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Abstract

In this paper, we prove that Crouzeix-Raviart finite elements of polynomial order
p ≥ 5, p odd, are inf-sup stable for the Stokes problem on triangulations. For p ≥ 4, p
even, the stability was proved by Á. Baran and G. Stoyan in 2007 by using the macroele-

ment technique, a dimension formula, the concept of critical points in a triangulation
and a representation of the corresponding critical functions. Baran and Stoyan proved
that these critical functions belong to the range of the divergence operator applied to
Crouzeix-Raviart velocity functions and the macroelement technique implies the inf-sup
stability.

The generalization of this theory to cover odd polynomial orders p ≥ 5 is involved;
one reason is that the macroelement classes, which have been used for even p, are
unsuitable for odd p. In this paper, we introduce a new and simple representation of non-
conforming Crouzeix-Raviart basis functions of odd degree. We employ only one type
of macroelement and derive representations of all possible critical functions. Finally, we
show that they are in the range of the divergence operator applied to Crouzeix-Raviart
velocities from which the stability of the discretization follows.

AMS Subject Classification: 65N30, 65N12, 76D07, 33C45,
Key Words:Non-conforming finite elements, Crouzeix-Raviart elements, macroelement tech-
nique, Stokes equation.

1 Introduction

In the seminal paper [10] in 1973, Crouzeix and Raviart developed a non-conforming family
of finite elements with the goal to obtain a stable discretization of the Stokes equation with
relatively few unknowns. The family was indexed by the (local polynomial) order, say1, p ∈ N,
for the approximation of the velocity field, while the pressure is approximated by discontinuous
local polynomials of degree p− 1. In their paper, the authors prove that for p = 1 and spatial
dimension d = 2, 3, their non-conforming finite element leads to a stable discretization of the
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1
N = {1, 2, . . .} and N0 = N ∪ {0}.
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Stokes equation. Since then the development of pairs of finite elements for the velocity and
for the pressure of the Stokes problem was the topic of vivid research in numerical analysis.
Surprisingly, the problem is still not fully settled with some open issues for problems in two
spatial dimension, while much less is known for the discretization of three-dimensional Stokes
problems.

An important theoretical approach to prove the stability of Crouzeix-Raviart elements for
the Stokes problem is based on the macroelement technique which goes back to [20], [21].
If the divergence operator maps a localized velocity space on the macroelements onto the
local pressure space (modulo the constant function), the stability of the discretization follows.
It has been shown in [19] that this surjectivity holds already for continuous velocities for
p ≥ 4 if the mesh does not contain critical points (cf. Def. 3.10). If the mesh contains
critical points an established idea to prove inf-sup stability is as follows: first, one identifies
the critical functions whose span has zero intersection with the range of the local divergence
operator applied to continuous velocities. Then, one proves that the critical functions lie in
the span of the divergence operator applied to Crouzeix-Raviart velocities and stability of the
discretization follows.

The case for even p ≥ 4 was proved along these lines in [2]. In that paper, seven types
of non-overlapping macroelements are considered consisting of two and three triangles, the
critical functions are identified, and it is shown that these belong to the range of the local di-
vergence operator applied to the localized Crouzeix-Raviart velocities so that inf-sup stability
follows for this case. In our paper, we focus on the case of odd p ≥ 5 and proceed conceptually
in the same way. However, it turns out that the macroelements, which are considered in [2],
are not suited for odd p. One reason is that the non-conforming basis functions for even p are
more local (support on one triangle) compared to odd p (support on two adjacent triangles).
Instead, we consider here nodal patches (element stars) for the interior vertices of the trian-
gulation as the only type of overlapping macroelements. We identify the critical functions
in §3.2, which are related to critical points (cf. Def. 3.10) in the nodal patches. We show
that these critical functions form a basis of the complement in the pressure space of the range
of the divergence operator applied to the localized continuous velocities; the proof employs
the “dimension formula” in [19] and hence is restricted to p ≥ 4. Then we show that the
critical functions belong to the range of the divergence operator applied to Crouzeix-Raviart
velocities and this implies the stability of the discretization.

The main achievements in this paper are as follows. A new and simple representation
of Crouzeix-Raviart basis functions for odd p is introduced in Section 3.1. We identify the
critical pressure functions for odd p ≥ 5 and continuous localized velocities in Definition 3.12
and show that they form a basis for the complement of the range of the divergence operator
applied to localized continuous velocities. Finally, we prove that the critical functions belong
to the range of the divergence operator applied to localized Crouzeix-Raviart velocities.

This leads to the main conclusion: for p ∈ N, let CRp,0 (T ) denote the (scalar) Crouzeix-
Raviart finite element space with local polynomial order p on regular triangulations T , i.e.,
without hanging nodes, of a two-dimensional bounded polygonal Lipschitz domain Ω ⊂ R

2

obeying zero-boundary conditions in a “Crouzeix-Raviart” sense. Let Pp−1 (T ) denote the
discontinuous finite element space of local polynomial order p− 1 on this triangulation. Then

(
(CRp,0 (T ))2 ,Pp−1 (T ) /R

)
is a stable finite element for the Stokes equation (1.1)

for odd p ≥ 5.
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In the following we comment on the remaining cases: p = 1, 2, 3 and even p ≥ 4. In [10],
statement (1.1) is proved for p = 1 (and for spatial dimensions d = 2, 3). From [2] we know
that assertion (1.1) is true for even p ≥ 4. For p = 2, the result we proved already in [13].
For the case p ≥ 5 and p odd, statement (1.1) follows from [19] (see also [16]) provided the
triangulation does not contain critical points. In [9], the case p = 3 is considered and the
claim (1.1) is proved if the triangulation does not contain critical points and an additional
technical condition for the nodal points is satisfied. The case p = 3 of statement (1.1) for
any regular triangulation is proved in [4] which is the companion to this paper. The proof
in [4] circumvents the concept of critical points and functions and reduces the problem to a
purely algebraic problem in that to determe the nullspace for a coefficient matrix of a linear
system on the local nodal patches. The proof in [4] applies also to odd p ≥ 3 but does not
give insight on the mechanism how the critical functions are eliminated by the non-conforming
Crouzeix-Raviart functions.

The paper is structured as follows. In Section 2 we formulate the Stokes equation in
variational form and introduce the functional analytic setting in §2.1. The discretization is
based on non-conforming Galerkin finite element methods on regular triangulations. The
finite element spaces, in particular the Crouzeix-Raviart finite elements of polynomial order
p are introduced in Section 2.2. The inf-sup condition and the main theorem (Thm. 2.2) are
stated at the end of this section.

The final section §3 of the paper is devoted to the proof of the main theorem. In the
appendices §A, §B, §C we provide some technical properties on derivatives of barycentric
coordinates, determinants of tridiagonal matrices, and closed form integrals of some products
of Jacobi polynomials.

2 Setting

2.1 The Continuous Stokes Problem

Let Ω ⊂ R
2 denote a bounded polygonal domain with boundary ∂Ω. Our goal is to find a

family of pairs of finite element spaces for the stable numerical solution of the Stokes equation.
On the continuous level, the strong form of the Stokes equation is given by

−∆u +∇p = f in Ω,
divu = 0 in Ω

with boundary conditions for the velocity and a normalization condition for the pressure

u = 0 on ∂Ω and

∫

Ω

p = 0.

To state the classical existence and uniqueness result we formulate this equation in a varia-
tional form and first introduce the relevant function spaces. Throughout the paper we restrict
to vector spaces over the field of real numbers.

For s ≥ 0, 1 ≤ p ≤ ∞, W s,p (Ω) denote the classical Sobolev spaces of functions with norm
‖·‖W s,p(Ω). As usual we write Lp (Ω) instead of W 0,p (Ω) and Hs (Ω) for W s,2 (Ω). For s ≥ 0,
we denote by Hs

0 (Ω) the closure with respect to the Hs (Ω) norm of the space of infinitely
smooth functions with compact support in Ω. Its dual space is denoted by H−s (Ω).
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The scalar product and norm in L2 (Ω) are denoted respectively by

(u, v)L2(Ω) :=
∫
Ω
uv and ‖u‖L2(Ω) := (u, u)

1/2

L2(Ω) in L2 (Ω) .

Vector-valued and 2 × 2 tensor-valued analogues of the function spaces are denoted by bold
and blackboard bold letters, e.g., Hs (Ω) = (Hs (Ω))2 and H

s = (Hs (Ω))2×2 and analogously
for other quantities.

The L2 (Ω) scalar product and norm for vector valued functions are given by

(u,v)
L2(Ω) :=

∫

Ω

〈u,v〉 and ‖u‖
L2(Ω) := (u,u)

1/2

L2(Ω) ,

where 〈u,v〉 denotes the Euclidean scalar product in R
2. In a similar fashion, we define for

G,H ∈ L
2×2 (Ω) the scalar product and norm by

(G,H)
L2×2(Ω) :=

∫

Ω

〈G,H〉 and ‖G‖
L2×2(Ω) := (G,G)

1/2
L2×2(Ω) ,

where 〈G,H〉 =
∑2

i,j=1Gi,jHi,j. Finally, let L
2
0 (Ω) :=

{
u ∈ L2 (Ω) :

∫
Ω
u = 0

}
.

