
ar
X

iv
:1

80
2.

05
90

4v
4 

 [
m

at
h.

N
A

] 
 2

2 
O

ct
 2

02
1

Error and Stability Estimates of a Least-Squares Variational

Kernel-Based Method for Second Order Elliptic PDEs

SALAR SEYEDNAZARI a∗, MEHDI TATARI a,c†, , DAVOUD MIRZAEI b‡

aDepartment of Mathematical Sciences,
Isfahan University of Technology, Isfahan, 84156-83111, Iran.

bDepartment of Applied Mathematics and Computer Science, Faculty of Mathematics and Statistics
Unievrsity of Isfahan, 81746-73441 Isfahan, Iran.

cSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM),

P.O. Box: 19395-5746, Tehran, Iran.

October 26, 2021

Abstract

We consider a least-squares variational kernel-based method for numerical solution of
second order elliptic partial differential equations on a multi-dimensional domain. In this
setting it is not assumed that the differential operator is self-adjoint or positive definite
as it should be in the Rayleigh-Ritz setting. However, the new scheme leads to a sym-
metric and positive definite algebraic system of equations. Moreover, the resulting method
does not rely on certain subspaces satisfying the boundary conditions. The trial space for
discretization is provided via standard kernels that reproduce the Sobolev spaces as their
native spaces. The error analysis of the method is given, but it is partly subjected to an
inverse inequality on the boundary which is still an open problem. The condition number
of the final linear system is approximated in terms of the smoothness of the kernel and the
discretization quality. Finally, the results of some computational experiments support the
theoretical error bounds.

Keywords: Meshfree methods, Least-squares principles, Radial basis functions, Inverse
inequalities, Error estimates.

AMS subject classifications: 65N12, 65N15, 65D15, 65N99.

1 Introduction

It is of interest to extend the theory of least-squares methods for numerical treatment of
elliptic systems. Some advantageous features are obtained via Least-Squares Principles (LSP)
because of using the artificial energy functional to provide a Rayleigh-Ritz-like setting; see
[3, 7]. One of the most attractive features of the least-squares methods is that the choice of

∗E-mail address: salarseyednazari@gmail.com,
†E-mail address: mtatari@cc.iut.ac.ir. (corresponding author). This research was in part supported by

a grant from IPM (No.95650422)
‡E-mail address: d.mirzaei@sci.ui.ac.ir.

http://arxiv.org/abs/1802.05904v4


approximating spaces is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition
[15]. Indeed, the computation of stationary points, that is the paradigm of mixed-Galerkin
methods, demands strict compatibility LBB condition for continuous and discrete spaces, if
stable and accurate approximations are desired. Furthermore, standard and mixed-Galerkin
methods usually produce nonsymmetric systems of algebraic equations which must then be
solved by direct or non-robust iterative methods, while least-squares methods involve only
symmetric and positive definite systems. The other motivation to extend the least-squares
methods to PDE problems of general boundary conditions, including nonhomogeneous ones,
is a greatly facilitated treatment with boundary conditions because their residuals can be
incorporated into the least-squares functional [7].

The theory of least-squares methods in numerical solution of elliptic boundary value prob-
lems was considered in Bramble and Schatz [13, 14] and Bramble and Nitsche [12]. An extension
to an elliptic equation of order 2m was given in [14], and an important simplifications in the
analysis was presented in [4]. Also, a least-squares theory was developed for an elliptic system
of Petrovsky type in [53] and for elliptic systems of Agmon-Douglis-Nirenberg (ADN) type in
[3]. We refer the reader to the survey articles [5, 6] and books [7, 28] for more details.

In this paper we develop a least-squares method for numerical solution of second order
elliptic boundary value problems via reproducing kernels of Sobolev spaces Hτ (Ω), Ω ⊂ R

d, for
some τ > d/2, where Ω is a domain on which the PDE is posed. In particular we use radial basis
function (RBF) approximations. Although, we focus on the second order elliptic boundary
value problems, a generalization to higher order equations can be done in an obvious way. The
method involves the minimization of a least-squares functional that consists of a weighted sum
of the residuals occurring in the differential equation and the boundary conditions. One of the
additional advantages is that the method provides a more accurate solution than one might
be expected from the approximating space. The method requires an approximating space
consisting of functions which are smooth enough to lie in the domain of the elliptic operator.
Thus, for the success of the least-squares method it is crucial to choose proper function spaces
in which the boundary value problem is well-posed.

In a natural way, straightforward least-squares methods for second or higher order differ-
ential equations require finite dimensional subspaces of Hk (Ω), k ≥ 2. It is well known in
the theory of finite element methods that the construction of such subspaces is much more
difficult than those of H1 (Ω). Because the latter only need to be at most continuous whereas,
in practice, the former have to consist of k times differentiable functions. The Ck (Ω) regular-
ity requirement complicates finite element spaces in several ways. First, it cannot be satisfied
unless the reference polynomial space is of a sufficiently high degree. Second, unisolvency sets
of Ck (Ω) elements include both values of a function and its derivatives. This fact greatly
complicates the construction of bases and the assembly of the matrix problem. Finally, Ck (Ω)
elements are not necessarily affine equivalent because affine mappings do not necessarily pre-
serve the normal direction. To overcome this problem in finite element methods, the given
problem is converted into a first order system. Since in kernel-based method one can simply
construct arbitrary smooth approximation spaces, converting the problem into a first order
system of equations may not be actually required. Thus, we directly apply RBF-based least-
squares methods on the original equation. However, it is a good idea for a future study to
apply the method on the corresponding first order system of equations because smoothness of
the basis functions affects stability of the final system. On the other hand, the construction of
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the finite dimensional subspaces using RBFs is independent of the problem dimension and an
extension to high dimensional problems is straightforward.

RBFs are powerful tools in multi-variable approximation and there exist substantial interest
and effort for developing these basis functions. This approximation is based on unrelated
centers for the discretization process while most other methods are relied on underlying meshes.
In the present paper, we restrict ourselves to RBFs that reproduce Sobolev spaces as their
native spaces. We collect some few necessary results on RBFs while the whole theory is
extensively presented in [52].

Both kernel-based collocation and Galerkin methods were investigated for solving PDEs.
The unsymmetric collocation method was introduced by Kansa [29], in 1990. The linear
system arising from this method may not be solvable in general; see Hon and Schaback [26].
By changing the setting, a convergence analysis was given by Schaback [45]. The symmetric
collocation method was initially investigated by Wu [56] and Narcowich and Ward [37]. The
analysis of this method was investigated in [21, 22, 52], and recently in [18]. In [49] an analysis
for a meshless Galerkin method for a second order elliptic problem with natural boundary
conditions was given and a finite element like convergent estimate was obtained. A Petrov-
Galerkin kernel-based method was given and analyzed in [32]. Also, a meshless method for
numerical solution of PDEs by using the Hermite-Birkhoff interpolation with radial basis is
presented in see [58].

Despite of numerous theoretical and computational advantages of LSPs, there has not
been a substantial effort devoted to investigating the least-squares variational kernel-based
approaches for solving PDEs; the subject that will be considered in this paper.

The paper is organized as follows. In Section 2, some few notations and some auxiliary
results are introduced. A short summary of the theory of RBFs approximation with a focus
on those basis functions which generate Sobolev spaces is given. The rest of this section
is devoted to introduce the necessary technical framework of continuous and discrete least-
squares principles for numerical solution of second order differential equations. Section 3 has
three parts. In the first part, the approximate solution is defined to be the minimizer of a
mesh-dependent least-squares functional that is a weighted sum of the least-squares residuals
of differential equation and boundary conditions. In the second part, the error analysis of
the method is given. The analysis is partly based on an unproven inverse inequality on the
boundary that demands a new research study. In the last part, the condition number of the
final matrix is estimated. Finally, in Section 4 some numerical results are reported to verify
the theoretical bounds of the preceding section.

2 Notations and Auxiliary Results

In this paper, Ω will denote a simply connected bounded region in R
d with a sufficiently smooth

boundary ∂Ω, and C will be considered a generic positive constant whose meaning and value
changes with context. For s ≥ 0, we use the standard notation and definition for the Sobolev
spaces Hs(Ω) and Hs(∂Ω) with corresponding inner products denoted by (·, ·)s,Ω and (·, ·)s,∂Ω
and norms by ‖ · ‖s,Ω and ‖ · ‖s,∂Ω, respectively; see, e.g., [1], for details. For s < 0, the spaces

Hs(Ω) and Hs(∂Ω) are identified with the duals of H−s(Ω) and H−s(∂Ω), respectively. A
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norm for f ∈ Hs(Ω), with s < 0, is defined by

‖f‖s,Ω = sup
u∈H−s(Ω)

(f, u)0,Ω
‖u‖−s,Ω

.

