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Abstract. In this paper, we derive the time-fractional Cahn–Hilliard equation from continuum mixture

theory with a modification of Fick’s law of diffusion. This model describes the process of phase separation
with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of

the time-fractional Cahn–Hilliard equation. In this regard, we consider degenerating mobility functions and
free energies of Landau, Flory–Huggins and double-obstacle type. We apply the Faedo–Galerkin method

to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete

form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional
chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity

analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme

for the time-fractional component, and use a mixed finite element method for the space discretization.

1. Introduction

Phase-field models, such as the Cahn–Hilliard [17] and Allen–Cahn equations [4], have numerous appli-
cations in real world scenarios, e.g., material sciences [22], cell biology [45], and image processing [11, 16].
More recently, phase-field models with nonlocal effects have been considered, which are applied to scenarios
where long-range interactions are of interest, like in the adhesion properties of cells, e.g., see [39]. In general,
nonlocal interactions are expressed by integral operators, i.e., integrodifferential equations are investigated.

Nonlocal effect occur naturally in time-fractional PDEs which have numerous applications due to their
innate memory effect, e.g., in viscoelasticity [6,7,74] and -plasticity [30], in image [8,25] and signal processing
[75], and in the mechanical properties of materials [98]. In particular, the time-fractional Cahn–Hilliard
equation has already been studied by various authors, but the analysis of weak solutions is still open.
Exact solutions have been studied in [51] and numerical simulations were shown and compared to the time-
fractional Allen–Cahn equation, see [3, 61, 71, 82, 107]. In [94], the energy dissipation of the time-fractional
Cahn–Hilliard equation was studied numerically and the power law scaling was investigated in [108]. In
particular, it was shown that the Ginzburg–Landau energy follows a power law E ∼ t−α/3 in which the
power is linearly proportional to the fractional order. In this context, the authors of [15] have shown that
the interface between tumor and host follows a similar interface. This suggests that the time-fractional
Cahn–Hilliard equation is suitable to describe tumor growth processes similar to the integer order case, e.g.,
see [53].

The time-fractional component of the Cahn–Hilliard equation is included in the space-time fractional
Cahn–Hilliard equation, where the Laplace operator is replaced by its fractional counterpart. The exact
solution of these equations have been theoretically investigated in [70].

The Allen–Cahn equation is similar to the Cahn–Hilliard equations in the sense that both are phase-
field equations and describe the process of phase separation; particularly, their applications overlap. The
time-fractional Allen–Cahn equation has been studied in [55, 57, 68], both analytically and numerically.
The authors in [71] remark that the Allen–Cahn equation is more straightforward to study because of its
similarities to the heat equation and the availability of the weak comparison principle. The uniqueness
of the Allen–Cahn equation is also well understood because of its similar structure to the heat equation,
whereas it is open for the Cahn–Hilliard equation with degenerated mobility. This results from the structure
of fourth order, since even simple looking PDEs of fourth order can admit more than one solution, e.g.,
ut = (umuxxx)x, see [35].
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2 TIME-FRACTIONAL CAHN–HILLIARD EQUATION

The time-fractional Cahn–Hilliard and the time-fractional Allen–Cahn equations were compared in [71],
and it was concluded that the time-fractional Cahn–Hilliard equation “is more consistent with practice” than
the Allen–Cahn equation. The consistency results in the volume preservation of the Cahn–Hilliard equation,
which is not present in the Allen–Cahn equation. One can also add a Lagrange multiplier to the Allen–Cahn
equation so that it imitates the Cahn–Hilliard equation in its conservative nature, see [10,88].

We mention that some variants of the Cahn–Hilliard equation with memory effects have been studied
thoroughly, e.g., [26, 41, 42, 86] for modeling via hyperbolic relaxation, [24, 47, 77, 84, 99, 100] with regard to
analysis, and [64,65] with regard to numerical properties.

In Section 2, we derive the time-fractional Cahn–Hilliard equation from continuum mixture theory with
a modified Fick law. In this context, we introduce the Caputo fractional derivative operator. In Section 3,
we shortly mention some analytical preliminaries which we will need in the upcoming sections, e.g., the def-
inition of fractional Sobolev–Bochner spaces, and corresponding compactness results. We prove a fractional
chain inequality for semi-convex functions, which serves as an alternative to the chain rule for integer-order
derivatives. In Section 4, we study the time-fractional Cahn–Hilliard equation. We first investigate the case
of a positive and bounded mobility function m, and the Landau free energy; we show the existence of weak
solutions and a corresponding energy inequality via a Faedo–Galerkin approach for time-fractional PDEs.
Moreover, for m being constant we prove uniqueness and continuous dependence on the data. We derive
higher regularity results. Finally, we investigate the case of degenerated mobilities by approximating the
mobility m with a positive function mδ, deriving uniform δ estimates and passing to the limit δ → 0. In this
regard, we allow potentials of logarithmic and double-obstacle type. In Section 5, we show some numerical
simulation results of the time-fractional Cahn–Hilliard equation in a two- and three-dimensional domain. We
use the Grünwald–Letnikov approximation formula and mixed finite element spaces. We compare different
values of α in the process of block copolymers. Moreover, we study the influence of the parameter α in
subdiffusive tumor growth models.

2. Modeling of the Time-Fractional Cahn–Hilliard Equation

In this section, we derive the Cahn–Hilliard equation from continuum mixture theory. Further, we apply
a modification of Fick’s law of diffusion which results in a time-fractional derivative in the system. Here, we
use the fractional derivatives in the sense of Riemann–Liouville and Caputo.

2.1. Classical theory. Let φ1, φ2 be the concentrations of two components with the relation φ1 + φ2 = 1,
i.e., they describe local portions, e.g., in binary alloys. They have to satisfy the law of conservation of mass
(setting the mass density to % = 1)

∂tφi = −divJi, i ∈ {1, 2},
where Ji denotes the mass flux of the i-th component. In order to guarantee ∂t(φ1 +φ2) = 0, we require the
fluxes to satisfy J1 + J2 = 0. We reduce the equations by setting φ = φ1 − φ2 and J = J1 − J2, yielding

(2.1) ∂tφ = −divJ.

One can assume that the flux J is given by the negative of the gradient of the chemical potential µ, i.e.,
J = −∇µ. Gurtin [52] proposed a mechanical version of the second law of thermodynamics by introducing
a new mass flux with the mobility function m for interactions at a microscopic level given by

(2.2) J = −m(φ)∇µ.

Following [17], the chemical potential is defined as the first variation (Gâteaux derivative) of the Ginzburg–
Landau free energy functional

(2.3) E(φ) =

∫

Ω

Ψ(φ) +
ε2

2
|∇φ|2 dx,

i.e., µ = δE(φ). A simple calculation yields the so-called Cahn–Hilliard equation,

(2.4)
∂tφ = div(m(φ)∇µ),

µ = Ψ′(φ)− ε2∆φ.
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Here, the parameter ε denotes the interface width, and Ψ describes a double-well potential with zeros at −1
and 1, e.g., the Landau potential,

(2.5) Ψ(φ) =
1

4
(1− φ2)2,

but also logarithmic approximations are possible, see [21], such as the Flory–Huggins logarithmic potential
for φ ∈ (−1, 1),

(2.6) Ψ(φ) =
θ

2
((1 + φ) ln(1 + φ) + (1− φ) ln(1− φ)) +

θ0

2
(1− φ2),

where θ, θ0 > θ are given constants. Lastly, we mention potentials of double-obstacle type, which are formally
obtained by setting θ = 0 in the Flory–Huggins potential, giving

Ψ(φ) =

{
θ0
2 (1− φ2), φ ∈ [−1, 1],

∞, else.

Here, the derivative Ψ′(φ) has to be interpreted in the sense of subdifferentials, and the Cahn–Hilliard
equation becomes a system of differential inclusions.

Typically, the mobility function is of the form m(φ) = M |1−φ2|ν for a constant M and some given power
ν ≥ 0. Mostly, the cases ν ∈ {0, 1, 2} are treated in the literature, e.g., see [54, 96]. The case ν = 0 (i.e.
m = M) is well-explored and well-posedness can be shown under sufficient assumptions, e.g., see [97]. In
the case of a degenerate mobility, a proof or counterexample to uniqueness is still an open problem; this is
unsolved for the class of fourth-order degenerate parabolic equations. For the proof of existence, we refer
to [35], and to [27] for weaker assumptions on the degenerating mobility.

ν = 1
ν = 2
ν = 5

Landau
Flory–Huggins
obstacle

Figure 1. Depiction of the functions m(x) = |1 − x2|ν , ν ∈ {1, 2, 5} (left), and the
potentials of Landau, Flory–Huggins, and double obstacle type (right). Here, we have
chosen the parameters θ = 1

40 and θ0 = 1
4 .

2.2. Time-fractional component. The phenomenological law given in (2.2) represents the simplest re-
lation between the flux and the gradient of the chemical potential. One could replace this law by a more
complex phenomenological relationship, which may account for possible nonlocal, nonlinear and memory
effects, without violating the conservation law expressed by the continuity equation.

Long term memory effects are incorporated by introducing convolution or Riemann–Liouville fractional
derivative [29] in the relationship between mass flux and gradient of concentration [48, 81] replacing the
classical Fick’s law [59, 63]; in the relationship between heat flux and the gradient of temperature [23, 80]
replacing the Fourier’s law [34, 63]; and in the relationship between mass flux and the gradient of pressure
[19,56,106] replacing the Darcy’s law. We refer to the recent book [80] for a description of the time-fractional
component in thermoelasticity from a modeling perspective.

The memory effects in phase changes are taken into account by including relaxation in the chemical
potential. The presence of a slowly relaxing structure for kinetics of phase separation was observed in [12]
and a phenomenological theory for relaxing the mass flux J is given by

∼
Jrel = −

∫ t

−∞
k(t− s)m(φ(s))∇δE(φ(s)) ds,
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where E is again the Ginzburg–Landau energy (2.3), and k ∈ L1,loc(R≥0) denotes a positive nondecreasing
relaxation kernel. Choosing 0 instead of −∞ as the starting point, we obtain

Jrel = −
∫ t

0

k(t− s)m(φ(s))∇δE(φ(s)) ds.

We assume that the mass flux J contains only a relaxing flux Jrel.
Notice that we obtain the classical Cahn–Hilliard equation (2.4) for instantaneous memory, i.e., choosing

the relaxation kernel to be of Dirac delta type, i.e., k(t) = δ(t). In the case of a sufficiently well-behaved
kernel of the form k(t) = e−βt, β > 0, one obtains a hyperbolic partial differential equation of the form

∂ttφ+ β∂tφ = div(m(φ)∇µ),

µ = Ψ′(φ)− ε2∆φ,

which is called hyperbolic model for spinodal decomposition, e.g., see [42,43,86]. In the case of a power law

fading kernel of the form k(t) = tα−1

Γ(α) e
−βt with β ≥ 0, α > 0, one obtains both fast and slow relaxation for

α < 1. Here, Γ : (0,∞)→ R, t 7→
∫∞

0
st−1e−s ds denotes Euler’s Gamma function. The fast relaxation near

t = 0+ corresponds to an instantaneous contribution of the concentration history.
In the following, we consider the time nonlocal relation between the mass flux and the gradient of the

concentration in the form

(2.7) Jrel = −∂t
∫ t

0

gα(t− s)m(φ(s))∇δE(φ(s)) ds = −∂t(gα ∗ [m(φ)∇δE(φ)])(t),

where the kernel gα is defined by

gα(t) :=

{
tα−1/Γ(α), α > 0,

δ(t), α = 0,

for t > 0, see also [29,62]. Here, the operator ∗ denotes the convolution on the positive half-line with respect

to the time variable, i.e., (gα ∗ϕ)(t) =
∫ t

0
gα(t− s)ϕ(s) ds for some function ϕ ∈ L1([0, T )). This convolution

is known as the Riemann–Liouville fractional integral and is denoted by Iα, see [29,62].
We introduce the Riemann–Liouville fractional derivative [29] of order α as

Dα
t ϕ(t) = ∂t(g1−α ∗ ϕ)(t),

a.e. on (0, T ), for some function ϕ ∈ L1([0, T )) with g1−α ∗ ϕ ∈ W 1,1(0, T ). In the global case T = ∞, we
refer to [62, Section 2.2]. We use this definition in (2.7) to express the relaxed mass flux in terms of the
fractional derivative

Jrel = D1−α
t (m(φ)∇δE(φ)).