We introduce the bilinear form a : H1 (Ω)×H1 (Ω) → R by

a (u,v) := (∇u,∇v)
L2×2(Ω) ,

where ∇u and ∇v denote the derivatives (Jacobi matrices) of u and v. The variational form
of the Stokes problem is given by: For given f ∈ H−1 (Ω) ,

find (u, p) ∈ H1
0 (Ω)× L2

0 (Ω) s.t.

{
a (u,v)− (p, divv)L2(Ω) = (f ,v)

L2(Ω) ∀v ∈ H1
0 (Ω) ,

(divu, q)L2(Ω) = 0 ∀q ∈ L2
0 (Ω) .

(2.1)
It is well-known (see, e.g., [14]) that (2.1) is well posed.

2.2 Numerical Discretization of the Stokes Problem

In the following we introduce a discretization for problem (2.1). Let T = {Ki : 1 ≤ i ≤ n}
denote a regular triangulation of Ω consisting of closed triangles Ki which have the property
that the intersection of two different triangles Ki, Kj is either empty, a common edge, or a
common point. We also assume Ω = dom T , where

dom T := int

(
⋃

K∈T

K

)
(2.2)

and int (M) denotes the interior of a set M ⊂ R
2. An important measure for the quality of a

finite element triangulation is the shape-regularity constant, which we define by

γT := max
K∈T

hK

ρK
(2.3)

with the local mesh width hK := diamK and ρK denoting the diameter of the largest inscribed
ball in K.
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The set of edges in T are denoted by E , while the subset of boundary edges is E∂Ω :=
{E ∈ E : E ⊂ ∂Ω}; the subset of inner edges is given by EΩ := E\E∂Ω. The set of triangle
vertices in T is denoted by V, while the subset of inner vertices is VΩ := {V ∈ V : V /∈ ∂Ω}
and V∂Ω := V\VΩ. For E ∈ E , we define the edge patch by

TE := {K ∈ T : E ⊂ K} and ωE :=
⋃

K∈TE

K.

For z ∈ V, the nodal patch is defined by

Tz := {K ∈ T : z ∈ K} and ωz :=
⋃

K∈Tz

K. (2.4)

We will need an additional mesh parameter. For a regular triangulation T of Ω, let

T ′ :=
⋃

z∈VΩ

Tz.

Then, the constant2

dT := |T \T ′| (2.5)

denotes the number of triangles in the triangulation which are not connected to an inner point.
For m ∈ N, we employ the usual multiindex notation for µ = (µi)

m
i=1 ∈ N

m
0 and points

x = (xi)
m
i=1 ∈ R

m

|µ| := µ1 + . . .+ µm, xµ :=

m∏

j=1

x
µj

j .

For k ∈ N0 and m ∈ N, we define the index sets

I
m
≤k := {µ ∈ N

m
0 | |µ| ≤ k} and I

m
=k := {µ ∈ N

m
0 | |µ| = k}

Let Pm,k denote the space ofm-variate polynomials of maximal degree k, consisting of functions
of the form ∑

µ∈Im
≤k

aµxµ

for real coefficients aµ. Formally, we set Pm,−1 := {0}. To indicate the domain of definition
we write sometimes Pk (D) for D ⊂ R

m and skip the index m since it is then clear from the
argument D.

For s ≥ 0 and a regular triangulation T for the domain Ω, let

Hs (T ) :=
{
u ∈ L2 (Ω) | ∀K ∈ T : u|K ∈ H1 (K)

}
.

We introduce the following finite element spaces

Pk (T ) := {q ∈ L2 (Ω) | ∀K ∈ T : q|K ∈ Pk (K)} ,
and (cf. (2.2)) Pk (T ) /R :=

{
q ∈ Pk (T ) :

∫
dom T

q = 0
}
.

(2.6)

Furthermore, let

Sk (T ) := {v ∈ C0 (Ω) | ∀K ∈ T : v|K ∈ Pk (K)} ,
and Sk,0 (T ) := Sk (T ) ∩H1

0 (domT ) .

2By |J | we denote the cardinality of a discrete set J (cf. Notation 3.1).
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The vector-valued versions are denoted by Sk (T ) := Sk (T )2 and Sk,0 (T ) := Sk,0 (T )2. Fi-
nally, we define the Crouzeix-Raviart space by

CRk (T ) :=

{
v ∈ Pk (T ) | ∀q ∈ Pk−1 (E) ∀E ∈ EΩ

∫

E

[v]E q = 0

}
, (2.7a)

CRk,0 (T ) :=

{
v ∈ CRk (T ) | ∀q ∈ Pk−1 (E) ∀E ∈ E∂Ω

∫

E

vq = 0

}
. (2.7b)

Here, [v]E denotes the jump of v ∈ Pk (T ) across an edge E ∈ EΩ and Pk−1 (E) is the space of
polynomials of maximal degree k − 1 with respect to the local variable in E.

We have collected all ingredients for defining the Crouzeix-Raviart discretization for the
Stokes equation. For p ∈ N, let the discrete velocity space and pressure space be defined by

CRp,0 (T ) := (CRp,0 (T ))2 and Mp−1 (T ) := Pp−1 (T ) /R.

Then, the discretization is given by: find (uCR, pdisc) ∈ CRp,0 (T )×Mp−1 (T ) such that

{
a (uCR,v)− (pdisc, divv)L2(Ω) = (f ,v)

L2(Ω) ∀v ∈ CRp,0 (T ) ,

(divuCR, q)L2(Ω) = 0 ∀q ∈ Mp−1 (T ) .
(2.8)

Definition 2.1 Let T denote a regular triangulation for Ω. A pair CRp,0 (T )×Mp−1 (T ) is
inf-sup stable if there exists a constant cT ,p such that

inf
p∈Mp−1(T )\{0}

sup
v∈SCR

p,0 (T )\{0}

(p, divv)L2(Ω)

‖v‖
H1(Ω) ‖p‖L2(Ω)

≥ cT ,p > 0. (2.9)

We are now in the position to formulate our main theorem.

Theorem 2.2 Let Ω ⊂ R
2 be a bounded polygonal Lipschitz domain and let T denote a regular

triangulation of Ω, which contains at least one inner node. Then, the inf-sup condition (2.9)
holds for a constant cT ,p, which depends on the shape regularity of the mesh, the constant dT
in (2.5), and the polynomial degree p.

We emphasize that the original definition in [10] allows for slightly more general finite
element spaces, more precisely, the spaces CRp (T ) can be enriched by locally supported
functions. From this point of view, the definition (2.7) describes the minimal Crouzeix-
Raviart space. The possibility for enrichment has been used frequently in the literature to
prove inf-sup stability for the arising finite element spaces (see, e.g., [10], [15], [18]). In
contrast, we will prove the stability for the minimal Crouzeix-Raviart family.

3 Proof of Theorem 2.2

In [10], Theorem 2.2 is proved for p = 1 (and for spatial dimensions d = 2, 3). From [2] we
know that the theorem is true for even p ≥ 4. In [13], the result is proved for p = 2. In this
section, we will prove the result for odd p ≥ 5 and refer for the proof of the case p = 3 to [4].
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3.1 Barycentric Coordinates and Basis Functions for the Velocity

In this section, we introduce basis functions for the finite element spaces in Section 2.2. We
begin with introducing some general notation.

Notation 3.1 For vectors ai ∈ R
n, 1 ≤ i ≤ m, we write [a1 | a2 | . . . | am] for the n × m

matrix with column vectors ai. For v =
(
v1
v2

)
∈ R

2 we set v⊥ = (v2,−v1)
T . Let ek,i ∈ R

k be

the i-th canonical unit vector in R
k.

Vertices in a triangle are always numbered counterclockwise. In a triangle K with vertices
A1, A2, A3 the angle at Ai is called αi or alternatively αj,k where i, j, k ∈ {1, 2, 3} are pairwise
different. If a triangle is numbered by an index (e.g., Kℓ), the angle at Aℓ,i is called αℓ,i or
alternatively αℓ,j,k. For quantities in a triangle K as, e.g., angles αj, 1 ≤ j ≤ 3, we use the
cyclic numbering convention α3+1 := α1 and α1−1 := α3.

For a d-dimensional measurable set D, we write |D| for its measure; for a discrete set, say
J , we denote by |J | its cardinality.

In the proofs, we consider frequently nodal patches Tz for inner vertices z ∈ VΩ. The
number m denotes the number of triangles in Tz. Various quantities in this patch such as,
e.g., the triangles in Tz, have an index which runs from 1 to m. Here, we use the cyclic
numbering convention Km+1 := K1 and K1−1 := Km and apply this analogously for other
quantities in the nodal patch.