For s < 0, the norm on Hs(∂Ω) can be defined similarly; see [23] for more details.
A function f defined on Ω is said to be Lipschitz continuous if for some constant C, there

holds the inequality
|f(x)− f(y)| ≤ C ‖x− y‖ , ∀x, y ∈ Ω.

In this formula, ‖x− y‖ denotes the standard Euclidean distance between x and y. More
generally, a function f is said to be Hölder continuous with exponent β ∈ (0, 1] if for some
constant C,

|f(x)− f(y)| ≤ C‖x− y‖β , ∀x, y ∈ Ω.

The Hölder space C0,β(Ω) is defined to be the subspace of C(Ω) functions that are Hölder
continuous with the exponent β. For l ∈ Z+ and β ∈ (0, 1], we similarly define the Hölder
space

C l,β(Ω) =
{
f ∈ C l(Ω)

∣∣∣Dαf ∈ C0,β(Ω), |α| = l
}
,

where α = (α1, . . . , αd) ∈ N
d
0 is a multi-index, |α| = α1 + · · · + αd. The partial derivative

operator Dα is defined by

Dα =
∂|α|

∂(x1)α1 · · · ∂(xd)αd
.

where (x1, . . . , xd)T ∈ R
d.

2.1 Approximation by RBFs

For a given function space Hτ (Ω) on bounded domain Ω ⊂ R
d, we define the finite dimensional

kernel-based meshless trial spaces UΦ,X ⊂ Hτ (Ω) by

UΦ,X := span {Φ ( · − xj) : xj ∈ X} ,

where Φ : Rd → R is a radial basis function and

X = {x1, . . . , xN} ,

will always be a finite subset of Ω, with the points all assumed to be distinct. There are two
useful quantities associated with X. The first is the mesh norm for X related to Ω, called fill
distance, given by

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖ ,

where norm ‖ · ‖ is the Euclidean norm in R
d. In other words, the largest ball in Ω that does

not contain a data site has radius at most hX,Ω. The second is the separation radius,

qX :=
1

2
min
xj 6=xk

‖xj − xk‖ .
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It is easy to see that if Ω is connected, we have hX,Ω ≥ qX . A sequence of set points {Xk} is
called quasi-uniform if there exists a uniform constant δ > 0 such that qXk

≥ δ hXk ,Ω for all k.
In particular, the quantity ρX := hX,Ω/qX is commonly referred as the mesh ratio of X.

Definition 2.1. A continuous and even function Φ : Rd → R is said to be positive definite if
for all N ∈ N, all sets of pairwise distinct centers X = {x1, . . . , xN} in R

d, and all α ∈ R
N\ {0}

the quadratic form
∑N

j,k=1 αjαkΦ (xj − xk) is strictly positive.

The RBF interpolant of a continuous functions u on a set X is denoted by IXu and is given
by

IXu :=

N∑

j=1

bjΦ (· − xj),

where the coefficient vector b is determined by enforcing the interpolation conditions IXu(xk) =
u(xk) for k = 1, . . . , N . If Φ is a positive definite kernel then the interpolation matrix B =
(Φ(xk − xj)) is positive definite and the problem is uniquely solvable.

It is known that (see for example [52]) a function Φ ∈ L1(Rd) ∩ C(Rd) is positive definite
if and only if it is bounded and its Fourier transform is nonnegative and nonvanishing. Our
convention for the Fourier transform of a function f ∈ L1(Rd) is

f̂(ω) := (2π)−d/2

∫

Rd

f(x)e−iωT xdx, ω ∈ R
d.

In this paper we will further assume that Φ has an algebraically decaying Fourier transform.
To be more precise, we assume that

C1(1 + ‖ω‖2)−τ ≤ Φ̂(ω) ≤ C2(1 + ‖ω‖2)−τ , ω ∈ R
d, (1)

where C1 and C2 are constants and τ > d/2. By this assumption the native space

NΦ(R
d) :=

{
f ∈ L2(Rd) ∩ C(Rd) : f̂ /

√
Φ̂ ∈ L2(Rd)

}
,

with the inner product

(f, g)NΦ(Rd) := (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω,

is identical with the Sobolev space Hτ (Rd) and their norms are equivalent [52]. Note that the
inner product in Hτ (Rd) is defined by

(f, g)τ,Rd := (2π)−d/2

∫

Rd

f̂(ω)ĝ(ω)(1 + ‖ω‖2)τdω, f, g ∈ Hτ (Rd).

If we assume that Ω has a Lipschitz boundary to ensure the existence of a continuous extension
operator EΩ : Hτ (Ω) → Hτ (Rd) then the native space NΦ(Ω) is norm-equivalent to Hτ (Ω)
[52].

It is well known that RBF interpolants are also the best approximants in the following
sense

min
v∈UΦ,X

‖u− v‖NΦ(Ω) = ‖u− IXu‖NΦ(Ω).
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Hence, if the native space coincides with an appropriate Sobolev space, the norm of u − IXu
can be bounded by the norm of the target function u in Sobolev spaces. Since the smoothness
of u is unknown in general, we have to look for convergence results where Φ can be chosen
independent of the smoothness of u; i.e., the error estimates include situations in which u does
not belong to the native space of the RBF. In [33, 34, 35] the Sobolev type error estimates for
positive real τ , for functions inside or outside the native space were derived.

Theorem 2.2. Suppose a positive definite kernel Φ satisfying (1), with τ ≥ k > d/2, and let
a bounded Lipschitz domain Ω ⊂ R

d be given. Furthermore, let X ⊂ Ω has mesh norm hX,Ω.
Then there exists a function vh ∈ UΦ,X , a constant C independent of u and hX,Ω such that

‖u− vh‖r,Ω ≤ C hk−r
X,Ω‖u‖k,Ω, 0 ≤ r ≤ k,

and

‖u− IXu‖r,Ω ≤ C hk−r
X,Ω‖u‖k,Ω, 0 ≤ r ≤ k,

for all u ∈ Hk(Ω).

2.2 CLSP for second order PDEs

For a bounded domain Ω ⊂ R
d with boundary ∂Ω, we consider the following second order

elliptic operator

Lu (x) = −
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

d∑

i=1

bi (x)
∂u

∂xi
(x) + c (x)u (x) = f (x) , x ∈ Ω, (2)

Bu (x) = u (x) = g (x) , x ∈ ∂Ω, (3)

where u ∈ H2(Ω), f ∈ L2 (Ω) and g ∈ H3/2 (∂Ω) .
If we assume that U , V and W are Hilbert spaces and problem (2)-(3) is well-posed so that

it has a unique solution for all smooth data f and g and there exist positive constants C1 and
C2 such that

C1‖u‖U ≤ ‖Lu‖V + ‖Bu‖W ≤ C2‖u‖U . (4)

This relation is called energy balance which is fundamental to least-squares methods because
it defines a proper norm-equivalence between solution space U and data Space V ×W .

In order to achieve high order convergence, the regularity of u needs to be higher than
what is strictly required by the problem itself. Here we assume for a real k ≥ 2,

U := Hk (Ω) , V := Hk−2 (Ω) , W := Hk−1/2 (∂Ω) .

By using an Agmon-Douglis-Nirenberg (ADN) setting [2], the left inequality in (4) can be
proved for the above L and B operators. See [38, 39] for details and proofs. Problem (2)-(3) is
well-posed if and only if the boundary operator B complements L in a proper way. As specified
in [2], this is equivalent to an algebraic condition, called the complementing condition, on the
principal parts of L and B. However, we shall not state these conditions here as they are
somewhat complicated and are not needed in the continuation. But in what follows we assume
L is uniformly elliptic in the sense of ADN in Ω and B satisfies the complementing condition.
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Lemma 2.3. Let k ≥ 2 be real and assume Ω is a bounded domain such that ∂Ω ∈ Ck. Further-
more, assume that the aij , bi, and c are in Ck−2

(
Ω
)
. If f ∈ Hk−2 (Ω) and g ∈ Hk−1/2 (∂Ω)

then every solution u ∈ H2 (Ω) is indeed in Hk (Ω). Also, there exists a constant C > 0
independent of u, f and g such that for every solution u ∈ Hk (Ω) we have

‖u‖k,Ω ≤ C
(
‖f‖k−2,Ω + ‖g‖k−1/2,∂Ω

)
. (5)

Moreover, the a priori bound (5) can be also extended to all real values k < 2.

