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ON CIRCULANT AND SKEW-CIRCULANT SPLITTING ALGORITHMS FOR

(CONTINUOUS) SYLVESTER EQUATIONS ∗

ZHONGYUN LIU† , FANG ZHANG∗, CARLA FERREIRA‡ , AND YULIN ZHANG‡

Abstract. We present a circulant and skew-circulant splitting (CSCS) iterative method for solving large sparse continuous

Sylvester equations AX + XB = C, where the coefficient matrices A and B are Toeplitz matrices. A theoretical study shows

that if the circulant and skew-circulant splitting factors of A and B are positive semi-definite and at least one is positive

definite (not necessarily Hermitian), then the CSCS method converges to the unique solution of the Sylvester equation. In

addition, we obtain an upper bound for the convergence factor of the CSCS iteration. This convergence factor depends only on

the eigenvalues of the circulant and skew-circulant splitting matrices. A computational comparison with alternative methods

reveals the efficiency and reliability of the proposed method.
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1. Introduction. A continuous Sylvester equation is possibly one of the most popular linear matrix

equations used in mathematics. It is a matrix equation of the form

AX +XB = C, (1.1)

where matrices A ∈ Cn×n, B ∈ Cm×m, C ∈ Cn×m are given and the problem is to find a matrix X ∈ Cn×m

that obeys this equation. It is well-known that equation (1.1) has a unique solution for X if and only if A

and −B do not have common eigenvalues (see, e.g., [23, 28]).

The Sylvester equation is classically employed in the design of Luenberger observers, which are widely

used in signal processing, control and system theory (see, e.g., [8, 10, 16, 20, 27]); often appears in linear and

generalized eigenvalue problems for the Riccati equation in the computation of invariant subspaces (see, e.g.,

[6, 17, 38]); can be used to devise implicit Runge-Kutta integral formulae and block multi-step formulae for

the numerical solutions of ordinary differential equations (see, e.g., [19]); and some linear systems arising, for

example, from finite difference discretizations of separable elliptic boundary value problems on rectangular

domains, can be written as a Sylvester equation (see, e.g., [14, 18]).

There are essentially two different approaches to deal with the Sylvester equation (1.1). The first

approach consists in vectorizing the unknown matrix X and translating the matrix equation into a linear

system A x = c, where vectors x and c are the column-stacking vectors of the matricesX and C, respectively,

and A is the Kronecker sum of the matrices A and BT , that is, A = Im ⊗ A + BT ⊗ In, with symbol ⊗
denoting the standard Kronecker product. Either direct or iterative methods can be applied to solve this

linear system. The second approach is to treat the Sylvester equation (1.1) in its original form using an

iterative method directely applied to matrices A, B and C.

When matrices A and B are large, the order of the coefficient matrix A ∈ Cmn×mn in the linear system
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A x = c will be considerably larger and, in general, difficulties related to data storage and computational

time arise. This explains that the first approach is mainly used in problems of small or medium dimension.

The Bartels-Stewart method proposed in [7] is based on the reduction of the matrices A and B to real

Schur form (quasi-triangular form) using the QR algorithm for eigenvalues, followed by the use of direct

methods to solve several linear systems. The Hessenberg-Schur method, presented in [21], reduces matrix A

to Hessenberg form and only matrix B is decomposed into the quasi-triangular Shur form ant it is faster then

the Bartels-Stewart method. However, in both methods, the authors were unable to establish a backward

stability result. These methods are classsified as direct methods and are used by Matlab.

When matrices A and B are large and sparse, following the second approach, iterative methods such

as the Smith’s method [37], the alternating direction implicit method (ADI) [9, 12, 24, 31, 40], the block

successive over-relaxation method (BSOR) [35] and the matrix splitting methods [1, 22] are efficient and

accurate methods to obtain a numerical solution of the equation (1.1). The development of the mentioned

iterative methods based on the concept of matrix splitting has attracted several scholars and a large number

of efficient and robust algorithms were proposed. See [2, 29, 30, 41, 44] and references therein.

In this paper, we consider the case when A and B are both Toeplitz matrices. Matrices with this structure

appear, for example, in connection to the discretization of the convection-diffusion reaction equation [14, 18].

We present an iterative method for solving the Sylvester equation (1.1) using the circulant and skew-circulant

splittings of the matrices A and B. This circulant and skew-circulant splitting (CSCS) iteration method is

a matrix variant of the CSCS iteration method firstly proposed in [33] for solving a Toeplitz linear system.

These type of methods are conceptually analogous to the ADI iteration methods. Via this CSCS iteration

method, the problem of solving a general continuous Sylvester equation is translated into two coupled

continuous Sylvester equations involving shifted circulant and skew-circulant matrices.

When the circulant and skew-circulant splitting matrices of A and B are positive definite (not necessarily

Hermitian), we prove that the CSCS iteration converges unconditionally to the exact solution of the Sylvester

equation (1.1). Moreover, the values of the shift parameters that minimize an upper bound for the contraction

factor are obtained in terms of the bounds for the largest and the smallest eigenvalues of the circulant and

skew-circulant splitting matrices of A and B.

The organization of this paper is as follows. After giving some basic definitions and preliminary results

in section 2, we describe the CSCS iterative method for solving equation (1.1) in section 3. We then analyze

some sufficient conditions that ensure the convergence of this method in section 4. Numerical experiments

are shown in section 5. These examples illustrate the efficiency and robustness of our method.

2. Basic definitions and preliminary results. Given a matrixK ∈ C
n×m, K∗ denotes the conjugate

transpose of K, the (i, j) element of K is denoted by Ki,j and ρ(K) stands for the spectral radius of K. The

set of all the eigenvalues of K is represented by λ(K). If x ∈ C, Re(x) denotes the real part of x and Im(x)

the imaginary part.

Here we use the general concept of positive definiteness which says that a matrix K ∈ Cn×n is positive

definite if its Hermitian part 1
2 (K+K∗) is positive definite in the narrower sense. In general, this condition is

equivalent to Re(z∗Kz) > 0, for all nonzero vectors z ∈ C, which implies that Re(λ) > 0, for any eigenvalue

λ of K.

A square matrix T is said to be Toeplitz (or diagonal-constant) when Tj,k = tj−k, j, k = 1, . . . , n, for

constants t1−n, . . . , tn−1. An important property of a Toeplitz matrix T is that it always admits the additive

decomposition

T = CT + ST , (2.1)

where CT is a circulant matrix and ST is a skew-circulant matrix. See [33, 34]. We say that a matrix C is
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a circulant matrix if Cj,k = cj−k, for constants c1−n, . . . , cn−1 such that c−l = cn−l, l = 1, . . . , n − 1. That

is, a circulant matrix is a Toeplitz matrix that is fully defined by its first column (or row) given that the

remaining columns are cyclic permutations of the first column (or row). A skew-circulant matrix is also a

particular type of Toeplitz matrix. We say that a matrix S is a skew-circulant matrix if Sj,k = sj−k, for

constants s1−n, . . . , sn−1 such that s−l = −sn−l, l = 1, . . . , n− 1.

Matrices CT and ST in (2.1), the circulant and skew-circulant splitting (CSCS) of T , are defined as

follows:

(CT )j,k = 1
2





t0, if j = k,

tj−k + tj−k+n, if j < k,

tj−k + tj−k−n, if j > k,

and (ST )j,k = 1
2





t0, if j = k,

tj−k − tj−k+n, if j < k,

tj−k − tj−k−n, if j > k.

