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Analysis of a semi-augmented mixed finite element method for

double-diffusive natural convection in porous media ∗

Mario Alvarez† Eligio Colmenares‡ Filánder A. Sequeira§

Abstract

In this paper we study a stationary double-diffusive natural convection problem in porous media
given by a Navier-Stokes/Darcy type system, for describing the velocity and the pressure, coupled to
a vector advection-diffusion equation describing the heat and substance concentration, of a viscous
fluid in a porous media with physical boundary conditions. The model problem is rewritten in
terms of a first-order system, without the pressure, based on the introduction of the strain tensor
and a nonlinear pseudo-stress tensor in the fluid equations. After a variational approach, the
resulting weak model is then augmented using appropriate redundant penalization terms for the
fluid equations along with a standard primal formulation for the heat and substance concentration.
Then, it is rewritten as an equivalent fixed-point problem. Well-posedness and uniqueness results
for both the continuous and the discrete schemes are stated, as well as the respective convergence
result under certain regularity assumptions combined with the Lax-Milgram theorem, and the
Banach and Brouwer fixed-point theorems. In particular, Raviart-Thomas elements of order k are
used for approximating the pseudo-stress tensor, piecewise polynomials of degree ≤ k and ≤ k + 1
are utilized for approximating the strain tensor and the velocity, respectively, and the heat and
substance concentration are approximated by means of Lagrange finite elements of order ≤ k + 1.
Optimal a priori error estimates are derived and confirmed through some numerical examples that
illustrate the performance of the proposed semi-augmented mixed-primal scheme.

Keywords: Double-diffusive natural convection, Oberbeck-Boussinesq model, augmented formula-
tion, mixed-primal finite element method, fixed point theory, a priori error analysis.
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1 Introduction

In nature and several technological applications, transport phenomena widely occur as a result of
a combined heat and mass transfer that are driven by buoyancy effects due to both temperature
and concentration variations (see, e.g., [15, 37, 39]). Such processes, also known as thermosolutal or
double-diffusive natural convection, involving fluid circulation in a porous media, are frequently found
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in astrophysics, oceanology, metallurgy, electrophysics and geophysics, but also appear in several
engineering applications such as filtration processes, geothermal energy exploitation, spreading on
porous substrates, bio-film growth, gasification of biomass, to name a few.

From the mathematical point of view the Darcy-Oberbeck-Boussinesq model allows to adequately
describe and quantify this complex flow by means of a nonlinear partial differential equations system.
More precisely, the momentum and conservation of fluid mass give rise to a Navier-Stokes/Darcy
type system for describing the fluid flow in the porous media which, in turn, is coupled via buoyancy
forces and convective mass and heat transfer to a vector advection-diffusion equation for describing
the substance concentration and the temperature, as a result of an energy and mass transfer balance
(see, e.g., [37, 39]).

Many computational techniques have been developed so far in order to numerically solve and simulate
this problem and related ones (see [1, 3, 10, 17, 18, 29, 30, 34, 38, 44], and the references therein).
Particularly, the contributions [1, 3, 38, 29, 30, 34, 44] deal with double-diffusive convection in a cavity,
whereas in [10, 17, 18] the authors consider the phenomenon in a porous media.

In [38], a finite volume method is proposed and applied to solve agro-food processes, whereas some
methods based on finite elements for this problem are [1, 3]. In [1], the authors proposed stabi-
lized finite element formulations based on the SUPG (Streamline-Upwind/Petrov-Galerkin) and PSPG
(Pressure-Stabilization/Petrov-Galerkin) methods to solve the problem in unsteady state. Numerical
simulations in two and three dimensions illustrate the accuracy and performance of this technique.
However, the theoretical analyses of the associate continuous and the discrete variational problems
as well as the convergence of the method are not carried out there, and the method only allows to
carry out low-order approximations of the main unknowns. On the other hand, in [3] the problem is
considered in steady state and analyzed by using the boundary control theory. The authors formulate
and prove solvability results for the corresponding boundary control problem, state local uniqueness
and stability of optimal solutions.

Focusing in double-diffusive viscous flow in porous media, [17] proposes a technique consisting of a
projection-based stabilization method in the unsteady state. There, the convergence of the velocity,
temperature and concentration in the semi-discrete case are derived. In addition, some numerical
experiments are reported to confirm optimal order error estimates and to compare their results with
previous ones. In [10] the authors construct a divergence-conforming primal scheme and establish the
existence and uniqueness results for the continuous problem and the discrete scheme as well as con-
vergence properties. On the other hand, in [18] the authors propose a high-order fully-mixed method
based on the introduction of the velocity gradient, the temperature gradient and the concentration
gradient as new unknowns into the problem. The resulting formulation has a saddle-point structure
on reflexive Banach spaces for both the Navier-Stokes/Darcy and the thermal energy conservation
equations. There, it is particularly shown that the discrete scheme is well-posed and an a priori error
estimate for the Galerkin scheme is also derived under sufficiently small data. However, feasible finite
element subspaces must be constructed over meshes with a macro-element structure in order to sat-
isfy an inf-sup compatibility condition, which in turn significantly increased the computational cost,
especially in the three-dimensional case.

According to the above discussion and in order to contribute with the design and analysis of new
mixed finite schemes for simulating double-diffusive convection in porous media. The main goal of
this work is precisely to propose a new semi-augmented mixed finite element method in which the
strain tensor and a pseudo-stress tensor are introduced as primary unknowns of interest in the fluid
equations and the pressure is eliminated from the system by its own definition. To avoid any inf-sup
restriction, to guarantee greater flexibility regarding finite element spaces and lower computational
cost than [18], the respective variational formulation is augmented by using appropriate redundant
penalization Galerkin type-terms based on the constitutive and equilibrium equations combined with
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a primal formulation for the heat and substance concentration equations in standard Hilbert spaces.
In this way, the aforementioned strain tensor, the nonlinear pseudostress, the velocity and a vector
field whose components are the temperature of the fluid and the substance concentration are the main
unknowns of the resulting coupled system. Moreover, physical boundary conditions are considered.
Indeed, a no-slip condition (that is, homogeneous Dirichlet condition) for the fluid velocity, a prescribed
temperature and substance concentration on a Dirichlet boundary and no heat/mass flow across an
isolated surface/homogeneous Neumann condition.

Concerning the solvability analysis, we proceed similarly to [4, 19] by introducing an equivalent fixed-
point setting. According to this, combining the Lax-Milgram theorem with the classical Banach and
Brouwer fixed-point theorems, we establish the respective solvability of the continuous problem and
the associated Galerkin scheme, under suitable regularity assumptions (see [7], for further details), a
feasible choice of parameters and, in the discrete case, for any family of finite element subspaces. To
handle the non-homogeneous Dirichlet condition for the temperature and concentration, we carry out
a rigorous treatment of the boundary data throughout the analysis by means of appropriate extensions
involving the Scott-Zhang interpolator (in the discrete case), which allows us to establish the well-
posedness of our scheme, along with its convergence result and the respective a priori error bounds.
Up to the best of our knowledge, because of the difficulties that can arise in the analysis, the physically
relevant non-homogeneous Dirichlet condition case is usually either omitted or not considered; this is
what motivates us to contribute in this direction as well.

A Strang-type lemma, enables us to derive the corresponding Céa estimate and to provide optimal
a priori error bounds for the Galerkin solution. In turn, the pressure can be recovered by a post-
processed of the discrete solutions, preserving the same rate of convergence. Finally, some numerical
experiments are presented to illustrate the performance of the technique, including the unsteady case
with unknown solution, to confirm the expected orders.

The contents of this paper is presented as follows. At the end of this section, we introduce some
standard notations to be used throughout the manuscript. In Section 2, we introduce the model
problem and the data. We also derive an equivalent first-order equations in terms of additional
variables. Then, in Section 3, we derive the semi-augmented mixed-primal variational formulation and
establish its well-posedness. The associated Galerkin scheme is introduced and analyzed in Section
4. In Section 5, we derive the corresponding Céa estimate and, finally, in Section 6 we present some
numerical examples illustrating the performance of our semi-augmented mixed-primal finite element
method.

1.1 Notations

Let us denote by Ω ⊆ Rn, with n ∈ {2, 3}, a given bounded domain with polygonal/polyhedral
boundary Γ with outward unit normal vector n and let ΓD ,ΓN ⊆ Γ be such that ΓD ∩ ΓN = ∅,
|ΓD| > 0 and Γ = ΓD ∪ ΓN. Standard notation will be adopted for Lebesgue spaces Lp(Ω) with
norm ‖ · ‖0,p,Ω or ‖ · ‖0,Ω if p = 2, and Sobolev spaces Hs(Ω) with norm ‖ · ‖s,Ω, and semi-norm | · |s,Ω.
In particular, when A denotes a generic scalar functional space, then we will denote its vectorial and
tensor counterparts by A and A, respectively.

For vector fields v = (vi)1≤i≤n and w = (wi)1≤i≤n, we set the gradient, divergence and dyadic
product operators, as

∇v :=

(
∂vi
∂xj

)

1≤i,j≤n

, div v :=

n∑

j=1

∂vj
∂xj

, and v ⊗w := (viwj)1≤i,j≤n ,

respectively. Furthermore, given the tensor fields τ = (τij)1≤i,j≤n and ζ = (ζij)1≤i,j≤n, we let div τ
be the divergence operator div acting along the rows of τ , and define the transpose, the trace, the
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tensor inner product, and the deviatoric tensor, respectively, as

τ t := (τji)1≤i,j≤n, tr(τ ) :=

n∑

j=1

τii, τ : ζ :=

n∑

j=1

τijζij , and τd := τ − 1

n
tr(τ )I,

where I stands for the identity tensor in Rn×n. We recall that the space

H(div; Ω) :=
{
τ ∈ L

2(Ω) : div τ ∈ L2(Ω)
}
,

equipped with the usual norm

‖τ‖2
div,Ω := ‖τ‖20,Ω + ‖div τ‖20,Ω,

is a Hilbert space. Finally, we employ 0 to denote a generic null vector and use c or C, with or without
subscripts, bars, tildes or hats, to mean generic positive constants independent of the discretization
parameters, which may take different values at different places.

2 The model problem

This section introduces the mathematical model we address in the present work as well as the auxiliary
unknowns that are introduced and considered in the subsequent variational formulation. Under the
Oberbeck-Boussinesq approximation framework, double-diffusive natural convection phenomenon in
a porous media is described in terms of a Navier-Stokes-Brinkman model coupled to a system of
diffusion-advection equations. In the stationary state, the problem consists of finding the velocity u,
the pressure p, and the vector ϕ = (ϕ1, ϕ2)

t when n = 2 and ϕ = (ϕ1, ϕ2, 0)
t when n = 3, where ϕ1

and ϕ2 are the temperature and the concentration fields, respectively, of a fluid in a confined porous
enclosure Ω, satisfying the set of equations:

γ u− 2div (ν(ϕ)e(u)) + (u · ∇)u+∇ p = (α · ϕ)g in Ω ,

divu = 0 in Ω ,

−div(K∇ϕ) + (∇ϕ)u = 0 in Ω ,

(2.1)

where e(u) stands for the symmetric part of the velocity gradient, i.e., e(u) := 1
2(∇u+ (∇u)t) . The

data are the gravitational force g, the positive constant γ corresponding to the reciprocal of the Darcy
number, the (thermal and solute) expansion coefficients vector α, and the diagonal matrix of (thermal
and mass) diffusion constants K = diag(ki)1≤i≤n ∈ L

∞(Ω), with ki = 0 when i = 3, which is assumed
to be a uniformly positive definite tensor, which means that there exists a positive constant k0 such
that

(Kx) · x ≥ k0 |x|2 ∀x ∈ Rn , with k0 = min{k1, k2, . . . , kn} . (2.2)

In turn, the kinematic viscosity ν : R+ × R+ −→ R+ is assumed to be a bounded and Lipschitz
continuous function that might depend on both the temperature and the mass concentration. That
is, we assume the existence of positive constants ν1, ν2, and Lν that satisfy

ν1 ≤ ν(φ) ≤ ν2 and |ν(φ)− ν(ψ)| ≤ Lν |φ −ψ| ∀φ, ψ ∈ R× R+ . (2.3)

The system (2.1) is finally completed with a non-slip condition on the whole boundary for the velocity
and physical boundary conditions for both the temperature and the concentration fields, that is

u = 0 on Γ , ϕ = ϕD on ΓD and (∇ϕ)n = 0 on ΓN , (2.4)
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where ϕD ∈ H1/2(ΓD) is a known trace function on ΓD.