Let the closed reference triangle K̂ be the triangle with vertices Â1 := (0, 0), Â2 := (1, 0),
Â3 := (0, 1). The nodal points on the reference element of order k ∈ N0 are given by

N̂k :=





{
1

k
µ | µ ∈ I

2
≤k

}
k ≥ 1,

{(
1

3
,
1

3

)}
k = 0.

For a triangle K ⊂ R
2, we denote by χK : K̂ → K an affine bijection. The mapped nodal

points of order k ∈ N0 on K are given by

Nk (K) :=
{
χK (z) : z ∈ N̂k

}
.

The nodal points of order k on T are defined by

Nk (T ) :=
⋃

K∈T

Nk (K) and N k
∂Ω (T ) := Nk (T ) ∩ ∂Ω, Nk,Ω (T ) := Nk (T ) ∩ Ω.

We introduce the well-known Lagrange basis for the space Sk (T ), which is indexed by the
nodal points z ∈ Nk (T ) and characterized by

Bk,z ∈ Sk (T ) and ∀z′ ∈ Nk (T ) Bk,z (z
′) = δz,z′, (3.1)

where δz,z′ is the Kronecker delta. A basis for the space Sk,0 (T ) is given by Bk,z, z ∈ Nk,Ω (T ).

Next, we define a basis for the Crouzeix-Raviart space. Let α, β > −1 and n ∈ N0. The
Jacobi polynomial P

(α,β)
n is a polynomial of degree n such that

∫ 1

−1

P (α,β)
n (x) q (x) (1− x)α (1 + x)β dx = 0
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for all polynomials q of degree less than n, and (cf. [11, Table 18.6.1])

P (α,β)
n (1) =

(α + 1)n
n!

, P (α,β)
n (−1) = (−1)n

(β + 1)n
n!

. (3.2)

Here the shifted factorial is defined by (a)n := a (a+ 1) . . . (a + n− 1) for n > 0 and (a)0 := 1.

Note that P
(0,0)
k are the Legendre polynomials (see [11, 18.7.9]).

Let K denote a triangle with vertices Ai, 1 ≤ i ≤ 3, and let λK,Ai
∈ P1 (K) be the

barycentric coordinate for the node Ai defined by

λK,Ai
(Aj) = δi,j 1 ≤ i, j ≤ 3. (3.3)

If the numbering of the vertices in K is fixed, we write λK,i short for λK,Ai
and for µ ∈ N

3
0:

λ
µ
K = λµ1

K,1λ
µ2

K,2λ
µ3

K,3. (3.4)

For the barycentric coordinate on the reference element K̂ for the vertex Âj we write λ̂j ,
j = 1, 2, 3.

Definition 3.2 Let p ∈ N be even and K ∈ T . Then, the non-conforming triangle bubble is
given by

BCR
p,K :=





1

2

(
−1 +

3∑

i=1

P
(0,0)
p (1− 2λK,i)

)
on K,

0 on Ω\K.

For p odd and E ∈ E , the non-conforming edge bubble is given by

BCR
p,E :=

{
P

(0,0)
p

(
1− 2λK,AK,E

)
on K for K ∈ TE,

0 on Ω\ωE ,

where AK,E denotes the vertex in K which is opposite to the edge E.

Different representations of the functions BCR
p,E, B

CR
p,K exist in the literature, see [23], [1], [5,

for p = 4, 6.], [7] while the formula for BCR
p,K has been introduced in [2].

Theorem 3.3 A basis for the space CRp,0 (T ) is given

• for even p by
{Bp,z, z ∈ Np,Ω (T )} ∪

{
BCR

p,K , K ∈ T
}
,

• for odd p by
{Bp,z, z ∈ Np,Ω (T ) \VΩ} ∪

{
BCR

p,E, E ∈ EΩ
}
.

Proof. For even p, this follows from [23, Rem. 3] in combination with [7, Thm. 22].
For odd p, we first observe that

BCR
p,E

∣∣
E
= 1 so that BCR

p,E

∣∣
ωE

∈ C0 (ωE)

and for K ∈ TE and E ′ ⊂ ∂K\E, the restriction BCR
p,E

∣∣
E′

is the Legendre polynomial (lifted
to the edge E ′) with endpoint values 1 at ∂E and −1 at AK,E. Hence, the assertion follows
from [7, Thm. 22].
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Corollary 3.4 A basis for the space SCR
p,0 (T ) is given

1. for even p by

{Bp,zvz, z ∈ Np,Ω (T )} ∪ {Bp,zwz, z ∈ Np,Ω (T )}

∪
{
BCR

p,KvK , K ∈ T
}
∪
{
BCR

p,KwK , K ∈ T
}
,

(3.5)

2. for odd p by

{Bp,zvz, z ∈ Np,Ω (T ) \VΩ} ∪ {Bp,zwz, z ∈ Np,Ω (T ) \VΩ}

∪
{
BCR

p,EvE , E ∈ EΩ
}
∪
{
BCR

p,EwE, E ∈ EΩ
}
.

(3.6)

Here, for any nodal point z, the linearly independent vectors vz,wz ∈ R
2 can be chosen

arbitrarily. The same holds for any triangle K for the vectors vK ,wK ∈ R
2 in (3.5) and for

any E ∈ EΩ for the vectors vE ,wE ∈ R
2 in (3.6).

Remark 3.5 The original definition by [10] is implicit and given for regular simplicial finite
element meshes in R

d, d = 2, 3. For their practical implementation, a basis is needed and
Corollary 3.4 provides a simple definition. A basis for Crouzeix-Raviart finite elements in R

3

has been introduced in [12] for p = 2 and a general construction is given in [8].

3.2 The Pressure Kernel

For the investigation of the discrete inf-sup condition we employ the macroelement technique
in the form described in [21] (see also [20]).

Let us first assume that every triangle K ∈ T has a vertex z ∈ Ω. As a consequence, the
sets Tz, z ∈ VΩ, with nodal patches ωz form a macroelement partitioning of Ω in the sense of
[21]. We define the spaces

NCR
p,z :=

{
p ∈ Pp−1 (Tz) | ∀v ∈ CRp,0 (Tz) : (p, divv)L2(ωz)

= 0
}
, (3.7)

Np,z :=
{
p ∈ Pp−1 (Tz) | ∀v ∈ Sp,0 (Tz) : (p, divv)L2(ωz)

= 0
}
.

Remark 3.6 The definition of the Crouzeix-Raviart spaces (2.7b) implies Sp,0 (Tz) ⊂ CRp,0 (Tz)
and, in turn,

NCR
p,z ⊂ Np,z. (3.8)

Let 1z : ωz → R denote the function with constant value 1. Then, an integration by parts
implies 1z ∈ NCR

p,z so that dimNCR
p,z ≥ 1.

The following Theorem is a direct consequence of [21, Thm. 2.1].

Theorem 3.7 Let T be a regular finite element triangulation of a bounded polygonal domain
Ω ⊂ R

2 as in §2.2 with shape regularity constant γT and at least one inner vertex. Let p ∈ N.
If

dimNCR
p,z = 1 ∀z ∈ VΩ, (3.9)

then the discrete inf-sup condition (2.9) is satisfied with a constant cT ,p depending only on p,
γT , and dT (cf. (2.3), (2.5)).

The discrete Stokes equation (2.8) has a unique solution (uCR, pdisc) ∈ SCR
p,0 (T )×Mp−1 (T ).
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Remark 3.8 If the assumptions of Theorem 3.7 are satisfied, various types of error estimates
follow from well-established theory. Since this is not the major theme of our paper, we briefly
summarize two approaches: The error ‖u− uCR‖H1(Ω) + ‖p− pdisc‖L2(Ω) can be estimated by
means of the second Strang lemma (see [3], [6, Thm. 4.2.2]) via the sum of a quasi-optimal
term and a consistency error. The latter one converges with optimal rates to zero by assuming
sufficiently high regularity of the continuous solution (see [10, Thm. 3], [5, Thm. 2.2]).

There are also methods to establish quasi-optimality of non-conforming Crouzeix-Raviart
discretizations. We mention the paper [24], where a mapping from the non-conforming space
to a conforming one is introduced and employed in the discretization. For this method, quasi-
optimal error estimates can be proved.

Assumption (3.9) is proved for p = 1, 2 and p ≥ 4, p even. Also note that we may restrict
to triangulations with the property that any K ∈ T has an inner vertex since the result for
triangulations, which contain at least one inner vertex, is implied by the following lemma.

Lemma 3.9 Let T denote a regular triangulation of a domain Ω. Let K ′ denote a further
triangle (not contained in T ) which is attached to T by an edge E, more precisely:

1. K ′ ∩ Ω = ∅ and there exists some K ∈ T and E ∈ E such that K ′ ∩K = E,

2. Let T ′ := T ∪ {K} and Ω′ := dom T ′ (cf. (2.2)) is a bounded, polygonal Lipschitz
domain in R

2.