(2.2)

It is well-known that a circulant matrix C is diagonalizable by the unitary Fourier matrix F of order n

which entries are given by

Fj,k =
1√
n
ω(j−1)(k−1), j, k = 1, . . . , n,

where ω is the primitive n-th root of unit ω = e

2π
n

i, i =
√
−1. Similarly, a skew-circulant matrix S is

diagonalizable by the unitary matrix F̂ = FD where D = diag(1, e
π
n
i, . . . , e

(n−1)π
n

i). Thus,

C = F ∗ΛF and S = F̂ ∗ΣF̂ , (2.3)

where Λ and Σ are diagonal matrices holding the eigenvalues of C and S, respectively. Moreover, we note

that Λ and Σ can be obtained in O(n logn) operations by taking the fast Fourier transform (FFT) of the

first column (or row) of C and first row of S, respectively. In fact, the diagonal entries λj of Λ and the

diagonal entries σj of Σ are given, respectively, by

λj =

n∑

k=1

ck−1ω
(j−1)(k−1) and σj =

n∑

k=1

sk−1ω
(j−1)(k−1)

e

π(k−1)
n

i, j = 1, . . . , n. (2.4)

See, for instance, [13, 15]. For the FFT algorithm, we refer to [32, 39].

Once Λ and Σ are obtained, the products Cx and C−1
x, as well as Sx and S−1

x, for any vector

x, can be computed by FFTs in O(n logn) operations. Therefore, the use of circulant and skew-circulant

matrices to solve matrix equations with Toeplitz matrices allows to improve the efficiency by employing

FFTs throughout the computations. For a matrix M ∈ C
n×m, the FFT operation is applied to each column

in O(mn logn).

3. CSCS Iteration. Let matrices A ∈ Cn×n and B ∈ Cm×m have a Toeplitz structure and let

A = CA + SA, B = CB + SB (3.1)

be the circulant and skew-circulant splittings of A and B (CSCS), respectively. There are no constraints in

using (2.2), so these splittings always exist.

If α and β are positive constants, the following splittings are also CSCS splittings of A and B,

A = (CA + αIn) + (SA − αIn), B = (CB + βIm) + (SB − βIm), (3.2)

A = (CA − αIn) + (SA + αIn), B = (CB − βIm) + (SB + βIm). (3.3)

It follows that if X∗ ∈ C
n×m is the exact solution of the Sylvester equation (1.1), then

{
(CA + αI)X∗ +X∗(CB + βI) = (αI − SA)X

∗ +X∗(βI − SB) + C

(SA + αI)X∗ +X∗(SB + βI) = (αI − CA)X
∗ +X∗(βI − CB) + C
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where I is either the identity matrix of order n or m, conformable to CA or CB, respectively. We are now

able to define the fixed-point matrix equations
{
(CA + αI)X +X(CB + βI) = (αI − SA)Y + Y (βI − SB) + C

(SA + αI)Y + Y (SB + βI) = (αI − CA)X +X(βI − CB) + C
(3.4)

such that X∗ is the fixed point of both equations. The reverse also accurs, that is, if X∗ is a fixed point of

either of the two equations in (3.4), then it is the exact solution of (1.1). See [4, Theorem 3.1].

The CSCS iteration method is defined as follows.

CSCS iteration method. Given an initial approximation X(0) and positive constants α, β

(shift parameters), repeat the iterative scheme



(αI + CA)X

(k+ 1
2 ) +X(k+ 1

2 )(βI + CB) = (αI − SA)X
(k) +X(k)(βI − SB) + C

(
solve for X(k+ 1

2 )
)

(αI + SA)X
(k+1) +X(k+1)(βI + SB) = (αI − CA)X

(k+ 1
2 ) +X(k+ 1

2 )(βI − CB) + C
(
solve for X(k+1)

)

(3.5)

for k = 0, 1, 2, · · · , until
{
X(k)

}
converges.

An alternative version of this two-step iteration is obtained if we compute the corrections Z(k+ 1
2 ) =

X(k+ 1
2 ) −X(k) and Z(k+1) = X(k+1) −X(k+ 1

2 ) in each iteration which brings the residuals R(k) and R(k+ 1
2 )

into the computation. The iterative scheme is changed to




R(k) = C −AX(k) −X(k)B

(αI + CA)Z
(k+ 1

2 ) + Z(k+ 1
2 )(βI + CB) = R(k)

(
solve for Z(k+ 1

2 )
)

X(k+ 1
2 ) = X(k) + Z(k+ 1

2 )

R(k+ 1
2 ) = C −AX(k+ 1

2 ) −X(k+ 1
2 )B

(αI + SA)Z
(k+1) + Z(k+1)(βI + SB) = R(k+ 1

2 )
(
solve for Z(k+1)

)

X(k+1) = X(k+ 1
2 ) + Z(k+1)

(3.6)

Each CSCS iteration requires the solution of two Sylvester equations. In the first step Z(k+ 1
2 ) is the solution

of the equation

(αI + CA)Z + Z(βI + CB) = R(k) (3.7)

and in the second step Z(k+1) is the solution of the equation

(αI + SA)Z + Z(βI + SB) = R(k+ 1
2 ). (3.8)

The method alternates between equation (3.7), with circulant matrices CA and CB, and equation (3.8), with

skew-circulant matrices SA and SB, and we can reverse the roles of these matrix equations.

Observe that once we compute the eigenvalues of CA and CB, it is always possible to choose positive

constants α and β such that αI + CA and −(βI + CB) do not have eigenvalues in common and thus the

matrix equation (3.7) has a unique solution. A similar observation applies to the matrix equation (3.8)

concerning the matrices αI + SA and −(βI + SB).

Obtained the eigenvalue decompositions, see (2.3),

CA = F ∗

AΛAFA, CB = F ∗

BΛBFB , SA = F̂ ∗

AΣAF̂A, SB = F̂ ∗

BΣBF̂B, (3.9)

equation (3.7) is equivalent to

(αI + ΛA)Z + Z(βI + ΛB) = R(k) (3.10)
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where Z = FAZF ∗

B and R(k) = FAR
(k)F ∗

B; and equation (3.8) is equivalent to

(αI +ΣA)Z + Z(βI +ΣB) = R(k+ 1
2 ) (3.11)

where Z = F̂AZF̂ ∗

B and R(k+ 1
2 ) = F̂AR

(k+ 1
2 )F̂ ∗

B .

Solving the Sylvester equations (3.10) and (3.11) is immediate since these matrix equations can be

translated into linear systems with diagonal coefficent matrices, Im ⊗ (αIn + ΛA) + (βIm + ΛB)
T ⊗ In and

Im ⊗ (αIn +ΣA) + (βIm +ΣB)
T ⊗ In, respectively.

The solutions of the initial Sylvester equations (3.7) and (3.8) are given by Z = F ∗

AZFB, for Z satisfying

(3.10), and Z = F̂ ∗

AZF̂B , for Z satisfying (3.11), respectively. These products can be computed efficiently

using FFTs.

It is also possible, once again using FFTs, to reduce the computational effort associated to the right-hand

side of the two Sylvester equations involved in each CSCS iteration, equations (3.10) and (3.11). For an

approximation X(j), the residual R(j) can be computed using the decomposition

R(j) = C − (CA + SA)X
(j) −X(j)(CB + SB)

= C − F ∗

AΛAFAX
(j) − F̂ ∗

AΣAF̂AX
(j) −X(j)F ∗

BΛBFB −X(j)F̂ ∗

BΣBF̂B . (3.12)

Thus, the right-hand sides of equations (3.10) and (3.11) are given, respectively, by

R(k) = FA

[
C − F ∗

AΛAFAX
(k) − F̂ ∗

AΣAF̂AX
(k) −X(k)F ∗

BΛBFB −X(k)F̂ ∗

BΣBF̂B

]
F ∗

B (3.13)

and

R(k+ 1
2 ) = F̂A

[
C − F ∗

AΛAFAX
(k+ 1

2 ) − F̂ ∗

AΣAF̂AX
(k+ 1

2 ) −X(k+ 1
2 )F ∗

BΛBFB −X(k+ 1
2 )F̂ ∗

BΣBF̂B

]
F̂ ∗

B. (3.14)

Given an initial approximation X(0), positive constants α, β, and the spectral factorizations (3.9), the

two steps of the CSCS iteration (3.6) can then be expressed as





Use (3.13) to compute R(k)

(αI + ΛA)Z + Z(βI + ΛB) = R(k) (solve for Z)
X(k+ 1

2 ) = X(k) + F ∗

AZFB

Use (3.14) to compute R(k+ 1
2 )

(αI +ΣA)Z + Z(βI +ΣB) = R(k+ 1
2 ) (solve for Z)

X(k+1) = X(k+ 1
2 ) + F̂ ∗

AZF̂B

(3.15)

for k = 0, 1, 2, · · · , until
{
X(k)

}
converges.