Inserting the relaxed mass flux Jrel (2.7) into the law of conservation of mass (2.1) yields

∂tφ = −divJrel = div(D1−α
t (m(φ)∇µ))

µ = Ψ′(φ)− ε2∆φ.

We equivalently rewrite this system by taking the convolution with g1−α on both sides of the first equation,
which gives the time-fractional Cahn–Hilliard equation in terms of the classical Caputo fractional derivative
[18]

∂αt φ = div(m(φ)∇µ),

µ = Ψ′(φ)− ε2∆φ.

Here we used the semigroup property of the kernel in the following way

(2.8) (g1−α ∗ ∂t(gα ∗ ϕ))(t) = ∂t((g1−α ∗ gα) ∗ ϕ)(t)− g1−α(t)(gα ∗ ϕ)(0) = ∂t(1 ∗ ϕ) = ϕ,

provided ϕ is sufficiently smooth such that (gα ∗ ϕ)(0) = 0; for instant, it holds for ϕ ∈ L∞(0, T ). The
classical/well-known form of the Caputo fractional derivative is defined almost everywhere for an absolutely
continuous function ϕ ∈ AC([0, T )), see [62, Theorem 2.1, Equation 2.4.47], as

∂αt ϕ = g1−α ∗ ∂tϕ(t).
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Remark 1. Note that the Caputo derivative requires a function which is absolutely continuous, i.e., its
α = 1 derivative exists almost everywhere. This definition can be generalized to a larger class of functions
by applying the Riemann–Liouville fractional derivative on ϕ(t)− ϕ0. In fact,

(2.9) ∂αt ϕ = Dα
t (ϕ(t)− ϕ0),

whenever ϕ ∈ L1([0, T )) with g1−α ∗ (ϕ − ϕ0) ∈ W 1,1
0 (0, T ). Here, ϕ0 plays the role of the initial value in

the sense that g1−α ∗ (ϕ − ϕ0)(0) = 0. This definition coincides with the classical definition of the Caputo
derivative if ϕ ∈ AC([0, T )), see [62, Theorem 2.1].

Further, the Riemann–Liouville fractional calculus can be modified by including some singularity at t = 0
so that the group structure holds, see [66, Definition 2.14]. One defines Jαϕ = gα ∗ (Hϕ) and gα(t) :=
(H(t)t)α−1/Γ(α), α ≥ 0, where H is the Heaviside function and the convolution is understood as in [66,
Definition 2.12]. Then one can relax the classical Caputo definition for functions ϕ ∈ L1

loc([0, T )) having

t = 0 as a Lebesgue point from the right and with value ϕ0 at t = 0 (i.e., limt→0+
1
t

∫ t
0
|ϕ(t)−ϕ0|dt = 0), as

(2.10) ∂αt ϕ = J−α ∗ (ϕ− ϕ0),

see [66, Definition 3.4]. Note that ∂αt ϕ is generally a distribution, however if it holds that ϕ ∈ AC([0, T )),
then ∂αt ϕ is the traditional Caputo derivative [66, Proposition 3.6].

Consequently, we state the time-fractional Cahn–Hilliard equation in terms of the Caputo derivative

(2.11)
∂αt φ = div(m(φ)∇µ) + f,

µ = Ψ′(φ)− ε2∆φ,

where we added a source term f to the right hand side. We supplement the system with the initial data
φ(0) = φ0 in some weak sense and the homogeneous Neumann boundary ∇φ ·nΩ = ∇µ ·nΩ = 0, where nΩ is
an outer normal to ∂Ω. We analyze the initial-boundary value problem in a given bounded domain Ω ⊂ Rd
on the time interval (0, T ) in Section 4. Shortly, we write for the time-space cylinder ΩT = (0, T )× Ω.

Remark 2. Instead of relaxing the mass flux J , we could have also relaxed the chemical potential which was
proposed in [86], in the following way

µrel =

∫ t

0

k(t− s)δE(φ(s)) ds = ∂t

∫ t

0

gα(t− s)δE(φ(s)) ds = ∂t(gα ∗ δE(φ))(t) = D1−α
t δE(φ).

Following this relaxation, we obtain the system

(2.12)
∂tφ = div(m(φ)∇µrel) = div(m(φ)D1−α

t ∇µ),

µ = Ψ′(φ)− ε2∆φ.

This system is not equivalent to the time-fractional Cahn–Hilliard equation (2.11) since we cannot interchange
the kernel g1−α with the time-dependent mobility function m. In fact, we can calculate the difference of the
systems via the product rule of fractional derivatives [29], i.e., for two sufficiently smooth functions f1 and
f2,

Dα
t (f1f2) = f1D

α
t f2 +

∞∑

k=1

(
α

k

)
∂kt f1 · (g1−k+α ∗ f2),

which yields in the application on the right hand side of (2.12),

∂tφ = div(m(φ)D1−α
t ∇µ) = D1−α

t div(m(φ)∇µ)− div

∞∑

k=1

(
1− α
k

)
dk

( dt)k
m(φ) · (g2−k−α ∗ ∇µ).

Taking the convolution on both sides with the kernel g1−α yields

∂αt (φ− φ0) = div(m(φ)∇µ)− divg1−α ∗
∞∑

k=1

(
1− α
k

)
dk

( dt)k
m(φ) · (g2−k−α ∗ ∇µ).

Note that the left hand side and the first term on the right hand side correspond to the time-fractional Cahn–
Hilliard equation. Additionally, we have the infinite sum on the right hand side, which is zero in the special
case of a time-independent mobility function. If we assume a mobility of the form m(φ) = Mφ, M > 0, we
achieve

∂αt φ = div(m(φ)∇µ)− (1− α)Mdiv(g1−α ∗ (∂tφ · (g1−α ∗ ∇µ))).
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One observes that a time derivative of φ appears on the right hand side, which makes it the leading term
and changes the structure of the PDE. For nonlinear mobility functions m this change amplifies even more,
resulting in convolutions with ∂kt φ on the right hand side.

3. Analytical Preliminaries

In this section, we shortly introduce the function spaces and analytical techniques, which will be used
frequently in the following sections. We equip the Sobolev and Lebesgue spaces W k,p(Ω) and Lp(Ω) on
Ω with the norms ‖ · ‖Wk,p(Ω) and ‖ · ‖Lp(Ω); their vector-valued variants are denoted by W k,p(Ω)d and

Lp(Ω)d. We write the dual product as 〈f, u〉X for f ∈ X ′ and u ∈ X. We recall the Young convolution, the
Poincaré–Wirtinger and the Sobolev inequalities [13,37,87]

(3.1)

‖f ∗ g‖Lr(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω) for all f ∈ Lp(Ω), g ∈ Lq(Ω),
1

p
+

1

q
= 1 +

1

r
,

‖f − 〈f〉Ω‖Lp(Ω) ≤ C‖∇f‖Lp(Ω) for all f ∈W 1,p(Ω),

‖f‖Lp(Ω) ≤ C‖∇f‖Lp(Ω) for all f ∈W 1,p
0 (Ω),

‖f‖Wm,q(Ω) ≤ C‖f‖Wk,p(Ω) for all f ∈W k,p(Ω), k − d

p
≥ m− d

q
, k ≥ m,

where 〈f〉Ω = 1
|Ω| (f, 1)L2(Ω) denotes the mean of f . For a given Banach space X, we define the Bochner

space of order p ∈ [1,∞), see, e.g., [37],

Lp(0, T ;X) =
{
u : (0, T )→ X : u is strongly measurable, ‖u‖pLp(0,T ;X) =

∫ T
0
‖u(t)‖pX dt <∞

}
.

In the case of p =∞, we equip the space L∞(0, T ;X) with the norm ‖u‖L∞(0,T ;X) = ess supt∈(0,T )‖u(t)‖X .
We define the fractional Sobolev–Bochner space as

Wα,p(0, T ;X) = {u ∈ Lp(0, T ;X) : ∂αt u ∈ Lp(0, T ;X)}.
In the special case of p = 2, we write Hα(0, T ;X). We note that this space is equal to the Bessel potential
space of order α, denoted by Hα

2 (0, T ;X).
In the existence proof later, we need compactness results to pass to the limit in the nonlinear functions

Ψ and m. For a given Gelfand triple of Banach spaces X ↪↪→ Y ↪→ Z, we recall the classical Aubin–Lions
lemma [92],

Lp(0, T ;X) ∩W 1,1(0, T ;Z) ↪↪→ Lp(0, T ;Y ), p ∈ [1,∞).

Analogously, we have in the fractional setting, see [102, Theorem 3.1] and [79],

(3.2)
Lp(0, T ;X) ∩Wα,p(0, T ;Z) ↪↪→ Lp(0, T ;Y ), p ∈ [1,∞),

Lp(0, T ;X) ∩Wα,1(0, T ;Z) ↪↪→ Lr(0, T ;Y ), 1 ≤ r < p.

We note that the product and chain rules for integer order derivatives, which facilitate to obtain key
estimates, are not available for fractional derivatives [95]. The following proposition serves as an alternative
to chain rule in the fractional setting for semiconvex functionals. Here, we call a function f : R → R
semiconvex if it is λ-convex for some λ ∈ R, i.e., the function x 7→ f(x) − λ

2 |x|2 is convex. If λ < 0 holds,

then semiconvexity is a weaker notion than convexity; for λ > 0 it implies convexity. If f ∈ C1(R) holds,
then λ-convexity is equivalent to the condition

(3.3) f(y)− f(x) ≥ f ′(x)(y − x) +
λ

2
(y − x)2 for all x, y ∈ R.

If f ∈ C2(R) holds, then f is λ-convex if and only if

(3.4) f ′′(x) ≥ λ for all x ∈ R.

Proposition 1 (Fractional chain inequality). Let V be a Banach space such that V ↪→ L2(Ω) ↪→ V ′ forms
a Gelfand triple. Let u ∈ Hα(0, T ;V ′) ∩ L∞(0, T ;V ) with u0 ∈ L2(Ω), and E ∈ C1(R) a λ-convex function
with λ ∈ R. If E′(u) ∈ L2(0, T ;V ), then we have for all t ∈ (0, T )

∫ t

0

〈∂αt u,E′(u)〉V − λ〈∂αt u, u〉V ds ≥ g1−α ∗
∫

Ω

E(u)− E(u0) dx− λ

2
g1−α ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
,(3.5a)

gα ∗ 〈∂αt u,E′(u)〉V − λgα ∗ 〈∂αt u, u〉V ≥
∫

Ω

E(u)− E(u0) dx− λ

2

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
.(3.5b)



TIME-FRACTIONAL CAHN–HILLIARD EQUATION 7

Proof. We define the Yosida approximation gk1−α ∈W 1,1(0, T ) of the kernel g1−α as in [101]. One can show
that the operators Biu = ∂αt u, i ∈ {1, 2}, with domains D(B1) = Wα,1(0, T ) and D(B2) = Hα(0, T ;V ′) are
m-accretive in L1(0, T ) and L2(0, T ;V ′), respectively, see [49]. Their Yosida approximations can be defined
by Bki = ∂t(g

k
1−α ∗ u)(t), where gk1−α = ksk. Here, sk solves the Volterra equation

sk(t) + k(gα ∗ sk)(t) = 1.

Then sk ∈ W 1,1(0, T ) is nonnegative and nonincreasing, see [83]. Hence, gk1−α is nonincreasing, i.e.,

(gk1−α)′(t) ≤ 0, a.e., in (0, T ). For k > 0, let hk denote the resolvent kernel associated with kgα, that
is,

hk(t) + k(hk ∗ gα) = kgα(t).