If the pair CRp,0 (T ) × Mp−1 (T ) is inf-sup stable, then CRp,0 (T ′) × Mp−1 (T ′) is inf-
sup stable with a constant cT ′,p which depends on cT ,p, the shape regularity of {K ′} and the
polynomial degree p.

A proof for p = 3 is given in [9, Lem. 6.2]. Inspection of the proof shows that it applies
also to general p provided the assumptions of the lemma are satisfied. We omit the repetition
of the arguments here.

Taking into account Lemma 3.9 and the known cases from the quoted literature, we assume
for the following

a) p ≥ 3 is odd and
b) T is a regular triangulation as in §2.2 s.t. every K ∈ T has one inner vertex.

(3.10)

In the following we investigate the condition (3.9) and start with the definition of critical
points of a nodal patch Tz for z ∈ VΩ (see [19]).

Definition 3.10 Let T denote a triangulation as in §2.2. For z ∈ VΩ, we denote by Tz, ωz

the nodal patch as in (2.4) and let

Ez := {E ∈ E : E ⊂ ωz} , Vz := {z′ ∈ V | z′ ∈ ωz} .

A point z′ ∈ Vz is a critical point for Tz if there exist two straight infinite lines L1, L2 in R
2

such that all edges E ∈ Ez having z′ as an endpoint satisfy E ⊂ L1∪L2. The set of all critical
points in Tz is Cz and its cardinality denoted by σz := |Cz|.

Remark 3.11 Geometric configurations where critical points occur are well studied in the
literature (see, e.g., [19]). For nodal patches Tz, any critical point belongs to one of the
following cases:
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1. Tz consists of four triangles and z is the intersections of the two diagonals in ωz. Then
z is a critical point; see Fig. 1. In this case, it holds σz = 1.

2. z′ ∈ Vz\ {z}. Let E denote the edge with endpoints z and z′ and let K,K ′ ∈ Tz be the
adjacent triangles. Then, z′ is a critical point if the sum of the two angles at z′in the
triangles K,K ′ ∈ Tz equals π; see Fig. 2. In this case, it holds z /∈ Cz.

From [19] we know that for p ≥ 4 it holds

dimNp,z = 1 + σz. (3.11)

Remark 3.6 implies 1 ≤ dimNCR
p,z ≤ dimNp,z. In this section, we define functions qp−1,z′ for

the critical points z′ ∈ Cz such that the (1 + σz) functions 1z and qp−1,z′, z
′ ∈ Cz are linearly

independent and belong to Np,z.
Afterwards, we will prove the implication:

(
η = β01z +

∑

z′∈Cz

βz′qp−1,z′ satisfies η ∈ NCR
p,z

)
=⇒ η ∈ span {1z} . (3.12)

Hence, in all cases in (3.10), where the dimension formula (3.11) holds (e.g. for p ≥ 4) the
condition (3.9) and, in turn, the assumptions of Theorem 3.7 are satisfied.

To prove (3.12) it is sufficient to consider nodal patches with critical points, i.e., Cz 6= ∅,
and we will construct basis functions for Np,z explicitly. We fix a (non-unique) sign function
σ : Tz → {−1, 1} by the condition:

if K,K ′ ∈ Tz share an edge, then σK = −σK ′ .

Definition 3.12 Let z′ ∈ Cz be a critical point for Tz. The critical function qp−1,z′ ∈ Pp−1 (Tz)
for z′ is given by

qp−1,z′ :=

{
σK

|K|
P

(0,2)
p−1 (1− 2λK,z′) on K ∈ Tz with z′ ∈ K,

0 otherwise.

Lemma 3.13 Let (3.10) be satisfied. The functions 1z and qp−1,z′, z′ ∈ Cz, are linearly
independent and belong to Np,z. If the dimension formula (3.11) holds, they form a basis of
Np,z.

Proof. From Remark 3.6 it follows that 1z ∈ Np,z. Next, we prove that qp−1,z′ ∈ Np,z. Let
K ∈ Tz with z′ ∈ K. Let Ai, 1 ≤ i ≤ 3, denote the vertices of K with the convention A1 = z.

Recall the notation for barycentric coordinates in (3.3), (3.4) and that e3,ℓ, ℓ = 1, 2, 3,
denotes the ℓ-th canonical unit vector in R

3. Let v1, v2 ∈ R
2 denote two linearly independent

vectors – the precise choice will be fixed later.
The restriction of the space Sp,0 (Tz) to K is spanned by (cf. (3.4))

λ
µ
Kvj for j = 1, 2 and µ = e3,1 +α with α ∈ I

3
=p−1. (3.13)

Let w ∈ {v1,v2} and let ∂w denote the Gâteaux derivative of a function in the direction w.
Then ∫

K

qp−1,z′ div
(
λ
µ
Kw
)
=

∫

K

qp−1,z′∂wλ
µ
K =

3∑

s=1

µs∂wλK,s

∫

K

qp−1,z′λ
µ−e3,s

K .
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There exists ℓ ∈ {1, 2, 3} such that z′ = Aℓ. We employ [2, Prop. 4.1] which tells us (as a
consequence of [17, (3.10)]) that for j ∈ {1, 2, 3} \ {ℓ} it holds

∫

K

wλjP
(0,2)
p−1 (1− 2λK,ℓ) = 0 ∀w ∈ Pp−2 (K) . (3.14)

For j ∈ {1, 2, 3} \ {ℓ} with µj − δj,s ≥ 1, this implies

I
(ℓ,s)
K := µs

∫

K

qp−1,Aℓ
λ
µ−e3,s

K = 0. (3.15)

Taking into account the orthogonality relations (3.14) and that the factor µs in (3.15) vanishes
in many cases, it remains to consider the cases

(ℓ, s) = (1, 1) and µ = (p, 0, 0) ,

(ℓ, s) = (2, 1) and µ = (1, p− 1, 0) ,

(ℓ, s) = (3, 1) and µ = (1, 0, p− 1) , (3.16)

(ℓ, s) = (1, 2) and µ = (p− 1, 1, 0) ,

(ℓ, s) = (1, 3) and µ = (p− 1, 0, 1)

with corresponding integrals

I
(1,1)
K = p

∫
K
qp−1,A1

λp−1
K,1 , I

(2,1)
K =

∫
K
qp−1,A2

λp−1
K,2 , I

(3,1)
K =

∫
K
qp−1,A3

λp−1
K,3 ,

I
(1,2)
K =

∫
K
qp−1,A1

λp−1
K,1 , I

(1,3)
K =

∫
K
qp−1,A1

λp−1
K,1 .

All other integrals in (3.15) vanish.

A standard affine transformation to the reference element K̂ shows that

1

p
I
(1,1)
K = I

(2,1)
K = I

(3,1)
K = I

(1,2)
K = I

(1,3)
K = σKcp, (3.17)

where

cp := 2

∫

K̂

P
(0,2)
p−1

(
1− 2λ̂2

)
λ̂p−1
2 .

It remains to prove the second equality in

∫

K

qp−1,z′ div
(
λ
µ
Kw
)
=

3∑

s=1

I
(ℓ,s)
K ∂wλK,s = 0

for (ℓ, s) ∈ {(1, r) , (r, 1) : r ∈ {1, 2, 3}} (cf. (3.16)). By using (3.17) we obtain

∫

K

qp−1,Aℓ
div
(
λ
µ
Kw

)
= σKcp





p∂wλK,1 ℓ = 1 ∧ µ = (p, 0, 0) ,
∂wλK,1 ℓ = 2 ∧ µ = (1, p− 1, 0) ,
∂wλK,1 ℓ = 3 ∧ µ = (1, 0, p− 1) ,
∂wλK,2 ℓ = 1 ∧ µ = (p− 1, 1, 0) ,
∂wλK,3 ℓ = 1 ∧ µ = (p− 1, 0, 1) ,
0 otherwise.

(3.18)

Evaluation of the right-hand side in (3.18).
The basis functions in Sp,0 (Tz) can be grouped into three different types.
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1. Basis functions whose support is one triangle K ∈ Tz. Let Ai, 1 ≤ i ≤ 3, denote the
vertices of K. Then, these basis functions are given by

B
µ,j
K := λ

µ
Kvj , for µ ∈ I

3
=p and min {µi : 1 ≤ i ≤ 3} ≥ 1.

From (3.18) it follows that
∫

ωz

qp−1,z′ div
(
B
µ,j
K

)
= 0.