Notice that all the matrix multiplications can be performed using FFTs and thus the operation count

is O(mn log n) (or O(nm logm), depending on which is bigger). There is no need to perform explicit matrix

multiplications. See Algorithm 1 in Appendix A for a Matlab implemention of CSCS.

4. Convergence results. Using a matrix-vector formulation of the Sylvester equation (1.1), such that

vectors x and c are the column-stacking vectors of the matrices X and C, respectively, the two-step iterative

CSCS scheme (3.5) can be rewritten as

{[
Im ⊗ (αI + CA) + (βI + CB)

T ⊗ In
]
x(k+ 1

2 ) =
[
Im ⊗ (αI − SA) + (βI − SB)

T ⊗ In
]
x(k) + c

[
Im ⊗ (αI + SA) + (βI + SB)

T ⊗ In
]
x(k+1 =

[
Im ⊗ (αI − CA) + (βI − CB)

T ⊗ In
]
x(k+ 1

2 ) + c
(4.1)
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for k = 0, 1, 2, · · · , until
{
x(k)

}
converges, given an initial approximation x(0) and positive constants α, β.

In this section we will establish theoretical results concerning the convergence conditions of the CSCS

iteration and our analysis is based on this matrix-vector formulation of the method.

So, we are considering the linear system A x = c, equivalent to the Sylvester equation (1.1), where

A = Im ⊗A+BT ⊗ In, and the two splittings of the matrix A ,

A =
[
Im ⊗ (αI + CA) + (βI + CB)

T ⊗ In
]
−
[
Im ⊗ (αI − SA) + (βI − SB)

T ⊗ In
]
,

A =
[
Im ⊗ (αI + SA) + (βI + SB)

T ⊗ In
]
−
[
Im ⊗ (αI − CA) + (βI − CB)

T ⊗ In
]
,

corresponding to the CSCS splittings of A and B given in (3.2). Using the bilinearity property of the

kronecker product, these decompositions of A can be rewritten as

A =
[
(α+ β)Imn +

(
Im ⊗ CA + CT

B ⊗ In
)]
−
[
(α+ β)Imn −

(
Im ⊗ SA + ST

B ⊗ In
)]

,

A =
[
(α+ β)Imn +

(
Im ⊗ SA + ST

B ⊗ In
)]
−
[
(α+ β)Imn −

(
Im ⊗ CA + CT

B ⊗ In
)]

.

Thereby, defining C̃ =
(
Im ⊗ CA + CT

B ⊗ In
)
and S̃ =

(
Im ⊗ SA + ST

B ⊗ In
)
, we have

A =
[
(α + β)I + C̃

]
−
[
(α+ β)I − S̃

]
,

A =
[
(α + β)I + S̃

]
−
[
(α+ β)I − C̃

]
,

(4.2)

where I represents the identity matrix of order mn, and the iteration (4.1) can be expressed as

{[
(α+ β)I + C̃

]
x(k+ 1

2 ) =
[
(α + β)I − S̃

]
x(k) + c

[
(α+ β)I + S̃

]
x(k+1 =

[
(α+ β)I − C̃

]
x(k+ 1

2 ) + c.
(4.3)

This iterative scheme is a particular case of a more general two-step splitting scheme defined by

{
M1x

(k+ 1
2 ) = N1x

(k) + c

M2x
(k+1) = N2x

(k+ 1
2 ) + c, k = 0, 1, 2, . . . ,

(4.4)

assuming that A admits the decompositions A = Mi −Ni, i = 1, 2, with M1 and M2 invertible matrices.

The sequence
{
x(k)

}
generated by (4.4) satisfies

x(k+1) = Mx(k) + C c, k = 0, 1, 2, . . . , (4.5)

where

M = M−1
2 N2M

−1
1 N1 and C = M−1

2

(
I +N2M

−1
1

)
. (4.6)

Matrix M is called the iteration matrix and it is well-kown that
{
x(k)

}
converges to the exact solution of

the linear system A x = c if and only if ρ(M ) < 1, for any initial approximation x(0) ∈ Cmn [36, 42] .

We will prove that when C̃ = Im ⊗ CA + CT
B ⊗ In and S̃ = Im ⊗ SA + ST

B ⊗ In are positive definite

matrices (the real part of the eigenvalues is positive), then the proposed CSCS iterative method converges.

Theorem 4.1. Let A ∈ C
n×n and B ∈ C

m×m be Toeplitz matrices such that A = CA + SA and

B = CB + SB are the circulant and skew-circulant splittings of A and B, respectively. Consider the linear

system A x = c, where A = Im ⊗A +BT ⊗ In, equivalent to the Silvester equation (1.1), and the splitting

A = C̃ + S̃, where

C̃ = Im ⊗ CA + CT
B ⊗ In and S̃ = Im ⊗ SA + ST

B ⊗ In. (4.7)
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Let α, β be two positive constants and γ = α+ β. Then the iteration matrix of the CSCS scheme (4.3) is

Mγ =
(
γI + S̃

)−1(
γI − C̃

)(
γI + C̃

)−1(
γI − S̃

)
(4.8)

and its spectral radius ρ(Mγ) is bounded by

σγ ≡ max
λj∈λ(C̃)

∣∣∣∣
γ − λj

γ + λj

∣∣∣∣ · max
µj∈λ(S̃)

∣∣∣∣
γ − µj

γ + µj

∣∣∣∣.

If C̃ is positive definite and S̃ is positive semi-definite (or vice-versa), then

ρ(Mγ) ≤ σγ < 1, for all γ > 0,

and, thus, the CSCS iteration (4.3) converges to the exact solution x⋆ of the linear system A x = c.

The equivalent CSCS iteration (3.5) converges to the exact solution X⋆ ∈ Cm×n of the Sylvester equation

(1.1).

Proof. Given γ = α+ β, the CSCS iteration (4.3) can be rewritten as

{(
γI + C̃

)
x(k+ 1

2 ) =
(
γI − S̃

)
x(k) + c

(
γI + S̃

)
x(k+1) =

(
γI − C̃

)
x(k+ 1

2 ) + c
(4.9)

which is the two-step splitting iterative scheme (4.4) to solve the linear system A x = c with M1 = γI + C̃,

N1 = γI − S̃, M2 = γI + S̃ and N2 = γI − C̃. According to (4.5) and (4.6), the two steps of iteration (4.9)

can be put together into the stationary fixed-point iteration

x(k+1) = Mγx
(k) + Cγc, k = 0, 1, 2, . . . , (4.10)

where

Mγ =
(
γI + S̃)−1

(
γI − C̃

)(
γI + C̃

)−1(
γI − S̃

)
and Cγ = 2γ

(
γI + S̃

)−1(
γI + C̃

)−1
.

The spectral radius ρ(Mγ) governs the convergence of (4.10) and, since the spectrum of a matrix is invariant

under a similarity transformation, we find that

ρ(Mγ) = ρ
((

γI − C̃
)(
γI + C̃

)−1(
γI − S̃

)(
γI + S̃

)−1
)

≤
∥∥∥
(
γI − C̃

)(
γI + C̃

)−1(
γI − S̃

)(
γI + S̃

)−1
∥∥∥
2

≤
∥∥∥
(
γI − C̃

)(
γI + C̃

)−1
∥∥∥
2
·
∥∥∥
(
γI − S̃

)(
γI + S̃

)−1
∥∥∥
2
.

