that all these terms scale (at least) proportionally to h2 and ∆
3
2 to obtain the assertion of the theorem.

We proceed by evaluating each term separately.

Estimate of R1. We use the summation by parts of Lemma 4.2 (cf. Equation (62)) to transform R1 and
split it in the two subterms R11 and R12:

R1 = R11 + R12 =

[
−∆t

N−1∑
n=0

[
mh(en, ∂ηn+1)− (en, ∂ηn+1)

]]
+

[(
mh(eN , ηN )−mh(e0, η0)

)
−
(
(eN , ηN )− (e0, η0)

)]
. (77)

We use the continuity of bilinear form mE
h(·, ·) (cf. Lemma 3.10), the stability condition (36), the Cauchy-

Schwarz inequality and the Young inequality with the real factor ε1 to obtain the inequality chain:

|R11| =
∣∣mh(∂en, ηn+1)− (en, ∂ηn+1)

∣∣ ≤ ∣∣mh(∂en, ηn+1)
∣∣+
∣∣(en, ∂ηn+1)

∣∣
≤ (1 + µ∗) ‖en‖0 ‖∂η

n‖0 ≤ (1 + µ∗)
(

2ε1 ‖en‖20 +
1

2ε1
‖∂ηn‖20

)
. (78)

Note that we can write ‖en‖20 = a(en, en). Using inequality (64) from Lemma 4.8, we find the desired upper
bound for R11

|R11| ≤ (1 + µ∗)

(
2ε1∆t

N−1∑
n=0

a(en+1, en+1) +
h2

2ε1

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
)
)
.

Similarly, we use the continuity of the bilinear form mE
h(·, ·), the stability condition (36), the Cauchy-Schwarz

and the Young inequality with the real factor ε1 to obtain

|R12| =
∣∣(mh(eN , ηN )−mh(e0, η0)

)
−
(
(eN , ηN )− (e0, η0)

)∣∣
≤
∣∣mh(eN , ηN )

∣∣+
∣∣mh(e0, η0)

∣∣+
∣∣(eN , ηN )

∣∣+
∣∣(e0, η0)

∣∣
≤ (1 + µ∗)

(∥∥eN∥∥
0

∥∥ηN∥∥
0

+
∥∥e0
∥∥

0

∥∥η0
∥∥

0

)
≤ 2ε1(1 + µ∗)

(∥∥eN∥∥2

0
+
∥∥e0
∥∥2

0

)
+

(1 + µ∗)

2ε1

(∥∥ηN∥∥2

0
+
∥∥η0
∥∥2

0

)
.
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Using this inequality and the results of Lemmas 4.3 and 4.7, cf. inequality (63), we find the desired upper
bound for R12

|R12| ≤ 2ε1(1 + µ∗)
(∥∥eN∥∥2

0
+
∥∥e0
∥∥2

0

)
+

(1 + µ∗)

2ε1
h2 ‖u‖2

L∞
(

0,T ;H1(Ω)
) .

Collecting the bounds of R11 and R12 yields

|R1| ≤ 2ε1(1 + µ∗)

[
∆t

N−1∑
n=0

a(en+1, en+1) +
∥∥eN∥∥2

0
+
∥∥e0
∥∥2

0

)]

+
(1 + µ∗)

2ε1
h2

[
‖u‖2

L∞
(

0,T ;H1(Ω)
) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
)
]
. (79)

Estimate of R2. To estimate term R2, we first note that the continuity of the bilinear form ah(·, ·) and the
Young inequality with the coefficient ε2 allows us to write∣∣ah(en+1, ηn+1)− a(en, ηn+1)

∣∣ ≤ (1 + α∗)
∥∥en+1

∥∥
1

∥∥ηn+1
∥∥

1

≤ (1 + α∗)
(

2ε2
∥∥en+1

∥∥2

1
+

1

2ε2

∥∥ηn+1
∥∥2

1

)
. (80)

We substitute this inequality in the definition of term R2, use the Young inequality with the real coefficient
ε2 > 0 and inequality (63), cf. Lemma 4.7, we find that

|R2| ≤ ∆t

N−1∑
n=0

∣∣ah(en+1, ηn+1)− a(en, ηn+1)
∣∣

≤ (1 + α∗)∆t

N−1∑
n=0

(
2ε2
∥∥en+1

∥∥2

1
+

1

2ε2

∥∥ηn+1
∥∥2

1

)