Then it can be shown, see [104], that the following property holds

(3.6) gk1−α = g1−α ∗ hk.
By definition of the approximation, we have Bki u→ Biu for all u ∈ D(Bi). Further, for any u ∈ L1(0, T ),

gα ∗ u ∈ D(B1) and we have hk ∗ u = ∂t(g
k
1−α ∗ gα ∗ u)→ ∂t(g1−α ∗ gα ∗ u) = u in L1(0, T ). In particular, we

have 1 ∈ D(B1), u ∈ D(B2),
∫

Ω
E(u(·, x)) dx ∈ L1(0, T ) and ‖u‖L2(Ω) ∈ L1(0, T ). Thus as k →∞, we have

gk1−α −→ g1−α in L1(0, T ),

∂t(g
k
1−α ∗ (u− u0)) −→ ∂αt u in L2(0, T ;V ′),

hk ∗
∫

Ω

(E(u(·, x))− E(u0)) dx −→
∫

Ω

(E(u(·, x))− E(u0)) dx in L1(0, T ),

hk ∗
(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
−→

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
in L1(0, T ),

gk1−α ∗
∫

Ω

(E(u(·, x))− E(u0)) dx −→ g1−α ∗
∫

Ω

(E(u(·, x))− E(u0)) dx in L1(0, T ),

gk1−α ∗
(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
−→ g1−α ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
in L1(0, T ).

By a standard argument there is a subsequence of gk1−α which gives pointwise convergence a.e. in (0, T ). In
the following, we drop the subsequence index. With the more regular kernel, we have from [50, Lemma 4.1],

particular case of E(x) = x2

2 is given in [105, Lemma 2.1]
∫

Ω

∂t(g
k
1−α ∗ (u− u0))(t)E′(u(t)) dx− λ

∫

Ω

∂t(g
k
1−α ∗ (u− u0))(t)u(t) dx

= ∂t

(
gk1−α ∗

∫

Ω

E(u)− E(u0) dx

)
− λ

2
∂t

(
gk1−α ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

))

+ gk1−α(t)

∫

Ω

E(u0)− E(u(t))− E′(u(t))(u0 − u(t))− λ

2
(u0 − u(t))2 dx

−
∫ t

0

(gk1−α)′(s)

∫

Ω

E(u(t− s))− E(u(t))− E′(u(t))(u(t− s)− u(t))− λ

2
(u(t− s)− u(t))2 dxds,

for every k ∈ N and almost every t ∈ (0, T ). Noting that gk1−α is nonnegative and its derivative is nonin-
creasing, we apply the λ-convexity (3.3) of E on the right hand side yielding

∫

Ω

∂t(g
k
1−α ∗ (u− u0))(t)E′(u(t)) dx− λ

∫

Ω

∂t(g
k
1−α ∗ (u− u0))(t)u(t) dx

≥ ∂t
(
gk1−α ∗

∫

Ω

E(u)− E(u0) dx

)
− λ

2
∂t

(
gk1−α ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

))
.

Taking the integral from 0 to t and the convolution with gα on both sides, using the property (3.6) of the
resolvent kernel hk, it gives the following two inequalities, respectively,

∫ t

0

∫

Ω

∂s(g
k
1−α ∗ (u− u0))(s)E′(u(s)) dxds− λ

∫ t

0

∫

Ω

∂t
(
gk1−α ∗ (u− u0)

)
(s)u(s) dxds

≥
(
gk1−α ∗

∫

Ω

(E(u)− E(u0)) dx

)
(t)− λ

2
gk1−α ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
(t),(3.7a)
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gα ∗
(∫

Ω

∂t(g
k
1−α ∗ (u− u0))E′(u) dx

)
(t)− λgα ∗

(∫

Ω

∂t
(
gk1−α ∗ (u− u0)

)
udx

)
(t)

≥ hk ∗
(∫

Ω

(E(u)− E(u0)) dx

)
(t)− λ

2
hk ∗

(
‖u‖2L2(Ω) − ‖u0‖2L2(Ω)

)
(t).(3.7b)

Finally, taking the limit k →∞ in (3.7) yields by dominated convergence theorem the required inequalities
(3.5). �

Remark 3. A similar result to Proposition 1 was proved for convex functionals in Rd in [60, Corollary 6.1]
and in the distributional sense in [66, Proposition 3.11], by considering higher regularity of u in [67]. The
special case E(·) = 1

2 | · |2 was proved in a Hilbert space setting in [101, Theorem 2.1]. The key point is that

in this special case it holds
∫

Ω
E(u) dx ∈Wα,1(0, T ), see [101, Proposition 2.1].

We will apply the fractional chain inequality in the proof for the existence of solutions in the discrete
Faedo–Galerkin setting and in the continuous setting for the uniqueness. Further, we need a Grönwall–
Bellman type inequality in the proof of the existence of weak solutions to achieve an energy inequality.

Lemma 1 (cf. [103, Corollary 1]). Let u ∈ L1(0, T ;R≥0) and a, b > 0. If u satisfies

u(t) ≤ a+ b(gα ∗ u)(t) a.e. t ∈ (0, T ),

then we have
u(t) ≤ a · C(α, b, T ) a.e. t ∈ (0, T ).

We prove the following corollary of the fractional Grönwall–Bellman inequality, which is more convenient
in the application for the energy estimates in the existence proof.

Corollary 1 (Fractional Grönwall–Bellman inequality). Let u, v ∈ L1(0, T ;R≥0), and a, b > 0. If u and v
satisfy

u(t) + gα ∗ v(t) ≤ a+ b(gα ∗ u)(t) a.e. t ∈ (0, T ),

then we have
u(t) + v(t) ≤ a · C(α, b, T ) a.e. t ∈ (0, T ).

Proof. We define the function w by w(t) = u(t) + (gα ∗ v)(t) for almost all t ∈ (0, T ). Hence, we have by the
non-negativity of the function v and the kernel gα the inequality

w(t) ≤ a+ b(gα ∗ u)(t) ≤ a+ b(gα ∗ w)(t).

Applying Lemma 1 yields the desired result. �

4. Analysis: Time-Fractional Cahn–Hilliard Equation

For notational simplicity, we define the spaces H and V in the Gelfand triple as

V = H1(Ω) ↪↪→ H = L2(Ω) ↪↪→ V ′.

We state and prove the existence of weak solutions via the Faedo–Galerkin and compactness methods in
Theorem 1. Moreover, in the case of a constant mobility we prove uniqueness and continuous dependence on
the data. In both cases, we assume a potential with certain properties which are fulfilled by the semiconvex
Landau potential (2.5) for example. Higher regularity is shown in Theorem 2 in Subsection 4.2. For more
general cases, e.g., the degenerating mobility m(x) = |1− x2|ν , ν > 0, and potentials of double-obstacle and
Flory–Huggins type, we refer to Theorem 3 in Subsection 4.3.

4.1. Positive mobility. First, we consider the case of a positive and bounded mobility, e.g., the continuous
function

m(x) = δ + β1[−1,1]|1− x2|ν , ν ≥ 0,

for δ, β > 0. Here, 1 denotes the characteristic function. For β = 0 it gives the constant mobility. We make
the following assumption regarding the well-posedness theorem below.

Assumption 1.

(A1) Ω ⊂ Rd bounded C1,1-domain with d ≥ 2, T > 0 finite time horizon.

(A2) f ∈ L∞(0, T ;H), and φ0 ∈ V with Ψ(φ0) ∈ L1(Ω).
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(A3) m ∈ C0(R) such that 0 < M0 ≤ m(x) ≤M∞ for all x ∈ R for some constants M0,M∞ <∞.

(A4) Ψ ∈ C1,1(R;R≥0), Ψ(0) = Ψ′(0) = 0, is (−CΨ)-convex and |Ψ′(x)| ≤ CΨ(1 + Ψ(x)) for all x ∈ R for
some CΨ <∞.

We state the existence and uniqueness theorem as follows.

Theorem 1. Let Assumption 1 hold. Then there exists a weak solution (φ, µ) with

φ ∈ Hα(0, T ;V ′) ∩ L∞(0, T ;V ) with g1−α ∗ φ ∈ C0([0, T ];H),

µ ∈ L2(0, T ;V ),

to (2.11) in the sense that g1−α ∗ (φ− φ0)(0) = 0 in H and

(4.1)
〈∂αt φ, ξ〉V + (m(φ)∇µ,∇ξ)H = (f, ξ)H ,

(Ψ′(φ), ζ)H + ε2(∇φ,∇ζ)H = (µ, ζ)H ,

for all ξ, ζ ∈ V . The weak solution satisfies the energy inequality

(4.2)
‖φ‖2L∞(0,T ;V ) + ‖µ‖2L2(0,T ;V ) + ‖

√
m(φ)∇µ‖2L2(0,T ;H) + ‖Ψ(φ)‖L∞(0,T ;L1(Ω))

≤ C(T ) ·
(
‖φ0‖2V + ‖Ψ(φ0)‖L1(Ω) + ‖f‖2L2(ΩT )

)
.

Moreover, if α > 1
2 , then φ(0) = φ0 in H and φ ∈ C([0, T ];H). If the mobility m is constant, then the

solution is unique and depends continuously on the data φ0 and f .

Proof. We employ the Faedo–Galerkin method [69] to reduce the system to fractional ordinary differential
equations, which admit a solution (φk, µk) due to a well-studied theory [29]. We derive energy estimates,
which imply the existence of weakly convergent subsequences by the Eberlein–Šmulian theorem. We pass to
the limit k → ∞ and apply compactness methods to return to the time-fractional Cahn–Hilliard equation.
Recently, the Faedo–Galerkin method has been applied to various time-fractional PDEs, see, e.g., [32,38,67].

Discrete approximation. Let {hk}k∈N be the eigenfunctions of the Neumann–Laplace operator with corre-
sponding eigenvalues {λk}k∈N. The eigenfunctions form an orthonormal basis in H and an orthogonal basis
in V with (hi, hj)V = λjδij , see [37]. We pursue a function (φk, µk) that takes its values in Hk = {h1, . . . , hk},
i.e., is of the form

(4.3) φk(t) =

k∑

j=1

φkj (t)hj , µk(t) =

k∑

j=1

µkj (t)hj ,

with coefficient functions φkj , µ
k
j : (0, T )→ R, j ∈ {1, . . . , k}, that solve the Faedo–Galerkin system

(4.4)
(∂αt φ

k, u)H + (m(φk)∇µk,∇u)H = (f, u)H ,

(Ψ′(φk), v)H + ε2(∇φk,∇v)H = (µk, v)H ,

for all u, v ∈ Hk. We equip the system with the initial data φk(0) = Πkφ0, where Πk : H → Hk, h 7→∑k
i=1(h, hj)Hhj , denotes the orthogonal projection onto Hk. In particular, we exploit its key properties

‖Πk‖L(H) ≤ 1, ‖Πk‖L(V ) ≤ 1 and

(4.5) φk(0) = Πkφ0 −→ φ0 in V as k →∞,

e.g., see [85, Lemma 7.5]. Additionally, for an element g ∈ V ′, we have 〈Πkg, v〉V = 〈g,Πkv〉V for all v ∈ V .
Since the test functions u, v ∈ Hk are spanned by the eigenfunctions hj , j ∈ {1, . . . , k}, we can equivalently

write the Faedo–Galerkin system as

(∂αt φ
k, hj)H + (m(φk)∇µk,∇hj)H = (f, hj)H ,(4.6a)

(Ψ′(φk), hj)H + ε2(∇φk,∇hj)H = (µk, hj)H ,(4.6b)
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for all j ∈ {1, . . . , k}. Inserting the ansatz functions (4.3) into this system and exploiting the orthonormality
of the eigenfunctions in H and their orthogonality in V , it yields

(4.7)
∂αt φ

k
j = −λjµkj

k∑

i=1

(
m
(∑k

j=1 φ
k
j (t)hj

)
∇hi,∇hj

)
H

+ (f, hj)H ,

µkj =
(
Ψ′
(∑k

j=1 φ
k
j (t)hj

)
, hj
)
H

+ ε2λjφ
k
j ,

for all j ∈ {1, . . . , k}, and the initial data φkj (0) = (φ0, hj)H . Note that the right hand side depends

continuously on φk1 , . . . , φ
k
k. By the theory of fractional ODEs, e.g., see [38, Theorem A.1], and using the fact

that f ∈ L∞(0, T ;H), there exists a solution (φkj , µ
k
j ) to the fractional ODE on a time interval [0, Tk) with

either Tk =∞ or Tk <∞ and lim supt→Tk |(φk1 , . . . , φkk)|`2 =∞. Therefore, we have shown the existence of
a solution tuple

(φk, µk) ∈ Hα(0, Tk;Hk) ∩ L∞(0, T ;Hk)× L2(0, Tk;Hk),

to the Faedo–Galerkin system (4.6).