Next, proceeding similarly to [13], we introduce the strain tensor t := e(u) as an auxiliary variable
and then define

σ := 2ν(ϕ)t− (u⊗ u)−
(
p+ cu

)
I in Ω , (2.5)

as an additional tensorial unknown, where cu is a constant to be suitably defined next (see equation
(2.7) below). Thus, noting that the incompressibility condition of the fluid (divu = 0) implies that
div(u⊗ u) = (u · ∇)u, we get from the first relation of (2.1) the equilibrium equation

γu− divσ = (α ·ϕ)g in Ω ,

and taking deviatoric part in (2.5), we find that the constitutive relation defined by (2.5) can be
written as

σd = 2ν(ϕ)t − (u⊗ u)d in Ω

where td = t since divu = 0. Thus, the pressure is eliminated from the system, however taking trace
in (2.5), we find that it can be easily recovered according to the formula

p = − 1

n

[
tr(σ + (u⊗ u))

]
− cu , in Ω . (2.6)

Now, since p ∈ L2
0(Ω) (which as usual is clearly required for uniqueness of an eventual pressure solution

to (2.1)), the equation (2.6) suggests to define

cu = − 1

n|Ω|

∫

Ω
tr(u⊗ u) = − 1

n|Ω|‖u‖
2
0,Ω , (2.7)

so as to get the equivalence
∫

Ω
p = 0 if, and only if,

∫

Ω
trσ = 0 . (2.8)

According to the above discusion, the system (2.1) and (2.4) equivalently reads: Find t, σ and ϕ such
that

2ν(ϕ)t− σd − (u⊗ u)d = 0 in Ω , γu− divσ = (α ·ϕ)g in Ω ,

t+ ω(u) = ∇u in Ω , −div(K∇ϕ) + (∇ϕ)u = 0 in Ω ,

u = 0 on Γ , ϕ = ϕD on ΓD , (∇ϕ)n = 0 on ΓN , and

∫

Ω
trσ = 0 ,

(2.9)

where ω(u) := 1
2 (∇u − (∇u)t) is the skew-symmetric part of the velocity gradient. We emphasize

that the introduction of the variables t and σ as new unknowns in the system allows us to equivalently
rewrite the Navier-Stokes-Brinkman model (first row of (2.1)) in terms of a first-order set of equations.
Also, observe that according to (2.6)-(2.8), the zero mean value restriction of the pressure on the
domain is imposed via the respective restriction on trσ in the last equation of (2.9). Note further
that the incompressibility condition of the fluid is implicitly present via the equilibrium relation defined
by σ according to the second equation in the first row of (2.9).

3 The continuous formulation

In this section we introduce and analyze the weak formulation proposed for the system described by
(2.9). In Section 3.1 we firstly deduce an augmented mixed variational formulation of (2.9) and then
we rewrite it as a fixed-point problem in Section 3.2, whose analysis is addressed through Sections 3.3
and 3.4.
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3.1 The semi-augmented mixed-primal variational formulation

To begin with, the fact that the trace of the tensor solution σ of system (2.9) has zero mean value in
Ω (see last equation of (2.9)) suggests to introduce the space

H0(div; Ω) :=

{
τ ∈ H(div; Ω) :

∫

Ω
tr τ = 0

}
.

In addition, by their own definitions, we introduce the following space for the strain tensor t, as

L
2
tr(Ω) :=

{
r ∈ L

2(Ω) : rt = r and tr r = 0
}
.

In turn, because of the boundary conditions for the temperature and concentrations (see second and
third equations of last row in (2.9)) we consider the closed subspace

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ

∣∣
ΓD

= 0
}
,

for which, from the generalized Poincaré inequality, we know that there exists cgp > 0, depending only
on Ω and ΓD, such that

‖ψ‖1,Ω ≤ cgp|ψ|1,Ω ∀ ψ ∈ H1
ΓD

(Ω) . (3.1)

Now, testing the first equation from first row in (2.9) with r ∈ L
2
tr(Ω), we obtain

2

∫

Ω
ν(ϕ)t : r −

∫

Ω
σd : r −

∫

Ω
(u⊗ u)d : r = 0 ∀ r ∈ L

2
tr(Ω) . (3.2)

At this point, we readily note that in order to bound the third term on the left hand side of (3.2), and
thanks to the continuous injection i : H1(Ω) → L4(Ω) (see e.g. [2] or [41]), we requiere the unknown
u to live in H1

0(Ω) := {v ∈ H1(Ω) : v|Γ = 0}. Indeed, by applying Cauchy-Schwarz and Hölder
inequalities, we deduce that there exists a positive constant c1(Ω) := ‖i‖2, such that

∣∣∣∣
∫

Ω
(u⊗w)d : r

∣∣∣∣ ≤ c1(Ω)‖u‖1,Ω‖w‖1,Ω‖r‖0,Ω ∀u,w ∈ H1
0(Ω), ∀ r ∈ L

2(Ω) . (3.3)

Next, multiplying the first equation from second row in (2.9) by a test function τ ∈ H0(div; Ω),
integrating by parts, using the Dirichlet condition for u, and the identity t : τ = t : τ d (since t is
trace-free), we get

∫

Ω
t : τd +

∫

Ω
ω(u) : τ +

∫

Ω
u · div τ = 0 ∀ τ ∈ H0(div; Ω).

Likewise, the equilibrium relation associated to σ (second equation from first row in (2.9)) is written
as

γ

∫

Ω
u · v −

∫

Ω
v · divσ =

∫

Ω
(α · ϕ)g · v ∀ v ∈ H1

0(Ω) ,

whereas, the symmetry of the pseudo-stress tensor is imposed in an ultra-weak sense (see e.g [8])
through the identity

−
∫

Ω
σ : ω(v) = 0 ∀ v ∈ H1

0(Ω) .

As for the equation associated to the temperature and concentration (second equation from second
row in (2.9)), we simply multiply it by a test function ψ ∈ H1

ΓD
(Ω) and, after integrating by parts,

and employing the Neumann boundary contidions on ΓN, we find
∫

Ω
K∇ϕ : ∇ψ +

∫

Ω
(∇ϕ)u ·ψ = 0 ∀ψ ∈ H1

ΓD
(Ω) .
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In this way, a preliminary weak formulation for the coupled problem (2.9) takes the form: Find
(t,σ,u,ϕ) ∈ L

2
tr(Ω)×H0(div; Ω)×H1

0(Ω)×H1(Ω), with ϕ
∣∣
ΓD

= ϕD, such that

2

∫

Ω
ν(ϕ)t : r −

∫

Ω
σd : r −

∫

Ω
(u⊗ u)d : r = 0 ∀ r ∈ L

2
tr(Ω) ,

∫

Ω
t : τ d +

∫

Ω
ω(u) : τ +

∫

Ω
u · div τ = 0 ∀ τ ∈ H0(div; Ω) ,

−
∫

Ω
v · divσ −

∫

Ω
ω(v) : σ + γ

∫

Ω
u · v =

∫

Ω
(α ·ϕ)g · v ∀ v ∈ H1

0(Ω) ,

∫

Ω
K∇ϕ : ∇ψ +

∫

Ω
(∇ϕ)u ·ψ = 0 ∀ψ ∈ H1

ΓD
(Ω) .

(3.4)

In order to analyze the variational formulation (3.4), and similarly as in [13, Section 2] (see also
[4, 8, 21]), we additionally augment (3.4) by incorporating the following residual Galerkin type-terms
coming from the constitutive and equilibrium equations for the fluid,

κ1

∫

Ω
(e(u)− t) : e(v) = 0 ∀ v ∈ H1

0(Ω) ,

−κ2γ

∫

Ω
u · div τ + κ2

∫

Ω
divσ · div τ = −κ2

∫

Ω
(α · ϕ)g · div τ ∀ τ ∈ H0(div; Ω) ,

−κ3

∫

Ω

{
2ν(ϕ)t− σd − (u⊗ u)d

}
: τ d = 0 ∀ τ ∈ H0(div; Ω) ,

(3.5)

where (κ1, κ2, κ3) is a vector of positive parameters to be specified later in Section 3.3.

Hence, letting
~ξ := (t,σ,u) ∈ H := L

2
tr(Ω)×H0(div; Ω)×H1

0(Ω),

where H is endowed with the natural norm

‖~η‖H :=
{
‖r‖20,Ω + ‖τ‖2div,Ω + ‖v‖21,Ω

}1/2
, ∀ ~η := (r, τ ,v) ∈ H ,

and adding up (3.4) with (3.5), we arrive at the following semi-augmented mixed-primal formulation
for the double-diffusive natural convection problem in porous media: Find (~ξ,ϕ) ∈ H×H1(Ω) , with
ϕ
∣∣
ΓD

= ϕD, such that

Aϕ(~ξ, ~η) +Bu(~ξ, ~η) = Fϕ(~η) ∀ ~η ∈ H, (3.6a)

C(ϕ,ψ) = Gu,ϕ(ψ) ∀ψ ∈ H1
ΓD

(Ω), (3.6b)

where, given φ ∈ H1(Ω) and w ∈ H1
0(Ω), Aφ, Bw and C are the bilinear forms defined, respectively,

as

Aφ(~ξ, ~η) := 2

∫

Ω
ν(φ)t :

{
r − κ3τ

d
}
+

∫

Ω
t : {τ d − κ1e(v)} −

∫

Ω
σd :

{
r − κ3τ

d
}

+ (1− κ2γ)

∫

Ω
u · div τ −

∫

Ω
v · divσ +

∫

Ω
ω(u) : τ −

∫

Ω
σ : ω(v)

+ γ

∫

Ω
u · v + κ2

∫

Ω
divσ · div τ + κ1

∫

Ω
e(u) : e(v) ,

(3.7)
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and

Bw(~ξ, ~η) :=

∫

Ω
(u⊗w)d :

{
κ3τ

d − r
}
, (3.8)

for all ~ξ, ~η ∈ H and

C(χ,ψ) : =

∫

Ω
K∇χ : ∇ψ ∀χ,ψ ∈ H1(Ω) . (3.9)

In turn, Fφ and Gw,φ are linear functionals defined as

Fφ(~η) :=

∫

Ω
(α · φ)g · {v − κ2div τ

}
∀ ~η ∈ H , (3.10)

and

Gw,φ(ψ) := −
∫

Ω
(∇φ)w · ψ ∀ψ ∈ H1

ΓD
(Ω) . (3.11)

3.2 The fixed point approach

In this Section we describe a fixed point strategy that allow us to solve the coupled problem given by
(3.6). We start by denoting H := H1

0(Ω)×H1(Ω), and defining the operator A : H → H by

A(w,φ) = (A1(w,φ), A2(w,φ), A3(w,φ)) := ~ξ ∀ (w,φ) ∈ H

where ~ξ = (t,σ,u) ∈ H is the unique solution of the augmented mixed formulation given by (3.6a),
with (w,φ) instead (u,ϕ), that is:

Aφ(~ξ, ~η) + Bw(~ξ, ~η) = Fφ(~η) ∀ ~η ∈ H , (3.12)

where the bilinear forms Aφ, Bw and the functional Fφ are defined exactly as in (3.7), (3.8), and
(3.10), respectively. In addition, we also introduce the operator B : H → H1(Ω) defined as

B(w,φ) := ϕ ∀ (w,φ) ∈ H,

where ϕ is the unique solution of the problem (3.6b), with (w,φ) instead (u,ϕ), that is:

C(ϕ,ψ) = Gw,φ(ψ) ∀ψ ∈ H1
ΓD

(Ω), (3.13)

where the bilinear form C, and the functional Gw,φ are defined by (3.9) and (3.11), respectively.