≤ 2ε2(1 + α∗)∆t

N−1∑
n=0

∥∥en+1
∥∥2

1
+

1 + α∗

2ε2
∆t

N−1∑
n=0

∥∥ηn+1
∥∥2

1

≤ 2ε2(1 + α∗)∆t

N−1∑
n=0

a(en+1, en+1) +
1 + α∗

2ε2
h2 ‖u‖2

L∞
(

0,T ;H2(Ω)
) . (81)

To estimate the next terms, we need an upper bound for the L2-norm and the H1-seminorm of θn+1. We

recall that θn+1 = ηn+1 − en+1 and
∣∣en+1

∣∣2
1

= a(en+1, en+1). Using the estimate for the quasi-interpolation
operator, cf. Lemma 4.5, we find that∥∥θn+1

∥∥2

0
≤ 2

∥∥ηn+1
∥∥2

0
+ 2

∥∥en+1
∥∥2

0
≤ 2
(
Ch
∣∣un+1

∣∣
1

)2
+ 2

∥∥en+1
∥∥2

0
, (82a)

and ∣∣θn+1
∣∣2
1
≤ 2

∣∣ηn+1
∣∣2
1

+ 2
∣∣en+1

∣∣2
1
≤ 2
(
Ch
∣∣un+1

∣∣
2

)2
+ 2a(en+1, en+1). (82b)

Estimate of R3. To estimate R3, we use result of Lemma 3.15, cf. inequality (48), and the Young inequality
with the real coefficient ε3 > 0 to obtain:

|R3| ≤ ∆t

N−1∑
n=0

∣∣(fn+1
h − fn+1, θn+1)

∣∣ ≤ Ch2∆t

N−1∑
n=0

|fn+1|1 |θn+1|1

≤ Ch2

(
2ε3∆t

N−1∑
n=0

|fn+1|21 +
1

2ε3
∆t

N−1∑
n=0

|θn+1|21

)

= |R31|+ |R32| . (83)
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We estimate R31 by using the result of Lemma 4.3, so that we have

|R31| = 2ε3Ch
2∆t

N−1∑
n=0

|fn+1|21 ≤ 2ε3Ch
2 ‖f‖2

L∞
(

0,T ;H1(Ω)
) . (84)

We estimate R32 by noting that |θn+1|1 = |un+1 − Ihun+1|1 ≤ 2|un+1|1, and using the result of Lemma 4.3,
so that we have

|R32| ≤
C

2ε3
h2∆t

N−1∑
n=0

|un+1|21 ≤
C

2ε3
h2 ‖u‖2

L∞
(

0,T ;H1(Ω)
) . (85)

Using these inequalities, we derive the following upper bound for R3:

|R3| ≤ 2ε3Ch
2 ‖f‖2

L2
(

0,T ;H1(Ω)
) +

C

2ε3
h2 ‖u‖2

L2
(

0,T ;H1(Ω)
) . (86)

Estimate of R4. To derive an upper bound for R4, we introduce a piecewise linear polynomial approximation
un+1
π to un+1, use linear polynomial consistency property (45), inequality (19), and the Young inequality

with the real coefficient ε4 > 0:∣∣a(un+1, θn+1)− ah(un, θn+1)
∣∣ =

∣∣a(un+1 − un+1
π , θn+1)− ah(un − un+1

π , θn+1)
∣∣

≤ (1 + α∗)
∥∥un+1 − un+1

π

∥∥
1,h

∥∥θn+1
∥∥

1
≤ (1 + α∗)

(
1

2ε4

∥∥un+1 − un+1
π

∥∥2

1,h
+ 2ε4

∥∥θn+1
∥∥2

1

)

≤ (1 + α∗)

(
C

2ε4
h2
∣∣un+1

∣∣2
2

+ 2ε4
∣∣θn+1

∣∣2
1

)
.

Using inequality (82b) yields the desired upper bound for R4:

|R4| ≤ ∆t

N−1∑
n=0

∣∣a(un+1, θn+1)− ah(un, θn+1)
∣∣

≤ C(1 + α∗)

ε4
h2 ‖u‖2

L∞
(

0,T ;H2(Ω)
) + 4(1 + α∗) ε4∆t

N−1∑
n=0

a(en+1, en+1). (87)

Estimate of R5. To derive an upper bound for R5, we introduce a piecewise linear polynomial approximation
∂unπ to ∂un, and use the relation (38)

(∂un, θn+1)−mh(∂un, θn+1) = (∂un − ∂unπ, θn+1)−mh(∂un − ∂unπ, θn+1) +Mh(θn+1, ∂unπ)

where the bilinear form Mh(·, ·) is the consistency discrepancy that stems out of using the projector Π̃ in
the definition of mh(·, ·). Using inequality (19), to estimate for the approximation error ∂(un+1−un+1