(4.11)

Since CA, CB, FA and FB are diagonalizable by the Fourier-type matrices FA, FB , F̂A and F̂B, respectively,

(see (2.3)), then C̃ is diagonalizable by FB ⊗ FA and S̃ by F̂B ⊗ F̂A [23],

C̃ = (FB ⊗ FA)
∗Λ

C̃
(FB ⊗ FA), S̃ = (F̂B ⊗ F̂A)

∗Σ
S̃
(F̂B ⊗ F̂A), (4.12)

where Λ
C̃
= I ⊗ ΛA + ΛB ⊗ I and Σ

S̃
= I ⊗ ΣA +ΣB ⊗ I.

Thus, by (4.12) and the invariance of the matrix 2-norm under a unitary similarity,

∥∥∥
(
γI − C̃

)(
γI + C̃

)−1
∥∥∥
2
=

∥∥∥
(
γI − Λ

C̃

)(
γI + Λ

C̃

)−1
∥∥∥
2
= max

λk∈λ(C̃)

∣∣∣∣
γ − λk

γ + λk

∣∣∣∣,

∥∥∥
(
γI − S̃

)(
γI + S̃

)−1
∥∥∥
2
=

∥∥∥
(
γI − Σ

S̃

)(
γI +Σ

S̃

)−1
∥∥∥
2
= max

µk∈λ(S̃)

∣∣∣∣
γ − µk

γ + µk

∣∣∣∣ .
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For λk = ak + ibk ∈ λ(C̃) and µk = ck + idk ∈ λ(S̃), k = 1, . . . ,mn, we have ak > 0, ck ≥ 0 (or ak ≥ 0,

ck > 0), by the assumption that C̃ is positive definite and S̃ is positive semi-definite (or vice-versa), and

then

∣∣∣∣
γ − λk

γ + λk

∣∣∣∣ =

√
(γ − ak)2 + b2k
(γ + ak)2 + b2k

< 1 (≤ 1),

∣∣∣∣
γ − µk

γ + µk

∣∣∣∣ =

√
(γ − ck)2 + d2k
(γ + ck)2 + d2k

≤ 1 (< 1),

since γ > 0. As a consequence,

σγ := max
λk∈λ(C̃)

∣∣∣∣
γ − λk

γ + λk

∣∣∣∣ · max
µk∈λ(S̃)

∣∣∣∣
γ − µk

γ + µk

∣∣∣∣ < 1. (4.13)

Finally, (4.11) yields

ρ(Mγ) ≤ σγ < 1

which ensures that the CSCS iteration (4.3) converges to the exact solution x⋆ of the linear system A x = c

and that the CSCS iteration (3.5), which is equivalent to (4.3), converges to the exact solution X⋆ ∈ Cm×n

of the Sylvester equation (1.1).

Corollary 4.2. If one of the matrices CA, CB , SA and SB is positive definite and all the others

are positive semi-definite, then the CSCS iteration (3.5) converges to the exact solution X⋆ ∈ Cm×n of the

Sylvester equation (1.1).

Proof. Recall that given two matrices G ∈ Cn×n and H ∈ Cm×m with eigenvalues λi, i = 1, . . . , n, and

µj , j = 1, . . . ,m, respectively, the eigenvalues of the Kronecker sum G ⊕ H = Im ⊗ G + H ⊗ In are the

pairwise sums λi + µj , i = 1, . . . , n, j = 1, . . . ,m (see, e.g., [23]). Using this property, it is immediate to

conclude, for example, that if G is positive definite and H is positive semi-definite, then G ⊕H is positive

definite. In fact, Re(λj) > 0 and Re(µj) ≥ 0 imply that Re(λi + µj) = Re(λi) + Re(µj) > 0.

Suppose that CA is positive definite and CB , SA and SB are all positive semi-definite. Then C̃ = CA⊕CT
B

and S̃ = SA ⊕ ST
B, defined in (4.7), are positive definite and positive semi-definite, respectively. According

to Theorem 4.1, the spectral radius ρ(Mγ) of the iteration matrix Mγ in (4.8) is less than 1 and the CSCS

iteration (3.5) converges. All the other cases are similar.

Next theorem addresses the issue of how to obtain a value for γ = α + β (and naturally for α and β)

that leads to a good convergence speed.

Remark 4.1. Let λk = ak + ibk ∈ λ(C̃) and µk = ck + idk ∈ λ(S̃), k = 1, . . . ,mn, satisfy

θmin ≤ ak, ck ≤ θmax and ηmin ≤ |bk|, |dk| ≤ ηmax, (4.14)

where θmin and θmax are the lower and upper bounds, respectively, of the real part of the eigenvalues

λ(C̃) ∪ λ(S̃), and ηmin and ηmax are the lower and the upper bounds, respectively, of the absolute values of

the imaginary part of the eigenvalues λ(C̃) ∪ λ(S̃). A bound for σγ is given by

max
(θ,η)∈Ω

(γ − θ)2 + η2

(γ + θ)2 + η2
(4.15)

where Ω = [θmin, θmax]× [ηmin, ηmax], since

σγ ≤ max
λk∈λ(C̃)∪λ(S̃)

∣∣∣∣
γ − λk

γ + λk

∣∣∣∣ · max
µk∈λ(C̃)∪λ(S̃)

∣∣∣∣
γ − µk

γ + µk

∣∣∣∣ = max
λk∈λ(S̃)∪λ(C̃)

∣∣∣∣
γ − λk

γ + λk

∣∣∣∣
2

.
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We may consider that the optimal choice γ⋆ for the shift parameter γ is the value that minimizes the

above estimate (4.15). The following theorem gives an explict formula for γ⋆, if θmin > 0.

Theorem 4.3. If θmin ≥ 0, the minimum value

min
γ>0

{
max

(θ,η)∈Ω

(γ − θ)2 + η2

(γ + θ)2 + η2

}

is attained at

γ⋆ =





√
θminθmax − η2max for ηmax < η̃

√
θ2min + η2max for ηmax ≥ η̃,

(4.16)

and it is equal to

σ⋆ =






θmin + θmax − 2
√
θminθmax − η2max

θmin + θmax + 2
√
θminβmax − η2max

for ηmax < η̃,

√
θ2min + η2max − θmin√
θ2min + η2max + θmin

for ηmax ≥ η̃.

where η̃ =
√
θmin(θmax − θmin)/2.

The proof of this theorem can be found in [4, pp. 324–326] and [3].

Concerning the choice of the shift parameters α and β in the CSCS method, to choose α = β = γ⋆/2,

where γ⋆ is computed using (4.16), seems to be a natural choice in the case that A and B have approximate

norms. In practice Theorem 4.3 gives an efficent procedure to compute α and β since we have the explicit

formulae for the eigenvalues of the matrices CA, CB , SA and SB (see (2.4)) and we use these formulae to

implement CSCS. Thus we can obtain the eigenvalues of C̃ and S̃ as a byproduct and verify if the sufficient

condition for convergence given by Theorem 4.1 is satisfied. See Algorithm 4 in Appendix A. Notice that

the case θmin = 0 brings no difficulty in computing γ⋆ - when θmin = 0, we have η̃ = 0 and γ⋆ = ηmax.

5. Numerical results. In this section we illustrate the performance of the CSCS algorithm exhibiting

some numerical examples. We compare the computational behavior of this method with the Hermitian and

skew-Hermitian splitting iteration (HSS) [2] and with a block variant of the Symmetric Successive Over-

Relaxation scheme (BSSOR) [26, 35, 43, 42].

All the algorithms were implemented in Matlab (R2020b) in double precision (unit roundoff ε =

2.2 10−16) on a LAPTOP-KVSVAUU8 with an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and 8 GB

RAM, under Windows 10 Home. See Appendix A for details on the Matlab implementations (Algorithms

1, 5 and 6 for CSCS, HSS and BSSOR, respectively). No parallel Matlab operations were used.