In this way, by introducing the operator L : H → H as

L (w,φ) := (A3(w,φ), B(A3(w,φ),φ)) ∀ (w,φ) ∈ H (3.14)

we readily realize that solving (3.6) is equivalent to seeking a fixed point of L , that is: Find (u,ϕ) ∈ H
such that

L (u,ϕ) = (u,ϕ) . (3.15)

The following two sections establish the well-posedness of (3.15).
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3.3 Well-posedness of the uncoupled problems

We begin by recalling the following lemmas which are useful to prove the ellipticity of the bilinear
form Aφ +Bw.

Lemma 3.1 There exists c2(Ω) > 0 such that

c2(Ω)‖τ 0‖20,Ω ≤ ‖τ d‖20,Ω + ‖div(τ )‖20,Ω ∀ τ = τ 0 + c I ∈ H(div; Ω) ,

with τ 0 ∈ H0(div; Ω) and c ∈ R.

Proof. See [9, Proposition 3.1]. �

Lemma 3.2 There holds
1

2
|v|21,Ω ≤ ‖e(v)‖20,Ω ∀ v ∈ H1

0(Ω) .

Proof. See [36, Theorem 10.1]. �

We now provide sufficient conditions under which the uncoupled problems (3.12) and (3.13) are
indeed uniquely solvable.

Lemma 3.3 Assume that κ1 ∈
(
0, 2δ3

(
2ν1 − κ3ν2

δ1

))
, κ2 ∈ (0, 2δ2), κ3 ∈

(
0, 2ν1δ1ν2

)
with δ1 ∈

(
0, 1

ν2

)
,

δ2 ∈
(
0, 2

γ

)
, δ3 ∈ (0, 1). Then, there exists r0 > 0 such that for each r ∈ (0, r0), problem (3.12) has a

unique solution A(w,φ) := ~ξ ∈ H, for each (w,φ) ∈ H with ‖w‖1,Ω ≤ r. Moreover, there exists CA ,
independent of (w,φ), such that

‖A(w,φ)‖H = ‖~ξ‖H ≤ CA |α| |g| ‖φ‖0,Ω ∀ (w,φ) ∈ H . (3.16)

Proof. We begin by deriving the continuity of the bilinear forms Aφ and Bw (sf. (3.7) and (3.8),
respectively). Indeed, applying Cauchy-Schwarz’s inequality, the assumptions (2.3), and the fact that
‖e(v)‖0,Ω ≤ |v|1,Ω and ‖ω(v)‖0,Ω ≤ |v|1,Ω ∀ v ∈ H1(Ω), we deduce that there exists a positive
constant CAφ

, depending on κ1, κ2, κ3, ν2, γ, such that

|Aφ(~ξ, ~η)| ≤ CAφ
‖~ξ‖H‖~η‖H ∀~ξ, ~η ∈ H , (3.17)

where CAφ
:= 3max{2, γ + κ1, κ2 + κ3, 2ν2, 1 + 2ν2κ3, 1 + |1 − γκ2|}. In turn, by applying Hölder’s

inequality and the continuous injection i : H1(Ω) → L4(Ω), with constant c1(Ω), we obtain that

|Bw(~ξ, ~η)| ≤ c1(Ω)(2 + κ23)
1/2‖w‖1,Ω ‖~ξ‖H ‖~η‖H ∀~ξ, ~η ∈ H . (3.18)

Then, it follows from (3.17) and (3.18), that there exists a positive constant denote by ‖Aϕ + Bw‖,
that depends on κ1, κ2, κ3, ν2, γ, c1(Ω) and ‖w‖1,Ω, such that

|(Aφ +Bw)(~ξ, ~η)| ≤ ‖Aφ +Bw‖ ‖~ξ‖H ‖~η‖H ∀~ξ, ~η ∈ H . (3.19)

We now address the proof of the ellipticity for the bilinear form Aφ+Bw. To this end, we first derive
this property for the bilinear form Aφ. In fact, from (3.7), by applying (2.3) and the Cauchy-Schwarz
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inequality, together with Lemma 3.2, it followss that

Aφ(~ξ,~ξ) = 2

∫

Ω
ν(φ)t : t − 2κ3

∫

Ω
ν(φ)t : σd − κ1

∫

Ω
t : e(u) + κ3‖σd‖20,Ω

− κ2γ

∫

Ω
u · divσ + γ‖u‖20,Ω + κ2‖divσ‖20,Ω + κ1‖e(u)‖20,Ω

≥ 2ν1‖t‖20,Ω − 2κ3ν2‖t‖0,Ω‖σd‖0,Ω − κ1‖t‖0,Ω‖e(u)‖0,Ω + κ3‖σd‖20,Ω
− κ2γ‖u‖0,Ω‖divσ‖0,Ω + γ‖u‖20,Ω + κ2‖divσ‖20,Ω + κ1‖e(u)‖20,Ω

≥ 2ν1‖t‖20,Ω − 2κ3ν2‖t‖0,Ω‖σd‖0,Ω − κ1‖t‖0,Ω|u|1,Ω + κ3‖σd‖20,Ω
− κ2γ‖u‖0,Ω‖divσ‖0,Ω + γ‖u‖20,Ω + κ2‖divσ‖20,Ω +

κ1
2
|u|21,Ω

Next, employing the Young inequality and gathering similar terms, we obtain

Aφ(~ξ,~ξ) ≥
(
2ν1 −

κ3ν2
δ1

− κ1
2δ3

)
‖t‖20,Ω + κ3

(
1− ν2δ1

)
‖σd‖20,Ω + κ2

(
1− γδ2

2

)
‖divσ‖20,Ω

+ γ

(
1− κ2

2δ2

)
‖u‖20,Ω +

κ1
2

(
1− δ3

)
|u|21,Ω

and then, choosing κ1, κ2, κ3, δ1, δ2 and δ3 in the ranges specified of the statement of the present
Lemma, we deduce that there exists a positive constant α(Ω), independent of (w,ϕ), such that

Aφ(~ξ,~ξ) ≥ α(Ω) ‖~ξ‖2H ∀~ξ ∈ H . (3.20)

Next, by combining (3.18) and (3.20), we find that

(Aφ +Bw)(~ξ,~ξ) ≥
{
α(Ω)− c1(Ω)(2 + κ23)

1/2‖w‖1,Ω
}
‖~ξ‖2H ∀~ξ ∈ H ,

from which, we deduce that

(Aφ +Bw)(~ξ,~ξ) ≥ α(Ω)

2
‖~ξ‖2H ∀~ξ ∈ H , (3.21)

provided that ‖w‖1,Ω ≤ r0, with

r0 :=
α(Ω)

2c1(Ω)(2 + κ23)
1/2

, (3.22)

which confirms the ellipticity of Aφ + Bw. On the other hand, by applying the Cauchy-Schwarz
inequality, we deduce that Fφ ∈ H

′ (cf. (3.10)) with

‖Fφ‖ ≤
√
2 (2 + κ22)

1/2 |α| |g| ‖φ‖0,Ω . (3.23)

Consequently, a straightforward application of the Lax-Milgram lemma implies that there exists a
unique solution ~ξ ∈ H of (3.12). Finally, from (3.21) and (3.23), and performing simple algebraic

manipulations, we derive (3.16), with CA :=
2
√
2 (2 + κ22)

1/2

α(Ω)
> 0, independent of (w,φ). �

Remark 3.1 At this point, we remark that for computational purposes, the constant α(Ω) defined
in Lemma 3.3, can be maximized by choosing the parameters δ1, δ2, δ3, κ1, κ2 and κ3 at the middle
points of their feasible ranges. Thus, adequate choices for these parameters are δ1 :=

1
2ν2

, δ2 :=
1
γ and

δ3 :=
1
2 , which establish that

κ1 =
ν1
2
, κ2 =

1

γ
and κ3 =

ν1
2ν22

. (3.24)
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Remark 3.2 In order to establish the solvability of the problem (3.13), associated to the operator B ,
we first point out that ϕD ∈ H1/2(ΓD) can be continuously extended in the trace sense to H1/2(Γ).
Indeed, the set

H(ϕD) = (γ0|ΓD
)−1({ϕD}) =

{
ϕ ∈ H1(Ω) : γ0(ϕ)|ΓD

= ϕD

}

is a closed and convex since the usual trace operator γ0 : H1(Ω) → H1/2(Γ) is linear and continuous.
Then, from The Best Approximation Theorem [24, Theorem 7] there exists a unique ϕ̃ := E(ϕD) ∈
H1(Ω), where E denotes the extension of ϕD, such that γ0(ϕ̃)|ΓD

= ϕD with

‖ϕ̃‖1,Ω = inf
ϕ∈H(ϕD)

‖ϕ‖1,Ω = dist(0,H(ϕD)) = ‖ϕD‖1/2,ΓD
. (3.25)

In this way, the suitable extension of ϕD ∈ H1/2(ΓD) is not but the corresponding one of γ0(ϕ̃) ∈
H1/2(Γ) to H1(Ω).

Lemma 3.4 For each (w,φ) ∈ H, problem (3.13) has a unique solution ϕ ∈ H1(Ω), with ϕ|ΓD
= ϕD.

Moreover, there exists a constant CB > 0 independent of (w,φ), such that

‖B(w,φ)‖1,Ω = ‖ϕ‖1,Ω ≤ CB

{
‖w‖1,Ω‖φ‖1,Ω + ‖ϕD‖1/2,ΓD

}
. (3.26)

Proof. We begin by nothing, according to the aforementioned in Remark 3.2, that given ϕD ∈
H1/2(ΓD) there exists ϕ1 ∈ H1(Ω) such that

ϕ1|ΓD
= ϕD and ‖ϕ1‖1,Ω = ‖ϕD‖1/2,ΓD

. (3.27)

Then, we consider the auxiliary linear problem: Find ϕ0 ∈ H1
ΓD

(Ω) such that

C(ϕ0,ψ) = Gw,φ(ψ) − C(ϕ1,ψ) ∀ψ ∈ H1
ΓD

(Ω) (3.28)

where C and Gw,φ are defined in (3.9) and (3.11), respectively. In addition, from (3.9) and the
Cauchy-Schwarz’s inequality, we deduce that

|C(χ,ψ)| ≤ ‖K‖∞,Ω‖χ‖1,Ω‖ψ‖1,Ω ∀χ,ψ ∈ H1(Ω) , (3.29)

which, in particular, confirms the boundedness of C. Then, from (3.9), using (2.2) and the Poncairé
inequality (3.1), we get

C(ψ,ψ) ≥ α̃ ‖ψ‖21,Ω ∀ψ ∈ H1
ΓD

(Ω) , (3.30)

which proves that C is H1
ΓD

(Ω)-elliptic with constant

α̃ := k0 c
−1
gp . (3.31)