2. Basis functions whose support is an edge patch. Let E ∈ Ez with z ∈E and denote by
K and K ′ the triangles in Tz which share E. We denote the vertices in K and K ′ by
Aℓ and A′

ℓ, ℓ = 1, 2, 3, with the convention that A1 = A′
1 = z, A2 is the vertex in

K opposite to E, and A′
3 is the vertex in K ′ opposite to E. Thus, A3 = A′

2. Then,
2 (p− 1) basis functions of Sp,0 (Tz) are associated with the edge E. For µ ∈ I

3
=p with

µ′ = (µ1, µ3, µ2), define

B
µ,j
E :=





λ
µ
Kvj on K,

λ
µ′

K ′vj on K ′,
0 on ωz\ωE

for





µ ∈ I
3
=p,

∧ min {µ1, µ3} ≥ 1,
∧ µ2 = 0.

(3.19)

The integral
∫
ωz

qp−1,z′ div
(
B
µ,j
E

)
can be different from zero, only if z′ ∈ {A1,A2,A3,A

′
3}.

(a) If z′ = A2, we get
∫

ωz

qp−1,z′ div
(
B
µ,j
E

)
=

∫

K

qp−1,A2
div
(
λ
µ
Kvj

)
.

The combination of (3.18) with the conditions for µ in (3.19) and ℓ = 2 (since
z′ = A2) shows that these integrals vanish. We argue along the same lines to see
that the integrals vanish if z′ = A′

3.

(b) Let z′ = A1. Then,
∫

ωE

qp−1,z′ div
(
B
µ,j
E

)
=

∫

K

qp−1,A1
div
(
λ
µ
Kvj

)
+

∫

K ′

qp−1,A1
div
(
λ
µ′

K ′vj

)
.

From (3.18) with the conditions for µ in (3.19) and ℓ = 1 (since z′ = A1), we
see that these integrals vanish if µ 6= (p− 1, 0, 1). However, for the case µ =
(p− 1, 0, 1) we conclude from (3.18) that

∫

ωz

qp−1,z′ div
(
B
µ,j
E

)
= σKcp

(
∂vj

λK,A3
− ∂vj

λK ′,A′
2

)
. (3.20)

Since z′ = A1 = A′
1 is a critical point, the sum of the angles in K at z′ and

in K ′ at z′ is π. Hence, K ∪ K ′ = ωE is the triangle with vertices A2,A3, A
′
3

and λωE ,A3
|K = λK,A3

and λωE ,A3
|K ′ = λK ′,A′

2
. Since λωE ,A3

is affine on ωE , the
difference in (3.20) vanishes.

Let z′ = A3. By arguing as in the previous case, we obtain
∫
ωz

qp−1,z′ div
(
B
µ,j
E

)
= 0.
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3. Finally, it remains to consider the basis functions associated with the centre node. We
set

Bp,j
z

∣∣
K
:= λp

K,A1
vj for K ∈ Tz

with the numbering convention that the first vertex in K satisfies z = A1.

Case a. Let the critical point be an “outer” vertex, i.e., z′ ∈ Vz\ {z}. The edge
connecting z with z′ is denoted by E with adjacent triangles K, K ′ and we employ the
numbering convening as in case 2. Then,
∫

ωz

qp−1,z′ div
(
Bp,j

z

)
=

∫

K

qp−1,A3
div
(
λp
K,A1

vj

)
+

∫

K ′

qp−1,A′
2
div
(
λp
K ′,A′

1

vj

)
(3.18)
= 0.

Case b. Let z′ = z be a critical point. From Remark 3.11 we know that in this case the
nodal patch consists of 4 triangles so that ωz is a quadrilateral and z is the crosspoint
of the diagonals d1, d2 in ωz. Fix v1 and v2 in (3.13) as a unit vector pointing in the
direction of d1 and d2.

We first consider the basis function Bp,1
z

corresponding to the vector v1 aligned with d1.
We choose an edge E ∈ Ez with z ∈ E and E ⊂ d1 such that v1 is tangential to E.
The two triangles in Tz adjacent to E are denoted by K,K ′ with the same numbering
convention of the vertices as in case 2. Then,

∫

K∪K ′

qp−1,z div
(
Bp,1

z

)
=

∫

K

qp−1,A1
div
(
λp
K,A1

v1

)
+

∫

K ′

qp−1,A1
div
(
λp
K ′,A1

v1

)
.

From (3.18) we conclude that
∫

K∪K ′

qp−1,z div
(
Bp,1

z

)
= pcpσK (∂v1

λK,z − ∂v1
λK ′,z) . (3.21)

Since v1 is tangential to E and the jump of λK,z and λK ′,z across E is zero, the same
holds for the tangential derivative and the difference in (3.21) is zero.

For the other edge in Ez, which contains z and is aligned to v1, we argue in the same
way to see that the integral over the remaining two triangles in Tz is also zero,

∫

ωz

qp−1,z div
(
Bp,1

z

)
= 0.

For the basis function Bp,2
z

we consider the two edges E ∈ Ez with z ∈ E and which are
aligned to v2. By repeating the previous arguments we conclude

∫
ωz

qp−1,z div (B
p,2
z

) = 0.

In summary, we have proved that

1z ∈ Np,z and qp−1,z′ ∈ Np,z

for all critical points z′ ∈ Cz.

It remains to prove that these functions are linearly independent.
If z′ = z is a critical point in the interior of a patch, we have the geometric situation as

described in case 3b and no further critical point exists. Since for p ≥ 2, P
(0,2)
p−1 (1− 2λK,z′) is

not constant, it follows that 1z and qp−1,z′ are linearly independent.
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It remains to consider the case that all critical points z′ in Tz are located on ∂ωz. Then,
the support of the corresponding critical function qp−1,z′ consists of only those two triangles
which share the edge with endpoints z and z′. Hence, it is sufficient to prove that for a triangle
K ∈ Tz with vertices A1, A2, A3 (convention: z = A1) and the property that both vertices
A2 and A3 are critical points it holds

P
(0,2)
p−1 (1− 2λK,A2

) , P
(0,2)
p−1 (1− 2λK,A3

) , 1K

are linearly independent, where 1K is the constant function 1 on K. We transfer this claim
to the reference element by an affine transformation and see that it suffices to prove that

q̂1 := P
(0,2)
p−1

(
1− 2λ̂2

)
, q̂2 := P

(0,2)
p−1

(
1− 2λ̂3

)
, q̂3 := 1K̂

are linearly independent. We will show that Gram’s matrix G = (gi,j)
3
i,j=1 with gi,j :=

(q̂i, q̂j)L2(K̂) is regular. We use

P
(0,2)
p−1

(
1− 2λ̂3

)
= P

(0,2)
p−1 (1) + λ̂3rp−2 with rp−2 ∈ Pp−2 ([−1, 1]) .

Hence, the combination of (3.14) with P
(0,2)
p−1 (1) = 1 (cf. [11, Table 18.6.1]) leads to

g12 = g21 = dpP
(0,2)
p−1 (1) = dp,

where

dp :=

∫

K̂

P
(0,2)
p−1

(
1− 2λ̂2

)
=

∫

K̂

P
(0,2)
p−1

(
1− 2λ̂3

)

=
1

4

∫ 1

−1

(1 + t)P
(0,2)
p−1 (t) dt

Lem. C.1
=

(−1)p−1

p (p+ 1)
.

Furthermore, it holds

g11 = g22 =

∫

K̂

(
P

(0,2)
p−1

(
1− 2λ̂2

))2
=

∫ 1

0

(
P

(0,2)
p−1 (1− 2x1)

)2
(1− x1) dx1

=
1

4

∫ 1

−1

(
P

(0,2)
p−1 (t)

)2
(1 + t) dt

Lem. C.1
=

1

2
.

Since p is odd we deduce

G =




1
2

1
p(p+1)

1
p(p+1)

1
p(p+1)

1
2

1
p(p+1)

1
p(p+1)

1
p(p+1)

1
2




with determinant

detG =
(p + p2 + 4) (p+ 2)2 (p− 1)2

8p3 (p+ 1)3
.

Since p ≥ 3, the determinant is positive and G is regular.
Let (3.10) be satisfied. The functions 1z and qp−1,z′, z

′ ∈ Cz, are linearly independent and
belong to Np,z. If the dimension formula (3.11) holds, they form a basis of Np,z.
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Figure 1: Geometric situation, where z is a critical vertex in the patch Tz.

Lemma 3.14 Let (3.10) be satisfied. Then

(span {1z}+ span {qp−1,z′, z
′ ∈ Cz}) ∩NCR

p,z = span {1z} . (3.22)

If the dimension formula (3.11) holds, then dimNCR
p,z = 1.