π ), and
the Young inequality with the real coefficient ε5 > 0:∣∣(∂(un − unπ), θn+1)−mh(∂(un − unπ), θn+1)

∣∣ ≤ (1 + µ∗) ‖∂(un − unπ)‖0
∥∥θn+1

∥∥
0

≤ (1 + µ∗)

(
1

2ε5
‖∂(un − unπ)‖20 + 2ε5

∥∥θn+1
∥∥2

0

)
≤ (1 + µ∗)

(
C

2ε5
h |∂un|21 + 2ε5

∥∥θn+1
∥∥2

0

)
.

We estimate the consistency discrepancy at the time instant tn+1 by applying the result of Lemma 3.13
and apply the Young inequality with the real coefficient ε6

Mh(θn+1, ∂unπ) ≤ Ch2 ‖∂unπ‖0
∣∣θn+1

∣∣
2
≤ Ch2

(
1

2ε6
‖∂unπ‖

2
0 + 2ε6

∣∣θn+1
∣∣2
2

)
.

25



The continuity of the projection operator ( · )π implies that ‖∂unπ‖0 ≤ ‖∂un‖0. Then, we recall that ∂un =
(un+1 − un)/∆t and apply the Jensen inequality to obtain:

‖∂unπ‖
2
0 ≤ ‖∂u

n‖20 ≤
∥∥∥∥un+1 − un

∆t

∥∥∥∥2

0

≤ 1

∆t2

∥∥∥∥∥
∫ tn+1

tn

∂u

∂t
dt

∥∥∥∥∥
2

0

≤ 1

∆t

∫ tn+1

tn

∥∥∥∥∂u∂t
∥∥∥∥2

0

dt

A straightforward calculation yields

∆t

N−1∑
n=0

1

∆t

∫ tn+1

tn

∥∥∥∥∂u∂t
∥∥∥∥2

0

dt =

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;L2(Ω)
) .

Moreover, we note that
∣∣θn+1

∣∣
2
≤ C

∥∥un+1
∥∥

2
and a straightforward calculation yields

∆t

N−1∑
n=0

∣∣θn+1
∣∣2
2
≤ T ‖u‖2L∞(0,T ;H2(Ω)) .

Using these inequalities we find that

∆t

N−1∑
n=0

Mh(θn+1, ∂unπ) ≤ C(1 + µ∗)h2

(
1

2ε6

∥∥∥∥∂u∂t
∥∥∥∥2

L2(0,T ;L2(Ω))

+ 2ε6 T ‖u‖2L∞(0,T ;H2(Ω))

)
. (88)

Using inequalities (82a) and (88), and the result of Lemma 4.7, cf. inequality (63), the upper bound for R5

finally becomes:

|R5| ≤ ∆t

N−1∑
n=0

∣∣(un+1, θn+1)−mh(un, θn+1)
∣∣ ≤ 4(1 + µ∗) ε5∆t

N−1∑
n=0

a(en+1, en+1)

+ C(1 + µ∗)

(
1

2ε5
+

1

2ε6

)
h2

(∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;L2(Ω)
) + (1 + T ) ‖u‖2

L∞
(

0,T ;H2(Ω)
) ). (89)

We note again that
∥∥eN∥∥2

0
≤ max1≤n≤N ‖en‖20 in S1. Also, we note that the five terms Rj , j = 1, . . . , 5,

provide an upper bound of the right-hand side of (75) with the following structure

5∑
j=1

|Rj | ≤ C∗1 max
1≤n≤N

‖en‖20 + C∗2 ∆t

N−1∑
n=0

a(en+1, en+1) + C∗1
∥∥e0
∥∥2

0

+ C∗3h
2

(
‖u‖2

L∞
(

0,T ;H2(Ω)
) +

∥∥∥∥∂u∂t
∥∥∥∥2

L2
(

0,T ;H1(Ω)
) + ‖f‖2

L∞
(

0,T ;L2(Ω)
)) , (90)

where we set the constants C∗j , j = 1, . . . , 4, as

C∗1 = 2(1 + µ∗)ε1, C∗2 = 2(1 + µ∗)(2ε1 + 2ε5) + 2(1 + α∗)(2ε2 + 2ε4),

C∗3 = (1 + µ∗)

(
1

2ε1
+

1

2ε3
+

1

2ε5
+

1

2ε6

)
, C∗4 = (1 + α∗)

( 1

2ε2
+

1

2ε4

)
.