Next, applying the Cauchy-Schwarz’s inequality, the boundedness of the continuous injection i :
H1(Ω) → L4(Ω), with constant c1(Ω) := ‖i‖2, (3.29), and the second identity in (3.27), we easily
deduce that

|Gw,φ(ψ)−C(ϕ1,ψ)| ≤
{
c1(Ω)‖w‖1,Ω‖φ‖1,Ω+‖K‖∞,Ω‖ϕD‖1/2,ΓD

}
‖ψ‖1,Ω ∀ψ ∈ H1

ΓD
(Ω) , (3.32)

which establishes the boundedness of the right-hand side of (3.28). Consequently, a direct application
of the Lax-Milgram lemma implies that there exists a unique ϕ0 ∈ H1

ΓD
(Ω) that satisfies (3.28) with

‖ϕ0‖1,Ω ≤ 1

α̃

{
c1(Ω)‖w‖1,Ω‖φ‖1,Ω + ‖K‖∞,Ω‖ϕD‖1/2,ΓD

}
.
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On the other hand, we now set ϕ := ϕ0 + ϕ1, which satisfies that ϕ|ΓD
= ϕ0|ΓD

+ ϕ1|ΓD
= ϕD. In

addition, it is easy to check that ϕ is a solution of problem (3.13), where the uniqueness comes from
(3.30). Finally, ϕ verifies the estimate (3.26), with constant CB := max{α̃−1c1(Ω), α̃

−1‖K‖∞,Ω + 1}.
�

We end this section by introducing a further regularity hypotheses on the problem definig A , which
will be employed to derive a Lipschitz-continuity property for the operator L . More precisely, we
assume that for each (w,φ) ∈ H with ‖w‖1,Ω + ‖φ‖1,Ω ≤ r, r > 0 given, there holds (r, τ ,v) =
A(w,φ) ∈ L

2
tr(Ω) ∩ H

ε(Ω) × H0(div; Ω) ∩ H
ε(Ω) × H1+ε(Ω), for some ε ∈ (0, 1) (when n = 2) or

ε ∈ [12 , 1) (when n = 3), with

‖r‖ε,Ω + ‖τ‖ε,Ω + ‖v‖ε,Ω ≤ Ĉ(r) |α| |g| ‖φ‖0,Ω , (3.33)

where Ĉ(r) is a positive constant independent of (w,φ) but depending on the upper bound r of
its norm. The reason of the estipulated ranges for ε will be clarified in the forthcomming analysis
(specifically in the proofs of Lemmas 3.6 and 3.8 below). Also, we pay attention to the fact the while
the estimate (3.33) will be employed only to bound ‖r‖ε,Ω, we have stated it including the terms
‖τ‖ε,Ω and ‖v‖1+ε,Ω as well, since due to the first and fourth equations of (2.9), the regularities of
r, τ and v will most likely be connected.

3.4 Solvability analysis of the fixed point equation

We begin by emphasizing that the well-posedness of the uncoupled problems (3.12) and (3.13) confirms
that the operators A , B , and L (cf. (3.14)) are well defined, and hence now we can address the
solvability analysis of the fixed point problem presented in (3.15). To this end, we will verify below
the hypotheses of the Banach fixed-point theorem.

Lemma 3.5 Given r ∈ (0, r0), with r0 given by (3.22), we let

Wr :=
{
(w,φ) ∈ H : ‖(w,φ)‖H ≤ r

}
,

and assume that the data satisfy

c(r) |α| |g| + CB ‖ϕD‖1/2,ΓD
≤ r (3.34)

where c(r) := rCA(1 + rCB), with CA and CB given by (3.16) and (3.26), respectively. Then, there
holds L (Wr) ⊆ Wr.

Proof. It follows similar as in [20, Lemma 3.5] �

Lemma 3.6 Let r ∈ (0, r0) with r0 given by (3.22). Then, there exists a constant LA > 0, depending
on the stabilization parameters κ2, κ3, and the constants Lν , c1(Ω), α(Ω), Cε (cf. (2.3), (3.3), (3.20)
and (3.41), respectively), such that for all (w,φ), (w̃, φ̃) ∈ H, with ‖w‖1,Ω, ‖w̃‖1,Ω ≤ r, there holds

‖A(w,φ)− A(w̃, φ̃)‖H ≤ LA

{
‖A3(w,φ)‖1,Ω ‖w − w̃‖1,Ω

+ ‖A1(w,φ)‖ε,Ω ‖φ − φ̃‖0,n/ε,Ω + |α| |g| ‖φ − φ̃‖1,Ω
}
.

(3.35)

Proof. Given (w,φ), (w̃, φ̃) as stated, we let ~ξ = (t,σ,u) = A(w,φ) and ~ζ = (̃t, σ̃, ũ) = A(w̃, φ̃),
which according to the definition of operator A (cf. (3.12)), means that:

Aφ(~ξ, ~η) +Bw(~ξ, ~η) = Fφ(~η) and A
φ̃
(~ζ, ~η) +Bw̃(~ζ, ~η) = F

φ̃
(~η) ∀ ~η ∈ H .
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Then, subtracting both identities, replacing ~ζ = ~ζ − ~ξ + ~ξ, and using the bilinearity of Aφ +Bw for
any φ and w, it follows from (3.12) that:

(A
φ̃
+Bw̃)(~ξ − ~ζ, ~η) = (Fφ − F

φ̃
)(~η) + (A

φ̃
−Aφ)(~ξ, ~η) + Bw̃−w(~ξ, ~η) ∀ ~η ∈ H . (3.36)

Moreover, applying the ellipticity of A
φ̃
+Bw̃ (cf. (3.21)), and then employing (3.36) with ~η := ~ξ−~ζ,

we find that

α(Ω)

2
‖~ξ − ~ζ‖2H ≤ (A

φ̃
+Bw̃)(~ξ − ~ζ,~ξ − ~ζ)

= (Fφ − F
φ̃
)(~ξ − ~ζ) + (A

φ̃
−Aφ)(~ξ,~ξ − ~ζ) + Bw̃−w(~ξ,~ξ − ~ζ) . (3.37)

Then, for the first and third terms on the right-hand side of (3.37), we employ the Cauchy-Schwarz
and Hölder inequalities, together with the continuous injection i : H1(Ω) → L4(Ω), similar as in (3.23)
and (3.18), in order to obtain that

|(Fφ − F
φ̃
)(~ξ − ~ζ)| =

∣∣∣∣∣

∫

Ω
(α(φ− φ̃))g ·

{
(u− ũ)− κ2 div(σ − σ̃)

}
∣∣∣∣∣

≤
√
2 (2 + κ22)

1/2 |α| |g| ‖φ − φ̃‖1,Ω ‖~ξ − ~ζ‖H

(3.38)

and

|Bw−w̃(~ξ,~ξ − ~ζ)| =

∣∣∣∣∣

∫

Ω
(u⊗ (w̃ −w))d :

{
κ3(σ − σ̃)d − (t− t̃)

}
∣∣∣∣∣

≤ c1(Ω) (2 + κ23)
1/2 ‖u‖1,Ω ‖w − w̃‖1,Ω ‖~ξ − ~ζ‖H

(3.39)

On the other hand, for the second term in the right-hand side of (3.37), we apply the Lipschitz
continuity property for ν given in (2.3), the Cauchy-Schwarz and Hölder inequalities, and the definition
of Aϕ (cf. (3.7)), to obtain that

|(A
φ̃
−Aφ)(~ξ,~ξ − ~ζ)| =

∣∣∣∣∣

∫

Ω
2(ν(φ)− ν(φ̃))t : {(t− t̃)− κ3(σ − σ̃)d}

∣∣∣∣∣

≤ 2Lν(2 + κ23)
1/2‖φ− φ̃‖0,2q,Ω‖t‖0,2p,Ω ‖~ξ − ~ζ‖H,

(3.40)

with p, q ∈ (1,+∞) such that
1

p
+

1

q
= 1. We now proceed as in [7, Lemma 3.9]. In fact, given

the further ε-regularity assumed in (3.33), we reall that the Sobolev embedding theorem (see e.g [2,
Theorem 4.12]) establishes the continuous injection iε : Hε(Ω) → L2p(Ω) with boundedness constant
Cε, where

2p =





2

1− ε
if n = 2

6

3− 2ε
if n = 3

and 2q = n
ε , and therefore, there holds

‖t‖0,2p,Ω ≤ Cε ‖t‖ε,Ω ∀ t ∈ H
ε(Ω) . (3.41)

In this way, denoting

LA :=
2

α(Ω)
max

{
c1(Ω) (2 + κ23)

1/2, 2Lν(2 + κ23)
1/2 Cε,

√
2 (2 + κ22)

1/2
}

from the inequalities (3.37), (3.38), (3.39), (3.40), and recalling that t = A1(w,φ) and u = A3(w,φ),
yields (3.35) and concludes the proof. �
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Lemma 3.7 There exists LB > 0, depending on α̃ and c1(Ω) (cf. (3.30) and (3.32), respectively) such
that for all (w,φ), (w̃, φ̃) ∈ Wr (cf. Lemma 3.5)there holds

‖B(w,φ)− B(w̃, φ̃)‖1,Ω ≤ LB

{
‖w − w̃‖1,Ω + ‖φ− φ̃‖1,Ω

}
. (3.42)

Proof. Given (w,φ), (w̃, φ̃) ∈ Wr, we let ϕ, ϕ̃ ∈ H1(Ω) be the corresponding solutions of (3.13), that
is ϕ := B(w,φ) and ϕ̃ := B(w̃, φ̃). Then, since ϕ|ΓD

= ϕ̃|ΓD
= ϕD, we realize that ϕ − ϕ̃ belongs

to H1
ΓD

(Ω). In this way, applying the ellipticity of C (cf. (3.30)), using (3.13) and (3.11), adding and

subtracting φ̃, and employing the Hölder inequality, the continuous injection i : H1(Ω) → L4(Ω), and
the definition of Wr (cf. Lemma 3.5), we readily deduce that

α̃ ‖ϕ− ϕ̃‖21,Ω ≤ C(ϕ,ϕ− ϕ̃)−C(ϕ̃,ϕ− ϕ̃)

= Gw,φ(ϕ− ϕ̃)−G
w̃,φ̃

(ϕ− ϕ̃) (3.43)

= −
∫

Ω

{(
∇(φ− φ̃)

)
w + (∇φ̃)(w − w̃)

}
· (ϕ− ϕ̃)

≤ c1(Ω)
{
‖w‖1,Ω|φ− φ̃|1,Ω + |φ̃|1,Ω‖w − w̃‖1,Ω

}
‖ϕ− ϕ̃‖1,Ω

≤ rc1(Ω)
{
‖φ− φ̃‖1,Ω + ‖w − w̃‖1,Ω

}
‖ϕ− ϕ̃‖1,Ω

which give (3.42) with LB := rc1(Ω)
α̃ . �

Lemma 3.8 Let r and Wr as in Lemma 3.5. Then, there exists a positive constant L Lip, depending
on r, |α|, |g|, and the constants CA , LA , and LB ( (3.16), (3.35), and (3.42), respectively), such that
for all (w,φ), (w̃, φ̃) ∈ Wr there holds

‖L (w,φ)− L (w̃, φ̃)‖H ≤ L Lip ‖(w,φ)− (w̃, φ̃)‖H . (3.44)

Proof. Given r ∈ (0, r0) and (w,φ), (w̃, φ̃) ∈ Wr, we first observe, according to the definition of L

(cf. (3.14)), and the Lipschitz-continuity of B (cf. (3.42)), that

‖L (w,φ)− L (w̃, φ̃)‖H = ‖A3(w,φ)− A3(w̃, φ̃)‖1,Ω + ‖B(A3(w,φ),φ)− B(A3(w̃, φ̃), φ̃)‖1,Ω

≤ (1 + LB) ‖A3(w,φ)− A3(w̃, φ̃)‖1,Ω + LB ‖φ − φ̃‖1,Ω
from which, employing the Lipschitz-continuity of A (cf. (3.6)), yields