Proof. We distinguish between different cases.
Case 1: z is a critical point in Tz.
In this case we have the geometric situation as described in case 3b of the proof of Lemma

3.13. In particular there is no further critical point in Tz and the left-hand side in (3.22)
equals span {1z, qp−1,z}. We choose η = α1z + βqp−1,z. Our goal is to prove the implication:

η ∈ NCR
p,z =⇒ β = 0. (3.23)

Let E ∈ Ez with z ∈ E and let K,K ′ be the adjacent triangles in Tz; see Fig. 1 . Let Ai and
A′

i, 1 ≤ i ≤ 3, denote their vertices with the convention that A1 = A′
1 = z. The angle in K

at Ai is denoted by αi and α′
i is the angle in K ′ at A′

i. The edge Ei is opposite to the vertex
Ai and E ′

i is opposite to A′
i. Hence, E = E2 = E ′

3. We fix the vector vE in (3.6) as the unit
vector which is orthogonal to the edge E and points into K ′. This vector will be denoted by
nE . In view of (3.7), implication (3.23) follows if we prove

(
η, div

(
BCR

p,EnE

))
L2(ωz)

= 0 =⇒ β = 0. (3.24)

By an integration by parts we get
(
η, div

(
BCR

p,EnE

))
L2(ωz)

= β
(
qp−1,z, div

(
BCR

p,EnE

))
L2(ωE)

and (3.24) follows if we prove
(
qp−1,z, div

(
BCR

p,EnE

))
L2(ωE)

6= 0. (3.25)

We get

(
qp−1,z, div

(
BCR

p,EnE

))
L2(ωE)

=
σK

|K|

∫

K

P
(0,2)
p−1 (1− 2λK,1) ∂nE

BCR
p,E

+
σK ′

|K ′|

∫

K ′

P
(0,2)
p−1 (1− 2λK ′,1) ∂nE

BCR
p,E.
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For the first integral, we get explicitly

∫

K

P
(0,2)
p−1 (1− 2λK,1) ∂nE

BCR
p,E = −2∂nE

λK,2

∫

K

P
(0,2)
p−1 (1− 2λK,1)

(
P (0,0)
p

)′
(1− 2λK,2) . (3.26)

We employ the affine map χ : K → K ′ characterized by χ (A1) = A′
1, χ (A3) = A′

2, χ (A2) =
A′

3. By taking into account σK ′ = −σK we get

(
qp−1,z, div

(
BCR

p,EnE

))
L2(ωE)

= −2
σK

|K|
(∂nE

λK,2 − ∂nE
λK ′,3) ιK,p (3.27)

with ιK,p :=

∫

K

P
(0,2)
p−1 (1− 2λK,1)

(
P (0,0)
p

)′
(1− 2λK,2) . (3.28)

From (A.2) and elementary triangle trigonometry we conclude that

∂nE
λK,2 − ∂nE

λK ′,3 = ∂n2
λK,2 + ∂n2

λK ′,3 = −
|E|

2 |K|
−

|E|

2 |K ′|

= −
1

sinα1 |E3|
−

1

sinα′
1 |E

′
2|

= −
sinα2

|E| sinα1 sinα3
−

sinα′
3

|E| sinα′
1 sinα

′
2

= −
1

|E|

(
sin (α1 + α3)

sinα1 sinα3
+

sin (α′
1 + α′

2)

sinα′
1 sinα

′
2

)
= −

1

|E|
(cotα1 + cotα3 + cotα′

1 + cotα′
2) .

Recall that α1 + α′
1 = π so that cotα1 + cotα′

1 = 0 and

∂nE
λK,2 − ∂nE

λK ′,3 = ∂n2
λK,2 + ∂n2

λK ′,3 = −
1

|E|
(cotα3 + cotα′

2) 6= 0. (3.29)

It remains to prove that the integral in (3.28) is different from zero. We obtain

ιK,p = 2 |K|

∫ 1

0

∫ 1−x1

0

P
(0,2)
p−1 (1− 2x1)

(
P (0,0)
p

)′
(1− 2x2) dx2dx1

= − |K|

∫ 1

0

P
(0,2)
p−1 (1− 2x1)

(
P (0,0)
p (1− 2x2)

∣∣1−x1

0

)
dx1

= −
|K|

2

∫ 1

−1

P
(0,2)
p−1 (t)

(
P (0,0)
p (−t)− P (0,0)

p (1)
)
dt

=
|K|

2

∫ 1

−1

P
(0,2)
p−1 (t)

(
P (0,0)
p (t) + 1

)
dt,

where we used that P
(0,0)
p is an odd function and P

(0,0)
p (1) = 1. The orthogonality of the

Legendre polynomial P
(0,0)
p implies

∫ 1

−1
P

(0,0)
p (t)P

(0,2)
p−1 (t) = 0 and from (C.6) we conclude that

ιK,p = (−1)p−1 |K|. The combination with (3.29) leads to

(
qp−1,z′, div

(
BCR

p,EnE

))
L2(ωz)

= 2σK (−1)p−1

(
cotα3 + cotα′

2

|E|

)
6= 0. (3.30)

In turn, the implication (3.25) follows and concludes the proof of the assertion for the case
that z is a critical point.

Case 2. z is not a critical point in Tz.
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Figure 2: Nodal patch, illustrating singular vertices at ∂ωz. They are partitioned into edge-
connected parts Cz,ℓ, 1 ≤ ℓ ≤ cz. The extremal points zℓ,0 and zℓ,nℓ+1 are no singular points.
The edge connecting z with zℓ,j is denoted by Eℓ,j and the connecting edge for the singular
points zℓ,j−1, zℓ,j is denoted by E0

ℓ,j. The normal vector nℓ,j at Eℓ,j is counterclockwise
oriented. Condition (3.31) is considered for all Cz,ℓ separately and the index ℓ is skipped in
the computation.

Let Cz denote the set of critical points in Tz. If Cz is empty, we conclude from (3.13), (3.8),
and (3.9) that dimNCR

p,z = 1 and it remains to consider the case Cz 6= ∅.
Part a: Derivation of sufficient conditions.
In view of (3.22), we consider functions η of the form:

η = β11z +
∑

z′∈Cz

βz′qp−1,z′ for real coefficients β1, βz′ .

Our goal is to prove the implication

η ∈ NCR
p,z =⇒ ∀z′ ∈ Cz βz′ = 0.

A sufficient condition is to prove the implication
(
∀E ∈ Ez with z ∈ E:

(
η, div

(
BCR

p,EnE

))
L2(ωz)

= 0
)

=⇒ (∀z′ ∈ Cz : βz′ = 0) .

Since
(
1z, div

(
BCR

p,EnE

))
L2(ωz)

= 0 this is equivalent to showing

(
∀E ∈ Ez with z ∈ E:

∑

z′∈Cz

βz′

(
qp−1,z′, div

(
BCR

p,EnE

))
L2(ωz)

= 0

)
(3.31)

=⇒ (∀z′ ∈ Cz : βz′ = 0) .

Next, we consider (3.31) for a reduced number of edges. Since not all points in Vz\ {z} can
be critical points, we can group the points in Cz as follows (see Fig. 2). We say two critical
points z′, z′′ ∈ Cz are edge-connected if there is an edge E ∈ Ez having z′, z′′ as endpoints. We
decompose Cz into a minimal number of subsets Cz,ℓ, 1 ≤ ℓ ≤ cz, such that all points in Cz,ℓ are
edge-connected in that the points in Cz,ℓ can be numbered counterclockwise zℓ,1, zℓ,2, . . . , zℓ,nℓ

and satisfy: zℓ,j−1 and zℓ,j are edge-connected for j = 2, 3, . . . nℓ. The construction implies
that zℓ,1 is edge-connected with some zℓ,0 ∈ Vz\ {z}, which is not a critical point, and zℓ,nℓ

is edge-connected to some point zℓ,nℓ+1 ∈ Vz\ {z}, which is also no critical point. In (3.31),
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we choose the edges E = Eℓ,j , which is edge-connected to zℓ,j with z, 1 ≤ j ≤ nℓ. The edge
connecting zℓ,j−1 with zℓ,j is denoted by E0

ℓ,j and the triangle with vertices z, zℓ,j−1, zℓ,j by
Kℓ,j. Let nℓ,j denote the unit vector which is orthogonal to Eℓ,j and points into Kℓ,j+1. The
angle in Kℓ,j at the vertex z is locally denoted by αℓ,1 and at the vertices zℓ,j−1, zℓ,j by αℓ,2,
αℓ,3.

We write short BCR
ℓ,j for the test function BCR

p,E with E = Eℓ,j . For fixed ℓ, we test with the
functions BCR

ℓ,j nℓ,j , 1 ≤ j ≤ nℓ, and obtain the conditions

nℓ∑

j=1

βℓ,j

(
qp−1,zℓ,j , div

(
BCR

ℓ,i nℓ,j

))
L2(ωz)

= 0 ∀1 ≤ i ≤ nℓ. (3.32)

Hence, (3.31) is proved if we show the sufficient condition

∀1 ≤ ℓ ≤ cℓ (3.32) has the unique solution βℓ,i = 0 ∀1 ≤ i ≤ nℓ. (3.33)

Since these conditions are decoupled with respect ℓ we verify this for each ℓ separately and
drop the index ℓ. We define the matrix Mn = (mi,j)1≤i≤n

1≤j≤n
by

mi,j :=
(
qp−1,zj , div

(
BCR

i ni

))
L2(ωz)

.