The built-in functions fft and ifft (Discrete Fourier transform and its inverse) were used in CSCS, in

particular to compute the residual R = C −AX −XB (see Algorithm 3 in Appendix A). The use of sparse

techniques is an alternative way to compute the residual C−AX−XB. Indeed, if our matrices are stored in

sparse format (even if only A, B and C), then Matlab will automatically use highly efficient multiplication.

The advantage of using Discrete Fourier transforms over these sparse techniques can only be observed for

dense Toeplitz matrices (matrices with a low sparsity pattern or full matrices). See Example 5.4.

Hermitian and skew-Hermitian matrices can be diagonalizable by unitary matrices and thus it is posssible

to treat the two steps at each iteration of the HSS method very efficiently - the linear systems are all diagonal.

The diagonalization process is carried out by Matlab functions schur and rsf2csf for the real and complex

Schur decompositions.
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We use a variant of the BSOR (block SOR) which combines two BSOR steps together in one iteration.

Specifically, BSSOR is a forward BSOR step followed by a backward BSOR step. The roles of the triangular

factors L and U of both A and B are reversed in the second step. The value of the relaxation parameter ω is

the same in both steps. We remark here that the application of SSOR (Symmetric SOR) as a preconditioner

for other iterative schemes, in the case of symmetric matrices, was the primary motivation for SSOR, since

the convergence rate is usually slightly slower than the convergence rate of SOR with optimal ω. In our

comparison study, in particular of the number of iterations needed for convergence, it seems more appropriate

to use BSSOR than BSOR given that each iteration of BSSOR consists of two steps, like CSCS and HSS.

The occurring linear systems in BSSOR are solved with the Matlab function linsolve which uses LU

factorization with partial pivoting when the coefficient matrix is square. This function is more efficient than

the backslash operator since it is possible to specify the appropriate solver as determined by the properties

of the matrix.

We also compare our method with the Bartels–Stewart direct method as implemented in the Matlab

function lyap from the Control Toolbox. This function performs the real Schur decompositions of A and

B in equation (1.1), lower and upper, respectively, and converts them afterwards to their complex forms;

computes the solution of the resulting sylvester equation solving m triangular systems and then transforms

this solution back to the solution of the original Sylvester equation. See Algorithm 7 in Appendix A for our

own implementation of this method (mylyap function).

The null matrix was chosen as the initial approximation, X(0) = O, in all our numerical experiments,

and the stopping criterion implemented was

‖ R(k) ‖F
‖ C ‖F

≤ tol, (5.1)

where R(k) = C − AX(k) − X(k)B is the residual attained at iteration k and tol is the desired accuracy,

usually set to 10−6.

In our first example we analyze a standard Sylvester equation that comes from a finite difference dis-

cretization of the two dimensional convection-diffusion equation

− (uxx + uyy) + σ(x, y)ux + τ(x, y)uy = f(x, y), (5.2)

posed on the unit square (0, 1) × (0, 1) with Dirichlet-type boundary conditions. Here we consider the

case when the coefficients σ and τ , which represent the velocity components along the x and y directions,

respectively, are constant. See [14, p. 371]. A five-point discretization of the operator leads to a linear

system

Au = v, (5.3)

where now u denotes a vector in a finite-dimensional space. We consider a uniform n × n grid and use

standard second-order finite differences for the Laplacian uxx+uyy and either centered or upwind differences

for the first derivatives ux and uy. See [18, p. 217]. With u ordered lexicographically in the natural ordering

as (u11, u21, .., unn)
T , the coefficient matrix A is a block tridiagonal matrix whose jth row contains the

subdiagonal, diagonal and superdiagonal blocks, all of order n, respectively,

Aj,j−1 = bIn, Aj,j = tridiag(c, a, d), Aj,j+1 = eIn, (5.4)

where a, b, c, d and e depend on the discretization. Blocks A1,0 and An,n+1 are not defined. Let h =
1

n+ 1
(n inner grid points in each direction). After scaling by h2, the matrix entries are given by

a = 4, b = −
(
1 +

τh

2

)
, c = −

(
1 +

σh

2

)
, d = −

(
1− σh

2

)
, e = −

(
1− τh

2

)
, (5.5)
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for the centered difference scheme, and by

a = 4 + (τ + σ)h, b = − (1 + τh) , c = − (1 + σh) , d = −1, e = −1 (5.6)

for the upwind scheme when σ ≥ 0 and τ ≥ 0. At the (i, j) grid point, the right-hand side satisfies vij = h2fij ,

where fij = f(ih, jh).

When e = d and b = c, the coefficient matrix A in the linear system (5.3) can be written in the form

A = In ⊗A+A⊗ In where A = tridiag(c, a/2, d). Therefore, the Sylvester equation

AX +XAT = V (5.7)

is equivalent to the linear system (5.3), where X and V are the matrix-stacking of the vectors u and v,

respectively.

Different discretization schemes of equation (5.2) will naturally lead to different Sylvester equations (and

different discretization errors). In [35] it is described how we can obtain a general equation AX+XB = C for

any values of σ and τ applying the central differences operator. Matrix A corresponds to the discretization

in the y-direction and matrix B in the x-direction. When σ and τ are constant, A and B are tridiagonal

Toeplitz matrices defined by

A = tridiag

(
−1 + τh

2
, 2,−1− τh

2

)
and B = tridiag

(
−1 + σh

2
, 2,−1− σh

2

)
(5.8)

with A = B if τ = σ.

Example 5.1.

Here we solve the Sylvester equation (5.7) representing the convection-diffusion equation (5.2) with ho-

mogeneous Dirichlet boundary conditions and the function f defined by f(x, y) = e
x+y. Different values for

τ = σ and the step size h = 1
n+1 are considered.

The performance of all the methods, BSSOR, HSS and CSCS, concerning the number of iterations (iter)

and CPU time in seconds (tCPU) are shown in Tables 5.1, for the centered differences scheme (5.5). The

results for the upwind scheme (5.6) and for the alternative scheme (5.8) are pratically the same.

In the CSCS method we took α = β ≈ γ⋆, where γ⋆ is computed using the expression (4.16), and for

the HSS method we chose α = β ≈ 2γ⋆ (as a result of a numerical search around γ⋆/2); for the relaxation

parameter ω in the BSSOR method we used the heurist estimate given by ω = 2− 10h (approximately).

We report that the initial matrix CA is positive semi-definite but SA is positive definite (as well as

C̃ = In ⊗ CA + CA ⊗ In and S̃ = In ⊗ SA + SA ⊗ In, respectively), and thus the CSCS method always

converges. In fact, we can prove that this splitting property of the matrix A = tridiag(c, a/2, d) is true in

general for any positive values of σ and τ .

For h = 0.05 the BSSOR method converged but very slowly. It took more than 20 minutes to deliver a

solution, with relative residual norm of about 10−4 (1500 iterations), for σ = 2, and 10−6 (946 iterations),

for σ = 10. It is not a suitable method for this case.

Overall, the number of iterations needed for convergence by all the methods is relatively high and this

reflects the fact that the spectral radi of the iteration matrices are closer to 1 than to 0. Nevertheless, CSCS

exhibits the best behavior among the three methods. Our method is nealy 3 times faster than HSS (5 times

for σ = 2, n = 399) and 8 times faster (in average) than BSSOR, for n ≤ 199 (much faster for n > 199).
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BSSOR HSS CSCS

h = 1

n+1
ω iter tCPU α = β iter tCPU α = β iter tCPU

0.04 1.75 79 0.04 0.20 85 0.01 0.10 42 0.005

0.02 1.85 167 0.25 0.10 167 0.07 0.045 84 0.03

σ = 2 0.01 1.95 309 2.25 0.050 328 0.62 0.023 168 0.25

0.005 1.95 767 51.6 0.025 648 5.41 0.011 342 1.90

0.0025 - - - 0.013 1285 90.3 0.006 700 18.2

0.04 1.75 36 0.02 0.45 64 0.01 0.20 29 0.006

0.02 1.85 69 0.11 0.22 126 0.06 0.075 56 0.02

σ = 10 0.01 1.85 190 1.44 0.11 252 0.44 0.038 108 0.17

0.005 1.95 258 22.6 0.05 448 3.38 0.019 216 1.22

0.0025 - - - 0.013 841 66.0 0.0094 438 20.9

Table 5.1 BSSOR, HSS and CSCS performance for the Example 5.1 (centered difference scheme).

