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ADDITIVE SCHWARZ METHODS FOR CONVEX OPTIMIZATION
WITH BACKTRACKING*

JONGHO PARKT

Abstract. This paper presents a novel backtracking strategy for additive Schwarz methods
for general convex optimization problems as an acceleration scheme. The proposed backtracking
strategy is independent of local solvers, so that it can be applied to any algorithms that can be
represented in an abstract framework of additive Schwarz methods. Allowing for adaptive increasing
and decreasing of the step size along the iterations, the convergence rate of an algorithm is greatly
improved. Improved convergence rate of the algorithm is proven rigorously. In addition, combining
the proposed backtracking strategy with a momentum acceleration technique, we propose a further
accelerated additive Schwarz method. Numerical results for various convex optimization problems
that support our theory are presented.
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1. Introduction. In this paper, we are interested in additive Schwarz methods
for a general convex optimization problem

(1.1) min {E(u) := F(u) + G(u)},

ueV
where V is a reflexive Banach space, F': V — R is a Frechét differentiable convex
function, and G: V. — R is a proper, convex, and lower semicontinuous function
that is possibly nonsmooth. We additionally assume that E is coercive, so that (1.1)
admits a solution u* € V.

The importance of studying Schwarz methods arises from both theoretical and
computational viewpoints. It is well-known that various iterative methods such as
block relaxation methods, multigrid methods, and domain decomposition methods
can be interpreted as Schwarz methods, also known as subspace correction methods.
Studying Schwarz methods can yield a unified understanding of these methods; there
have been several notable works on the analysis of domain decomposition and multi-
grid methods for linear problems in the framework of Schwarz methods [18, 33, 34, 35].
The convergence theory of Schwarz methods has been developed for several classes of
nonlinear problems as well [2, 4, 23, 31]. In the computational viewpoint, Schwarz
methods are prominent numerical solvers for large-scale problems because they can ef-
ficiently utilize massively parallel computer architectures. There has been plenty of re-
search on Schwarz methods as parallel solvers for large-scale scientific problems of the
form (1.1), e.g., nonlinear elliptic problems [12, 31], variational inequalities [5, 29, 30],
and mathematical imaging problems [11, 14, 25].

An important concern in the research of Schwarz methods is the acceleration of
algorithms. One of the most elementary relevant results is optimizing the relaxation
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parameters of Richardson iterations related to the Schwarz alternating method [33,
section C.3]; observing that the Schwarz alternating method for linear elliptic prob-
lems can be viewed as a preconditioned Richardson method, one can optimize the
relaxation parameters of Richardson iterations to achieve a faster convergence as
in [33, Lemma C.5]. Moreover, if one replaces Richardson iterations by conjugate
gradient iterations with the same preconditioner, an improved algorithm with faster
convergence rate can be obtained. Such an idea of acceleration can be applied to
not only linear problems but also nonlinear problems. There have been some re-
cent works on the acceleration of domain decomposition methods for several kinds of
nonlinear problems: nonlinear elliptic problems [12], variational inequalities [17], and
mathematical imaging problems [15, 16, 19]. In particular, in the author’s previous
work [22], an accelerated additive Schwarz method that can be applied to the general
convex optimization (1.1) was considered. Noticing that additive Schwarz methods
for (1.1) can be interpreted as gradient methods [23], acceleration schemes such as mo-
mentum [6, 20] and adaptive restarting [21] that were originally derived for gradient
methods in the field of mathematical optimization were adopted.