Energy estimates. After we have proven the existence of a solution to the ODE, we can begin to test the
Faedo–Galerkin system (4.4) with suitable test functions. First, we take the test functions u = µk + CΨφ

k

and v = −∂αt φk in (4.4), which yields

(∂αt φ
k, µk + φk)H = −(m(φk)∇µk,∇µk +∇φk)H + (f, µk + φk)H ,

−(µk, ∂αt φ
k)H = −(Ψ′(φk), ∂αt φ

k)H − ε2(∇φk,∇∂αt φk)H .

Adding the two equations above cancels the term (∂αt φ
k, µk)H , and we have

(4.8)
CΨ(∂αt φ

k, φk)H + ε2(∇φk, ∂αt ∇φk)H + (Ψ′(φk), ∂αt φ
k)H + (m(φk), |∇µk|2)H

= (f, µk + CΨφ
k)H + CΨ(m(φk)∇µk,∇φk).

Testing with v = 1 in (4.6) yields (µk, 1)H = (Ψ′(φk), 1)H and consequently, we have by the Poincaré–
Wirtinger inequality (3.1)

‖µk‖H ≤
∥∥µk − |Ω|−1(µk, 1)H

∥∥
H

+ |Ω|−1‖(µk, 1)H‖H ≤ C‖∇µk‖H + |Ω|−1/2‖Ψ′(φk)‖L1(Ω),

and due to assumption (A4) we can bound the derivative of the potential giving

(4.9) ‖µk‖H ≤ C
(
1 + ‖∇µk‖H + ‖Ψ(φk)‖L1(Ω)

)
.

We use the lower bound of m, see (A3), insert (4.9) on the right hand side in (4.8) and use the ε-Young
inequality to make the prefactors of ‖∇µk‖H sufficiently small in order to absorb them by the terms on the
left hand side of the inequality. This procedure gives the estimate

(4.10)
CΨ(∂αt φ

k, φk)H + ε2(∇φk, ∂αt ∇φk)H + (Ψ′(φk), ∂αt φ
k)H +

M0

2
‖∇µk‖2H

≤ C
(
‖f‖H + ‖φk‖H + ‖∇φk‖H + ‖Ψ(φk)‖L1(Ω)

)
.

Convolving on both sides by gα, and applying the fractional chain inequality (3.5b) on the convex functional
∇φk 7→ 1

2 |∇φk|2 and the λ-convex functional φk 7→ Ψ(φk) with λ = −CΨ, gives

CΨ

2
‖φk(t)‖2H +

ε2

2
‖∇φk(t)‖2H + ‖Ψ(φk(t))‖L1(Ω) +

M0

2

(
gα ∗ ‖∇µk‖2H

)
(t)

≤ C
(

1 +
(
gα ∗ ‖f‖2H

)
(t) +

(
gα ∗ ‖Ψ(φk)‖L1(Ω)

)
(t) +

(
gα ∗ ‖φ‖2V

)
(t) + ‖Ψ(φk(0))‖L1(Ω) + ‖φk(0)‖2V

)
.

According to the fractional Grönwall–Bellman inequality, see Corollary 1, we infer

(4.11) ‖φk(t)‖2V + ‖Ψ(φk(t))‖L1(Ω) ≤ C(T ) ·
(
‖f‖2L∞(0,T ;H) + ‖Ψ(φ0)‖L1(Ω) + ‖φ0‖2V

)
,

for almost all t ∈ (0, Tk), where we used φk(0) = Πkφ0 and the boundedness of the operator norm of the
orthogonal projection. Next we take the integral from 0 to t < Tk in (4.10), apply the fractional chain
inequality (3.5a) on the similar functionals as before to get

(4.12) ‖∇µk‖2L2(0,t;H) ≤ C(T ) ·
(
‖f‖2L2(ΩT ) + ‖Ψ(φ0)‖L1(Ω) + ‖φ0‖2V

)
.
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Combining (4.9), (4.11) and (4.12) yields the energy estimate

‖φk‖2L∞(0,Tk;V ) + ‖Ψ(φk)‖L∞(0,Tk;L1(Ω)) + ‖µk‖2L2(0,Tk;V )

≤ C(T ) ·
(
‖f‖2L∞(0,T ;H) + ‖Ψ(φ0)‖L1(Ω) + ‖φ0‖2V

)
.

We complete this energy estimate by testing with u = φk in (4.4) and argue by the boundedness of m,

see (A3), to achieve a bound of the term
∥∥√m(φk)∇µk

∥∥
L2(0,Tk;H)

. This gives the energy bound

(4.13)
‖φk‖2L∞(0,Tk;V ) + ‖Ψ(φk)‖L∞(0,Tk;L1(Ω)) + ‖µk‖2L2(0,Tk;V ) +

∥∥√m(φk)∇µk
∥∥2

L2(0,Tk;H)

≤ C(T ) ·
(
‖f‖2L∞(0,T ;H) + ‖Ψ(φ0)‖L1(Ω) + ‖φ0‖2V

)
.

Since the right hand side is independent of k, we can argue with a blow-up criterion and extend the time
interval by setting Tk = T for all k.

Estimate on the fractional time-derivative. The energy estimate (4.13) already gives the existence of con-
verging subsequences. Since the Faedo–Galerkin system (4.6) involves the nonlinear functions Ψ and m, we
need to derive an estimate on the time-fractional derivative of φ in order to apply the compactness result
(3.2) and achieve strong convergence.

Let u ∈ L2(0, T ;V ). Then we have Πku =
∑k
j=1 u

k
jhj for time-dependent coefficient functions ukj :

(0, T )→ R, j ∈ {1, . . . , k}. We multiply equation (4.6a) by ukj , take the sum from j = 1 to k, and integrate
over the interval (0, T ), which yields

∣∣∣∣∣

∫ T

0

(∂αt φ
k, u)H dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

(∂αt φ
k,Πku)H dt

∣∣∣∣∣
≤M∞‖∇µk‖L2(0,T ;H)‖∇Πku‖L2(0,T ;H) + ‖f‖L2(ΩT )‖Πku‖L2(0,T ;V )

≤ C(T, f, φ0)‖u‖L2(0,T ;V ),

where we used the energy estimate (4.13) to bound the terms on the right hand side. Since u was chosen
arbitrarily, we have

(4.14) ‖∂αt φk‖L2(0,T ;V ′) = sup
‖u‖L2(0,T ;V )≤1

∣∣∣
∫ T

0

(∂αt φ
k, u)H dt

∣∣∣ ≤ C(T, f, φ0).

Limit process. We note that the Eberlein–Šmulian theorem infers that a bounded sequence in a reflexive
Banach space [28] has a weakly/weakly-∗ convergent subsequence. By a standard abuse of notation, we drop
the subsequence index. Hence from the energy estimate (4.13) and (4.14), we obtain the existence of limit
functions φ and µ such that

φk −⇀ φ weakly-∗ in L∞(0, T ;V ),

∂αt φ
k −⇀ ∂αt φ weakly in L2(0, T ;V ′),

φk −→ φ strongly in Lp(0, T ;H),

µk −⇀ µ weakly in L2(0, T ;V ),

for all p ∈ [1,∞) as k →∞, where we applied the compact embedding (3.2) to achieve the strong convergence
of φk. Moreover, the weak limit of ∂αt φ

k is equal to ∂αt φ, see [67, Proposition 3.5].
In a next step, we prove that the limit functions φ and µ satisfy the weak form of the time-fractional Cahn–

Hilliard equation (4.1). By multiplying the Faedo–Galerkin system (4.6) by a test function η ∈ C∞c (0, T )
and integrating over the time interval (0, T ), which find

(4.15)

∫ T

0

(∂αt φ
k, hj)Hη(t) dt+

∫ T

0

(m(φk)∇µk,∇hj)Hη(t) dt =

∫ T

0

(f, hj)Hη(t) dt,

∫ T

0

(Ψ′(φk), hj)Hη(t) dt+ ε2

∫ T

0

(∇φk,∇hj)Hη(t) dt =

∫ T

0

(µk, hj)Hη(t) dt,
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for all j ∈ {1, . . . , k}. We take the limit k → ∞ in these two equations. The linear terms follow directly
from the weak/weak-∗ convergences, e.g., the functional

φk 7→ ε2

∫ T

0

(∇φk,∇hj)Hη(t) dt

is linear and continuous on L∞(0, T ;V ), since we have
∣∣∣∣∣ε

2

∫ T

0

(∇φk,∇hj)Hη(t) dt

∣∣∣∣∣ ≤ ε
2‖∇φk‖L∞(0,T ;V )‖hj‖V ‖η‖L1(0,T ).

The weak-∗ convergence gives by definition as k →∞

ε2

∫ T

0

(∇φk,∇hj)Hη(t) dt −→ ε2

∫ T

0

(∇φ,∇hj)Hη(t) dt.

It remains to treat the integrals involving the nonlinear functions m and Ψ′. Since m and Ψ′ are continuous
functions, see (A3), we have by the strong convergence φk → φ in L2(ΩT ) also m(φk)→ m(φ) a.e. in ΩT . By
the boundedness of m, we infer from the Lebesgue dominated convergence theorem m(φk)∇hjη → m(φ)∇hjη
in L2(ΩT )d. By the weak convergence of ∇µk, we conclude as k →∞

m(φk)η∇hj · ∇µk −→ m(φ)η∇hj · ∇µ in L1(ΩT ).

The continuity of Ψ′ gives then Ψ′(φk) → Ψ′(φ) a.e. in ΩT . Further, from the assumption (A4) on the
potential function Ψ, we infer the bound

‖Ψ′(φk(t))η(t)hj‖L1(Ω) ≤ C‖η‖L∞(0,T ) · ‖hj‖H2(Ω)

(
1 + ‖Ψ(φk(t))‖L1(Ω)

)
,

for almost every t ∈ (0, T ), and the right hand side is bounded by the energy estimate (4.13). Consequently,
the Lebesgue dominated convergence theorem gives for k →∞

∫ T

0

(Ψ′(φk), hj)Hη(t) dt −→
∫ T

0

(Ψ′(φ), hj)Hη(t) dt.

After having taking care of the nonlinear functions, we are ready to take the limit k →∞ in the equations
(4.15) and use the density of Hk in V , which yields

(4.16)

∫ T

0

〈∂αt φ, h〉V η(t) dt+

∫ T

0

(m(φ)∇µ,∇h)Hη(t) dt =

∫ T

0

(f, h)Hη(t) dt,

∫ T

0

(Ψ(φ), h)Hη(t) dt+

∫ T

0

ε2(∇φ,∇h)Hη(t) dt =

∫ T

0

(µ, h)Hη(t) dt,

for all h ∈ V and η ∈ C∞c (0, T ). Applying the fundamental lemma of calculus of variations, we infer that
(φ, µ) is a weak solution of the time-fractional Cahn–Hilliard equation, i.e., satisfies the weak form (4.1).