Throughout the paper and in what follows, whenever we assume u ∈ Hk(Ω), for some real
k ≥ 2, is the unique solution of (2)-(3) (perhaps in a weak sense), then Ω is assumed to be a
bounded domain in R

d such that ∂Ω ∈ Ck. Furthermore, the functions aij , bi and c in (2) are
assumed to be of class Ck−2

(
Ω
)
.

Lemma 2.3 yields the inverse of mapping T : Hk (Ω) → Hk−2 (Ω)×Hk−1/2 (∂Ω) defined by
Tu = (Lu, u) which is continuous for all real k. To extend this a priori estimate to the energy
balance, we need the trace theorem that relates the Sobolev norms of functions on the interior
of Ω with the Sobolev norms of their restrictions to the boundary ∂Ω [1].

Theorem 2.4. (Trace Theorem) Assume that ∂Ω ∈ Cℓ,1 for some ℓ ≥ 0 and 1/2 < k ≤ ℓ+1.
Then, the trace operator π : Hk(Ω) → Hk−1/2(∂Ω), where πu := u |∂Ω , is bounded. This means
there exists a positive constant C such that for all u ∈ Hk (Ω)

‖πu‖k−1/2,∂Ω ≤ C‖u‖k,Ω.

By applying Lemma 2.3 and Theorem 2.4 we simply have the following theorem.

Theorem 2.5. For real q ≥ 0, let Ω be a bounded domain such that ∂Ω ∈ Cq+2. Furthermore,
assume that the coefficients of L are of class Cq

(
Ω
)
. Then the mapping T : Hq+2 (Ω) →

Hq (Ω)×Hq+3/2 (∂Ω) defined by Tu = (Lu, u) is a homeomorphism, and the norms ‖ · ‖q+2,Ω

and ‖L· ‖q,Ω + ‖ · ‖q+3/2,∂Ω are equivalent; i.e., there exists a constant C > 0 independent of u
such that

C−1‖u‖q+2,Ω ≤ ‖Lu‖q,Ω + ‖u‖q+3/2,∂Ω ≤ C‖u‖q+2,Ω. (6)

This relation defines a proper norm-equivalence between solution space Hq+2 (Ω) and data
Space Hq (Ω) × Hq+3/2 (∂Ω). Moreover, the energy balance (6) allows to define a well-posed
continuous least-squares principle (CLSP) for (2)-(3) by energy functional

Jq (u; f, g) :=
1

2

(
‖Lu− f ‖2q,Ω + ‖u− g‖2q+3/2,∂Ω

)
. (7)

The corresponding CLSP is given by the pair
{
Hq+2 (Ω) , Jq

}
, which corresponds to an uncon-

strained minimization problems

min
u∈Hq+2(Ω)

Jq (u; f, g) . (8)

From Theorem 2.5 the least-squares functional Jq(·; 0, 0) defines a norm-equivalent property
for ‖ · ‖q+2,Ω ,i.e. , obviously one sees that the functional Jq (· ; 0, 0) is equivalent to ‖·‖q+2,Ω

in the sense that
1

4
C2
1 ‖u‖

2
q+2,Ω ≤ Jq (u; 0, 0) ≤

1

2
C2
2 ‖u‖

2
q+2,Ω . (9)
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Therefore, according to [5, Theorem 2.5], for all real values q ≥ 0, problem (8) has a unique
minimizer u ∈ Hq+2 (Ω) that depends continuously on the data (f, g) ∈ Hq (Ω)×Hq+3/2 (∂Ω).
Moreover, it is not difficult to see that a minimizer of (2)-(3) solves (8) and conversely; i.e.,
the problems (2)-(3) and (8) are equivalent in the sense that u ∈ Hq+2 (Ω) is a solution of (8)
if and only if it is also a solution, perhaps in a generalized sense, of (2)-(3).

The Euler-Lagrange equation for (8) is then given by the variational problem:

seek u ∈ Hq+2 (Ω) such that Qq (u, v) = Fq (v) , ∀v ∈ Hq+2 (Ω) ,

where

Qq (u, v) = (Lu,Lv)q,Ω + (u, v)q+3/2,∂Ω, and Fq (v) = (Lv, f)q,Ω + (v, g)q+3/2,∂Ω.

We notice that the energy inner product associated with
{
Hq+2 (Ω) , Jq

}
is given by ((·, ·))q :

Hq+2(Ω)×Hq+2(Ω) → R, where

((u, v))q := Qq(u, v),

and energy norm is defined by |||u|||q := ((u, u))
1/2
q = [2Jq(u)]

1/2 . The norm-equivalence
property

C1 ‖u‖q+2,Ω ≤ |||u|||q ≤ C2‖u‖q+2,Ω, (10)

holds by (6). The special case q = 0 in (7) gives rise to the CLSP

J0 (u; f, g) =
1

2

(
‖Lu− f‖20,Ω + ‖u− g‖23/2,∂Ω

)
,

where its associated energy balance for all u ∈ H2(Ω) is

C1 ‖u‖2,Ω ≤ ‖Lu‖0,Ω + ‖u‖3/2,∂Ω ≤ C‖u‖2,Ω. (11)

In what follows we may write Jq (u) instead of Jq (u; 0, 0), Jq instead of Jq(·; 0, 0) and Qq

instead of Qq(·, ·).
A least-squares discretization can be defined by choosing a family of finite subspaces

Uh ⊂ Hq+2(Ω) parameterized by h tending to zero and then restricting the unconstrained
minimization problem (8) to the subspaces. Thus, the approximation uh ∈ Uh to the solution
u ∈ Hq+2(Ω) of (2)-(3) is the solution of the following problem

seek uh ∈ Uh such that Jq
(
uh; f, g

)
≤ Jq

(
vh; f, g

)
, ∀uh ∈ Uh. (12)

This process leads to a discrete variational form given by

seek uh ∈ Uh such that Qq

(
uh, vh

)
= Fq

(
vh

)
, ∀vh ∈ Uh. (13)

If we choose a basis {φj}
N
j=1 and assume uh =

∑N
j=1 cjφj for some constants {cj}

N
j=1, then the

discretized problem (13) is equivalent to the linear system

Ac = b (14)

8



where A is a symmetric matrix with entries aij = Qq (φi, φj) and b is a N vector with bi =
Fq (φi) for all i, j = 1, . . . , N .

Note that, in the above setting, one does not assumed that L is positive definite and self-
adjoint, while in Rayleigh-Ritz setting does. However, not only LSP preserves all attractive
features of a Rayleigh-Ritz setting but also it does not have some Rayleigh-Ritz restrictions.
More precisely, the CLSP {Hq+2(Ω), Jq} defines an external Rayleigh-Ritz principle for (2)-(3).

The pair {Uh, Jq} is called discrete least-squares principle (DLSP) where Uh ⊂ Hq+2(Ω)
and Jq is given by (7). Although the CLSP describes a mathematically well-posed variational
setting, its associated DLSP {Uh, Jq} may describe an algorithmically infeasible setting. For
instance, the least-squares functional may contain inner products in fractional-order Sobolev
spaces on the boundary that are inconvenient for actual implementations. Practical issues may
force us to abandon the DLSP setting described above and consider instead another pair for
DLSP, denoted by {Uh, Jh}, where

Jh(u) =
1

2

(
h−t‖Lu‖2

Ṽ
+ h−s‖Bu‖2

W̃

)

with proper (computationally feasible) Sobolev spaces Ṽ and W̃ and nonnegative powers t and
s [3, 6, 7, 8]. The pair {Uh, Jh} is called the data-weighted DLSP. Also, a weighted least-squares
strong-form based on RBF collocation is given in [18].