In this paper, we consider another acceleration strategy called backtracking from
the field of mathematical optimization for applications to additive Schwarz methods.
Backtracking was originally considered as a method of line search for step sizes that
ensures the global convergence of a gradient method [1, 6]. In some recent works
on accelerated gradient methods [10, 20, 28], it was shown both theoretically and
numerically that certain backtracking strategies can accelerate the convergence of
gradient methods. Allowing for adaptive increasing and decreasing of the step size
along the iterations, backtracking can find a nearly-optimal value for the step size
that results in large energy decay, so that fast convergence is achieved. Such an
acceleration property of backtracking may be considered as a resemblance with the
relaxation parameter optimization for Richardson iterations mentioned above. Hence,
as in the case of Richardson iterations for linear problems, one may expect that
the convergence rate of additive Schwarz methods for (1.1) can be improved if an
appropriate backtracking strategy is adopted. Unfortunately, applying the existing
backtracking strategies such as [10, 20, 28] to additive Schwarz methods is not so
straightforward. The existing backtracking strategies require the computation of the
underlying distance function of the gradient method. For usual gradient methods, the
underlying distance function is simply the ¢£2-norm of the solution space so that such
a requirement does not matter. However, the underlying nonlinear distance function
of additive Schwarz methods has a rather complex structure in general (see (2.6));
this aspect makes direct applications of the existing strategies to additive Schwarz
methods cumbersome.

This paper proposes a novel backtracking strategy for additive Schwarz meth-
ods, which does not rely on the computation of the underlying distance function.
As shown in Algorithm 3.1, the proposed backtracking strategy does not depend on
the computation of the distance function but the computation of the energy func-
tional only. Hence, the proposed backtracking strategy can be easily implemented
for additive Schwarz methods for (1.1) with any choices of local solvers. Acceleration
properties of the proposed backtracking strategy can be analyzed mathematically; we
present explicit estimates for the convergence rate of the method in terms of some
averaged quantity estimated along the iterations. The proposed backtracking strategy
has another interesting feature; since it accelerates the additive Schwarz method in a
completely different manner from the momentum acceleration introduced in [22], both
of the momentum acceleration and the proposed backtracking strategy can be applied
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simultaneously to form a further accelerated method; see Algorithm 4.1. We present
numerical results for various convex optimization problems of the form (1.1) to ver-
ify our theoretical results and highlight the computational efficiency of the proposed
accelerated methods.

This paper is organized as follows. A brief summary of the abstract convergence
theory of additive Schwarz methods for convex optimization presented in [23] is given
in section 2. In section 3, we present and analyze a novel backtracking strategy
for additive Schwarz methods as an acceleration scheme. A fast additive Schwarz
method that combines the ideas of the momentum acceleration [22] and the proposed
backtracking strategy is proposed in section 4. Numerical results for various convex
optimization problems are presented in section 5. We conclude the paper with remarks
in section 6.

2. Additive Schwarz methods. In this section, we briefly review the abstract
framework for additive Schwarz methods for the convex optimization problem (1.1)
presented in [23]. In what follows, an index k runs from 1 to N. Let Vj, be a reflexive
Banach space and let R} : V3 — V be a bounded linear operator such that

N
V=> RiV
k=1

and its adjoint Ry : V* — V' is surjective. For the sake of describing local problems,
we define di,: Vi xV — R and Gy : Vi, xV — R as functionals defined on Vj, x V, which
are proper, convex, and lower semicontinuous with respect to their first arguments.
Local problems have the following general form:

(2.1) Jnin, {F(v) + (F'(v), Rjwy) + wdi (wi, v) + Gr(wg, v)}

where v € V and w > 0. If we set
(2.2a) di(wg,v) = Dp(v + Rjwg,v), Gg(wg,v) =G(v+ Rjwg), w=1
in (2.1), then the minimization problem is reduced to

(2.2b) min E(v + Rjwg),

wg €Vy

which is the case of exact local problems. Here D denotes the Bregman distance

Dp(u,v) = F(u) — F(v) — (F'(v),u —v), wu,veV.

We note that other choices of di and Gy, i.e., cases of inexact local problems, include
various existing numerical methods such as block coordinate descent methods [7] and
constraint decomposition methods [11, 29]; see [23, section 6.4] for details.

The plain additive Schwarz method for (1.1) is presented in Algorithm 2.1. Con-
stants 79 and wg in Algorithm 2.1 will be given in Assumptions 2.3 and 2.4, respec-
tively. Note that dom G denotes the effective domain of G, i.e.,

domG ={v eV :G) <oo}.