‖L (w,φ)− L (w̃, φ̃)‖H ≤ (1 + LB)LA

{
‖A3(w,φ)‖1,Ω ‖w − w̃‖1,Ω

+ ‖A1(w,φ)‖ε,Ω ‖φ − φ̃‖0,n/ε,Ω + |α| |g| ‖φ − φ̃‖1,Ω
}

+ LB ‖φ − φ̃‖1,Ω
(3.45)

Then, applying the bound (3.16) to estimate the term ‖A3(w,φ)‖1,Ω, employing the continuous

injection of H1(Ω) into Ln/ε(Ω) with boundedness constant C̃ε, using the estimate (3.33) to estimate
the term ‖A1(w,φ)‖ε,Ω, noting that ‖φ‖1,Ω ≤ r, and performing some algebraic manipulations, we
get from (3.45) that

‖L (w,φ)− L (w̃, φ̃)‖H ≤ (1 + LB)LA |α| |g|
{
rCA‖w − w̃‖1,Ω + (rC̃εĈ(r) + 1)‖φ − φ̃‖1,Ω

}

+LB‖φ− φ̃‖1,Ω

≤ L Lip‖(w,φ)− (w̃, φ̃)‖H
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In this way, (3.44) follows from the foregoing inequality by defining

L Lip := rCA(1 + LB)LA |α| |g| + (1 + LB)LA |α| |g|(rC̃εĈ(r) + 1) + LB (3.46)

in order to complete the proof. �

Theorem 3.9 Suppose that the parameters κ1, κ2 and κ3 satisfy the conditions required by Lemma
3.3. Let r and Wr as in Lemma 3.5, and assume that the data satisfy (3.34) and allow to have

L Lip < 1 , (3.47)

with L Lip defined in (3.46). Then, problem (3.6) has a unique solution (~ξ,ϕ) ∈ H×H1(Ω) such that
ϕ|ΓD

= ϕD, with (u,ϕ) ∈ Wr (cf. Lemma 3.5), and there holds

‖~ξ‖H ≤ CA r |α| |g| , (3.48)

and
‖ϕ‖1,Ω ≤ CB

{
r ‖u‖1,Ω + ‖ϕD‖1/2,ΓD

}
.

Proof. It follows as a combination of Lemmas 3.5 and 3.8, the assumption (3.47), the Banach fixed-
point theorem, and the a priori estimates (3.16) and (3.26). We omit further details. �

4 Galerkin scheme

In this section we introduce and analyze the Galerkin scheme of the semi-augmented mixed-primal
problem (3.6). To this end, we now let Th be a regular triangulation of Ω by triangles K (in R2) or
tetrahedra K ( in R3) of diameter hK , and define the meshsize h := max{hK : K ∈ Th}. In addition,
given an integer k ≥ 0, for each K ∈ Th we let Pk(K) be the space of polynomial functions on K of
degree ≤ k, and define the corresponding local Raviart-Thomas space of order k as

RTk(K) := Pk(K) ⊕ Pk(K)x ,

where, according to the notations described in Section 1.1, Pk(K) = [Pk(K)]n, and x is the generic
vector in Rn. Then, we consider piecewise polynomials of degree ≤ k for approximating entries of the
strain rate t, the global Raviart-Thomas space of order k to approximate rows of the pseudostress σ,
and the Lagrange space given by the continuous piecewise polynomial vectors of degree ≤ k + 1 for
the velocity u, respectively, that is

H
t
h :=

{
rh ∈ L

2
tr(Ω) : rh|K ∈ Pk(K) ∀K ∈ Th

}
, (4.1)

Hσ
h :=

{
τ h ∈ H0(div; Ω) : ct τ h|K ∈ RTk(K) ∀ c ∈ Rn , ∀K ∈ Th

}
, (4.2)

Hu
h :=

{
vh ∈ C(Ω) : vh|K ∈ Pk+1(K) ∀K ∈ Th, vh = 0 on Γ

}
. (4.3)

For the unknown ϕ containing the tempeture and the concentration into its coordinates, we let Hϕ
h ⊂

H1(Ω) denote the Lagrange space of degree ≤ k + 1 with respect to Th (similar to Hu
h ), and set

Hϕ
h,ΓD

:=
{
ψh ∈ Hϕ

h : ψh|ΓD
= 0

}
(4.4)
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to be the analogous space with homogeneous Dirichlet boundary conditions. We define

ϕD,h := ISZ
h (E(ϕD))

∣∣
ΓD

(4.5)

to be the approximate Dirichlet boundary data, where ISZ
h : H1(Ω) → Hϕ

h denotes the Scott-Zhang in-
terpolant operator of degree k+1, which satisfies the following stability and approximation properties,
respectively, (see [25, Lemma 1.130]).

Lemma 4.1 Let p and ℓ satisfy 1 ≤ p < +∞ and ℓ ≥ 1 if p = 1, and 1/p < ℓ otherwise. Then, there
exists a positive constant c, independent of h, such that the following properties hold:

(i) For all 0 ≤ m ≤ min{1, ℓ},

∀h, ∀v ∈ W ℓ,p(Ω), ‖ISZ
h (v)‖m,p,Ω ≤ c ‖v‖ ℓ,p,Ω. (4.6)

(ii) Provided ℓ ≤ k + 1, for all 0 ≤ m ≤ ℓ,

∀h, ∀K ∈ Th, ∀v ∈ W ℓ,p(∆K), ‖v − ISZ
h (v)‖m,p,K ≤ c hℓ−m

K |v| ℓ,p,∆K
(4.7)

where ∆K denotes the set of elements in Th, sharing at least one vertex with K .

Hence, ϕD,h belongs to the discrete trace space on ΓD given by

H
1/2
h (ΓD) :=

{
ψD,h ∈ C(ΓD) : ψD,h|e ∈ Pk+1(e) ∀ e ∈ EΓD

}
,

where EΓD
stands for the set of edges/faces on ΓD.

In this way, defining Hh := H
t
h×Hσ

h ×Hu
h and denoting ~ξh := (th,σh,uh), the underlying Galerkin

scheme given by the discrete counterpart of (3.6), reads: Find (~ξh,ϕh) ∈ Hh×Hϕ
h , with ϕh

∣∣
ΓD

= ϕD,h,
such that

Aϕh
(~ξh, ~ηh) +Buh

(~ξh, ~ηh) = Fϕh
(~ηh) ∀ ~ηh ∈ Hh, (4.8a)

C(ϕh,ψh) = Guh,ϕh
(ψh) ∀ψh ∈ Hϕ

h,ΓD
. (4.8b)

Throughout the rest of this section we adopt the discrete analogue of the fixed point strategy intro-
duced in Section 3.2. Indeed, denoting Hh := Hu

h × Hϕ
h , we define the operator Ah : Hh → Hh

by

Ah(wh,φh) = (A1,h(wh,φh),A2,h(wh,φh),A3,h(wh,φh)) := ~ξh ∀ (wh,φh) ∈ Hh

where ~ξh = (th,σh,uh) ∈ Hh is the unique solution of the discrete problem (4.8a) with (wh,φh)
instead pf (uh,ϕh), that is

Aφh
(~ξh, ~ηh) +Bwh

(~ξh, ~ηh) = Fφh
(~ηh) ∀ ~ηh ∈ H , (4.9)

where the bilinear forms Aφh
, Bwh

and the functional Fφh
are those corresponding to (3.7), (3.8),

and (3.10), respectively, with w = wh and φ = φh.

In addition, we introduce the operator Bh : Hh → Hϕ
h defined as

Bh(wh,φh) := ϕh ∀ (wh,φh) ∈ Hh ,
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where ϕh is the unique solution of the discrete problem (4.8b) with (wh,φh) instead pf (uh,ϕh), that
is

C(ϕh,ψh) = Gwh,φh
(ψh) ∀ψh ∈ Hϕ

h,ΓD
, (4.10)

where the bilinear form C, and the functional Gwh,φh
are defined as in (3.9) and (3.11), respectively,

with w = wh and φ = φh.

Therefore, by introducing the operator L h : Hh → Hh as

L h(wh,φh) := (A3,h(wh,φh), Bh(A3,h(wh,φh),φh)) ∀ (wh, φh) ∈ Hh

we realize that solving (4.8) is equivalent to seeking a fixed point of L h, that is: Find (uh,ϕh) ∈ Hh

such that
L h(uh,ϕh) = (uh,ϕh) . (4.11)

Certainly, all the above makes sense if we guarantee that the discrete problems (4.9) and (4.10) are
well-posed. This is precisely the purpose of the next section.

4.1 Well-posedness of the uncoupled problems

In this section, we establish the well-posedness of both (4.9) and (4.10), thus confirming that the
operators Ah, Bh, and hence L h, are well-defined. We begin with the corresponding result for Ah,
which actually follows almost verbatim to that of its continuous counterpart A (see Lemma 3.3), and
the proof can be omitted.

Lemma 4.2 Assume that κ1 ∈
(
0, 2δ3

(
2ν1 − κ3ν2

δ1

))
, κ2 ∈ (0, 2δ2), κ3 ∈

(
0, 2ν1δ1ν2

)
with δ1 ∈

(
0, 1

ν2

)
,

δ2 ∈
(
0, 2

γ

)
, δ3 ∈ (0, 1). Then, there exists r0 > 0 (cf. (3.22)) such that for each r ∈ (0, r0), problem

(4.9) has a unique solution Ah(wh,φh) := ~ξh ∈ Hh, for each (wh,φh) ∈ Hh with ‖wh‖1,Ω ≤ r.
Moreover, there exists CA , independent of (wh,φh), such that

‖Ah(wh,φh)‖Hh
= ‖~ξh‖Hh

≤ CA |α| |g| ‖φh‖0,Ω ∀ (wh,φh) ∈ Hh .

We now provide the discrete version of Lemma 3.4.

Lemma 4.3 For each (wh,φh) ∈ Hh, problem (4.10) has a unique solution ϕh ∈ Hϕ
h , with ϕh|ΓD

=

ϕD,h. Moreover, there exists a constant C̃B > 0 independent of (wh,φh), such that

‖Bh(wh,φh)‖1,Ω = ‖ϕh‖1,Ω ≤ C̃B

{
‖wh‖1,Ω‖φh‖1,Ω + |α| |g| + ‖ϕD‖1/2,ΓD

}
. (4.12)

Proof. Let ϕ1,h := ISZ
h (ϕ1) ∈ Hϕ

h which satisfies ϕ1,h|ΓD
= ϕD,h. Then, similar to Lemma 3.4, we

consider the auxiliary discrete problem: Find ϕ0,h ∈ Hϕ
h,ΓD

such that

C(ϕ0,h,ψh) = G̃wh,φh
(ψh) ∀ψh ∈ Hϕ

h,ΓD
, (4.13)

where

G̃wh,φh
(ψh) := −

∫

Ω
(∇φh)wh · ψh −

∫

Ω
K∇ϕ1,h : ∇ψh ∀ψh ∈ Hϕ

h,ΓD
.

Next, the boundedness and the ellipticity of C are obtained exactly as in the proof of Lemma 3.4
with the same ellipticity constant α̃ given by (3.31). On the other hand, reasoning as in the proof of
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Lemma 3.4, and applying the stability property of ISZ
h (cf. (4.6)) and the equinormic property of ϕ1

(cf. (3.27)), we easily deduce that

|G̃wh,φh
(ψh)| ≤

{
c1(Ω)‖wh‖1,Ω‖φh‖1,Ω + c ‖K‖∞,Ω ‖ϕD‖1/2,ΓD

}
‖ψh‖1,Ω,

∀ψ ∈ Hϕ
h,ΓD

, which says that G̃wh,φh
∈ [Hϕ

h,ΓD
]′ and

‖G̃wh,φh
‖ ≤ c1(Ω)‖wh‖1,Ω‖φh‖1,Ω + c ‖K‖∞,Ω ‖ϕD‖1/2,ΓD

.