3 RBFs discretization and error estimation

Up to here we are given a least-squares functional which is equivalent to a combination of
Sobolev norms, but these norms might be inconvenient from the computational point of view.
To circumvent this flaw, when this functional is restricted to a finite subspace, we can use the
fact that all norms on a finite-dimensional space are equivalent. Thus, essentially all norms
can be replaced by L2-norms weighted by some respective equivalence constants. In this sec-
tion we try to introduce a mesh-dependent least-squares functional by using RBFs where the
residual of each equation is measured in the L2-norm multiplied by a weight determined by
the equation index and the mesh parameter h. As some earlier work for weighted least-squares
methods we refer the reader to [3, 8].

3.1 Weighted discretization of CLSP by RBFs

Recall the kernel Φ satisfying (1) for τ ≥ q + 2 > d/2 to form the data dependent trial space
UΦ,X for a quasi-uniform set X. Throughout the paper, τ (the smoothness index of Φ) satisfies
τ > d/2 and it is fixed. Assuming h = hX,Ω, we define the convex data-weighted functional

Jh(u; f, g) :=
1

2

(
‖Lu− f‖20,Ω + h−3‖u− g‖20,∂Ω

)
, u ∈ Hq+2(Ω), (15)

for q ≥ 0. The corresponding data-weighted DLSP {UΦ,X , Jh} then leads to the unconstrained
minimization problem

seek uh ∈ UΦ,X such that Jh(uh; f, g) ≤ Jh(vh; f, g) ∀ vh ∈ UΦ,X . (16)

9



The Euler-Lagrange equation for (16) is given by the variational problem

seek uh ∈ UΦ,X such that Qh(uh, vh) = F h(vh) ∀ vh ∈ UΦ,X , (17)

where
Qh(u, v) = (Lu,Lv)0,Ω + h−3(u, v)0,∂Ω,

and
F h(v) = (Lv, f)0,Ω + h−3(v, g)0,∂Ω.

The bilinear form Qh(·, ·) defines an inner product (( · , · )) : UΦ,X × UΦ,X → R by

((u, v)) := Qh(u, v)

which is called the data-weighted discrete energy inner product. The data-weighted discrete
energy norm is then defined via |||u||| :=

√
((u, u)) =

√
2Jh(u). Moreover, the discrete energy

inner product and norm can be extended to all functions in Hq+2(Ω).
If we define φj = Φ(· − xj) and Akj = Qh(φk, φj) and bk = F h(φk) then the final linear

system Ac = b gives the solution vector c for uh =
∑N

j=1 cjΦ(· − xj).

3.2 Error Estimates

First of all, we are interested in finding elements from UΦ,X ⊂ Hq+2(Ω) which are closest to
u ∈ Hq+2(Ω) . More precisely, we are interested in the minimization problem

inf
v∈UΦ,X

|||u− v|||.

Since UΦ,X is convex and Jh is a strictly convex functional then from [57, Theorem 38.C],
Jh has at most one minimum on UΦ,X . On the other hand, (15) guarantees that the discrete
energy norm can be extended to all smooth functions u ∈ Hq+2(Ω) for q ≥ 0, and since
UΦ,X ⊂ Hq+2(Ω), we have

((u, vh)) = F h(vh), ∀vh ∈ UΦ,X .

From (17) we also have ((uh, vh)) = F h(vh) for all vh ∈ UΦ,X . Subtraction gives

((u− uh, vh)) = 0, ∀vh ∈ UΦ,X . (18)

Therefore, for all vh ∈ UΦ,X we can write

|||u− uh|||2 = ((u− uh, u− uh))

= ((u− uh, u− vh + vh − uh))

= ((u− uh, u− vh))

≤ (|||u − uh|||)(|||u − vh|||).

This leads that the minimizer of the data-dependent DLSP {UΦ,X , Jh( · )} is the best approx-
imation of the minimizer of CLSP

{
Hq+2(Ω), Jq( · )

}
out of subspace UΦ,X in the discrete

energy norm.
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Theorem 3.1. Let q ≥ 0 be given and u ∈ Hq+2(Ω) be the unique solution of (2)-(3). Then,
{UΦ,X , Jh( · )} has at most one minimizer uh ∈ UΦ,X . Also the minimizer uh ∈ UΦ,X is the
orthogonal projection of u with respect to the discrete energy norm; i.e.,

inf
vh∈UΦ,X

|||u− vh||| = |||u− uh|||. (19)

Note that the orthogonality (18) yields the Pythagorean law |||u− uh|||
2
+ |||uh|||

2
= |||u|||2

giving immediately the stability bounds |||u− uh||| ≤ |||u||| and |||uh||| ≤ |||u||| in the discrete
energy norm.

We give the error analysis of the method in two parts. In the first part some segment of
the error bound can be obtained from the analysis of least squares methods given in [3]. The
approximation space UΦ,X should possess an optimality property with respect to some pairs
(r, k). This property is addressed in the following lemma which is a direct consequence of
Theorem 2.2 and a result on approximation in scales of Banach spaces [9].

Lemma 3.2. Under the assumptions on X, Ω, Φ, and h < 1 made in Theorem 2.2, with
τ ≥ k > d/2, for all u ∈ Hk(Ω) there exist a function vh ∈ UΦ,X and a constant C > 0
independent of h and u such that for all 0 ≤ r ≤ k

inf
vh∈UΦ,X

r∑

i=0

hi‖u− vh‖i,Ω ≤ Chk‖u‖k,Ω. (20)

Lemma 3.3. Assume u ∈ Hk(Ω) is given as the unique minimizer of
{
Hq+2(Ω), Jq( · )

}
and

uh ∈ UΦ,X indicates the unique minimizer of {UΦ,X , Jh( · )} for some q ≥ 0. Then, there exists
a constant C > 0 such that for all s with τ ≥ k ≥ s ≥ q + 2 > d/2 we have

|||u− uh||| ≤ C hs−2 ‖u‖s,Ω.

Proof. Let vh ∈ UΦ,X . Using the definition of ||| · ||| we have

|||u− vh||| =
(
‖L(u− vh)‖20,Ω + h−3‖u− vh‖20,∂Ω

)1/2

≤ C
(
‖u− vh‖2,Ω + h−3/2‖u− vh‖0,∂Ω

)

≤ C
(
‖u− vh‖2,Ω + h−1‖u− vh‖1,Ω + h−2‖u− vh‖0,Ω

)
,

where in the last inequality , for 0 < h ≤ 1 the inequality (see [10, 25])

‖v‖0,∂Ω 6 C(η−1‖v‖0,Ω + η‖v‖1,Ω) (21)

is used for
∥∥u− vh

∥∥
0,∂Ω

with η = h1/2. Therefore,

inf
vh∈UΦ,X

|||u− vh||| ≤ C h−2 inf
vh∈UΦ,X

2∑

i=0

hi ‖u− vh‖i,Ω .

Using Lemma 3.2 and (19), the desired bound is obtained.

11



According to Lemma 3.2, UΦ,X approximates optimally with respect to (r, k) for u ∈ Hk(Ω)
and 0 6 r 6 k in the sense of [9, 3]. Thus, we may do some modifications to the statement
and the proof of [3, Theorem 4.1] to tune the following result for the kernel-based least-squares
method.

Theorem 3.4. Assume u ∈ Hk(Ω) is given as the unique minimizer of
{
Hq+2(Ω), Jq( · )

}
and

uh ∈ UΦ,X indicates the unique minimizer of {UΦ,X , Jh( · )} for some q ≥ 0. There exists a
constant C > 0 such that for all s with τ ≥ k ≥ s ≥ q + 2 > d/2 we have

‖L(u− uh)‖t,Ω ≤ C hs−t−2‖u‖s,Ω, 2− k ≤ t ≤ 0,

‖u− uh‖t,∂Ω ≤ C hs−t−1/2 ‖u‖s,Ω,
1
2 − k ≤ t ≤ 0.

Proof. Let f1 ∈ Hp−2(Ω) and g1 ∈ Hp−1/2(∂Ω) be given for a fixed p such that τ ≥ k ≥ p > d/2
and p ≥ q + 2. From Theorem 2.5, there exists a function ϕ ∈ Hp(Ω) that satisfies

{
Lϕ = f1, in Ω,

ϕ = g1, on ∂Ω.
(22)

For vh ∈ UΦ,X , from (18) and the Cauchy-Schwarz inequality we obtain

((u− uh, ϕ)) = ((u− uh, ϕ− vh))

≤ (|||u− uh|||)(|||ϕ − vh|||).