Note that u(?) € dom G implies F(u(?)) < co. In what follows, we fix u(®) € dom G
and define a convex subset Ky of dom G by

(2.3) Ko = {u eV :Eu) < E(u<0>)} .
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Algorithm 2.1 Additive Schwarz method for (1.1)

Choose u(®) € dom G, 7 € (0, 7], and w > wp.
forn=20,1,2,... do

w,(C"H) € arg min {F(u<")) + (F'(u™), Riwy) + wdi(wp, u™) + G (wg, u("))} ,1<EkE<N,

wi €V
N
u(n+1) — u(n) + TZRZMI(;H—U
k=1
end for

Since K is bounded, there exists a constant Ry > 0 such that
(2.4) KoC{ueV:|u—u*]| < Ro}.

In addition, we define

25 ol (2 o)

for 7 > 0.

An important observation made in [23, Lemma 4.5] is that Algorithm 2.1 can
be interpreted as a kind of a gradient method equipped with a nonlinear distance
function [32]. A rigorous statement is presented in the following.

LEMMA 2.1 (generalized additive Schwarz lemma). Forv € V and 7,w > 0, we
define

N
V=0v4+T E RZ’LT)]C,
k=1

where

Wy, € argmin {F(v) + (F'(v), Rjwy) + wdg(wk, v) + Ge(wg,v)}, 1<k <N.
wy € Vi

Then we have

0 € argmin {F(v) + (F'(v),u — v) + M; ,(u,v)},
ueV

where the functional M, ,: V x V — R is given by

N N
M: ., (u,v) = 7inf {Z (wdi, + Gg) (wg,v) tu—v = TZRZwk, wy, € Vk}
k=1 k=1

+(1—-7N)Gv), w,veV.

(2.6)

A fruitful consequence of Lemma 2.1 is an abstract convergence theory of additive
Schwarz methods for convex optimization [23] that directly generalizes the classical
theory for linear problems [33, Chapter 2]. The following three conditions are con-
sidered in the convergence theory: stable decomposition, strengthened convexity, and
local stability (cf. [33, Assumptions 2.2 to 2.4]).
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Assumption 2.2 (stable decomposition). There exists a constant ¢ > 1 such
that for any bounded and convex subset K of V, the followin%[ holds: for any u,v €
K Ndom G, there exists wy € Vi, 1 <k <N, with uw —v =) ;_, Rjwy, such that

q

N C N
de(wk,v) < (;’KHu—qu, ZGk(wk,v) <G(u)+ (N-1)G(v),
k=1 k=1

where Cj g is a positive constant depending on K.

Assumption 2.3 (strengthened convexity). There exists a constant 79 € (0, 1]
which satisfies the following: for any v € V, wy, € Vi, 1 < k < N, and 7 € (0, 79}, we
have

N N
(1—TN)E(U)+TZE(U+RZwk) >FE (v-i-TZRZwk) .
k=1 k=1

Assumption 2.4 (local stability). There exists a constant wy > 0 which satisfies
the following: for any v € dom G, and wy € Vi, 1 < k < N, we have

Dp(v + Rywyg,v) < wodk(wk,v), G(v+ Rpwg) < G(wg,v).

Assumption 2.2 is compatible with various stable decomposition conditions pre-
sented in existing works, e.g., [3, 31, 33]. Assumption 2.3 trivially holds with 79 = 1/N
due to the convexity of E. However, a better value for 7y independent of N can be
found by the usual coloring technique; see [23, section 5.1] for details. In the same
spirit as [33], Assumption 2.4 gives a one-sided measure of approximation properties
of the local solvers. It was shown in [23, section 4.1] that the above assumptions
reduce to [33, Assumptions 2.2 to 2.4] if they are applied to linear elliptic problems.
Under the above three assumptions, we have the following convergence theorem for
Algorithm 2.1 [23, Theorem 4.7].

PROPOSITION 2.5. Suppose that Assumptions 2.2 to 2.4 hold. In Algorithm 2.1,
we have

Bu™) - Bw) =0 (5],

na—1
where K., is the additive Schwarz condition number defined by

wCl
(2.7) Fop g = —— K

Ta-1 "’

and K, was defined in (2.5).