Therefore, a direct application of the Lax-Milgram lemma implies that there exists a unique ϕ0,h ∈
Hϕ

h,ΓD
that satisfies (4.13) with

‖ϕ0,h‖1,Ω ≤ 1

α̃

{
c1(Ω)‖wh‖1,Ω‖φh‖1,Ω + c ‖K‖∞,Ω ‖ϕD‖1/2,ΓD

}
.

Then, ϕh := ϕ0,h + ϕ1,h ∈ Hϕ
h , which in fact satisfies that ϕh|ΓD

= ϕD,h, is the unique solution of

(4.10). In addition, the estimate (4.12) holds with C̃B := max{α̃−1 c1(Ω), c̃ (α̃
−1 ‖K‖∞,Ω + 1)}. �

4.2 Solvability analysis of the fixed point equation

In this section we establish the solvability of the fixed point problem (4.11) by applying the Brouwer
fixed-point theorem [16, Theorem 9.9-2]. To this end, we begin with the discrete version of lemma 3.5.

Lemma 4.4 Given r ∈ (0, r0), with r0 given by (3.22), we let

W h
r :=

{
(wh,φh) ∈ Hh : ‖(wh,φh)‖H ≤ r

}
,

and assume that the data satisfy

c(r) |α| |g| + C̃B ‖ϕD‖1/2,ΓD
≤ r (4.14)

where c(r) := rCA(1 + rC̃B), with CA and C̃B as in (3.16) and (4.12), respectively. Then, there holds
L h(W

h
r ) ⊆ W h

r .

In order to provide the discrete analogue of Lemma 3.6, we notice in advance that, instead of the
regularity assumptions employed in the continuous case, which are not applicable in the present case,
we simple utilize an L4-L4-L2 argument.

Lemma 4.5 Let r ∈ (0, r0) with r0 given by (3.22). Then, there exists a constant L̃A > 0, independent
of r, such that for all (wh,φh), (w̃h, φ̃h) ∈ W h

r , with ‖wh‖1,Ω, ‖w̃h‖1,Ω ≤ r, there holds

‖Ah(wh,φh)− Ah(w̃h, φ̃h)‖H ≤ L̃A

{
‖A3,h(wh,φh)‖1,Ω ‖wh − w̃h‖1,Ω

+ ‖A1,h(wh,φh)‖0,4,Ω ‖φ− φ̃‖0,4,Ω + |α| |g| ‖φh − φ̃h‖1,Ω
}
.

(4.15)

Proof. It proceeds exactly as in the proof of Lemma 3.6, except for the derivation of the discrete
analogue of (3.40), where, instead of choosing the values of p, q determined by the regularity parameter
ε, it suffices to take p = q = 2, thus obtaining

|(A
φ̃h

−Aφ
h
)(~ξh,~ξh − ~ζh)| ≤ 2Lν(2 + κ23)

1/2 ‖th‖0,4,Ω ‖φh − φ̃h ‖0,4,Ω ‖~ξh − ~ζh‖H ,
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for all (wh,φh), (w̃h, φ̃h), with ~ξh = (th,σh,uh) := Ah(wh,φh) ∈ Hh and ~ζh = (̃th, σ̃h, ũh) :=
Ah(w̃h, φ̃h) ∈ Hh. Thus, since the elements of H

t
h are piecewise polynomials, we can guarantee

that ‖th‖0,4,Ω < ∞ for each th ∈ H
t
h. The proof concludes with L̃A := 2

α(Ω) max{c1(Ω) (2 + κ23)
1/2,

2Lν(2 + κ23)
1/2,

√
2 (2 + κ22)

1/2}. �

The discrete version of Lemma 3.7 is given as follows.

Lemma 4.6 Let LB > 0 as in Lemma 3.7. Then, for all (wh,φh), (w̃h, φ̃h) ∈ W h
r there holds

‖Bh(wh,φh)− Bh(w̃h, φ̃h)‖1,Ω ≤ LB

{
‖wh − w̃h‖1,Ω + ‖φh − φ̃h‖1,Ω

}
. (4.16)

Proof. It corresponds to an adaptation of the proof of Lemma 3.7 to the discrete context. �

Now, combining Lemmas 4.5 and 4.6, and employing the continuous injection of H1(Ω) into L4(Ω),
we can prove the discrete version of Lemma 3.8.

Lemma 4.7 Let r and W h
r as in Lemma 4.4. Then, there exits a positive constant C, depending only

on L̃A and LB (cf. (4.15) and (4.16), respectively), such that for all (wh,φh), (w̃h, φ̃h) ∈ W h
r there

holds

‖L h(wh,φh)− L h(w̃h, φ̃h)‖H ≤ C
{
‖A3,h(wh,φh)‖1,Ω + c1(Ω) ‖A1,h(wh,φh)‖0,4,Ω

+ |α| |g| + LB

}
‖(wh,φh)− (w̃h, φ̃h)‖H .

More precisely, there holds C = max{(1 + LB)L̃A , 1}.

Consequently, since the foregoing lemma confirms the continuity of L h, by a straightforward
application of Brouwer fixed point theorem (cf. [16, Theorem 9.9-2]) on the convex and compact set
W h

r ⊆ Hh, we can provide the main result of this section.

Theorem 4.8 Suppose that the parameters κ1, κ2 and κ3 satisfy the conditions required by Lemma
4.2. Let r and W h

r as in Lemma 4.4, and assume that the data satisfy (4.14). Then, problem (4.8)
has at least one solution (~ξh,ϕh) ∈ Hh ×Hϕ

h such that ϕh|ΓD
= ϕD,h, with (uh,ϕh) ∈ W h

r , and there
holds

‖~ξh‖H ≤ CA r |α| |g| ,
and

‖ϕh‖1,Ω ≤ C̃B

{
r ‖uh‖1,Ω + ‖ϕD‖1/2,ΓD

}
.

5 A priori error analysis

We now aim to derive the a priori error estimates for the Galerkin scheme given by (4.8). To this
end, given ((t,σ,u),ϕ) := (~ξ,ϕ) ∈ H×H1(Ω), with (u,ϕ) ∈ Wr and ((th,σh,uh),ϕh) := (~ξh,ϕh) ∈
Hh×Hϕ

h , with (uh,ϕh) ∈ W h
r solutions of (3.6) and (4.8), respectively, we first observe that the above

problems can be rewritten as two pairs of corresponding continuous and discrete formulations, namely

Aϕ(~ξ, ~η) +Bu(~ξ, ~η) = Fϕ(~η) ∀ ~η ∈ H , (5.1a)

Aϕh
(~ξh, ~ηh) +Buh

(~ξh, ~ηh) = Fϕh
(~ηh) ∀ ~ηh ∈ Hh , (5.1b)
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and

C(ϕ,ψ) = Gu,ϕ(ψ) ∀ψ ∈ H1
ΓD

(Ω) , (5.2a)

C(ϕh,ψh) = Guh,ϕh
(ψh) ∀ψh ∈ Hϕ

h,ΓD
. (5.2b)

Our goal is to obtain an upper bound for the error ‖(~ξ,ϕ) − (~ξh,ϕh)‖H×H1(Ω). For this purpose, we
first recall from [43, Theorem 11.1] an abstract result that corresponds to the standar Strang Lemma
for elliptic variational problems, which will be straightforwardly applied to the pair (5.1a)-(5.1b).

Lemma 5.1 Let H be a Hilbert space, F ∈ H ′, and A : H × H → R be a bounded and H-elliptic
bilinear form. In addition, let {Hh}h>0 be a sequence of finite dimensional subspaces of H, and for
each h > 0 consider a bounded bilinear form Ah : Hh ×Hh → R and a functional Fh ∈ H ′

h. Assume
that the family {Ah}h>0 is uniformly elliptic, that is, there exists a constant β > 0, independent of h
such that

Ah(vh, vh) ≥ β ‖vh‖2H ∀ vh ∈ Hh , ∀h > 0 .

In turn, let u ∈ H and uh ∈ Hh such that

A(u, v) = F (v) ∀ v ∈ H and Ah(uh, vh) = Fh(vh) ∀ vh ∈ Hh .

Then for each h > 0 there holds

‖u− uh‖H ≤ C

{
sup

wh∈Hh

wh 6=0

∣∣F (wh)− Fh(wh)
∣∣

‖wh‖H
+ inf

vh∈Hh

vh 6=0

(
‖u− vh‖H

+ sup
wh∈Hh

wh 6=0

∣∣A(vh, wh)−Ah(vh, wh)
∣∣

‖wh‖H

)}
,

where C := β−1 max{1, ‖A‖}.

In what follows, as usual, we denote

dist
(
~ξ,Hh

)
:= inf

~ηh∈Hh

‖~ξ − ~ηh‖H and dist
(
ϕ,Hϕ

h

)
:= inf

ψh∈H
ϕ
h

‖ϕ−ψh‖1,Ω .

We now derive the a preliminary estimate for the error ‖~ξ − ~ξh‖H = ‖(t,σ,u)− (th,σh,uh)‖H.

Lemma 5.2 There exists a constant CST > 0 independent of h, such that

‖~ξ − ~ξh‖H ≤ CST

{
dist

(
~ξ,Hh

)
+ |α| |g| ‖ϕ−ϕh‖1,Ω + ‖t‖ε,Ω ‖ϕ−ϕh‖1,Ω

+ ‖u‖1,Ω ‖u− uh‖1,Ω
}
. (5.3)

Proof. From Lemma 3.3 we have that the bilinear forms Aϕ +Bu and Aϕh
+Buh

are both bounded

and uniformly elliptic, with ellipticity constant α(Ω)
2 (cf. (3.21)). In turn, Fϕ and Fϕh

are linear
bounded functionals in H and Hh respectively. Then, a straightforward application of Lemma 5.1 to
the context given by (5.1a)-(5.1b), gives

‖~ξ − ~ξh‖H ≤ C

{
sup

~ηh∈Hh

~ηh 6=0

∣∣Fϕ(~ηh)− Fϕh
(~ηh)

∣∣
‖~ηh‖H

+ inf
~ζh∈Hh

~ζh 6=0

(
‖~ξ − ~ζh‖H + sup

~ηh∈Hh

~ηh 6=0

∣∣ (Aϕ +Bu)(~ζh, ~ηh)− (Aϕh
+Buh

)(~ζh, ~ηh)
∣∣

‖~ηh‖H

)}
,

(5.4)
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where C := 2
α(Ω) max{1, ‖Aϕ + Bu‖}. It is important to recall here, from (3.19), that ‖Aϕ + Bu‖

depends only on κ1, κ2, κ3, ν2, γ, c1(Ω) and ‖u‖1,Ω, where ‖u‖1,Ω ≤ r. Furthermore, we now proceed
to estimate each term appearing at the right-hand side of (5.4). In order to do that, we first apply
the same arguments employed to obtain (3.38), to find that

|Fϕ(~ηh)− Fϕh
(~ηh)| ≤

√
2 (2 + κ22)

1/2 |α| |g| ‖ϕ−ϕh‖1,Ω ‖~ηh‖H . (5.5)

Next, in order to estimate the last supremum in (5.4), we add and subtract ~ξ := (t,σ,u), we note
that

(Aϕ +Bu)(~ζh, ~ηh)− (Aϕh
+Buh

)(~ζh, ~ηh)

= (Aϕ +Bu)(~ξ, ~ηh)− (Aϕh
+Buh

)(~ξ, ~ηh)− (Aϕ +Bu)(~ξ − ~ζh, ~ηh) + (Aϕh
+Buh

)(~ξ − ~ζh, ~ηh)

= (Aϕ −Aϕh
)(~ξ, ~ηh) + Bu−uh

(~ξ, ~ηh)− (Aϕ +Bu)(~ξ − ~ζh, ~ηh) + (Aϕh
+Buh

)(~ξ − ~ζh, ~ηh)

where, applying the same approach used in (3.40) and (3.39), together with (3.41) and the continuous
embedding H1(Ω) → Ln/ε(Ω) with constant C̃ε, and the boundedness of the bilinear forms Aϕ +Bu
and Aϕh

+Buh
, it follows that

|(Aϕ +Bu)(~ζh, ~ηh)− (Aϕh
+Buh

)(~ζh, ~ηh)| ≤
{
2LνCεC̃ε(2 + κ23)

1/2 ‖t‖ε,Ω ‖ϕ−ϕh‖1,Ω

+ c1(Ω) (2 + κ23)
1/2 ‖u‖1,Ω ‖u− uh‖1,Ω

+
(
‖Aϕ +Bu‖+ ‖Aϕh

+Buh
‖
)
‖~ξ − ~ζh‖H

}
‖~ηh‖H .