Lemma 3.3 then yields

((u− uh, ϕ)) ≤ (|||u− uh|||)( inf
vh∈UΦ,X

|||ϕ− vh|||)

≤ C(hs−2‖u‖s,Ω)(h
p−2‖ϕ‖p,Ω)

= Chs+p−4‖u‖s,Ω‖ϕ‖p,Ω,

for all s with τ ≥ k ≥ s > d/2. Now, we can apply Lemma 2.3 for problem (22) to obtain

((u− uh, ϕ)) ≤ Chs+p−4‖u‖s,Ω

{
‖f1‖p−2,Ω + ‖g1‖p−1/2,∂Ω

}
.

From the definition of the discrete energy inner product we have

(L(u− uh), f1)0,Ω + h−3(u− uh, g1)0,∂Ω ≤ Chs+p−4‖u‖s,Ω

{
‖f1‖p−2,Ω + ‖g1‖p−1/2,∂Ω

}
. (23)

In particular, let g1 = 0 in (23) to get

(L(u− uh), f1)0,Ω ≤ Chs+p−4‖u‖s,Ω‖f1‖p−2,Ω.

Consequently,

‖L(u− uh)‖−(p−2),Ω = sup
f1∈Hp−2(Ω)

(L(u− uh), f1)0,Ω
‖f1‖p−2,Ω

≤ Chs+p−4‖u‖s,Ω. (24)
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In particular, for p = k in (24) we obtain

‖L(u− uh)‖−(k−2),Ω ≤ C hs+k−4 ‖u‖s,Ω. (25)

Also, the definition of the discrete energy norm implies

‖L(u− uh)‖0,Ω ≤ |||u− uh|||,

leading to
‖L(u− uh)‖0,Ω ≤ C hs−2 ‖u‖s,Ω, (26)

by applying Lemma 3.3. Bounds (25) and (26) give the estimates for t = 0 and t = −(k − 2),
respectively. We can use the interpolation theorem on Sobolev spaces (see [1, Chapter 4] or
[30, Proposition 2.3]) to get

‖L(u− uh)‖t,Ω ≤ C
(
‖L(u− uh)‖−(k−2),Ω

)θ(
‖L(u− uh)‖0,Ω

)1−θ
, (27)

where t = −(k − 2)θ, for 0 ≤ θ ≤ 1. Inserting estimates (25) and (26) into (27) yields

‖L(u− uh)‖t,Ω ≤ C hs−t−2‖u‖s,Ω, 2− k ≤ t ≤ 0,

for 2− k ≤ t ≤ 0.
Now, it is possible to choose f1 = 0 in (23) to get

(u− uh, g1)0,∂Ω ≤ C hs+p−1‖u‖s,Ω‖g1‖p−1/2,∂Ω.

Hence,
‖u− uh‖−(p−1/2),∂Ω ≤ C hs+p−1 ‖u‖s,Ω. (28)

Now, let p = k in (28) to obtain

‖u− uh‖−(k−1/2),∂Ω ≤ C hs+p−1 ‖u‖s,Ω. (29)

Furthermore, from the definition of the discrete energy norm we have

‖u− uh‖0,∂Ω ≤ h3/2|||u− uh|||.

leading to
‖u− uh‖0,∂Ω ≤ C hs−1/2 ‖u‖s,Ω (30)

after applying Lemma 3.3. Now, using the interpolation theorem on trace Sobolev spaces
[1, 30] we have

‖u− uh‖t+3/2,∂Ω ≤ C(‖u− uh‖−(k−1/2),∂Ω)
θ(‖u − uh‖0,∂Ω)

1−θ, 0 ≤ θ ≤ 1, (31)

where t+ 3/2 = −(k − 1/2)θ. Inserting (29) and (30) to (31) gives

‖u− uh‖t+3/2,∂Ω ≤ C hs−t−2 ‖u‖s,Ω, −k − 1 ≤ t ≤ −3
2 .
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Theorem 3.5. Assume that u ∈ Hk(Ω) is the unique solution of (2)-(3) in the CLSP
{
Hq+2(Ω), Jq( · )

}

such that τ ≥ k > d/2 and k ≥ max{q+2, 4} for some real q ≥ 0. Also, assume that uh ∈ UΦ,X

is the unique minimizer of {UΦ,X , Jh( · )}. Then, there exists a constant C > 0 such that for
all s with k ≥ s ≥ q + 2 > d/2 we have

‖u− uh‖t,Ω ≤ C hs−t ‖u‖s,Ω, 4− k ≤ t ≤ 1
2 .

Proof. Using Lemma 2.3 we have

‖u− uh‖t+2,Ω ≤ C
(
‖L(u− uh)‖t,Ω + ‖u− uh‖t+3/2,∂Ω

)
,

for all real t ≤ k − 2. Hence, Theorem 3.4 yields

‖u− uh‖t+2,Ω ≤ C hs−t−2 ‖u‖s,Ω, 2− k ≤ t ≤ −3
2 ,

or equivalently
‖u− uh‖t,Ω ≤ C hs−t ‖u‖s,Ω, 4− k ≤ t ≤ 1

2 .

The last bound of Theorem 3.5 measures the error in Sobolev norms ‖ · ‖t,Ω for 4 − k ≤
t ≤ 1/2 that also includes the error estimation in the L2 norm because k ≥ 4. The reminder
parts of this section are devoted to prove a norm-equivalent property and to extend the above
error analysis to higher order Sobolev norms on the left hand side. However, our results are
hanged on an open problem that will be stated after some auxiliary lemmas form the kernel
approximation theory.

The proof of the following inverse inequality of Bernstein type can be found in [18].

Lemma 3.6. Assume a kernel Φ satisfying (1) with τ > d/2 is given. Suppose the domain
Ω is a bounded Lipschitz region satisfying an interior cone condition. Then for all uh ∈ UΦ,X

and all finite sets X = {x1, . . . , xN} ⊂ Ω with separation distance qX , there is a constant C
depending only on Φ, Ω and µ such that for all d/2 < µ ≤ τ we have

‖uh‖τ,Ω ≤ C q−τ+µ
X ‖uh‖µ,Ω. (32)

By applying Theorem 2.5, Lemma 3.6 with µ = 2 and for quasi-uniform sets X (i.e.
qX ≈ hX,Ω), and by invoking an interpolation argument we can prove that for all uh ∈ UΦ,X

there exists a constant C > 0, independent of uh, such that for all q with 0 ≤ q ≤ τ − 2,

‖Luh‖q,Ω ≤ Ch−q
X,Ω

(
‖Luh‖0,Ω + ‖uh‖3/2,∂Ω

)
(33)

where Ω ⊂ R
d with d ≤ 3.

We also need a sampling inequality or zeros lemma to support our argument. A variation
of zeros lemma that holds for fractional Sobolev norms on both sides of inequality has been
proved in [51]. Also, see [34] for older versions.

Lemma 3.7. Suppose Ω ⊂ R
d is a bounded Lipschitz domain. Let r, k ∈ R satisfy k > d/2 and

0 ≤ r ≤ k. If u ∈ Hk(Ω) satisfies u |X = 0, then for any discrete sets X ⊂ Ω with sufficiently
small mesh norm hX,Ω, there exists a constant C that depends only on Ω and k such that

‖u‖r ≤ Chk−r
X,Ω ‖u‖k, 0 ≤ r ≤ k.
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The weighted DLSP setting uses the L2-norm for the boundary part while CLSP involves
the boundary norm ‖·‖q+3/2,∂Ω. Thus, we need an inverse inequality that relates ‖·‖3/2,∂Ω and

‖·‖0,∂Ω for approximating function uh ∈ UΦ,X . The proof of such boundary inverse inequality
seems to need a counterpart inverse inequality in Ω that is still an open problem. Thus we
conjecture

Conjecture A. For all finite quasi-uniform set X ⊂ Ω ⊂ R
d, with sufficiently small fill

distance h, there exists a constant C, depending only on Ω, ∂Ω, and Φ such that for all
u ∈ UΦ,X ,

‖u‖3/2,∂Ω ≤ C h−3/2‖u‖0,∂Ω. (34)

Apart form Theorem 3.5, Conjecture A will be used to prove the error bound for the least-
squares method in ‖ · ‖t,Ω for 0 < t ≤ k when u ∈ Hk(Ω); see Theorem 3.12 below. Also, it
supports our estimation for the lower bound of the smallest eigenvalue of the final matrix in
section 3.3.