By using a) the support properties of the critical functions qp−1,zj and the Crouzeix-Raviart
functions BCR

ℓ,i , b) the fixed counterclockwise orientation of the normal vector ni, c) the fact
that BCR

i and qp−1,zj are defined by barycentric coordinates, d) the function σK has alternating
sign, we obtain that Mn has the following tridiagonal structure

Mn =




d1 d12 0 . . . 0

d21 d2 d23
. . .

...

0 d32 d3
. . . 0

...
. . .

. . .
. . . dn−1,n

0 . . . 0 dn,n−1 dn




(3.34)

and condition (3.33) is equivalent to showing that Mn is regular. In the following we compute
the matrix entries of Mn.

Part b. Computing the diagonal entries dj.
Now, let z′ ∈ Cz and denote by E the edge connecting z with z′. The adjacent triangles

are denoted by K,K ′ with vertices Ai, A
′
i, i = 1, 2, 3, A1 = A′

1 = z, and A3 = A′
2 = z′. We

first evaluate (
qp−1,z′, div

(
BCR

p,EnE

))
L2(ωz)

.

By repeating the computation as in case 1 we conclude as for (3.30) that this quantity satisfies

(
qp−1,z′, div

(
BCR

p,EnE

))
L2(ωz)

= 2σK (−1)p−1 cotα1 + cotα′
1

|E|
.

Let K1 ∈ Tz denote the triangle with vertices z, z0, z1, i.e., z0 is not a critical point.
Without loss of generality we assume that the signature of K1 satisfies σK1

= −1 while the
proof for σK1

= 1 is verbatim. By this signature convention and since p is odd, it follows that

dj = 2 (−1)j
cotαj,1 + cotαj+1,1

|Ej|
.
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Part c. Computing the off-diagonal entries.
Let z′ ∈ Ez be a critical point as before and recall the notation of E, Ai, A

′
i as in part b,

in particular, A1 = A′
1 = z, A3 = A′

2 = z′, K is the triangle with vertices Ai, 1 ≤ i ≤ 3, and
E has endpoints z and z′. We assume that A2 ∈ Cz so that

(
qp−1,A2

, div
(
BCR

p,EnE

))
L2(ωz)

is a

matrix entry of the form dj,j−1. Then, we evaluate

(
qp−1,A2

, div
(
BCR

p,EnE

))
L2(ωz)

=
(
qp−1,A2

, div
(
BCR

p,EnE

))
L2(K)

= −2σK (∂nE
λK,A2

) θp.

with

θp :=
1

|K|

∫

K

P
(0,2)
p−1 (1− 2λK,A2

)
(
P (0,0)
p

)′
(1− 2λK,A2

) .

The integral in the definition of θp is transformed to the reference element by the affine
transform χ characterized by

χ
(
Â1

)
= A1 = z, χ

(
Â2

)
= A2, χ

(
Â3

)
= A3. (3.35)

This implies in particular that θp is independent of K. Thus,

(
qp−1,A2

, div
(
BCR

p,EnE

))
L2(ωz)

= −2σKθp∂nE
λK,A2

.

From Appendix A (see (A.2)) it follows that

∂nE
λK,A2

= −
|E|

2 |K|

so that (
qp−1,A2

, div
(
BCR

p,EnE

))
L2(ωz)

=
σK |E|

|K|
θp.

By using the affine transform χ as in (3.35) we are led to

θp = 2

∫ 1

0

∫ 1−x1

0

P
(0,2)
p−1 (1− 2x1)

(
P (0,0)
p

)′
(1− 2x1) dx2dx1

= 2

∫ 1

0

(1− x1)P
(0,2)
p−1 (1− 2x1)

(
P (0,0)
p

)′
(1− 2x1) dx1

=
1

2

∫ 1

−1

(t+ 1)P
(0,2)
p−1 (t)

(
P (0,0)
p

)′
(t) dt

[11, Tab. 18.6.1]
=

1

2

∫ 1

−1

(1− t)P
(2,0)
p−1 (t)

(
P (0,0)
p

)′
(t) dt

[11, 18.9.15]
=

p+ 1

4

∫ 1

−1

(1− t)P
(2,0)
p−1 (t)P

(1,1)
p−1 (t) dt

(C.5)
= 1.

Hence,
(
qp−1,A2

, div
(
BCR

p,EnE

))
L2(ωz)

=
σK |E|

|K|
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and we conclude that

di,i−1 = (−1)i
|Ei|

|Ki|

holds. By employing an affine transform χ, which maps Ki+1 onto Ki and is the identity on
Ei, we can reuse the computations for di,i−1 to get

di,i+1 = (−1)i
|Ei|

|Ki+1|
.

In summary,

Mn =

= 2




− cotα1,1+cotα2,1

|E1|
− |E1|

2|K2|
0 . . . 0

|E2|
2|K2|

cotα2,1+cotα3,1

|E2|
|E2|
2|K3|

. . .
...

0 − |E3|
2|K3|

− cotα3,1+cotα4,1

|E3|

. . . 0
...

. . .
. . .

. . . (−1)n−1|En−1|
2|Kn|

0 . . . 0 (−1)n|En|
2|Kn|

(−1)n cotαn,1+cotαn+1,1

|En|




= 2DσTn,αDE .

with the diagonal matrices

Dσ := diag
[
(−1)i : 1 ≤ i ≤ n

]
and DE := diag

[
|Ei|

−1 : 1 ≤ i ≤ n
]

and the symmetric tridiagonal matrix

Tn,α :=




sin(α1,1+α2,1)

sinα1,1 sinα2,1

1
sinα2,1

0 . . . 0

1
sinα2,1

sin(α2,1+α3,1)

sinα2,1 sinα3,1

1
sinα3,1

. . .
...

0 1
sinα3,1

sin(α3,1+α4,1)

sinα3,1 sinα4,1

. . . 0
...

. . .
. . .

. . . 1
sinαn,1

0 . . . 0 1
sinαn,1

sin(αn,1+αn+1,1)

sinαn,1 sinαn+1,1




. (3.36)

By induction (see Appendix B) one proves

detTn,α =
sin
(∑n+1

i=1 αi,1

)

Πn+1
i=1 sinαi,1

. (3.37)

We know that 0 <
∑n+1

i=1 αi,1 < π so that detTn,α 6= 0 and, in turn, detMn 6= 0.
Since Mn is the system matrix in the linear equations (3.33) for a fixed but arbitrary ℓ

in (3.33), we have proved the implication (3.33) and, in turn, the following statement: If the
dimension formula holds, we conclude from Lemma 3.13 that

Np,z = span {1z}+ span {qp−1,z′ : z
′ ∈ Cz} .

Since NCR
p,z ⊂ Np,z (cf. (3.8)) we have in this case

NCR
p,z ⊂ (span {1z}+ span {qp−1,z′ : z

′ ∈ Cz}) ∩NCR
p,z = span {1z}

and, in turn, NCR
p,z = span {1z} (cf. Rem. 3.6).
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A Derivatives of Barycentric Coordinates

As before we denote the vertices of a triangle K by Ai, 1 ≤ i ≤ 3, and set for ease of notation
A0 := A3 and A4 := A1. Then, for the barycentric coordinate λK,Ai

the following relations
hold

λK,Ai
(x) =

det [x−Ai−1 | Ai+1 −Ai−1]

2 |K|

∇λK,Ai
= ∇

〈
x−Ai−1, (Ai+1 −Ai−1)

⊥
〉

2 |K|
=

(Ai+1 −Ai−1)
⊥

2 |K|
(A.1)

with v⊥ = (v2,−v1)
T . The outer normal vector ni for the edge Ei (opposite to Ai) is given

by (Ai−1−Ai+1)
⊥

|Ei|
. Hence,

∂nk
λK,Ai

=
(Ai+1 −Ai−1)

⊥

2 |K|

(Ak−1 −Ak+1)
⊥

|Ek|
=

〈Ai+1 −Ai−1,Ak−1 −Ak+1〉

2 |K| |Ek|
(A.2)

=
cos βi,k

2 |K|
|Ei| ,

where βi,k ∈ ]0, π] is the angle at that vertex in K, where Ei and Ek meet with the convention
βi,i = π for all i = 1, 2, 3. The tangential vector (counterclockwise orientation) for the edge i

is given by ti :=
Ai−1−Ai+1

|Ei|
so that

∂tkλK,Ai
=

(Ai+1 −Ai−1)
⊥

2 |K|

(Ak−1 −Ak+1)

|Ek|
(A.3)

=
det [Ak−1 −Ak+1 | Ai+1 −Ai−1]

2 |K| |Ek|
=

εi,k
|Ek|

with

εi,k := (k − i+ 1)mod 3− 1 =





−1 k = i− 1,
0 k = i,
1 k = i+ 1.