We note that the terms Rj does not involve any additional error contribution in time. This remarkable fact
is consistent with the fact that the virtual element method affects only the space discretization.

Inequality (66) and the theorem assertion follow by substituting the error bounds (76) and (90) in (75),
choosing a suitable value for the Young coefficients ε, εj , j = 1, . . . , 6, and taking the square root of both
sides of the resulting inequality. Finally, we note that all constants from the bounds of terms Sj and Rj are

independent of h and ∆t, and a unique constant can be set, which is taken into account C̃ in (75), and is
proportional to max(µ∗, α∗)/min(µ∗, α∗).
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(a) (b) (c)

Figure 1: a representative mesh of the three mesh families considered in the test case: (a) distorted squares; (b) nonconvex
polygons; (c) Voronoi tesselation.

6. Numerical Experiments

In this section, we apply the virtual element method developed in the previous sections to the solution
of an oscillating circle in two dimensions. For the numerical analysis, domain Ω is discretized by three
different mesh families, respectively composed by distorted squares, nonconvex polygons, and smoothed
Voronoi tesselations. Figure 1 shows a representative mesh for each family. The distorted squares and non-
convex meshes are based on in-house code developed in Matlab [52]. The two-dimensional polygonal meshes
are generated using the built-in Matlab function voronoin and the functions in the modules PolyTop [62]
and PolyMesher [63].

Let enh = Unh − Ihu(tn) be the error in the approximation of the interpolation of u(tn) by the virtual
element solution (which is the quantity θn that is used in the proof of Theorem 5.1). We measure the relative
approximation error according to this definition:

E = max
n∈[0,N ]

En0 +

(
∆t

N∑
n=0

|En1 |2
) 1

2

.

where

En0 =

(
mh

(
enh, e

n
h

)
mh

(
Ihu(tn), Ihu(tn)

)) 1
2

and En1 =

(
ah
(
enh, e

n
h

)
ah
(
Ihu(tn), Ihu(tn)

)) 1
2

.

Before presenting the numerical results, we highlight the implementation process of the new operator which
is defined in (24). The major difference with the standard VEM is that we use Π̃E instead of Π0,E in the
discretization of the time-derivative term and the right-hand side term. We recall that the former is the
orthogonal projector onto the subspace of linear polynomials in every polygonal element with respect to the
discrete inner product (20) and the latter is the L2 projection operator defined in (6). Our implementation
of the local mass matrix on each element E proceeds in three steps. First, we compute the projection matrix

Π̃E,∗ =
(
DTD

)−1
DT , (91)

where we recall that D is the matrix collecting the degrees of freedom of the monomial basis (3) and is defined
in (23). Second, we define the elemental mass matrix M using (91):

M =
(
Π̃E,∗)TH Π̃E,∗ where H|ij =

∫
E

mi(x, y)mj(x, y) dx dy i, j = 1, 2, 3.

Third, we assemble the global mass matrix as in the standard finite element method. The right-hand side
term is also computed using the projection operator Π̃E in every mesh element. According to (47), we consider

bh =
(
Π̃E,∗)T fh where fh|i =

∫
E

mi(x, y)f(x, y) dx dy.
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The implementation of the stiffness matrix from the bilinear form ah(·, ·) is carried out as usual in the

VEM. The primary advantage of using the projection operator Π̃E is that this operator is computable on the
original virtual element space [11], whereas we would need the modified virtual element space [2] to compute
the regular L2 projection operator Π0,E.

For the numerical computations, we consider the computational domain Ω = [−1, 1]2 and the time interval,
[0, T ] = [0, 1/2]. We define the noncontact subdomain Ω+(t) and the contact set Ω0(t) as:

Ω+(t) =
{

(x, y) ∈ Ω : r(t) > r0(t)
}

and Ω0(t) =
{

(x, y) ∈ Ω : r(t) ≤ r0(t)
}
,

where r(t) and r0(t) are respectively given by:

r(t) =
((
x− 1/3 cos(4πt)

)2
+
(
y − 1/3 sin(4πt)

)2) 1
2

,

r0(t) = 1/3 + 0.3 sin(4πt).

The exact solution u(x, y, t) is given by:

u(x, y, t) =


1

2

(
r2(t)− r2

0(t)
)2

if (x, y) ∈ Ω+(t),

0 if (x, y) ∈ Ω0(t).