Using Conjecture A, in the following we show that the weighted least-squares functional
satisfies a data-dependent energy balance.

Lemma 3.8. For all real q with 0 ≤ q ≤ τ − 2, there exists a positive constant C independent
of uh such that for all uh ∈ UΦ,X with 0 < h ≤ 1 and d ≤ 3 the inequality

C−1h2q‖uh‖2q+2,Ω ≤ Qh(uh, uh) (35)

holds.

Proof. Let q = τ − 2. Using Lemma 2.3 and bound (33) we have

‖uh‖2τ,Ω ≤ C
(
‖Luh‖τ−2,Ω + ‖uh‖τ−1/2,∂Ω

)2

≤ C
(
‖Luh‖τ−2,Ω + ‖uh‖τ,Ω

)2
(Theorem 2.4)

≤ C h−2(τ−2)
(
‖Luh‖0,Ω + ‖uh‖3/2,∂Ω + ‖uh‖2,Ω

)2
(using (33) and Lemma 3.6)

≤ C h−2(τ−2)
(
‖Luh‖0,Ω + ‖uh‖3/2,∂Ω

)2
(using (11))

≤ C h−2(τ−2)
(
‖Luh‖20,Ω + ‖uh‖23/2,∂Ω

)

= C h−2(τ−2)
(
‖Luh‖20,Ω + h−3‖uh‖20,∂Ω

)
(using (34))

= C h−2(τ−2)Qh(uh, uh).

Now, by using the interpolation theorem for q = 0 and q = τ − 2 we get

‖uh‖q+2,Ω ≤ C
(
‖uh‖τ,Ω

)1−θ(
‖uh‖2,Ω

)θ

≤ C
(
h2−τ

[
‖Luh‖0,Ω + ‖uh‖3/2,∂Ω

])1− 2−τ+q

2−τ
(
‖Luh‖0,Ω + ‖uh‖3/2,∂Ω

) 2−τ+q

2−τ

≤ Ch−q(‖Luh‖0,Ω + ‖uh‖3/2,∂Ω),
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where q + 2 = (1− θ)τ + 2θ, for 0 ≤ θ ≤ 1. Hence, for all 0 ≤ q ≤ τ − 2,

‖uh‖2q+2,Ω ≤ Ch−2q(‖Luh‖20,Ω + ‖uh‖23/2,∂Ω)

≤ Ch−2q(‖Luh‖20,Ω + h−3‖uh‖20,∂Ω) (using (34))

= Ch−2qQh(uh, uh) .

Lemma 3.9. There exist a positive constant C, independent of uh, such that for all uh ∈ UΦ,X

with 0 < h ≤ 1 we have

Qh(uh, uh) ≤ C h−4‖uh‖22,Ω.

Proof. From (11) for some constant C > 0 we get

Qh(uh, uh) =‖Luh‖20,Ω + h−3‖uh‖20,∂Ω

≤
(
‖Luh‖0,Ω + h−3/2‖uh‖0,∂Ω

)2

≤ C
(
‖uh‖2,Ω + h−3/2‖uh‖0,∂Ω

)2
.

Moreover, for 0 < h ≤ 1 by using the inequality (21), we obtain for η = h1/2

Qh(uh, uh) ≤ C
{
‖uh‖2,Ω + h−3/2

(
h−1/2‖uh‖0,Ω + h1/2‖uh‖1,Ω

)}2

= C
(
‖uh‖2,Ω + h−1‖uh‖1,Ω + h−2‖uh‖0,Ω

)2

≤ Ch−4‖uh‖22,Ω.

Lemmas 3.8 and 3.9 show that the discrete energy inner product (( · , · )) : UΦ,X×UΦ,X → R

and the discrete energy norm ||| · ||| are related to the Sobolev norms of the solution space.

Corollary 3.10. Assume 0 ≤ q ≤ τ − 2 is given and 0 < h ≤ 1 is sufficiently small. Then,
for all uh ∈ UΦ,X there exists a constant C > 0, independent of uh, such that

C−1hq|||uh|||q ≤ |||uh||| ≤ C h−2|||uh|||0 ≤ C h−2|||uh|||q.

In the following, we aim to extend our error analysis in Theorem 3.5 to other (positive)
Sobolev norms.

Lemma 3.11. Suppose that Φ satisfies (1) with τ ≥ k > d/2, and Ω ⊂ R
d is a bounded

Lipschitz domain. Furthermore, let X ⊂ Ω be a discrete set of centers with sufficiently small
mesh norm h = hX,Ω. If u ∈ Hk(Ω) and the RBF interpolant of u on X is given by IXu then
there exists a constant C > 0 such that for all s with τ ≥ k ≥ s ≥ q + 2 > d/2 we have

|||u− IXu||| ≤ C hs−2 ‖u− IXu‖s.
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Proof. Using the definition of ||| · ||| we can write

|||u− IXu||| =
(
‖L(u− IXu)‖20,Ω + h−3 ‖u− IXu‖20,∂Ω

)1/2

≤ C
(
‖u− IXu‖2,Ω + h−3/2‖u− IXu‖0,∂Ω

)

≤ C
(
‖u− IXu‖2,Ω + h−1‖u− IXu‖1,Ω + h−2‖u− IXu‖0,Ω

)

≤ C(hs−2 ‖u− IXu‖s + h−1hs−1 ‖u− IXu‖s + h−2hs ‖u− IXu‖s)

= Chs−2 ‖u− IXu‖s,

which completes the proof. In the third line above the bound (21) is applied with η = h1/2,
and in the fourth line Lemma 3.7 is used.

If u ∈ Hk(Ω) is the unique minimizer of
{
Hq+2(Ω), Jq

}
for q ≥ 0 and uh ∈ UΦ,X is the

unique minimizer of
{
UΦ,X , Jh

}
then by using the fact that uh is the best approximation in

the discrete energy norm, and under the assumptions and notations of Lemma 3.11 we have

|||u− uh||| ≤ |||u− IXu||| ≤ Chs−2 ‖u− IXu‖s,Ω,

which turns the error of PDE solution into the error of pure interpolation problem. By applying
the bound ‖u− IXu‖s,Ω ≤ ‖u‖s,Ω from Theorem 2.2 we obtain

|||u− uh||| ≤ Chs−2‖u‖s,Ω, d/2 < s ≤ k ≤ τ, (36)

for true solution u ∈ Hk(Ω). Altogether, we have the following theorem.

Theorem 3.12. Assume that Φ satisfies (1) for τ > d/2 and u ∈ Hk(Ω) is the unique solution
of (2)-(3), where k is a real number such that τ ≥ k > d/2 for d ≤ 3, and k ≥ max{q + 2, 4}
for some real q ≥ 0. Moreover, assume that uh ∈ UΦ,X is the unique minimizer of {UΦ,X , Jh}.
Then

‖u− uh‖t,Ω ≤ C hk−t‖u‖k,Ω, 0 ≤ t ≤ k.

Proof. Let us first assume t = k. Then the inequality

‖u− uh‖k,Ω ≤ ‖u− IXu‖k,Ω + ‖uh − IXu‖k,Ω,

suggests that we can focus on the difference uh − IXu ∈ UΦ,X and on the difference u− IXu ∈
Hk(Ω) where IXu denotes the unique interpolant of the exact solution u from the trial space
UΦ,X ⊂ Hτ (Ω). For the first norm on the right hand side, from Theorem 2.2 we have

‖u− IXu‖k,Ω ≤ C‖u‖k,Ω.

Since the result in Theorem 3.8 only applies to functions in the trial space, for d ≤ 3, we obtain

‖uh − IXu‖k,Ω ≤ Ch2−k|||uh − IXu||| ≤ Ch2−k(|||u − IXu|||+ |||u− uh|||).

Using the discussions right before the theorem for s = k, the right hand side can be bounded
by C‖u‖k,Ω to get

‖uh − IXu‖k,Ω ≤ C‖u‖k,Ω.
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Combining the recent bounds, we obtain the following stability bound

‖u− uh‖k,Ω ≤ C‖u‖k,Ω.

On the other hand, putting s = k and t = 0 in Theorem 3.5 yields

‖u− uh‖0,Ω ≤ C hk‖u‖k,Ω.