(5.6)

In this way, by replacing (5.5) and (5.6) back into (5.4), we obtain (5.3) with CST is a positive constant
depending on α(Ω), Lν , Cε, C̃ε, c1(Ω), κ1, κ2, κ3, ν2, γ, and r. �

The following result present a estimate for the error ‖ϕ−ϕh‖1,Ω.

Lemma 5.3 Assume that r satisfy that

r
c1(Ω)

α̃
≤ 1

2
, (5.7)

where α̃ is defined in (3.31), and c1(Ω) := ‖i‖2 is the boundedness constants of the continuous injection
i : H1(Ω) → L4(Ω). Then, there exists a constant C̃ST > 0, independent of h, such that

‖ϕ−ϕh‖1,Ω ≤ C̃ST ‖ϕ− ISZ
h (ϕ)‖1,Ω + ‖u− uh‖1,Ω . (5.8)

where ISZ
h denotes the Scott-Zhang interpolant operator introduced in Section 4.

Proof. We proceed similarly as in the proof of [6, Lemma 5.3]. Indeed, by applying the triangle
inequality we have that

‖ϕ−ϕh‖1,Ω ≤ ‖ϕ−ψh‖1,Ω + ‖ψh −ϕh‖1,Ω, (5.9)

where ψh = ISZ
h (ϕ) ∈ Hϕ

h . Moreover, nothing that ϕ|ΓD
= E(ϕD)|ΓD

= ϕD, we can employ
[45, eq. (2.17)] and (4.5), to obtain that ψh|ΓD

= ϕD,h. Now, utilizing the ellipticity of bilinear
the form C(·, ·) on Hϕ

h,ΓD
(see the proof of Lemma 4.3) with constant α̃, along with the fact that

C(ϕh,ψh−ϕh) = Guh,ϕh
(ψh−ϕh) and C(ϕ,ψh−ϕh) = Gu,ϕ(ψh−ϕh) (see (5.2)), we deduce that

α̃ ‖ψh −ϕh‖21,Ω ≤ C(ϕ,ψh −ϕh)−C(ϕ−ψh,ψh −ϕh)−C(ϕh,ψh −ϕh)

≤ |Gu,ϕ(ψh −ϕh)−Guh,ϕh
(ψh −ϕh)| + |C(ϕ−ψh,ψh −ϕh)| . (5.10)
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Next, we apply the estimate (3.43) to bound the first term on the right-hand side of (5.10), whereas
for second term we use the boundedness of C(·, ·) (cf. (3.29)), and (5.7). Then, it follows that

‖ψh −ϕh‖1,Ω ≤ ‖K‖∞,Ω

α̃
‖ϕ−ψh‖1,Ω +

rc1(Ω)

α̃

{
‖ϕ−ϕh‖1,Ω + ‖u− uh‖1,Ω

}

≤ ‖K‖∞,Ω

α̃
‖ϕ−ψh‖1,Ω +

1

2

{
‖ϕ−ϕh‖1,Ω + ‖u− uh‖1,Ω

}
. (5.11)

Then, by replacing (5.11) back into (5.9), we conclude (5.8) with C̃ST := 2(1 + α̃−1‖K‖∞,Ω). �

We now proceed to combine Lemmas 5.2 and 5.3 to derive the Céa estimate for the total error

‖~ξ − ~ξh‖H + ‖ϕ−ϕh‖1,Ω .

In fact, by replacing the estimate for ‖ϕ−ϕh‖1,Ω given by (5.8) into the right-hand side of (5.3), and

using the fact that ‖u‖1,Ω ≤ r CA |α||g| (cf. (3.48)) and ‖t‖ε,Ω ≤ Ĉ(r)|α||g|‖ϕ‖0,Ω (cf. (3.33)) along
with ‖ϕ‖1,Ω ≤ r, we find that

‖~ξ − ~ξh‖H ≤ CST dist
(
~ξ,Hh

)
+ CSTC̃ST

{
|α| |g|+ ‖t‖ε,Ω

}
‖ϕ− ISZ

h (ϕ)‖

+ CST

{
|α| |g|+ ‖t‖ε,Ω + ‖u‖1,Ω

}
‖u− uh‖1,Ω

≤ CST dist
(
~ξ,Hh

)
+ C0 ‖ϕ− ISZ

h (ϕ)‖1,Ω + C1 |α| |g| ‖u− uh‖1,Ω ,

where C0 := CSTC̃ST(1 + rĈ(r)) |α| |g| and C1 := CST(1 + rĈ(r) + rCA). In this way, assuming that
the data α and g satisfy that

C1 |α| |g| ≤ 1

2
, (5.12)

we can conclude that

‖~ξ − ~ξh‖H ≤ 2CST dist
(
~ξ,Hh

)
+ 2C0 ‖ϕ− ISZ

h (ϕ)‖1,Ω. (5.13)

Consequently, we now can establish the following main result.

Theorem 5.4 Assume that r and the data α and g are sufficiently small so that (5.7) and (5.12)
hold, respectively. Then, there exists a positive constant C∗, independent of h, such that

‖~ξ − ~ξh‖H + ‖ϕ−ϕh‖1,Ω ≤ C∗
{
dist

(
~ξ,Hh

)
+ ‖ϕ− ISZ

h (ϕ)‖1,Ω
}
. (5.14)

Proof. It follows straightforwardly from the Céa estimates (5.13) and (5.8). �

In order to provided the result concerning to the theoretical rate of convergence of (4.8), we recall
from [27], the approximation properties of the specific finite element subspaces introduced in Section
4.

(APth) There exists c > 0, independent of h, such that for each s ∈ (0, k + 1], and for each t ∈
H

s(Ω) ∩ L
2
tr(Ω), there holds

dist
(
t,Hth

)
≤ c hs ‖t‖s,Ω .

(APσh ) There exists c > 0, independent of h, such that for each s ∈ (0, k + 1], and for each σ ∈
H

s(Ω) ∩H0(div; Ω), with divσ ∈ Hs(Ω), there holds

dist
(
σ,Hσh

)
≤ c hs

{
‖σ‖s,Ω + ‖divσ‖s,Ω

}
.
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(APuh ) There exists c > 0, independent of h, such that for each s ∈ (0, k+1], and for each u ∈ Hs+1(Ω),
there holds

dist
(
u,Hu

h

)
≤ c hs ‖u‖s+1,Ω .

Finally, thanks to the approximation property of ISZ
h given in Lemma 4.1, there exists c > 0, inde-

pendent of h, such that for each s ∈ (0, k + 1], and for each ϕ ∈ Hs+1(Ω), there holds

‖ϕ− ISZ
h (ϕ)‖1,Ω ≤ c hs ‖ϕ‖s+1,Ω .

Therefore, from the Céa estimate (5.14), employing the aforementioned approximation properties, we
can establish the following result.

Theorem 5.5 In addition to the hypotheses of Theorems 3.9, 4.8 and 5.4, assume that there exists
s > 0 such that t ∈ H

s(Ω),σ ∈ H
s(Ω),divσ ∈ Hs(Ω),u ∈ H1+s(Ω),ϕ ∈ H1+s(Ω). Then, there exists

a positive constant C, independent of h, such that with the finite element subspaces defined by (4.1),
(4.2), (4.3), (4.4), there holds

‖~ξ − ~ξh‖H + ‖ϕ−ϕh‖1,Ω ≤ C hmin{s,k+1}
{
‖t‖s,Ω + ‖σ‖s,Ω + ‖divσ‖s,Ω + ‖u‖1+s,Ω + ‖ϕ‖1+s,Ω

}
.

6 Numerical results

In this section we present three numerical experiments illustrating the performance of our semi-
augmented mixed-primal finite element scheme (4.8), and confirming the rates of convergence provided
by Theorem 5.5. More precisely, we take the stabilization parameters κ1, κ2 and κ3 as in (3.24), which
satisfies the assumption of Lemma 4.2. In addition, the zero integral mean condition for tensors in the
space (4.2) is imposed via a real Lagrange multiplier. In turn, the nonlinear algebraic systems obtained
are solved by the fixed-point method with a tolerance of 10−6, along with the Newton method for
approximate the solution of (4.8a) in each fixed-point’s iteration. We take as initial guess the solution
of a similar linear problem (in particular, satisfying the boundary conditions for uh and ϕh). The
numerical results presented below were obtained using a C++ code, where the corresponding linear
systems arising from (4.8a) are solved using the BiCGSTAB method, whereas for (4.8b) we employ
the Conjugate Gradient method as the main solver. Finally, in all experiments we let g = (0,−1)t

be the gravitational force, and utilizing structure triangulations of the corresponding domain in 2D.
Furthermore, for the first two examples we consider polynomial degrees k ∈ {0, 1, 2}, whereas we only
use k = 0 in the last example.

We now introduce some additional notation. The individual errors are denoted by:

e(t) := ‖t− th‖0,Ω , e(σ) := ‖σ − σh‖div,Ω , e(u) := ‖u− uh‖1,Ω ,

e(ϕ) := ‖ϕ−ϕh‖1,Ω and e(p) := ‖p − ph‖1,Ω ,

where, according to (2.6) and (2.7), ph can be computed as:

ph = − 1

n

[
tr(σh + (uh ⊗ uh))

]
+

1

n|Ω|‖uh‖20,Ω .

On the other hand as is usual, we let r(·) be the experimental rate of convergence given by

r(·) :=
log(e(·) / e′(·))

log(h/h′)
,
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where e and e
′ denote errors computed on two consecutive meshes of sizes h and h′, respectively. In

addition, N stands for the total number of degrees of freedom (unknowns) of (4.8), that is,

N := 4× {number of nodes in Th} +
{
2(k + 1) + 4k

}
× {number of edges in Th}

+
{
(k + 1)(k + 2) + 2k(k + 1) + 2k(k − 1)

}
× {number of elements in Th} + 1 .