Initial condition. From the estimate (4.14) we have ∂αt φ
k ∈ L2(0, T ;V ′), and by the definition of the frac-

tional derivative this gives g1−α ∗ (φk − φk(0)) ∈ H1(0, T ;V ′). By the continuous embedding L2(0, T ;V ) ∩
H1(0, T ;V ′) ↪→ C0([0, T ];H) we have g1−α ∗ (φk − φk(0)) ∈ C0(0, T ;H). Now we repeat the steps from the
limit process, but we test with η ∈ C∞c ([0, T )), i.e., η has compact support on the set [0, T ) and does not
necessarily vanish at t = 0. This gives after integration by parts

(4.17)

−
∫ T

0

(φk − φk(0), h)H
∼
∂αt η(t) dt+

∫ T

0

(m(φk)∇µk,∇h)Hη(t) dt

= (g1−α ∗ (φk − φk(0))(0), hj)Hη(0) +

∫ T

0

(f, h)Hη(t) dt,

for all j ∈ {1, . . . , k}. Here,
∼
∂αt denotes the right Caputo derivative, see [67, Definition 2.6]. The only

difference to before is the term with gα ∗ (φk − φk(0))(0) on the right hand side. We have
∣∣(g1−α ∗ (φk − φk(0))(0), hj)Hη(0)

∣∣ ≤ ‖φk − φk(0)‖L∞(0,T ;H)‖hj‖H‖η‖L∞(0,T )g2−α(0) = 0

for all k. Now, taking k →∞ in (4.17) and repeating the steps from above, yields in a comparison with the
weak form of the solution (φ, µ) after integration with η ∈ C∞c ([0, T ))

(gα ∗ (φ− φ0)(0), h)Hη(0) = 0,
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for all h ∈ H and η ∈ C∞c ([0, T )). Choosing a test function with η(0) = 1 yields the required result.

Energy inequality. We prove that the solution tuple (φ, µ) satisfies the energy inequality (4.2). First, we note
that norms are weakly/weakly-∗ lower semicontinuous, e.g., we have µk ⇀ µ in L2(0, T ;V ) and therefore,
we infer

‖µ‖L2(0,T ;V ) ≤ lim inf
k→∞

‖µk‖L2(0;T ;V ).

We apply the Fatou lemma on the continuous and non-negative function Ψ to obtain∫

Ω

Ψ(φ) dx ≤ lim inf
k→∞

∫

Ω

Ψ(φk) dx.

Consequently, passing to the limit k →∞ in the discrete energy inequality (4.13) leads to (4.2).

Uniqueness. We assume the case of a constant mobility m = M > 0. Consider two weak solution pairs
(φ1, µ1) and (φ2, µ2), and we denote their differences by φ = φ1 − φ2 and µ = µ1 − µ2. Each pair fulfills the
weak form, and we find for (φ, µ)

〈∂αt φ, u〉V +M(∇µ,∇u)H = 0,

(Ψ′(φ1)−Ψ′(φ2), v)H + ε2(∇φ,∇v)H = (µ, v)H .

for test functions u, v ∈ V . Taking u = (−∆)−1φ and v = Mφ, yields

〈∂αt φ, (−∆)−1φ〉V +M(∇µ,∇(−∆)−1φ)H = 0,

M(Ψ′(φ1)−Ψ′(φ2), φ)H +Mε2(∇φ,∇φ)H = M(µ, φ)H .

Exploiting the property (∇µ,∇(−∆)−1φ)H = (µ, φ)H of the Neumann–Laplace operator, gives after adding
the equations and canceling,

(4.18) 〈∂αt φ, (−∆)−1φ〉V +Mε2‖∇φ‖2H = M(Ψ′(φ2)−Ψ′(φ1), φ)H .

It can be seen that [((−∆)−1·, ·)H ]1/2 is a norm on H0 = {u ∈ H :
∫

Ω
udx = 0}. Moreover, we note that

the domain of the operator ∇(−∆)−1 is equal to the dual space of the domain of ∇, which is in fact equal
to V ′0 for V0 = {u ∈ V :

∫
Ω
udx = 0}. Therefore, the graph norm ‖∇(−∆)−1 · ‖H is equivalent to the usual

norm of V0. We set ‖ · ‖V ′0 = ‖∇(−∆)−1 · ‖H and note that
∫

Ω
φdx = 0 by taking the test function u = 1

and using the fractional chain inequality (3.5a).

(4.19) 〈∂αt φ, (−∆)−1φ〉V = 〈−∆(−∆)−1∂αt φ, (−∆)−1φ〉V = 〈∂αt ∇(−∆)−1φ,∇(−∆)−1φ〉V .
Using the (−CΨ)-convexity of Ψ, see (3.4), we have by the mean value theorem

(Ψ′(φ1)−Ψ′(φ2), φ)H ≥ −CΨ‖φ‖2H ,
and consequently, we obtain by the ε-Young inequality

(Ψ′(φ2)−Ψ′(φ1), φ)H ≤ CΨ‖φ‖2H = CΨ(∇(−∆)−1φ,∇φ)H ≤
ε2

2
‖∇φ‖2H +

C2
Ψ

2ε2
‖∇(−∆)−1φ‖2H .

Therefore, applying this estimate and (4.19) to (4.18) yields

〈∂αt ∇(−∆)−1φ,∇(−∆)−1φ〉V +
Mε2

2
‖∇φ‖2H ≤

MC2
Ψ

2ε2
‖φ‖2V ′0 ,

and convolving with gα, using fractional chain inequality (3.5b) and applying the fractional Grönwall–
Bellmann inequality, see Corollary 1, gives

(4.20)
1

2
‖φ(t)‖2V ′0 +

Mε2

2
gα ∗ ‖∇φ‖2H ≤ C(T ) · ‖φ0‖2V ′0 = 0,

hence φ1 = φ2 in the sense ‖(φ1 − φ2)(t)‖V ′0 = 0 for a.e. t ∈ [0, T ], and consequently µ1 = µ2.

Continuous dependence. The proof follows analogously to the procedure of uniqueness, deriving (4.20) with
two initial conditions φ1,0 and φ2,0 and data f1, f2, resulting in the inequality

1

2
‖φ1(t)− φ2(t)‖2V ′0 +

Mε2

2
gα ∗ ‖∇(φ1 − φ2)‖2H ≤ C(T ) ·

(
‖φ1,0 − φ2,0‖2V ′0 + ‖f1 − f2‖L2(ΩT )

)
. �

Remark 4. We cannot guarantee continuity-in-time of the solution due to the low regularity in the case of
small α. The embedding Hα(0, T ;X) ↪→ C([0, T ];X) holds for α > 1

2 , [89, Theorem 2.2.4/1].
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4.2. Higher spatial regularity. We adapt the proofs on the higher regularity of the Cahn–Hilliard equa-
tion, see, e.g., [46], to the time-fractional case.

Theorem 2. Let the assumption of Theorem 1 hold. Then there exists a weak solution (φ, µ) to the time-
fractional Cahn–Hilliard equation in the sense

∂αt φ = div(m(φ)∇µ) + f in L2(0, T ;V ′),

µ = Ψ′(φ)− ε2∆φ a.e. in ΩT ,

with the additional regularity φ ∈ L2(0, T ;H2(Ω)). Moreover, the energy inequality can be extended to

(4.21) ‖
√
m(φ)∇µ‖2L2(ΩT ) + ‖φ‖2L∞(0,T ;V ) + ‖φ‖2L2(0,T ;H2(Ω)) ≤ C(T, f, φ0).

Additionally, if Ψ ∈ C2(R) satisfies the growth estimate

(4.22) |Ψ′′(x)| ≤ C(1 + |x|r) for all x ∈ R where

{
r = 2

d−2 , d > 2,

r ≥ 2, d = 2,

for some constant C <∞, then it holds Ψ′(φ) ∈ L2(0, T ;V ) and φ ∈ L2(0, T ;H3(Ω)).

Proof. In the proof of Theorem 1, we have in the Faedo–Galerkin setting φk(t) ∈ Hk ⊂ H2(Ω). We take the
test function ∆φk(t) ∈ Hk in the equation for µk, which gives

ε2‖∆φk‖2H = (∇µk,∇φk)H − (Ψ′′(φk), |∇φk|2)H .

Using the additional assumption Ψ ∈ C2(R) it holds by the semiconvexity Ψ′′(x) ≥ −CΨ for all x ∈ R, and
thus, we arrive after integrating from 0 to T at

ε2‖∆φk‖2L2(ΩT ) ≤ ‖∇µk‖L2(ΩT )‖∇φk‖L2(ΩT ) + CΨ‖∇φk‖2L2(ΩT ) ≤ C(T, φ0).

Since (‖ · ‖2H + ‖∆ · ‖2H)2 is an equivalent norm on H2(Ω), see [97, III.Lemma 4.2], it yields the uniform
boundedness of φk in L2(0, T ;H2(Ω)) and consequently, by the reflexivity of the Hilbert space it holds for
the limit φ ∈ L2(0, T ;H2(Ω)).

Inserting µk = ΠkΨ′(φk)− ε2∆φk into the equation of φk and considering the Galerkin system

(∂αt φ
k, u)H + (m(φk)∇ΠkΨ′(φk),∇u)H − (m(φk)∇∆φk,∇u)H = (f, u)H ,

for all u ∈ Hk, and taking the test function u = −∆φk, we get

(∂αt ∇φk,∇φk)H +M0‖∇∆φk‖2H ≤ ‖f‖H‖∆φk‖H +M∞‖∇Ψ′(φk)‖H‖∇∆φk‖H

≤ C(T, φ0, f) + C‖∇Ψ′(φk)‖2H +
M0

2
‖∇∆φk‖2H .

By assumption (4.22) it holds the growth estimate |Ψ′′(x)| ≤ C(1 + |x|r) for r = 2
d−2 for all x ∈ R in the

case of d > 2 (for d = 2 choose any exponent r ≥ 2 and use the embedding V ↪→ Lr(Ω)). Therefore, we
apply the Hölder and Sobolev inequalities (3.1) to obtain the bound

‖∇Ψ′(φk)‖H = ‖Ψ′′(φk)∇φk‖H ≤ ‖Ψ′′(φk)‖Ld(Ω)‖∇φk‖L2d/(d−2)(Ω) ≤ C‖1 + φk‖2/(d−2)
V ‖∇φk‖V .

Taking the square on both sides and integrating over the interval [0, T ], it yields

‖∇Ψ′(φk)‖L2(0,T ;H) ≤ C‖1 + φk‖4/(d−2)
L∞(0,T ;V )‖φk‖L2(0,T ;H2(Ω)) ≤ C(T, φ0),

and thus, it follows from typical estimates ∇∆φk ∈ L2(ΩT ) and elliptic regularity theory [2] gives φ ∈
L2(0, T ;H3(Ω)). �

Remark 5. We can derive a formal estimate on the Ginzburg–Landau energy E, see (2.3), in the case of the
constant mobility m = M and zero force f = 0 by taking the test functions u = 1

M (−∆)−1∂tφ and v = ∂tφ,
which gives

d

dt
(Ψ(φ), 1)H +

ε2

2

d

dt
‖∇φ‖2H +

1

M
(∂αt φ, (−∆)−1∂tφ)H + (∇µ,∇(−∆)−1∂tφ)H = (µ, ∂tφ)H .

Note that the Ginzburg–Landau energy is given by E(φ) = ε2

2 ‖∇φ‖2H + (Ψ(φ), 1)H and thus, we have

d

dt
E(φ) = − 1

M
(∂αt φ, (−∆)−1∂tφ)H = − 1

M
(∂αt ∇(−∆)−1φ,∇(−∆)−1∂tφ)H .
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After integrating on (0, t), we apply the inequality [76, Lemma 3.1] on the term on the right hand side to
achieve

E(φ(t))− E(φ0) ≤ −cos((1− α)π/2)

M
‖∂α/2t φ‖2L2(0,T ;V ′0 ) ≤ 0,

and therefore, one can bound the energy at time t by the initial energy. This property is also called weak
energy stability in the topic of numerical schemes. Note that the energy dissipation of gradient flows of
fractional order is an open problem, e.g., see the discussion in [94].