(A.4)

B The Determinant of Tn,α (cf. (3.36))

We write short Tn for Tn,α and denote the matrix entries in Tn by (tn,i,j)
n
i,j=1. We apply

the well known three-term recursion formula for the determinant of a symmetric tridiagonal
matrix (see, e.g., [22, (5.5.3)]) and obtain

detTn = tn,n,n det (Tn−1)− t2n,n,n−1 detTn−2.

For n = 1, 2, it is straightforward to compute

detTn =
sin
(∑n+1

i=1 αi,1

)

Πn+1
i=1 sinαi,1

.
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We assume inductively (3.37) holds true for ñ = 1, 2, . . . , n− 1 and prove the assertion for n.
We get

sin (αn,1 + αn+1,1)

sinαn,1 sinαn+1,1
det (Tn−1)−

1

sin2 αn,1

detTn−2

=
sin (αn,1 + αn+1,1)

sinαn,1 sinαn+1,1

sin (
∑n

i=1 αi,1)

Πn
i=1 sinαi,1

−
1

sin2 αn,1

sin
(∑n−1

i=1 αi,1

)

Πn−1
i=1 sinαi,1

=
1

sinαn,1Π
n+1
i=1 sinαi,1

(
sin (αn,1 + αn+1,1) sin

(
n∑

i=1

αi,1

)
− sinαn+1,1 sin

(
n−1∑

i=1

αi,1

))

=
1

Πn+1
i=1 sinαi,1

(
cosαn+1,1 sin

(
n∑

i=1

αi,1

)
+

+ sinαn+1,1
cosαn,1 sin (

∑n
i=1 αi,1)− sin (

∑n
i=1 αi,1 − αn,1)

sinαn,1

)
. (B.1)

The term in the numerator of the last term in the right-hand side in (B.1) equals

cosαn,1 sin

(
n∑

i=1

αi,1

)
− sin

(
n∑

i=1

αi,1 − αn,1

)
= cos

(
n∑

i=1

αi,1

)
sin (αn,1) .

Hence, it follows

sin (αn,1 + αn+1,1)

sinαn,1 sinαn+1,1
det (Tn−1)−

1

sin2 αn,1

detTn−2

=
1

Πn+1
i=1 sinαi,1

(
cosαn+1,1 sin

(
n∑

i=1

αi,1

)
+ sinαn+1,1 cos

(
n∑

i=1

αi,1

))

=
sin
(∑n+1

i=1 αi,1

)

Πn+1
i=1 sinαi,1

and, in turn, formula (3.37) for the determinant of Tn.

C Closed Form of some Integrals involving Jacobi Poly-

nomials

In this section, we derive some explicit formulae for integrals involving Jacobi polynomials.

Lemma C.1 It holds for all n ∈ N0

∫ 1

−1

(1 + t)P (0,2)
n (t) dt = 4

(−1)n

(n+ 1) (n+ 2)
, (C.1)

∫ 1

−1

(1 + t)
(
P (0,2)
n (t)

)2
dt = 2.

Proof. Part a.
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We set In :=
∫ 1

−1
(1 + t)P

(0,2)
n (t) dt. For n = 0, we have P

(0,2)
0 (t) = 1 and I0 = 2. For

n ≥ 1, we employ [11, 18.9.5 with α = 0 and β = 1 therein] in the form

2 (n+ 1)P (0,1)
n = (n + 2)P (0,2)

n + nP
(0,2)
n−1 . (C.2)

The orthogonality relations of P
(0,1)
n imply that

∫ 1

−1
(1 + t)P

(0,1)
n (t) dt = 0 so that the recur-

rence

0 = (n+ 2) In + nIn−1

follows. This can be resolved and we obtain

In = −
n

n + 2
In−1 = (−1)n 2

n!

(n+ 2)!
I0 = 4

(−1)n

(n + 1) (n+ 2)
.

Part b. We set Jn :=
∫ 1

−1

(
P

(0,2)
n (t)

)2
(1 + t) dt. For n = 0, we obtain J0 = 2 and it

remains to consider the case n ≥ 1. We employ [11, Table 18.6.1, first row] to obtain

Jn =

∫ 1

−1

(
P (0,2)
n (−t)

)2
(1− t) dt =

∫ 1

−1

(
P (2,0)
n (t)

)2
(1− t) dt.

From [11, 18.5.7] we deduce

P (2,0)
n (t) =

(
n+ 2

2

)
+ (1− t) pn−1 (t) (C.3)

for some pn−1 ∈ Pn−1 ([−1, 1]). The orthogonality property of P
(2,0)
n leads to

Jn =

(
n+ 2

2

)∫ 1

−1

P (2,0)
n (t) (1− t) dt = (−1)n

(
n+ 2

2

)∫ 1

−1

P (0,2)
n (−t) (1− t) dt

= (−1)n
(
n+ 2

2

)∫ 1

−1

P (0,2)
n (t) (1 + t) dt

= (−1)n
(
n+ 2

2

)
In = 2.

Lemma C.2 For all n ∈ N0, it holds
∫ 1

−1

(1− t)P (0,2)
n (t)P (1,1)

n (t) dt = 2 (n + 1) , (C.4)

∫ 1

−1

(1− t)P (2,0)
n (t)P (1,1)

n (t) dt =
4

n+ 2
, (C.5)

∫ 1

−1

P (0,2)
n (t) dt = 2 (−1)n . (C.6)

Proof of (C.4).

We set Tn :=
∫ 1

−1
(1− t)P

(0,2)
n (t)P

(1,1)
n (t) dt. For n = 0, we explicitly compute T0 = 2 and

assume for the following n ≥ 1. From [11, Table 18.6.1, first row], we deduce

Tn =

∫ 1

−1

(1 + t)P (2,0)
n (t)P (1,1)

n (t) dt.
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We apply expansion (C.3) to P
(2,0)
n (t) and obtain

P (2,0)
n (t) =

(
n+ 2

2

)
+ (1− t) pn−1 (t) for pn−1 ∈ Pn−1 ([−1, 1]) .

The orthogonality relations of the Jacobi polynomials yield

Tn =

(
n+ 2

2

)∫ 1

−1

(1 + t)P (1,1)
n (t) dt = (−1)n

(
n+ 2

2

)∫ 1

−1

(1 + t)P (1,1)
n (−t) dt (C.7)

= (−1)n
(
n + 2

2

)
Ln with Ln :=

∫ 1

−1

(1− t)P (1,1)
n (t) dt.

We compute Ln. For n = 0 we get L0 = 2 and consider n ≥ 1 in the following. We employ
[11, 18.9.5 with α = 1 and β = 0 therein] to obtain

2 (n + 1)P (1,0)
n = (n+ 2)P (1,1)

n + (n+ 1)P
(1,1)
n−1 .

The orthogonality relations for Jacobi polynomials imply

Ln := −
n + 1

n + 2
Ln−1 = 2

(−1)n

n+ 2
L0 = (−1)n

4

n+ 2
. (C.8)

The combination of (C.7) and (C.8) leads to the assertion.
Proof of (C.5).

We set Gn :=
∫ 1

−1
(1− t)P

(2,0)
n (t)P

(1,1)
n (t) dt. For n = 0, we obtain G0 = 2 and consider

n ≥ 1 in the following. From [11, 18.5.7] we deduce

P (1,1)
n (t) = n + 1 + (1− t) pn−1 (t) for some pn−1 ∈ Pn−1 ([−1, 1]) .

The orthogonality relation of P
(2,0)
n imply

Gn = (n+ 1)

∫ 1

−1

(1− t)P (2,0)
n (t) dt = (n + 1)

∫ 1

−1

(1 + t)P (2,0)
n (−t) dt

= (n+ 1) (−1)n
∫ 1

−1

(1 + t)P (0,2)
n (t) dt

(C.1)
=

4

n + 2
.

Proof of (C.6).

Let Sn :=
∫ 1

−1
P

(0,2)
n (t) dt. For n = 0, we obtain S0 = 2 and assume n ≥ 1 for the following.

We employ (C.2) and obtain

Sn :=

∫ 1

−1

P (0,2)
n (t) dt = −

n

n+ 2
Sn−1 + 2

n+ 1

n+ 2
Hn for Hn :=

∫ 1

−1

P (0,1)
n (t) dt. (C.9)

We compute Hn. For n = 0, it holds H0 = 2 while for n ≥ 1 we apply [11, 18.9.5 with
α = β = 0.], i.e.,

(2n + 1)P (0,0)
n = (n+ 1)P (0,1)

n + nP
(0,1)
n−1

to obtain the recursion (using the orthogonality relation for P
(0,0)
n )

Hn := −
n

n + 1
Hn−1.
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Hence, Hn = (−1)n

n+1
H0 = 2 (−1)n

n+1
and the recursion in (C.9) takes the form

Sn = −
n

n + 2
Sn−1 + 4

(−1)n

n+ 2
.

This recursion with S0 = 2 is satisfied for Sn = 2 (−1)n .
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