Henceforth, for 0 ≤ t ≤ k, using the interpolation theorem we have

‖u− uh‖t,Ω ≤ C
(
‖u− uh‖0,Ω

)1−θ(
‖u− uh‖k,Ω

)θ

≤ C
(
hk‖u‖k,Ω

)1−t/k(
‖u‖k,Ω

)t/k

= C hk−t‖u‖k,Ω,

where t = θk and 0 ≤ θ ≤ 1.

3.3 Condition Numbers

In this subsection we estimate the condition number of the presented least-squares method.
Under reasonable assumptions, the condition number of the discrete least-squares matrix is
controlled by the mesh size h and regularity parameter τ . Since the final matrix A is positive
definite, its condition number can be defined as

cond2(A) =
λmax(A)

λmin(A)
.

where λmax(A) and λmin(A) denote the largest and smallest eigenvalue of A, respectively. An
appropriate way to bound λmin is the use of an inverse inequality in the trial space to turn
the conditioning of the PDE matrix back to one of the approximation theory. To this end,
we review a lemma from [52] that computes a lower bound for the smallest eigenvalue of
interpolation matrix by kernel Φ.

Lemma 3.13. Assume BΦ,X = (Φ(xj − xk))
N
j,k=1 is the usual interpolation matrix. Then the

minimum eigenvalue of BΦ,X can be bounded by

λmin(BΦ,X) > Cq2τ−d
X . (37)

Lemma 3.14. Suppose that Φ satisfies (1) for τ > d/2, X ⊂ Ω ⊂ R
d is quasi-uniform and

h = hX,Ω is sufficiently small. The minimum eigenvalue of A, for d ≤ 3, can be bounded by

λmin(A) > Ch4τ−d−4.

Proof. An appropriate formula for λmin(A) is

λmin(A) = min
06=ξ∈RN

ξTAξ

‖ξ‖2
.
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For a given ξ ∈ R
N assume that uh =

∑N
j=1 ξjΦ(· − xj). Thus, by using (35) and inverse

inequality (32) we deduce

ξTAξ = ((uh, uh)) = |||uh|||2

> Ch2τ−4‖uh‖2τ,Ω ( Theorem 3.8)

> Ch2τ−4‖uh‖2Φ

= Ch2τ−4ξTBΦ,Xξ

> Ch2τ−4h2τ−d‖ξ‖2, (using bound (37))

which shows that λmin(A) > Ch4τ−d−4.

To bound λmax(A), we need some results about derivatives of positive definite functions.
In [16, 17, 31] it is proved that certain derivatives of positive definite functions are also positive
(or negative) definite. Authors show that some simple conditions on even order derivatives of
positive definite functions at the origin strongly determine their global properties. In particular,
they show that the derivatives of a smooth positive definite function can be estimated in terms
of the even order derivatives at the origin. Proposition 3.2 of [31] prove that if Φ is a positive
definite function of class C2n in some neighborhood of the origin, for some positive integer
n, then for each |α| ≤ n the function (−1)|α|D2αΦ is positive definite of class C2(n−|α|)(Rd).
Also, the following inequality holds for |α| , |β| ≤ n,

|Dα+βΦ(x− ·)|2 ≤ (−1)|α+β|D2αΦ(0)D2βΦ(0), x ∈ R
d.

Therefore, if Φ ∈ C2n(Ω) for n ≥ 1, then

|DαΦ(x− ·)|2 ≤ −Φ(0)D2αΦ(0) for |α| = 1,

and for |γ| = 2

|DγΦ(x− ·)|2 = |Dα+βΦ(x− ·)|2 ≤ D2αΦ(0)D2βΦ(0) for |α| = |β| = 1.

Henceforth,

∑

|α|≤2

‖DαΦ(x− ·)‖2∞,Ω ≤
∑

|α|=|β|=1

max{Φ(0),−Φ(0)D2αΦ(0),D2αΦ(0)D2βΦ(0)}. (38)

Lemma 3.15. Suppose that X ⊂ Ω ⊂ R
d is quasi-uniform and h = hX,Ω is sufficiently small.

Also, assume that Φ ∈ C2n(Ω) for some n ≥ 1. Then the maximum eigenvalue of A can be
bounded by

λmax(A) 6 Ch−d−4.
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Proof. We can employ (38) and the inequality |
∑N

j=1 ξj|
2 ≤ N

∑N
j=1 |ξj|

2, to deduce that

‖uh‖22,Ω =
∑

|α|≤2

∫

Ω
[Dαuh]

2
dx

=
∑

|α|≤2

∫

Ω

[∑

j

ξjD
αΦ(x− xj)

]2
dx

≤
∑

|α|≤2

‖DαΦ(x− xj)‖
2
∞,Ω ×

∫

Ω

∣∣∣
∑

j

ξj

∣∣∣
2
dx

≤
∑

|α|≤2

‖DαΦ(x− xj)‖
2
∞,Ω ×

∣∣∣
∑

j

ξj

∣∣∣
2
× vol(Ω)

≤ vol(Ω)×
∣∣∣
∑

j

ξj

∣∣∣
2
×

∑

|α|=|β|=1

max{Φ(0), (−1)Φ(0)D2αΦ(0),D2αΦ(0)D2βΦ(0)}

≤ C
∣∣∣
∑

j

ξj

∣∣∣
2
≤ CN

∑

j

|ξj|
2 ≤ Ch−d‖ξ‖2. (Since N = O(h−d))

Thus we can conclude

ξTAξ = |||uh|||2 ≤ Ch−4‖uh‖22,Ω ≤ Ch−4h−d‖ξ‖2

which gives the desired bound.

Corollary 3.16. For d ≤ 3, the condition number of the final linear system of the least-squares
kernel-based method is bounded by

cond2(A) 6 Ch−4τ .

4 Numerical Examples

In this section, results of some numerical experiments are reported to verify the theoretical
bounds of the preceding sections. The convergence of the numerical solution uh toward the true
solution u are investigated and the rates of convergence are estimated numerically. Besides,
the condition number of the final system is estimated. The computational rate of convergence
p is approximated in two successive levels h1 and h2 via

p = log
‖u− uh1‖t,Ω
‖u− uh2‖t,Ω

/
log

h1
h2

,

for t = 0, 2. Moreover, to estimate H2 error and convergence rates we use

‖u− uh‖2,Ω ≈ |||u− uh|||.

From Theorems 3.5 and 3.12, one finds that the theoretical rates are k − t for u ∈ Hk(Ω).
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The following test problem in R
2 is considered

Lu = −
∂2u

∂(x1)2
−

∂2u

∂(x2)2
+

∂u

∂x1
+

∂u

∂x2
+ u = f, in Ω.

Assume that the exact solution is given by u∗(x) := ‖x‖κ2 , over the computational domain
Ω =

{
x ∈ R

2 : ‖x‖2 < 1
}
. To form the trial space UΦ,X , we employ the Whittle-Matérn-

Sobolev kernel

Φ(x) = (ε‖x‖)τ−d/2 Kτ−d/2(ε‖x‖) for all x ∈ R
d, τ > d/2,

where Kβ is the modified Bessel function of the second kind of order β, and ε > 0 is a shape

parameter. This kernel has the Fourier transform Φ̂(ω) = C(1 + ‖εω‖2)−τ and its native space
is identical with Hτ (Rd).

Discretization is done by using a series set of trial points X ⊂ Ω ∪ ∂Ω with different
fill-distance h. However, in this scheme it is not mandatory to locate some trial points on
∂Ω. We note that, to enforce the boundary conditions in some collocation methods such as
the symmetric kernel-based method of [21, 22, 56], some trial points have to be qualitatively
located on the boundary. All reported errors in L2(Ω) norm are RMS errors approximated
by using the fixed set of 7668 equidistant points in Ω. Also, the error is analyzed in ‖ · ‖0,∂Ω
with 1000 equidistant points on ∂Ω. All integrals in DLSP variational form are computed via
the Gauss-Legendre quadrature rule with sufficient number of integration points in angular
and radial directions. We do not employ any special technique to deal with the problem of
ill-conditioning.