In [9, 11, 25] the authors study the numerical solution of (5.2) with non-constant coefficients. The

discretization matrices A1 and A2 from two different linear systems (5.3) are used to create a Sylvester

equation

A1X +XA2 = C, (5.9)

where C is randomly generated from values uniformly distributed in [0, 1]. These numerical examples were

devised entirely for testing purposes and they are not connected to the solution of (5.3). We will imitate

this type of examples but in our case matrices A1 and A2 must be Toeplitz.

Example 5.2.

We slightly change matrix A, defined by (5.4), to have constant diagonal, subdiagonal, superdiagonal,

nth diagonal and −nth diagonal (values a, c, d, e and b, respectively). For diferente values of σ = τ , we

define A1 and A2, with orders n2 and m2, respectively, and solve (5.9). Table 5.2 shows the outcome of this

experiment.

BSSOR HSS CSCS

n2;m2 ω iter tCPU α = β iter tCPU α = β iter tCPU

49; 100 1.75 38 0.12 0.89 49 0.05 0.60 30 0.02

100; 100 1.75 39 0.28 0.81 65 0.13 0.41 33 0.05

σ1 = σ2 = 2 225; 225 1.75 63 4.84 0.45 92 1.20 0.27 46 0.25

225; 400 1.85 67 24.5 0.42 99 3.92 0.28 58 0.76

400; 400 1.85 74 61.7 0.35 117 9.20 0.20 61 1.18

625; 625 1.75 98 333.7 0.29 143 39.1 0.19 89 4.63

100; 100 1.75 39 0.28 0.87 69 0.15 0.87 69 0.13

σ1 = 1; σ2 = 10 225; 400 1.85 67 27.89 0.45 100 4.03 0.31 64 0.88

625; 625 1.85 98 335.0 0.27 150 40.7 0.14 74 4.00

784; 784 1.85 116 700.3 0.29 164 89.5 0.15 84 7.00

Table 5.2 Performance of BSSOR, HSS and CSCS for the Example 5.2.

We verified that the matrices C̃ and S̃ are positive semi-definite and positive definite, respectively, like

in the first example. The values for the parameters α and β that led to a smaller number of iterations were

values greater than the value γ⋆ given by (4.16), by a factor of about 10 or higher.
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The convergence rate of all the methods is faster for this example than for the previous one and, as

expected, BSSOR is a very slow method compared to HSS and CSCS. Also in this case, when compared to

HSS, the CSCS method is about 5 times faster, for matrices of order 200, and 8 times faster if the order of

the matrices raises above 600.

The next numerical example can be found, for instance, in [2, 41, 44]. As mentioned in [2] this class

of problems appears associated with the preconditioned Krylov subspace iteration method used to solve the

systems of linear equations which arise from the discretization of various differential equations and boundary

value problems using finite difference or Sinc-Galerkin schemes.

Example 5.3. Consider the Sylvester equation (1.1) with matrices A,B ∈ Cn×n (m = n) defined by

A = B = M + 2rN +
100

(n+ 1)2
I,

where M,N ∈ Cn×n are Toeplitz tridiagonal matrices, M = tridiag(−1, 2,−1), N = tridiag(0.5, 0,−0.5). In
a more compacted form,

A = B = tridiag

(
−1 + r, 2 +

100

(n+ 1)2
,−1− r

)
.

The parameter r depends on the properties of the problem being discretized.

Although this problem is similar to the one considered in Example 5.1, we decided to show the results of

our experiments in order to compare them with the results presented by other authors, namely in [2, 29, 41].

Table 5.3 contains the summary of our experiments for different instances of the parameter r and the order

n of the matrices.

BSSOR HSS CSCS

n ω iter tCPU α iter tCPU α = β iter tCPU

64 1.75 36 0.10 0.17 123 0.10 0.130 32 0.02

128 1.85 71 1.08 0.09 244 0.75 0.070 60 0.14

r = 0.01 256 1.95 167 24.0 0.05 453 19.2 0.035 112 0.88

512 1.95 281 670.3 0.05 520 64.0 0.017 221 7.00

1024 - - - 0.01 1204 1408 0.010 392 61.0

64 1.75 35 0.12 0.23 90 0.07 0.14 31 0.02

128 1.85 65 1.10 0.13 145 0.46 0.08 55 0.13

r = 0.1 256 1.85 139 21.4 0.09 219 4.26 0.05 86 0.70

512 1.75 455 678.1 0.10 314 33.4 0.10 317 10.4

1024 - - - 0.10 607 636.4 0.10 610 100.5

64 1.5 22 0.06 0.81 40 0.04 0.26 26 0.01

128 1.5 33 0.50 0.62 60 0.19 0.16 41 0.09

r = 1 256 1.75 47 7.10 0.51 92 1.81 0.11 61 0.45

512 1.75 62 114.2 0.25 132 16.7 0.25 138 3.95

1024 - - - 0.25 192 173.0 0.15 171 21.3

Table 5.3 Performance of BSSOR, HSS and CSCS methods for the Example 5.3.
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The values of the shift parameter α in the HSS method are the values which were presented in [2], for

n ≤ 256 (see ωexp and αexp in [2, Table 4.2], obtained through an experimental search). The values given

to the shift parameters α and β in the CSCS method were determined using the expression (4.16) - we

computed γ⋆ and let α = β between γ⋆/8 and γ⋆/2 - and these values are also used with HSS when n > 256.

In this example the convergence is faster than in Example 5.1, in particular when r = 1. Matrices C̃ and

S̃ are both positive definite and the CSCS method outperforms the HSS and BSSOR methods both in terms

of the number of iterations and in what respects to the computational efficiency. BSSOR may be very slow

for matrices of order n ≥ 512, taking more than 20 minutes to converge. Compared to HSS the CPU time

required by CSCS to converge is, in most cases, 4 to 8 times smaller ( in extreme cases, this factor may be

much smaller). Except for r = 1, our implementation of HSS demands a higher number of iterations than

shown in [2] for this same method, but despite this, in all cases the CPU time needed is reduced.

The advantage of using FFT operations in the CSCS method can be entirely appreciated when we take

A and B to be full Toeplitz matrices. Next example considers this case and reports the CPU elapsed times

for CSCS and Matlab function lyap.

Example 5.4. This example takes positive definite circulant and skew-circulant matrices CA and SA

(obtained using translation of origin on randomly generated matrices) and forms A = CA + SA, B = A.

Matrix C is chosen to be the matrix attained when all the entries in X are set to be 1.

We take α = β = γ⋆/2 where γ⋆ is computed using the expression (4.16) in Theorem 4.3. See Table 5.4

for a comparison of the efficiency of CSCS and lyap.

n
CSCS lyap

α = β iter resid tCPU resid tCPU

100 43.49
5 1.1 10−6 0.017

2.2 10−15 0.013
12 1.9 10−15 0.040

250 103.75
5 2.0.4 10−6 0.07

1.8 10−15 0.10
13 1.5 10−15 0.14

500 208.0
5 2.0 10−6 0.32

1.9 10−15 0.26
12 4.0 10−15 0.67

1000 426.6
5 1.3 10−6 1.42

2.1 10−15 1.27
12 9.4 10−15 3.06

1500 645.4
5 1.2 10−6 3.20

2.3 10−15 3.34
13 3.7 10−16 7.43

2000 856.97
5 1.7 10−6 5.62

2.5 10−15 7.01
12 8.2 10−15 12.01

2500 1080.1
5 1.7 10−6 10.64

2.7 10−15 16.01
13 1.0 10−15 23.78

Table 5.4 Performance of CSCS and lyap for full matrices A and B.