Example 1. We first consider the square Ω = (0, 1)2, and set ΓD =
{
(s, 0), (s, 1) ∈ R2 : 0 ≤ s ≤ 1

}
,

ΓN = Γ \ ΓD, γ = 0.1, ν(x) = (x21 + x22 + 1)−1 (here ν1 = 1 and ν2 = 2), α = (0.5, 1.5)t , the thermal
conductivity K = 2 I, and adequately manufacture the data so that the exact solution is given by the
smooth functions

u(x) =

(
− sin2(2πx1) sin(4πx2)

sin(4πx1) sin
2(2πx2)

)
, p(x) = cos(x1) cos(x2) − sin2(1) ,

and

ϕ(x) =

(
x1x2

exp(x1 + x2)

)
,

for all x := (x1, x2)
t ∈ Ω. In Table 1, we summarize the convergence history of the finite element

scheme (4.8) as applied to Example 1. We notice there that the rate of convergence O(hk+1) predicted
by Theorem 5.5 is attained by all the unknowns.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(p) r(p)

0.0404 17575 7.98e-01 −− 2.68e+00 −− 1.37e+00 −− 4.13e-02 −− 1.09e-01 −−

0.0314 28895 6.05e-01 1.10 2.09e+00 1.00 1.05e+00 1.05 3.20e-02 1.02 8.53e-02 0.98
0.0257 43015 4.87e-01 1.09 1.71e+00 1.00 8.51e-01 1.05 2.61e-02 1.01 6.99e-02 0.99
0.0218 59935 4.07e-01 1.07 1.45e+00 1.00 7.16e-01 1.04 2.20e-02 1.01 5.92e-02 1.00

0 0.0189 79655 3.50e-01 1.06 1.25e+00 1.00 6.18e-01 1.03 1.91e-02 1.01 5.13e-02 1.00
0.0129 170725 2.35e-01 1.04 8.54e-01 1.00 4.18e-01 1.02 1.30e-02 1.00 3.49e-02 1.00
0.0094 316805 1.71e-01 1.02 6.27e-01 1.00 3.05e-01 1.01 9.52e-03 1.00 2.56e-02 1.00
0.0071 562405 1.28e-01 1.01 4.70e-01 1.00 2.29e-01 1.01 7.14e-03 1.00 1.92e-02 1.00
0.0057 878005 1.02e-01 1.00 3.76e-01 1.00 1.83e-01 1.01 5.71e-03 1.00 1.54e-02 1.00

0.0404 59645 5.37e-02 −− 1.77e-01 −− 8.81e-02 −− 1.45e-04 −− 7.38e-03 −−

0.0314 98285 3.20e-02 2.07 1.07e-01 1.99 5.28e-02 2.04 8.48e-05 2.12 4.53e-03 1.94
1 0.0257 146525 2.12e-02 2.05 7.18e-02 2.00 3.51e-02 2.03 5.61e-05 2.06 3.05e-03 1.96

0.0218 204365 1.51e-02 2.04 5.14e-02 2.00 2.51e-02 2.02 4.00e-05 2.03 2.20e-03 1.97
0.0189 271805 1.13e-02 2.03 3.86e-02 2.00 1.88e-02 2.02 3.00e-05 2.01 1.66e-03 1.98
0.0129 583445 5.19e-03 2.02 1.80e-02 2.00 8.70e-03 2.01 1.39e-05 2.01 7.75e-04 1.98

0.0404 126215 2.70e-03 −− 8.82e-03 −− 3.76e-03 −− 3.25e-07 −− 3.45e-04 −−

0.0314 208175 1.26e-03 3.04 4.15e-03 2.99 1.76e-03 3.03 1.47e-07 3.17 1.63e-04 2.99
2 0.0257 310535 6.87e-04 3.03 2.28e-03 3.00 9.58e-04 3.02 7.96e-08 3.05 8.92e-05 2.99

0.0218 433295 4.15e-04 3.01 1.36e-03 3.08 5.79e-04 3.02 4.79e-08 3.04 5.40e-05 3.01
0.0189 576455 2.70e-04 3.00 8.83e-04 3.03 3.76e-04 3.01 3.10e-08 3.03 3.51e-05 3.00

Table 1: History of convergence for Example 1.

Example 2. Next, we adapt [11, Example 3], and consider the L-shaped domain Ω = (−1, 1)2 \ [0, 1]2,
and set ΓN =

{
(s, 0), (0, s) ∈ R2 : 0 ≤ s ≤ 1

}
, ΓD = Γ \ Γ̄N , γ = 10−3, ν(x) = 1 + exp(−x21) (once

again ν1 = 1 and ν2 = 2), α = (1, 0.5)t , K =
(
1 0
0 2

)
, and adequately manufacture the data so that

the exact solution is given by the smooth functions

u(x) =

(
x22

−x21

)
, p(x) = (x21 + x22)

1/3 − p0 , and ϕ(x) =

(
exp(−x21 − x22)

exp(−x1x2)

)
,

for all x := (x1, x2)
t ∈ Ω, where p0 ∈ R is such that

∫
Ω p = 0 holds (p0 ≈ 8.211056552903396e-01). In

addition, we remark here that the partial derivatives of p, and hence, in particular div(σ), are singular
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at the origin. Indeed, according to the power 1/3, there holds σ ∈ H
5/3−ε(Ω) and div(σ) ∈ H2/3−ε(Ω)

for each ε > 0. In fact, in Table 2 we present the corresponding convergence history of Example 2,
where, as predicted in advance, we note that the orders O(hmin{k+1,5/3}) and O(h2/3) are attained by
(th,uh) and σh, respectively. Once again, the rate of convergence predicted by Theorem 5.5 is attained
by all the unknowns, except for the variable ϕh that preserves O(hk+1). The foregoing phenomenon
could be a special feature of this example. Furthermore, the results in Example 2 suggest that our
approach should certainly be strengthened with the further incorporation of an adaptive strategy
based on a suitable a-posteriori error estimates. This issue will also be addressed in a forthcoming
paper.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(p) r(p)

0.0707 17285 5.60e-02 −− 2.77e-01 −− 7.07e-02 −− 1.02e-01 −− 4.85e-02 −−

0.0566 26855 4.48e-02 1.00 2.23e-01 0.97 5.66e-02 1.00 8.15e-02 1.00 3.88e-02 1.00
0.0471 38525 3.73e-02 1.00 1.87e-01 0.97 4.72e-02 1.00 6.80e-02 1.00 3.23e-02 1.00

0 0.0404 52295 3.20e-02 1.00 1.61e-01 0.96 4.04e-02 1.00 5.83e-02 1.00 2.77e-02 1.00
0.0354 68165 2.80e-02 1.00 1.42e-01 0.96 3.54e-02 1.00 5.10e-02 1.00 2.42e-02 1.00
0.0236 152645 1.87e-02 1.00 9.63e-02 0.95 2.36e-02 1.00 3.40e-02 1.00 1.61e-02 1.00
0.0166 305495 1.32e-02 1.00 6.94e-02 0.94 1.66e-02 1.00 2.40e-02 1.00 1.14e-02 1.00
0.0135 465575 1.07e-02 1.00 5.69e-02 0.93 1.35e-02 1.00 1.94e-02 1.00 9.22e-03 1.00

0.0707 58565 2.34e-04 −− 2.67e-02 −− 1.35e-04 −− 1.45e-03 −− 7.06e-04 −−

0.0566 91205 1.56e-04 1.82 2.30e-02 0.68 9.20e-05 1.71 9.30e-04 2.00 4.62e-04 1.90
1 0.0471 131045 1.12e-04 1.81 2.03e-02 0.67 6.75e-05 1.69 6.46e-04 2.00 3.27e-04 1.89

0.0404 178085 8.47e-05 1.81 1.83e-02 0.67 5.21e-05 1.69 4.75e-04 2.00 2.44e-04 1.89
0.0354 232325 6.66e-05 1.80 1.68e-02 0.67 4.16e-05 1.68 3.63e-04 2.00 1.90e-04 1.88
0.0236 521285 3.23e-05 1.79 1.28e-02 0.67 2.11e-05 1.68 1.62e-04 2.00 8.93e-05 1.86

0.0707 123845 3.00e-05 −− 1.52e-02 −− 3.29e-05 −− 1.64e-05 −− 8.29e-05 −−

0.0566 193055 2.07e-05 1.67 1.31e-02 0.67 2.27e-05 1.67 8.39e-06 3.01 5.70e-05 1.68
2 0.0471 277565 1.52e-05 1.67 1.16e-02 0.67 1.67e-05 1.67 4.85e-06 3.01 4.20e-05 1.67

0.0404 377375 1.18e-05 1.67 1.05e-02 0.67 1.29e-05 1.67 3.05e-06 3.00 3.25e-05 1.67
0.0354 492485 9.44e-06 1.67 9.60e-03 0.67 1.04e-05 1.67 2.04e-06 3.00 2.60e-05 1.67

Table 2: History of convergence for Example 2.

Example 3. Finally, we aim to illustrate the accuracy of our method by considering a case in which
the exact solution is unknown in the a time-dependent approach. More precisely, we add ∂tu and
∂tϕ to the left-hand side of first and last equations of (2.1), respectively, which, together with the
boundary conditions (2.4), we consider initial conditions

u(·, 0) = u0 in Ω and ϕ(·, 0) = ϕ0 in Ω .

We remark here that, in similar way of [33], the analysis presented along of this paper can be extended
to this time-dependent problem by employing backward Euler time stepping in order to obtain a
fully-discrete method. On the other hand, for this example we consider once again the unit square
Ω = (0, 1)2, and set ΓD =

{
(0, s), (1, s) ∈ R2 : 0 ≤ s ≤ 1

}
, ΓN = Γ \ ΓD, γ = 10−3, ν(x) = 10−2,

α = (1, 10)t, K =
(

1 0

0 10−1

)
. The boundary condition is defined as

ϕD(x, t) =

{
(1, 1)t if x1 = 0

(−1,−1)t if x1 = 1

for all x := (x1, x2)
t ∈ Ω, whereas the initial conditions are given by

u0(x) =

(
sin2(πx1) sin(2πx2)

− sin(2πx1) sin
2(πx2)

)
and ϕ0(x) =

(
exp(x1 + x2)

exp(x1 − x2)

)
.

In addition, for the time stepping technique we use △t = 1
50 .
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In Table 3, we summarize the convergence history, where we can note that the rate of convergence
O(hk+1) predicted by Theorem 5.5 is attained by all the unknowns for k = 0 and time step t25 = 0.5.
We mention that the errors and the convergence rates are computed by considering the discrete solution
obtained with a finer mesh (N = 28895) as the exact solution. Additionally, in Figures 1 and 2, we
display the approximation of the velocity components, temperature and concentration. All the figures
presented there were obtained with N = 28895 degrees of freedom (used as exact solution) in the time
step tℓ := ℓ · △t, with ℓ ∈ {1, 5, 10, 15, 20}.

k h N e(t) r(t) e(σ) r(σ) e(u) r(u) e(ϕ) r(ϕ) e(p) r(p)

0.0707 5845 4.47e+01 −− 1.07e+01 −− 5.79e-01 −− 5.15e-01 −− 8.63e-01 −−

0.0566 9055 3.57e+01 1.01 8.35e+00 1.10 4.54e-01 1.08 4.02e-01 1.12 6.86e-01 1.03
0 0.0471 12965 2.95e+01 1.05 6.80e+00 1.13 3.61e-01 1.26 3.21e-01 1.24 5.66e-01 1.05

0.0404 17575 2.53e+01 0.99 5.72e+00 1.12 3.08e-01 1.03 2.70e-01 1.11 4.85e-01 1.01
0.0354 22885 2.21e+01 1.03 4.93e+00 1.11 2.68e-01 1.02 2.34e-01 1.08 4.19e-01 1.09

Table 3: History of convergence for Example 3 for t = 0.5.
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Figure 1: Example 3, velocity components uh,1 (left) and uh,2 (right), obtained with a fully-discrete
time-dependent mixed method with no manufactured analytical solution using k = 0 and N = 28895
degrees of freedom. We plot for t ∈ {t1, t5, t10, t15, t20}, en each row.
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Figure 2: Example 3, temperature ϕh,1 (left) and concentration ϕh,2 (right), obtained with a fully-
discrete time-dependent mixed method with no manufactured analytical solution using k = 0 and
N = 28895 degrees of freedom. We plot for t ∈ {t1, t5, t10, t15, t20}, en each row.
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