The initial and boundary conditions can be computed from the exact solution u(x, y, t), see (6). The force
function is given by:

f(x, y, t) =

 4
[
r2
0(t)− 2r2(t)− 1/2(r2(t)− r2

0(t))
(
p(t) + r0(t) r

′

0(t)
]

if (x, y) ∈ Ω+(t),

−4r2
0(t)

[
1− r2(t) + r2

0(t)
]

if (x, y) ∈ Ω0(t),

Here, p(t) is defined as
p(t) = (x− c1(t))c′1(t) + (y − c2(t))c′2(t),

where,

c1(t) =
1

3
cos(4πt) and c2(t) =

1

3
sin(4πt)

are the centers of the free boundary, which is an oscillatory circle with radius r0(t). It is assumed that the
circle is moving with respect to a reference circle of radius r1 at the origin. The computations are performed
over the three mesh families shown in Figure 1. To study the convergence in space, we consider the time
increment ∆t = 10−3 and a mesh sequence with initial mesh size as: (a) distorted mesh, h ≈ 0.36; (b)
nonconvex mesh, h ≈ 0.30; (c) Voronoi tesselation, h = 0.20. At each mesh refinement we halve h. To study
the convergence in time, we halve the time step ∆t at each time refinement starting with ∆t = 0.125 and
carry out all calculation on the following meshes: (a) distorted square mesh with h = 0.045; (b) nonconvex
mesh with h = 0.073; (c) Voronoi mesh with h = 0.025. We choose these mesh sizes in order that the total
number of degrees of freedom on the various meshes is almost the same. The convergence of the error with
mesh size and time increment is shown in Figures 2 for the three mesh families considered in this test. The
triangles close to the error curves show the numerically computed rate of convergence. It can be inferred that
the error decreases at the optimal convergence rate in both the space and temporal variable with order 1 and
≈ 0.75, respectively, in agreement with Theorem 5.1. Finally, Figure 3 shoes the numerical solution at (left
panel) and the corresponding distribution in space of the relative approximation error (right) the final time
T = 0.25.

7. Conclusions

We designed, analyzed and numerically tested a virtual element method for solving the parabolic vari-
ational inequality problem in two dimensions over unstructured polygonal meshes. Several aspects make
this design challenging. In particular, we used the Maximum and Minimum Principle Theorem to ensure
that a virtual element function is nonnegative if all its degrees of freedom are nonnegative. We introduced
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Figure 2: Convergence of the error (see equation (66)) with respect to the mesh refinement for a constant ∆t = 10−3 (top panel)
and halving ∆t = on a mesh with fixed h (bottom panel).

Figure 3: Numerical solution (left panel) and relative approximation error (right panel) u− uh at time T = .25.

an approximate orthogonal projector onto linear polynomials, whose approximation properties are carefully
investigated in this paper, to compute the mass matrix. The convergence analysis requires a nonnegative
quasi-interpolation operator, whose construction on polygonal elements is also discussed in the paper. We
proved a convergence theorem and estimated that the convergence rate is proportional to h (the mesh size

parameter) and ∆t
3
4 (the time step parameter). These results are in perfect agreement with a previous finite

element formulation from the literature working in triangular meshes [47]. We assessed the behavior of the
VEM against a manufactured solution problem on a two-dimensional domain defined by an oscillating circle
using three different polygonal mesh families including distorted squares, nonconvex elements, and Voronoi
tesselations. All the numerical convergence rates reflected by the slope of the error curves in our log-log plots
agree with the rates that are expected from the theory.
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Appendix: An alternative construction of the quasi-interpolation operator

In this section, we would like to outline an alternative proof of Lemma 4.5. For each polygonal element
E, we define the quasi-interpolant operator Ihu|E ∈ H1(E) as the solution of the following Poisson’s equation
with Dirichlet boundary condition.

∆Ihu = 0 in E,

Ihu = uC on ∂E,

where uC is the Clément interpolation operator on the sub-triangulation of the mesh Ωh by joining each vertex
of ∂E with with the barycentre of E. Following [55], it can be proved that Ihu approximates u optimally, i.e.

‖u− Ihu‖0,E + hE‖u− Ihu‖1,E ≤ Ch2
E|u|2,E.

Furthermore, from the construction, on each node ν, Ihu(ν) = uC(ν), and

uC(ν) =
1

|ων |

∫
ων

u dx,

where ων is the patch of the node ν on the sub-triangulation of Ωh. Consequently, we have Ihu(ν) ≥ 0, when
u ≥ 0 almost everywhere on Ω. Moreover, Ihu is a harmonic function. Therefore, from corollary (3.2), we
emphasize that Ihu ∈ Kh if u ∈ K.
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