4.3. Degenerating mobility. We employ the same technique as in [1, 27, 35, 91], and approximate and
extend the mobility function m ∈ W 1,∞(−1, 1) with m(x) > 0 for all x ∈ (−1, 1) and m(±1) = 0 by a
strictly positive function mδ in the following way:

mδ(x) =





m(δ − 1), if x ≤ δ − 1,

m(x), if |x| ≤ 1− δ,
m(1− δ), if x ≥ 1− δ,

where δ ∈ (0, 1). We extend m by zero outside of [−1, 1] and denote the extension by m ∈ W 1,∞(R). Note
that m′δ = m′ on [−1 + δ, 1− δ]. The approximation mδ is positive and admits regularity in W 1,∞(R) with
the upper and lower bounds (for δ sufficiently small)

0 < min{m(−1 + δ),m(1− δ)} ≤ mδ(x) ≤ max
y∈[−1,1]

m(y) ∀x ∈ R.

Further, we consider the potential Ψ : (−1, 1) → R≥0 and assume the splitting Ψ = Ψ1 + Ψ2 with
Ψ1 ∈ C2(−1, 1) convex and Ψ2 ∈ C2([−1, 1]) being (−CΨ)-convex. We define its regularization Ψδ : R→ R
as Ψδ = Ψ1,δ + Ψ2 where Ψ1,δ ∈ C2(R) is the unique function with Ψ1,δ(0) = Ψ1(0), Ψ′1,δ(0) = Ψ′1(0), and

(Ψ1,δ)
′′(x) =





(Ψ1)′′(δ − 1), if x ≤ δ − 1,

(Ψ1)′′(x), if |x| ≤ 1− δ,
(Ψ1)′′(1− δ), if x ≥ 1− δ.

In particular, Ψ1,δ is convex on R since Ψ1 itself is assumed to be convex on (−1, 1). Moreover, we introduce

the extension Ψ2 ∈ C2(R) of Ψ2 to the reals by setting

Ψ2(x) =





Ψ2(−1) + Ψ′2(−1)(x+ 1) + 1
2Ψ′′2(−1)(x+ 1)2, if x < −1,

Ψ2(x), if |x| ≤ 1,

Ψ2(1) + Ψ′2(1)(x− 1) + 1
2Ψ′′2(1)(x− 1)2, if x > 1.

It holds ‖Ψ′′2‖C(R) ≤ ‖Ψ′′2‖C([−1,1]) ≤ C and Ψ′′δ (x) ≥ −CΨ for all x ∈ R. By definition we have Ψδ = Ψ and
mδ = m on the interval [−1 + δ, 1− δ] for δ ∈ (0, 1), see also Figure 2 for a depiction of the approximations.

−1 1

m
m0.1
m0.2

−1 1

Ψ′′

Ψ′′0.1
Ψ′′0.2

Figure 2. Depiction of the functions m for m(x) = (1 − x2)2 and the second derivative
of the Flory–Huggins potential, see (2.6), and their approximations mδ (left) and Ψ′′δ for
δ ∈ {0.1, 0.2} (right).
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We consider the auxiliary problem

(4.23)
∂αt φδ = div(mδ(φδ)∇µδ),
µδ = Ψ′δ(φδ)− ε2∆φδ,

with initial data φδ,0 = φ0 ∈ (−1, 1) a.e. in Ω, which has a weak solution (φδ, µδ) according to Theorem 1
and Theorem 2, i.e., it satisfies

(4.24)
〈∂αt φδ, ξ〉V = −(mδ(φδ)∇µδ,∇ξ)H ,

(µδ, ζ)H = (Ψ′δ(φδ), ζ)H − ε2(∆φδ, ζ)H ,

for all ξ ∈ V and ζ ∈ H. Indeed, the mobility mδ is positive, continuous and bounded, and the potential
Ψδ = Ψ1,δ + Ψ2 is (−CΨ)-convex as discussed before and fulfills the required growth estimates due to the

definitions of Ψ1,δ and Ψ2. Redoing the estimates from Theorem 1, see (4.2), we have the δ-uniform energy
estimate

(4.25)
‖∂αt φδ‖2L2(0,T ;V ′) + ‖φδ‖2L∞(0,T ;V ) + ‖

√
mδ(φδ)∇µδ‖2L2(ΩT ) + ‖Ψδ(φδ)‖L∞(0,T ;L1(Ω))

≤ C(T )
(
‖φ0‖V + ‖Ψ(φ0)‖L1(Ω)

)
,

where we used that Ψδ(φ0) = Ψ(φ0) a.e. on Ω for δ sufficiently small, see the discussion in Remark 6 below.
We multiply the variational form by a smooth test function η ∈ C∞c (0, T ) and exploit the density of the

tensor space C∞c (0, T ) ⊗ V in L2(0, T ;V ) (and analogously for H) to formulate the weak form in terms of
time-dependent test functions, i.e.,

∫ T

0

〈∂αt φδ, ξ〉V dt = −
∫ T

0

(mδ(φδ)∇µδ,∇ξ)H dt,(4.26a)

∫ T

0

(µδ, ζ)H dt =

∫ T

0

(Ψ′δ(φδ), ζ)H − ε2(∆φδ, ζ)H dt,(4.26b)

for all ξ ∈ L2(0, T ;V ) and ζ ∈ L2(ΩT ). We derive δ-uniform estimates and pass to the limit δ → 0.
We make the following assumptions for the following proofs.

Assumption 2.

(B1) Ω ⊂ Rd bounded C1,1-domain with d ≥ 2, T > 0 finite time horizon.

(B2) f ∈ L2(ΩT ), and φ0 ∈ V with Ψ(φ0) ∈ L1(Ω), Φ(φ0) ∈ L1(Ω) (see Lemma 2), and |φ0(x)| ≤ 1 for
a.e. x ∈ Ω.

(B3) Ψ = Ψ1 + Ψ2 with Ψ1 ∈ C2(−1, 1) convex and Ψ2 ∈ C2([−1, 1]) being (−CΨ)-convex for some
CΨ <∞.

(B4) m ∈W 1,∞(−1, 1) such that m(x) > 0 for all x ∈ (−1, 1), m(±1) = 0, and mΨ′′ ∈ C0([−1, 1]).

Remark 6. We make the following remarks regarding Assumption 2.

• We assume in (B4) a mobility, which degenerates at ±1. For the general case of degeneracy at points
a, b ∈ R, one has to shift the interval [−1, 1] by an operator A : [−1, 1]→ [a, b], see [1]. We assume
that the mobility compensates an eventual blow-up of Ψ′′ at ±1 by assuming mΨ′′ ∈ C0([−1, 1]) in
(B4). E.g., the Flory–Huggins potential (2.6) has the second derivative Ψ′′(x) = θ/(1− x2)− θ0 for
x ∈ (−1, 1) and therefore, degenerates at x = ±1. Then with the typical mobility m(x) = (1− x2)ν ,
ν ≥ 1, x ∈ [−1, 1], we have indeed mΨ′′ ∈ C0([−1, 1]). For the double-obstacle potential one chooses
Ψ1 = 0 and Ψ2(x) = 1 − x2, since Ψ1 does not have to be defined on the boundary ±1 in the
assumption (B3) of Theorem 3.

• We remark that we assume |φ0(x)| ≤ 1 a.e. in Ω in (B2) instead of excluding the values ±1 to
guarantee Ψδ(φ0) = Ψ(φ0) for δ sufficiently small. We use the same argument as in [1]. The
assumption |φ0(x)| ≤ 1 a.e. implies 1

|Ω|
∫

Ω
φ0 dx ∈ [−1, 1]. In the case of 1

|Ω|
∫

Ω
φ0 dx = ±1 it holds

φ0 = ±1 a.e. in Ω, which readily gives the existence of a weak solution (φ, J) = (±1, 0). Therefore,
in the proof we solely consider the case |φ0| < 1 almost everywhere.

We formulate and prove two lemmata, which will be needed in the proof of existence theorem in case of
a degenerating mobility. First, we will derive an estimate on the so-called entropy function Φ. Second, we
will prove a key inequality which will allow us to achieve the result φ(t, x) ∈ [−1, 1] for a.e. (t, x) ∈ ΩT .
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Lemma 2. Let Assumption 2 hold. Further, let Φ : (−1, 1)→ R>0 be the unique function, which is given by
Φ′′(x) = 1/m(x), Φ′(0) = Φ(0) = 0. Further, its approximation Φδ : R→ R>0 is defined by Φ′′δ (x) = 1/mδ(x)
and Φ′δ(0) = Φδ(0) = 0. Then the following δ-uniform bound holds

(4.27) ‖Φδ(φδ)‖L∞(0,T ;L1(Ω)) + ‖∆φδ‖2L2(ΩT ) +
(
Ψ′′δ (φδ), |∇φδ|2

)
L2(ΩT )

≤ C(T, φ0).

Proof. After integrating by parts in the weak formulation (4.24), we have

(4.28) 〈∂αt φδ, ξ〉V = (µδ,div(mδ(φδ)∇ξ))H = (−ε2∆φδ + Ψ′δ(φδ),div(mδ(φδ)∇ξ))H ,
for all ξ ∈ V . Since it holds Φ′′δ ∈ L∞(R) by the boundedness of mδ, we have Φ′δ ∈ C0,1(R) and Φ′δ(φδ) ∈
L2(0, T ;V ). Moreover, Φδ is a convex and non-negative functional due to Φ′′δ (x) > 0 for all x ∈ R, and we
can write

Φδ(x) =

∫ x

0

∫ y

0

1

mδ(z)
dzdy.

Using the chain rule, we have

∇Φ′δ(φδ) = Φ′′δ (φδ)∇φδ =
∇φδ
mδ(φδ)

∈ H,

and thus, ξ = Φ′δ(φδ) ∈ V is a valid test function in (4.24); we obtain after integration by parts

〈∂αt φδ,Φ′δ(φδ)〉V =
(
− ε2∆φδ + Ψ′δ(φδ),div(mδ(φδ)∇Φ′δ(φδ))

)
H

= −ε2‖∆φδ‖2H − (∇Ψ′δ(φδ),∇φδ)H
= −ε2‖∆φδ‖2H − (Ψ′′δ (φδ), |∇φδ|2)H .

We take the convolution with the kernel gα on both sides which yields
(
gα ∗ 〈∂αt φδ,Φ′δ(φδ)〉V

)
(t) = −ε2

(
gα ∗ ‖∆φδ‖2H

)
(t)−

(
gα ∗ (Ψ′′δ (φδ), |∇φδ|2)H

)
(t).

Applying the convolved fractional chain inequality (3.5b), we have

(
gα ∗ 〈∂αt φδ,Φ′δ(φδ)〉V

)
(t) ≥

∫

Ω

Φ(φδ(t)) dx−
∫

Ω

Φδ(φ0) dx,

and thus,

‖Φδ(φδ)‖L1(Ω) + ε2gα ∗ ‖∆φδ‖2H + gα ∗
(
Ψ′′δ (φδ), |∇φδ|2

)
H
≤ ‖Φδ(φ0)‖L1(Ω).

We note the property Φδ(φ0) ≤ Φ(φ0) a.e. due to mδ(φ0) ≥ m(φ0) a.e., which gives the desired δ-uniform
bound. �

Lemma 3. Let Assumption 2 hold. Then it yields ‖(|φδ| − 1)+‖L∞(0,T ;H) ≤ C
√
δ where x+ = max{0, x}.