If the relative accuracy demanded is O(10−6), which is often enough in many applications, the CSCS

method is comparable to or even faster than lyap. When full accuracy O(ε) is important, more iterations

are needed and CSCS takes approximately twice as long as lyap, which, however, can still be considered

very satisfactory since these methods are fast even for large dimensions like n ≥ 1000.

We may take our function mylyap (see Algorithm 7) in this comparison study, which is possibly the

fairest comparison study to present, given that in our implementations we are not capable of reproducing

the Matlab internal linear systems solvers used by lyap. We clearly aknowledge that, when full accuracy

O(ε) is required, CSCS method is always faster, about 10 times faster, than mylyap for full Toeplitz matrices



Circulant and skew-circulant splitting algorithms 15

A and B (mylyap is, as expected, slower than lyap).

6. Conclusions. We considered the problem of solving a large continuous Sylvester equation

AX + XB = C where the coefficient matrices A and B are assumed to be Toeplitz matrices and we

have devised the CSCS iteration which is a method based on the circulant and skew-circulant splittings of

the matrices A and B. The spectral properties of these structured matrices allow the use of fast Fourier

transforms (FFTs) which reduces significantly the operation count of matrix multiplication and thus the

computational efficiency of the algorithm. We have also analyzed sufficient conditions for the convergence of

the CSCS iteration and have derived an upper bound for its convergence factor. The numerical experiments

we have carried out illustrate that CSCS is a faster and more robust iterative algorithm than the alternatives

HSS and BSSOR. The advantage of using FFT operations in the CSCS method can be entirely appreciated

when we take A and B to be full Toeplitz matrices and in this case CSCS is a very competitive algorithm

even when compared with the Matlab function lyap which implements the Bartels–Stewart direct method.

Moreove, since FFT-based operations have very high parallel potentialities, our CSCS algorithm is therefore

suited for parallel frameworks.
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Appendix A. Implementation details.

Algorithm 1 CSCS – circulant and skew-circulant splitting iteration

Input: Toeplitz matrices A,B, C (orders n× n, m×m and n×m),

initial approximation X0, relative residual tolerance tol, maximum number of iterations maxit

Output: Solution X of the Sylester equation AX +XB = C

[CA,SA] = CSsplitting(Acol1,Arow1) ⊲ circulant and skew-circulant splittings of A and B

[CB ,SB ] = CSsplitting(Bcol1,Brow1)

Dn = exp((0 : n− 1)/n ∗ pi ∗ i) ⊲ Dn = [1, e
π
n
i, . . . , e

(n−1)π
n

i]

Dm = exp((0 : m− 1)/m ∗ pi ∗ i)
DcA = diag

(
ifft

(
fft(CA).’

)
.’
)

⊲ DcA = diag(ΛA); ΛA = FACAF
∗

A

DcB = diag
(
ifft

(
fft(CB).’

)
.’
)

⊲ DcB = diag(ΛB); ΛB = FBCBF
∗

B

DsA = diag(fft(ifft(Dn’ .∗ SA .∗Dn).’).’) ⊲ DsA = diag(ΣA); ΣA = F̂ASAF̂
∗

A

DsB = diag(fft(ifft(Dm’ .∗ SB .∗Dm).’).’) ⊲ DsB = diag(ΣB); ΣB = F̂BSBF̂
∗

B

⊲ .∗ for element-wise product

[α,β] = shifts(DcA, DcB, DsA, DsB) ⊲shift parameters α and β

D1 = DCA
+ α; D2 = DCB

+ β; D3 = DSA
+ α; D4 = DSB

+ β

A = sparse(A); B = sparse(B); C = sparse(C) ⊲ Matlab sparse matrix storage format

X = X0

R = resid(X,C,DcA, DcB, DsA, DsB, Dn, Dm) ⊲ R = C −AX −XB using (3.12)

normR = norm(R, ‘fro’); normC = norm(C, ‘fro’) ⊲ Frobenious norms of R and C

iter = 0 ⊲ number of iterations counter

while
(
(normR/normC) > tol and iter < maxit

)
do

% First step

R = (ifft(fft(R).’).’) ∗ (sqrt(m/n)) ⊲ transform (3.13)

Z = R./(D1 +D2.’) ⊲ solve (αI + ΛA)Z + Z(βI + ΛB) = R

X = X + ifft((fft(Z.’)).’) ⊲ update X; X ← X + F ∗

AZFB

% Second step

R = resid(X,C,DcA, DcB, DsA, DsB, Dn, Dm) ⊲ use (3.12) to compute R

R = ifft((fft(((Dn’). ∗R. ∗Dm).’)).’) ∗ (sqrt(n/m)) ⊲ transform (3.14)

Z = R./(D3 +D4.’) ⊲ solve (αI +ΣA)Z + Z(βI +ΣB) = R

X = X + (Dn.’). ∗ (ifft(fft(Z).’).’). ∗ conj(Dm) ⊲ update X; X ← X + F̂ ∗

AZF̂B

R = resid(X,C,DcA, DcB, DsA, DsB, Dn, Dm)

normR = norm(R, ‘fro’)

iter = iter+ 1

end while

if iter >= maxit then

disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 2 CSsplitting – circulant and skew-circulant splitting of a Toeplitz matrix

Input: First column and first row, c and r, of a n× n Toeplitz matrix A

(c and r should be given as rows, c(1) should be equal to r(1))

Output: CA and SA with A = CA + SA, circulant and skew-circulant splitting of A

% Circulant part

CAc = (c+ [0, fliplr(r(2 : n))])/2

CAr = [r(1)/2, fliplr(CAc(2 : n))]

CA = toeplitz(CAc, CAr)

% Skew-circulant part

SAc = (c− [0, fliplr(r(2 : n))])/2

SAr = [r(1)/2 − fliplr(SAc(2 : n))]

SA = toeplitz(SAc, SAr)

Algorithm 3 resid – residual for a given approximation X

Input: Approximation X and matrix C of AX +XB = C,

DcA, DcB, DsA, DsB, Dn and Dm, computed in CSCS function

Output: Residual R = C −AX −XB using (3.12)

p1 = ifft(D1 .∗ fft(X)) ⊲ p1 = F ∗

AΛAFAX

p2 = (Dn.’) .∗ (fft(D3 .∗ ifft((Dn’) .∗X))) ⊲ p2 = F̂ ∗

AΣAF̂AX

p3 = fft(((ifft(X.’).’) .∗ (D2.’)).’).’ ⊲ p3 = XF ∗

BΛBFB

p4 = (fft((X .∗Dm).’)).’

p4 = (ifft((p4 .∗ (D4.’)).’).’) .∗ (conj(Dm)) ⊲ p4 = XF̂ ∗

BΣBF̂B

R = C − p1 − p2 − p3 − p4

Algorithm 4 shifts – find γ⋆ and shift parameters α and β

Input: DcA, DcB, DsA, DsB eigenvalues of CA, CB , SA, SB, respectively

Output: shifts α and β

D
C̃
= DcA +DcB.’; D

S̃
= DsA +DsB.’ ⊲ eigenvalues of C̃ and S̃

D1 = [real(D
C̃
); real(D

S̃
)]; D2 = abs

(
[imag(D

C̃
); imag(D

S̃
)]
)

⊲ see Remark 4.1

θmin = min
(
min(D1)

)
; θmax = max

(
max(D1)

)

ηmin = min
(
min(D2)

)
; ηmax = max

(
max(D2)

)

if θmin ≥ 0 then ⊲ see Theorem 4.3

if ηmax <
√
θmin ∗ (θmax − θmin)/2 then

γ⋆ =
√
θminθmax − η2max

else

γ⋆ =
√
θ2min + η2max

end if

else

γ⋆ = 1 ⊲ random value for γ⋆ if θmin < 0

disp(‘Warning: θmin < 0. We let γ⋆ = 1.’)