For a nonnegative integer k, it is well-known that u∗ ∈ Hk(Ω) if κ > k − d/2. In our
numerical example, we set κ = 4 to have u∗ ∈ Hk(Ω) for k < 5. We set q = 0 in the least-
squares approach, ε = 10 for shape parameter, and τ = 3, 4, 5, 6 for kernel function Φ. From
Theorems 3.5 and 3.12 the parameters τ and k should satisfy τ ≥ k ≥ 4. Thus the cases
τ = 3, 4 exclude the requirements of the theory, but yet perform the L2 convergence; see Table
1. For brevity, the notation eh = u∗ − uh is used. In cases τ = 5, 6, the table contains also the
theoretical orders of Theorems 3.5 and 3.12 and the bound (36). In all columns, except that
of |||eh|||, the numerical orders at finer levels are better than the expected theoretical orders.
Note that the orders do not improve when going from τ = 5 to τ = 6 because of the limitation
caused by the smoothness of true solution u∗.

According to the results of subsection 3.3, there is a direct relation between the smoothness
of trial kernel and the conditioning of final system, where a higher smoothness leads to a larger
condition number. Since in this paper we do not focus on preconditioning techniques, for small
values of h the results suffer from a severe ill-conditioning, specially for higher values τ = 5, 6.
This is the reason why fewer rows are reported in this cases. Table 2 shows the condition
numbers of the final linear systems together with the numerical orders. In all cases, as h → 0,
the approximate rate of conditioning of the final matrix is of O(h−4τ ) as proven in Corollary
3.16. Unsatisfactory results for small values of h and higher values of τ are obtained.
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Table 1: Approximate errors and orders for DLSP using Whittle-Matérn-Sobolev kernel with ε = 10.

τ = 3

h ‖eh‖0,Ω order ‖eh‖0,∂Ω order ‖Leh‖0,Ω order |||eh||| order

0.25 4.0771e-01 - 9.4412e-01 - 9.3784e+00 - 6.9802e+01 -

h/2 1.3016e+00 -1.6747 2.5902e-01 1.8659 1.7612e+01 -0.9092 1.5023e+02 -1.1058

h/4 1.4516e+00 0.1574 3.3942e-02 2.9319 1.6565e+01 0.0884 1.5559e+02 -0.0506

h/6 1.1913e+00 0.4874 1.3580e-02 2.2093 1.4866e+01 0.2670 2.0259e+02 -0.6510

h/8 7.9384e-01 1.4111 7.8229e-03 1.9172 1.1875e+01 0.7806 2.6821e+02 -0.9753

h/10 4.9996e-01 2.0721 4.7968e-03 2.1920 9.1629e+00 1.1621 3.1616e+02 -0.7369

h/12 4.3891e-01 0.7142 3.0758e-03 2.4374 8.6532e+00 0.3139 3.4881e+02 -0.5391

h/14 2.8627e-01 2.7725 2.0804e-03 2.5366 6.8777e+00 1.4898 3.7222e+02 -0.4216

Theory - - - -

τ = 4

0.25 3.5863e-01 - 8.4776e-01 - 1.0102e+01 - 6.3975e+01 -

h/2 1.2905e+00 -1.8473 1.4867e-01 2.5013 1.5338e+01 -0.6024 9.1456e+01 -0.5156

h/4 7.7511e-01 0.7354 2.5646e-02 2.5353 1.1615e+01 0.4011 1.1666e+02 -0.3512

h/6 3.6300e-01 1.8709 8.9105e-03 2.6073 7.8091e+00 0.9791 1.3099e+02 -0.2857

h/8 1.1878e-01 3.8834 3.4407e-03 3.3077 4.4627e+00 1.9528 1.1720e+02 0.3867

h/10 4.3416e-02 4.5102 1.3764e-03 4.1058 2.6917e+00 2.2558 9.0872e+01 1.1445

h/12 2.5797e-02 2.8553 7.4864e-04 3.3402 2.0585e+00 1.4708 8.4852e+01 0.3705

h/14 1.1324e-02 5.3411 4.0271e-04 4.0222 1.3795e+00 2.5968 7.2102e+01 1.0562

Theory - - - -

τ = 5

0.25 4.5055e-01 - 6.9867e-01 - 1.0848e+01 - 5.5563e+01 -

h/2 1.0304e+00 -1.1935 1.0777e-01 2.6967 1.3647e+01 -0.3312 6.8825e+01 -0.3088

h/4 2.9679e-01 1.7957 1.7418e-02 2.6293 7.1083e+00 0.9410 7.8402e+01 -0.1889

h/6 6.0793e-02 3.9104 3.8090e-03 3.7492 3.2229e+00 1.9508 5.5880e+01 0.8368

h/8 1.0943e-02 5.9607 9.6698e-04 4.7656 1.4055e+00 2.8846 3.3091e+01 1.8212

h/10 2.6877e-03 6.2919 2.8314e-04 5.5042 4.0552e-01 3.0887 1.8827e+01 2.5275

Theory 5 4.5 3 3

τ = 6

0.25 5.4390e-01 - 5.9587e-01 - 1.1171e+01 - 4.9306e+01 -

h/2 7.7146e-01 -0.5043 8.1924e-02 2.8626 1.1857e+01 -0.0860 5.3803e+01 -0.1259

h/4 8.6708e-02 3.1534 9.9357e-03 3.0436 3.9212e+00 1.5964 4.4618e+01 0.2701

h/6 8.2390e-03 5.8049 1.3425e-03 4.9366 1.2420e+00 2.8355 1.9801e+01 2.0037

h/8 9.3344e-04 7.5700 2.3671e-04 6.0326 4.3282e-01 3.6644 8.1892e+00 3.0690

Theory 5 4.5 3 3
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Table 2: Condition numbers and their orders of DLSP matrix for various values of τ

h τ = 3 order τ = 4 order τ = 5 order τ = 6 order

0.25 2.1442e+00 - 2.6245e+00 - 2.7575e+00 - 2.2632e+00 -

h/2 6.1697e+00 -1.5248 5.0880e+01 -4.2770 5.7017e+02 –7.6919 5.9607e+03 -11.3629

h/4 2.3461e+03 -8.5708 3.4348e+05 -12.7208 4.9499e+07 -16.4056 6.8306e+09 -20.1281

h/6 1.5702e+05 -10.3674 1.1296e+08 -14.2939 8.1722e+10 -18.2732 5.8350e+10 -22.3261

h/8 3.6020e+06 -10.8901 8.0450e+09 -14.8280 1.8394e+13 -18.8227 4.2756e+16 -22.9309

h/10 4.1449e+07 -10.9480 2.2430e+11 -14.9138 1.2496e+15 -18.9050 - -

h/12 4.0986e+08 -12.5677 3.3015e+12 -14.7496 - - - -

h/14 2.1131e+09 -10.6396 3.3761e+13 -15.0822 - - - -

5 Conclusion

A least-squares variational kernel-based method for solving the general second order elliptic
problem with nonhomogenous Dirichlet boundary conditions is given in this paper. One of the
attractive features of the method is that the approximating space is not subject to the LBB
condition. Besides, the discretization yields a positive definite system while the original PDE
may not be symmetric at all. The approximation space is formed via kernels that reproduce
Sobolev spaces as their native spaces. We show that the DLSP formulations using sufficiently
smooth kernels, which reproduceHτ (Ω), can converge at the optimal rate in Ht(Ω)-norm, with
4− k ≤ t ≤ k, where τ ≥ k ≥ 4. The condition number of the final least-squares system is also
estimated in terms of the smoothness of the basis function and the discretization parameter.
Some parts of our analysis are subjected to a conjecture that demands an independent study
in the theory of kernel approximations. See (34). Finally, we have reported some numerical
results to confirm the theoretical bounds. As a downside, the condition numbers grow at hight
algebraic rates for smooth trial kernels. This paper does not concern special approaches or
any preconditioning technique to overcome this problem. However, we suggest some possible
approaches here. The stability estimates may be greatly improved if a similar theory could
be derived for polyharmonic kernels by scaling the points with mesh norm h and carrying the
computation in the blown-up situation. More details can be found in [27, 11]. As another
possibility, one can use the localized bases for kernel space [24] instead of the global basis UΦ,X

to improve the condition numbers. The use of “greedy algorithms” in trial space will be another
possible approach [50, 46]. The compactly supported kernels in a multiscale setting can also
be used to improve the conditioning at the price of a more computational cost [20]. Finally,
the application of the method on the corresponding first order system of equations needs less
smooth basis functions leading to a great improvement in the numerical conditioning. Since
all the proposals above are rather involved and contain their own technical details, we do not
peruse them further and leave them for future studies.
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