Proof. Using straightforward computations, we derive for all x > 1 and δ ∈ (0, 1) the following lower estimate

Φδ(x) = Φδ(1− δ) + Φ′δ(1− δ)(x− (1− δ)) +
1

2
Φ′′δ (1− δ)(x− (1− δ))2

≥ 1

2
Φ′′δ (1− δ)(x− 1 + δ)2 =

(x− 1 + δ)2

2mδ(1− δ)
≥ (x− 1)2

2mδ(1− δ)
,

and analogously, it holds Φδ(x) ≥ (x+1)2

2mδ(δ−1) for x < −1. Combining these two results gives

(4.29) (|x| − 1)2
+ ≤ 2Φδ(x) max{mδ(1− δ),mδ(δ − 1)},

for all x ∈ R. But we have mδ(1− δ) = m(1− δ) and m(1) = 0, which implies by the mean value theorem

|mδ(1− δ)| = |m(1− δ)−m(1)| ≤ δ‖m′‖L∞(−1,1),

and analogously, it holds |mδ(δ − 1)| ≤ δ‖m′‖L∞(−1,1). Hence, using (4.29) we have
∫

Ω

(|φδ| − 1)2
+ dx ≤ 2δ‖m′‖L∞(−1,1)

∫

Ω

Φδ(φδ) dx,

a.e. in (0,T) and it yields the desired result after applying the bound of Lemma 2. �

Having proved the two lemmata, we are now ready to state and prove the existence theorem in the case of
a degenerate mobility.
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Theorem 3. Let Assumption 2 hold. Then there exists a weak solution (φ, J) with

φ ∈ Hα(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) with |φ| ≤ 1 a.e. in ΩT ,

J ∈ L2(ΩT )d,

to (2.11) in the sense that

〈∂αt φ, ξ〉L2(0,T ;V ) = (J,∇ξ)L2(ΩT ),(4.30a)

(J, ϕ)L2(ΩT ) = −(Ψ′(φ)− ε2∆φ, div(m(φ)ϕ))L2(ΩT ),(4.30b)

for all ξ ∈ L2(0, T ;V ), ϕ ∈ L2(0, T ;V d) ∩ L∞(ΩT )d with ϕ · nΩ = 0 on ∂Ω× (0, T ).

We note that Theorem 3 is not stating the existence of a tuple (φ, µ) but instead (φ, J). This is due to the
low regularity of µ in the degenerate case. In the weak form with the mass flux J the terms are well-defined.

Proof. We consider a weak solution (φδ, µδ) to (4.23) which exists by Theorem 1 and fulfills the δ-uniform

energy inequality (4.25). Hence, there are functions (φ, J,
∼
J) such that

φδ −⇀ φ weakly-∗ in L∞(0, T ;V ),

∂αt φδ −⇀ ∂αt φ weakly in L2(0, T ;V ′),

φδ −→ φ strongly in L2(ΩT ),
∼
Jδ = −

√
mδ(φδ)∇µδ −⇀

∼
J weakly in L2(ΩT )d,

Jδ = −mδ(φδ)∇µδ −⇀ J weakly in L2(ΩT )d,

as δ → 0. Here, we used the estimate

‖Jδ‖2L2(ΩT ) = ‖
√
mδ(φδ)

∼
Jδ‖2L2(ΩT ) ≤ ‖mδ‖L∞(R)‖

∼
Jδ‖2L2(ΩT ) ≤ C(T, φ0).

Due to the higher spatial regularity, see Theorem 2 and the improved energy inequality (4.27), we have

(4.31)
φδ −⇀ φ weakly in L2(0, T ;H2(Ω)),

φδ −→ φ strongly in L2(0, T ;V ),

where we employed the compact embedding

Hα(0, T ;V ′) ∩ L2(0, T ;H2(Ω)) ↪↪→ L2(0, T ;V ).

for the Gelfand triple H2(Ω) ↪↪→ V ↪→ V ′. Moreover, using lower semicontinuity and passing to the limit
δ → 0 in

∫
Ω

(|φδ| − 1)2
+ dx ≤ Cδ, see Lemma 3, gives |φ(t, x)| ≤ 1 for a.e. (t, x) ∈ ΩT .

We take the limit δ → 0 in the weak form (4.26) of the solution (φδ, µδ) and use the weak and strong
convergences resulting in ∫ T

0

〈∂αt φ, ξ〉V dt =

∫ T

0

(J,∇ξ)H dt,

∫ T

0

(µ, ζ)H dt =

∫ T

0

(Ψ′(φ)− ε2∆φ, ζ)H dt,

for all ξ ∈ L2(0, T ;V ) and ζ ∈ L2(ΩT ). It remains to show that

J = −m(φ)div(Ψ′(φ)− ε2∆φ),

in the sense of the weak form (4.30b).
We take the test function ζ = div(mδ(φδ)ϕ) in (4.26b) for any ϕ ∈ L2(0, T ;V d)∩L∞(ΩT )d with ϕ ·nΩ = 0

on ∂Ω× (0, T ). Indeed, the test function is well defined due to

‖div(mδ(φδ)ϕ)‖L2(ΩT ) ≤ ‖m′δ(φδ)∇φδ · ϕ‖L2(ΩT ) + ‖mδ(φδ)divϕ‖L2(ΩT )

≤ ‖m′δ‖L∞(R)‖∇φδ‖L2(ΩT )‖ϕ‖L∞(ΩT ) + ‖mδ‖L∞(R)‖ϕ‖L2(0,T ;V ).

Then we have after integration by parts

(4.32) −
∫ T

0

(∇µδ,mδ(φδ)ϕ)H dt =

∫ T

0

(µδ,div(mδ(φδ)ϕ))H dt =

∫ T

0

(Ψ′δ(φδ)− ε2∆φδ,div(mδ(φδ)ϕ))H dt.
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The left hand side of this equation is equal to
∫ T

0
(Jδ, ϕ)H dt and converges to

∫ T
0

(J, ϕ)H dt for all ϕ as δ → 0
due to the weak convergence of Jδ. Hence, we also take the limit δ → 0 in the right hand side in order to
match the weak form of J , i.e., we have to show

∫ T

0

(Ψ′δ(φδ)− ε2∆φδ,div(mδ(φδ)ϕ))H dt −→
∫ T

0

(Ψ′(φ)− ε2∆φ, div(m(φ)ϕ))H dt,

as δ → 0. To do so, we rewrite the term on the left hand side as

(4.33)

∫

ΩT

Ψ′1,δ(φδ)div(mδ(φδ)ϕ) + Ψ′2(φδ)div(mδ(φδ)ϕ)− ε2∆φδdiv(mδ(φδ)ϕ) d(t,x),

and take the limit δ → 0 in each of the three terms.
We begin with the second and third term. We split them once more by employing the weak product rule

on div(mδ(φδ)ϕ). We have proven φδ → φ a.e. in ΩT and mδ → m uniformly as δ → 0 since

|mδ(x)−m(x)| ≤ max{m(1− δ),m(δ − 1)} −→ 0,

for all x ∈ R as δ → 0; note that m(φ) = m(φ) due to |φ| ≤ 1. Moreover, Ψ′2(φδ) → Ψ′2(φ) a.e. by the
continuity of Ψ′2, ∆φδ ⇀ ∆φ weakly in L2(ΩT ) by (4.31) and thus, we conclude by the Lebesgue dominated
convergence theorem

∫

ΩT

Ψ′2(φδ)mδ(φδ)divϕd(t,x) −→
∫

ΩT

Ψ′2(φ)m(φ)divϕd(t,x),

∫

ΩT

∆φδmδ(φδ)divϕd(t,x) −→
∫

ΩT

∆φm(φ)divϕd(t,x).

Next, we treat the other parts of the product formula, i.e., we have to pass to the limit in the terms
involving m′δ(φδ)∇φδ. Since m′δ → mδ uniformly as δ → 0, we have by the dominated convergence theorem
m′δ(φδ)∇φδ → m′(φ)∇φ in L2(ΩT )d due to the strong convergence of ∇φδ. Thus, we have as δ → 0

∫

ΩT

Ψ′2(φδ)m
′
δ(φδ)∇φδ · ϕd(t,x) −→

∫

ΩT

Ψ′2(φ)m′(φ)∇φ · ϕd(t,x),

∫

ΩT

∆φδm
′
δ(φδ)∇φδ · ϕd(t,x) −→

∫

ΩT

∆φm′(φ)∇φ · ϕd(t,x).

At this point, we only miss the first term of (4.33). We have after integration by parts
∫

ΩT

Ψ′′1,δ(φδ)mδ(φδ)∇φδ · ϕd(t,x).

The term mδΨ
′′
1,δ is uniformly bounded, and it holds ∇φδ → ∇φ a.e. in ΩT according to (4.31). Therefore,

we have to show

mδ(φδ)Ψ
′′
1,δ(φδ) −→ m(φ)Ψ′′1(φ) a.e. in ΩT ,

and we proceed as in [35, p.416f]. If it holds |φ| < 1 a.e. in ΩT , then the result follows from mδ(φ) = m(φ)
and Ψ1,δ(φ) = Ψ1(φ). Hence, we consider the case φδ → φ = 1 a.e. in ΩT . If it holds φδ ≥ 1 − δ, then it
gives

mδ(φδ)Ψ
′′
1,δ(φδ) = m(1− δ)Ψ′′1(1− δ) −→ m(1)Ψ′′1(1) = m(φ)Ψ′′1(φ),

and finally, in the other case of φδ ≤ 1− δ, it yields

mδ(φδ)Ψ
′′
1,δ(φδ) = m(φδ)Ψ

′′
1(φδ) −→ m(φ)Ψ′′1(φ),

which completes the proof. �

Remark 7. The key challenge in obtaining the results for the fractional version is the absence of a chain
rule inequality for semiconvex functionals with low regular functions.

For Hilbert-valued functions, the fractional chain inequality in [101, Proposition 2.1] for the special case
E(·) = 1

2 | · |2 can be extended to semiconvex functionals having some extra terms. Unfortunately, this result
requires a regularity assumption on the composition E(u). Using composition theorems of fractional order,
see [89, Theorem 5.3.4/1], this assumption is satisfied for example if u ∈ Hα(0, T ;L1(Ω)) ∩ L∞(0, T ;V ).
Since the Faedo–Galerkin solution is of high enough regularity, this result would suffice in the discrete setting
to get a lower bound for 〈∂αt φk,Ψ′(φk)〉V .
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Unfortunately in the continuous limit, we do not have that; we had to estimate the term 〈∂αt φδ,Φ′δ(φδ)〉V
in Lemma 2 for the degenerate case. Here, we only have φδ ∈ Hα(0, T ;V ′) in contrast to φk ∈ Hα(0, T ;Hk)
in the discrete setting. Thus, we need to follow a different path. We are able to apply our new convolved
version of the fractional chain inequality for these low regular functions, see (3.5b) in Proposition 1. The
δ-uniform estimate on ‖Φδ(φδ)‖L∞(0,T ;L1(Ω)) of Lemma 2 is a key result to derive the bound |φ| ≤ 1 a.e. in
ΩT which was then used throughout the proof of Theorem 3.

5. Applications and numerical simulations

In our simulations, the time discretization is performed using a first order quadrature scheme. We show
simulations of the Cahn–Hilliard equation applied to tumor growth and block copolymers.

5.1. Time and space discretization schemes. Let tn = nT/N , n ∈ {0, 1, . . . , N}, be a subdivision of
[0, T ] in N intervals of size ∆t = T/N . We apply a convolution quadrature scheme to approximate the
fractional time derivative of Caputo type by

(5.1) ∂αt φ ≈
1

(∆t)α

N∑

j=0

bj(φn−j − φ0),

where φn−j is the approximation to φ(tn−j), e.g., see [31,72,73]. We observe in (5.1) the memory effect in form
of the history from the previous time steps φn−j . We apply the Grünwald–Letnikov approximation [29, 33]
to compute the quadrature weights (bj)j≥1 by the recursive formula

(5.2) b0 = 1, bj = −α− j + 1

j
bj−1 for j ≥ 1.