end if

α = γ⋆/2; β = α
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Algorithm 5 HSS – Hermitian and skew-Hermitian splitting iteration

Input: Toeplitz matrices A,B, C (orders n× n, m×m and n×m),

initial approximation X0, shift parameters α and β, relative residual tolerance tol,

maximum number of iterations maxit

Output: Solution X of the Sylester equation AX +XB = C

⊲ Hermitian and skew-Hermitian splittings of A and B

H1 = (A+A’)/2

S1 = (A−A’)/2

H2 = (B +B’)/2

S2 = (B −B’)/2

⊲ schur forms of H1, H2, S1 and S2 (diagonalizable)

[Q1,D1] = schur(full(H1)) ⊲ H1 = Q1D1Q
∗

1

[Q2,D2] = schur(full(H2)) ⊲ H2 = Q2D2Q
∗

2

[Q3,D3] = schur(full(S1))

[Q3,D3] = rsf2csf(Q3,D3) ⊲ S1 = Q3D3Q
∗

3

[Q4,D4] = schur(full(S2))

[Q4,D4] = rsf2csf(Q4,D4) ⊲ S2 = Q4D4Q
∗

4

⊲ diagonal elements of D1 + αIn, D2 + βIm, D3 + αIn and D4 + βIm
D1 = diag(D1) + α; D2 = diag(D2) + β

D3 = diag(D3) + α; D4 = diag(D4) + β

A = sparse(A); B = sparse(B); C = sparse(C) ⊲ Matlab sparse matrix storage format

X = X0

R = C −A ∗X −X ∗B

normR = norm(R, ‘fro’); normC = norm(C, ‘fro’) ⊲ Frobenious norms of R and C

iter = 0 ⊲ number of iterations counter

while
(
(normR/normC) > tol and iter < maxit

)
do

% First step

R = Q1’ ∗R ∗Q2

Z = R./(D1 +D2.’) ⊲ solve (αI +D1)Z + Z(βI +D2) = R

X = X +Q1 ∗ Z ∗Q2’ ⊲ update X; X ← X +Q1ZQ∗

2

% Second step

R = C −A ∗X −X ∗B
R = Q3’ ∗R ∗Q4

Z = R./(D3 +D4.’) ⊲ solve (αI +D3)Z + Z(βI +D4) = R

X = X +Q3 ∗ Z ∗Q4’ ⊲ update X; X ← X +Q3ZQ∗

4

R = C −A ∗X −X ∗B
normR = norm(R, ‘fro’)

iter = iter+ 1

end while

if iter >= maxit then

disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 6 BSSOR – Block Symmetric Successive Over-Relaxation iteration

Input: matrices A,B, C (orders n× n, m×m and n×m),

initial approximation X0, relaxation parameter ω, relative residual tolerance tol,

maximum number of iterations maxit

Output: Solution X of the Sylester equation AX +XB = C

% Two steps with the same parameter ω

% (D1/ω + L1)Xk+ 1
2
+Xk+ 1

2
(D2/ω + U2) = C +

[
(1− w)/wD1 − U1

]
Xk +Xk

[
(1− w)/wD2 − L2

]

% (D1/ω + U1)Xk+1 +Xk+1(D2/ω + L2) = C +
[
(1− w)/wD1 − L1

]
Xk+ 1

2
+Xk+ 1

2

[
(1− w)/wD2 − U2

]

% Using residuals, Rk and Rk+ 1
2
, and new variables, Zk+1 and Zk+ 1

2

% (D1/ω + L1)Zk+ 1
2
+ Zk+ 1

2
(D2/ω + U2) = Rk; Xk+ 1

2
= Xk + Zk+ 1

2

% (D1/ω + U1)Zk+1 + Zk+1(D2/ω + L2) = Rk+ 1
2
; Xk+1 = Xk+ 1

2
+ Zk+1

D1 = diag(A); L1 = tril(A,−1); U1 = triu(A, 1) ⊲ diagonal, strictly lower and

D2 = diag(B); L2 = tril(B,−1); U2 = triu(B, 1) ⊲ strictly upper parts of A and B

D1 = D1/ω; L1 = diag(D1) + L1; U1 = diag(D1) + U1

D2 = D2/ω; L2 = diag(D2) + L2; U2 = diag(D2) + U2

A = sparse(A); B = sparse(B); C = sparse(C) ⊲ Matlab sparse matrix storage format

X = X0; R = C −A ∗X −X ∗B ⊲ initial residual

normR = norm(R, ‘fro’); normC = norm(C, ‘fro’) ⊲ Frobenious norms of R and C

Z = zeros(n,m) ⊲ preallocation for speed

index1 = eye(n,‘logical’) ⊲ logical indexing for the diagonal elements

index2 = eye(m,‘logical’) ⊲ logical indexing for the diagonal elements

iter = 0 ⊲ number of iterations counter

while
(
(normR/normC) > tol and iter < maxit

)
do

% First step ⊲ solve L1Z + ZU2 = R

opts.LT = true; opts.UT = false; ⊲ LT - lower triangular option to linsolve

L1(index1) = D1 +D2(1) ⊲ L1 = L1 +D2(1)In
Z(:, 1) = linsolve(L1, R(:, 1), opts) ⊲ column 1 of Z

for k = 2 : m do ⊲ columns 2 through m of Z

L1(index1) = D1 +D2(k) ⊲ L1 = L1 +D2(k)In
Z(:, k) = linsolve(L1, R(:, k)− Z(:, 1 : (k − 1)) ∗ U2(1 : (k − 1), k), opts)

end for

X = X + Z; R = C − A ∗X −X ∗B ⊲ update X and R

% Second step ⊲ solve U1Z + ZL2 = R

opts.LT = false; opts.UT = true; ⊲ UT - upper triangular option to linsolve

L2(index2) = D2 +D1(n) ⊲ L2 = L2 +D1(n)In
Z(n, :) = linsolve(L2.’, R(n, :).’, opts) ⊲ last row of Z

for k = n− 1 : −1 : 1 do ⊲ rows n− 1 through 1 of Z

L2(index2) = D2 +D1(k) ⊲ L2 = L2 +D1(k)In
Z(k, :) = linsolve(L2.’, (R(k, :)− U1(k, k + 1 : n) ∗ Z(k + 1 : n, :)).’, opts)

end for

X = X + Z; R = C − A ∗X −X ∗B ⊲ update X and R

normR = norm(R, ‘fro’)

iter = iter+ 1

end while

if iter >= maxit then

disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 7 mylyap – Bartels-Stewart method

Input: matrices A,B, C (orders n× n, m×m and n×m)

Output: Solution X of the Sylester equation AX +XB = C

[Q1,T1] = schur(full(A’))

[Q1,T1] = rsf2csf(Q1,T1)

T1 = T1’ ⊲ lower complex schur form of A; A = Q1T1Q
∗

1

[Q2,T2] = schur(full(B))

[Q2,T2] = rsf2csf(Q2,T2) ⊲ upper complex schur form of B; B = Q2T1Q
∗

2

dT1 = diag(T1) ⊲ diagonal elements of T1 and T2

dT2 = diag(T2)

index = eye(n,‘logical’)

% Solution of T1X +XT2 = Q∗

1CQ2

C = Q1’ ∗ C ∗Q2

X = zeros(n,m) ⊲ preallocation for spead

opts.LT = true ⊲ LT - lower triangular option to linsolve

T1(index) = diag(T1) + dT2(1) ⊲ T1 = T1 + dT2(1)In
X(:, 1) = linsolve(T1, C(:, 1), opts) ⊲ column 1 of X

for k = 2 : m do ⊲ columns 2 through m of X

T1(index) = dT1 + dT2(k) ⊲ T1 = T1 + dT2(k)In
X(:, k) = linsolve(T1, C(:, k)−X(:, 1 : (k − 1)) ∗ T2(1 : (k − 1), k

)
, opts)

end for

% Solution of AX +XB = C

X = Q1 ∗X ∗Q2’