Moreover, we use the classical energy splitting method for the potential Ψ = Ψ1 + Ψ2, which provides
unconditional stability in the case of α = 1, e.g., see [36]. That means we treat the expansive part Ψ1

explicitly and the contractive part Ψ2 implicitly. Applying the scheme (5.1)–(5.2) to the time-fractional
Cahn–Hilliard equation (2.11) and denoting by (φn, µn) ≈ (φ(tn), µ(tn)) the approximate solution tuple at
time tn, n ∈ {1, . . . , N}, we have

∑n
j=0 bj(φn−j − φ0)

(∆t)α
= div(m(φn)∇µn) + f(5.3a)

µn = Ψ′1(φn−1) + Ψ′2(φn)− ε2∆φn.(5.3b)

We use mixed Q1-Q1 linear finite elements for the space discretizaton. Namely, at the n-th time step, we
look at the problem

(5.4)

b0(φn − φ0, ξ)H
(∆t)α

+ (m(φn)∇µn,∇ξ)H =(f, ξ)H −
∑n−1
j=1 bj(φn−j − φ0)

(∆t)α
,

(µn, ζ)H − ε2(∇φn,∇ζ)H − (Ψ′2(φn), ζ)H =(Ψ′1(φn−1), ζ)H ,

for test function ξ, ζ. Hence, we are interested in a nonlinear, coupled algebraic system with the unknown
tuple (φn, µn). At each time step we solve this system with the Newton method. The procedure in this section
has been implemented in FEniCS [5] to obtain the numerical results shown in the next two subsections.

5.2. Application in the self-assembly of block copolymers. Lithography is a technology for fabricating
nansoscale electronic devices. One uses directed self-assembly of block copolymers for the manufacturing,
see [9]. Block copolymers are composed of chemically-dissimilar polymer chains with covalently linked
monomers. The immisicibility of the polymers blends results in a phase separation on a mesoscopic scale,
i.e., the length scale is around 5–20 nanometers. This is described by a modification of the Ginzburg–Landau
energy functional, also called Ohta–Kawasaki energy [78],

∫

Ω

Ψ(φ) +
ε2

2
|∇φ|2 +

κ

2
|(−∆)−1/2(φ−m)|2 dx,
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where ∆−1/2 is the fractional inverse Laplacian of order 1
2 , m =

∫
Ω
φ dx the mass of φ, and κ a parameter

for the nonlocal long-range interactions. Here, φ describes the difference of the volume fractions for the two
copolymers. Note that the Gâteuax derivative of the new part of the energy is given by

d

dθ

∣∣∣∣
θ=0

∫

Ω

κ

2
|(−∆)−1/2(φ+ θv −m)|2 dx =

∫

Ω

κ((−∆)−1/2(φ−m))(−∆)−1/2v dx = −
∫

Ω

κ(−∆)−1(φ−m)v dx,

and consequently, the system reads

∂αt φ = div(m(φ)∇µ),

µ = Ψ′(φ)− ε2∆φ− κν,
−∆ν = φ−m.

Note that this system is volume-conserving because integrating with the test function ξ = 1 gives
∫

Ω
∂αt φ dx =

0 and thus, after applying the inverse kernel with a convolution and taking the time derivative, it yields∫
Ω
φ(t, x) dx =

∫
Ω
φ(0, x) dx. Thus, the nonlocal mass m is given by the constant value

∫
Ω
φ0 dx. If one

assumes a constant mobility function m(φ) = M , it gives the simplified system

(5.5)
∂αt φ = M∆µ−Mκ(φ−m),

µ = Ψ′(φ)− ε2∆φ.

We apply the time and space discretizations to (5.5) as described in Subsection 5.1, and treat the linear
source term implicitly. Let Ω = (0, 1)3 be the three-dimensional space domain, which we equip with a uniform
hexahedral mesh with mesh size h = 2−7. Further, we consider the time domain [0, 0.2] with ∆t = 10−4. As
initial data we take

(5.6) φ0(x) = 0.4 +
cos(2πx1) cos(2πx2) cos(2πx3)

100
,

see Figure 3 for a visualization on Ω and on two intersecting planes inside the box domain. In the following
simulations, we set the parameters to κ = 100, ε = 5 · 10−4, and M = 1. Further, we select the double-well
potential Ψ(φ) = 1

2 (1− φ2)2 with zeros at ±1.

0.39 0.4 0.41

Figure 3. Visualization of the initial condition φ0 as given in (5.6) in the box [0, 1]3 (left)
and on the two planes (right) with the normals (1, 0, 0) and (0, 1, 0), respectively.
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In Figure 4, we show the evolution of the field φ for two different values of α; we take α ∈ {0.1, 0.75}.
Again, we depict the field on the two intersecting planes.

First, we notice a difference in the speed of the evolution of φ. For the larger value α = 0.7, the field
at t = 0.05 is already close to its state at the later time point t = 0.2, whereas for α = 0.1 it is still in its
evolution at t = 0.05. This behavior is in accordance to the observations in [20,57,94]. Even though smaller
α values have a faster initial evolution, it takes more time to reach the equilibrium state of the system.

At t = 0.2, we observe for both values of α that φ mostly attains the values of −1 and 1, and in between
it admits a smooth transition zone. Further, we notice that the solutions of the two α values are different at
t = 0.2. Consequently, we can conclude that the fractional power α has a large influence on the asymptotic
behavior of the solution.

t = 0.015 t = 0.035 t = 0.05 t = 0.2

α
=

0.
1

α
=

0.
75

−1 0 1

Figure 4. Evolution of block copolymers for α ∈ {0.1, 0.75} (top, bottom) at the time
spots t ∈ {0.015, 0.035, 0.05, 0.2} (from left to right), again visualization on the intersecting
planes with normals (1, 0, 0) and (0, 1, 0), respectively.

5.3. Application in subdiffusive tumor growth. In this subsection, we investigate the time-fractional
Cahn–Hilliard equation in an application to subdiffusive tumor growth. First, we motivate the model from
mathematical modeling and afterwards, we treat the system numerically. In this regard, we do a sensitivity
analysis on the model parameters including the fractional exponent α.

5.3.1. Modeling. It was shown in [108] that the free energy functional E and the interface roughness W of
the time-fractional Cahn–Hilliard equation follows a power law, whose power is proportional to the fractional
order of the partial differential equation. In particular,

E(φ(t)) ∝ tβ(α), W (φ(t)) =

√
1

|Ω|

∫

Ω

(φ−m)
2

dx ∝ tR(α).

It was reported in [58] that the roughness of the peripheral border of tumor increased when subjected to
haptotaxis or chemotaxis stimuli from the extracellular matrix or nutrients. This was shown by calculating
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border fractal dimension of clinical tumor using medical images which served as a measure for calculating
the roughness of the interface. Further it was shown in [14,15] that the fluctuations of the interface between
a tumor and its host follows a power law behavior.

This suggests that the time-fractional Cahn–Hilliard equation is suitable for describing the process of
tumor growth and decline, as done similarly for the integer order case, e.g., see [39, 40]. Let φ denote the
tumor volume concentration, i.e., if a tumor cell is located at x ∈ Ω, we have φ(x) = 1 and otherwise,
φ(x) = −1. In between a smooth interface marks the transition from zero to one. Moreover, σ describes
the nutrient-rich extracellular water, which provides the tumor cells with sufficient nutrients to grow. The
Ginzburg–Landau energy with chemotaxis is given by

∫

Ω

Ψ(φ) +
ε2

2
|∇φ|2 − χφσ dx,

where χ is the parameter of chemotaxis, i.e., the adhesion of tumor cells and nutrients.
We propose the following tumor growth model:

(5.7)

∂αt φ = div(m(φ)∇µ) + λφ(1− φ)σ − δφ,
µ = Ψ′(φ)− ε2∆φ− χσ,

∂tσ = D∆σ −Dχ∆φ− λφ(1− φ)σ + δφ.

In this model, λ is a proliferation factor of the tumor cells due to available nutrients, δ an degradation factor
describing apoptosis, i.e., natural cell death, and D the diffusion parameter of the nutrients. The existence
of weak solutions for linearized source terms can be investigated similar to Section 4; for the integer-order
case we refer to [44].

5.3.2. Numerical simulation and sensitivity analysis. In this section, we investigate the sensitivity of α on
the tumor mass. We apply the time and space discretizations as described in Section 5. Let Ω = (0, 1) be the
one-dimensional space domain, which we equip with a uniform mesh with mesh size h = 5 · 10−3. Further,
we consider the time domain [0, 2] with ∆t = 10−3.

We select the mobility function m(φ) = M(1− φ2)2 and the Landau potential Ψ(φ) = CΨ(1− φ2)2. We
assume an initial nutrient concentration of φσ = 1, and we place the initial tumor in the interval ( 2

5 ,
3
5 ), i.e.,

we set φ = 1 in the interval and −1 otherwise. We take a smooth interface to guarantee the H1(Ω)-regularity
of the initial data for the existence result of Theorem 3. E.g., one can choose the initial condition

φ0(x) = −1 + 2 · 1( 2
5 ,

3
5

) exp

(
1− 1

1− 100|x− 1
2 |2
)
.

The relative effects of model parameters in determining key quantities of interest, such as the evolution
of tumor mass over time, are very important in the development of predictive models of tumor growth.
Accordingly, in this section we address the question of sensitivity of solutions to variations in the model
parameters

θ = (α,M, λ, δ, CΨ, ε, χ,D) ∈ R8,

and we provide a sensitivity analysis using the variance-based method, developed by [93], and described in
detail in the book [90]. The variance-based method takes uncertainties from the input factors into account,
showing the dependency of the variance of the output on the uncertainties.

As the quantity of interest in the sensitivity analysis, we choose the volume of the tumor mass at different
times t ∈ T , i.e., the dim(T )-dimensional vector Q(θ) = [

∫
Ω
φ(t, x) dx]t∈T , and we choose the following

uniformly distributed priors,

α ∼ U(0.001, 1), M ∼ U(0.1, 1), λ ∼ U(0.1, 1), δ ∼ U(0.001, 0.01),

CΨ ∼ U(0.025, 2.5), ε ∼ U(0.01, 0.1), χ ∼ U(0.01, 0.5), D ∼ U(0.1, 1).

In the variance-based method the symbol Si represents the sensitivity of the i-th parameter (also called:
Sobol sensitivity index) and it is calculated by the formula, e.g., see [90],

Si =
V(E(Q(θ)|θi))

V(Q(θ))
,

where V denotes the variation and E(Q(θ)|θi) is the expected value of the output Q(θ) when parameter θi
is fixed. Mathematically, the i-th sensitivity index Si reflects the expected reduction in the variance of the
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model when the i-th parameter θi is fixed. We use the Monte Carlo method to approximate the sensitivity
indices. One generates two matrices A,B ∈ RN×k, N being the number of samples and k being the number
of parameters (here: k = 8), where each row of each matrix represents one set of values from the vector of
parameters sampled from the priors. Further, one generates k matrices Ci, where the i-th column comes
from matrix B and all other from matrix A. The output for all the sample matrices are computed, i.e., Q(A),
Q(B), Q(Ci) ∈ RN , where each line of the vectors represents the quantity of interest with the parameter
of the respective row of the matrix. Lastly, one approximates the sensitivity of the i-th parameter via the
formula, see [90],

Si =
Q(A) ·Q(Ci)− 1

N

(∑N
n=1Q(A)(n)

)2

Q(A) ·Q(B)− 1
N

(∑N
n=1Q(A)(n)

)2 .

These indices are always between 0 and 1. High values of Si indicate a sensitive parameter, and low values,
for additive models, indicate a less-sensitive parameter.

The result of the variance-based method applied to (5.7) with the given priors, N = 100, and the mass
as the QoI is given in Figure 5. We see that α and λ are the dominant parameters in the influence to the
tumor mass. Since we chose the mass as the QoI, we could have expected that the proliferation parameter
λ will be highly sensitive. The fractional parameter α might be more surprising. Therefore, we depict the
tumor mass for different values of α in Figure 5. We see that small α-values have an instantaneous effect
and a subdiffusive behavior can be observed. In the case of integer-order α = 1, we notice an almost linear
mass growth.
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Figure 5. Left: Evolution of the tumor mass for different values of α. Right: Sensitivities
Si.
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