Meanwhile, the Lojasiewicz inequality holds in many applications [8, 36]; it says
that the energy functional F of (1.1) is sharp around the minimizer v*. We summarize
this property in Assumption 2.6; it is well-known that improved convergence results
for first-order optimization methods can be obtained under this assumption [9, 27].

Assumption 2.6 (sharpness). There exists a constant p > 1 such that for any
bounded and convex subset K of V satisfying u* € K, we have

PR |y — w*||P < E(u) — E(u*), ué€K,
p

for some px > 0.
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We present an improved convergence result for Algorithm 2.1 compared to Propo-
sition 2.5 under the additional sharpness assumption on F [23, Theorem 4.8].

PROPOSITION 2.7. Suppose that Assumptions 2.2 to 2.4 and 2.6 hold. In Algo-

rithm 2.1, we have
o((1-(1-minfr. () ]) ) o=

1
K2, pt) P
o ( 117(q7—2> ’ pr>q>

n P—4q

Ew™) - E(u*) =

where kr,, was defined in (2.7).

Propositions 2.5 and 2.7 are direct consequences of Lemma 2.1 in the sense that
they can be easily deduced by invoking theories of gradient methods for convex opti-
mization [23, section 2].

3. Backtracking strategies. In gradient methods, backtracking strategies are
usually adopted to find a suitable step size that ensures sufficient decrease of the
energy. For problems of the form (1.1), backtracking strategies are necessary in par-
ticular to obtain the global convergence to a solution when the Lipschitz constant of
F’ is not known [1, 6]. Considering Algorithm 2.1, a sufficient decrease condition of
the energy is satisfied whenever 7 € (0, 79] and w > wy (see [23, Lemma 4.6]), and the
values of 79 and wg in Assumptions 2.3 and 2.4, respectively, can be obtained explicitly
in many cases. Indeed, an estimate for 73 independent of N can be obtained by the
coloring technique [23, section 5.1], and we have wg = 1 when we use the exact local
solvers. Therefore, backtracking strategies are not essential for the purpose of ensur-
ing the global convergence of additive Schwarz methods. In this perspective, to the
best of our knowledge, there have been no considerations on applying backtracking
strategies in the existing works on additive Schwarz methods for convex optimization.

Meanwhile, in several recent works on accelerated first-order methods for convex
optimization [10, 20, 28], full backtracking strategies that allow for adaptive increasing
and decreasing of the estimated step size along the iterations were considered. While
classical one-sided backtracking strategies (see, e.g., [6]) are known to suffer from
degradation of the convergence rate if an inaccurate estimate for the step size is
computed, full backtracking strategies can be regarded as acceleration schemes in the
sense that a gradient method equipped with full backtracking outperforms the method
with the known Lipschitz constant [10, 28].

In this section, we deal with a backtracking strategy for additive Schwarz methods
as an acceleration scheme. Existing full backtracking strategies [10, 20, 28] mentioned
above cannot be applied directly to additive Schwarz methods because the evalu-
ation of the nonlinear distance function M; ,(-,-) is not straightforward due to its
complicated definition (see Lemma 2.1). Instead, we propose a novel backtracking
strategy for additive Schwarz methods, in which the computational cost of the back-
tracking procedure is insignificant compared to that of solving local problems. The
abstract additive Schwarz method equipped with the proposed backtracking strategy
is summarized in Algorithm 3.1.

The parameter p € (0,1) in Algorithm 3.1 plays a role of an adjustment parameter
for the grid search. As p closer to 0, the grid for line search of 7 becomes sparser. On
the contrary, the greater p, the greater 7("*1) is found with the more computational
cost for the backtracking process. The condition 7(¥) = 7 is not critical in the
implementation of Algorithm 3.1 since 79 can be obtained by the coloring technique.
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Algorithm 3.1 Additive Schwarz method for (1.1) with backtracking

Choose u(?) € dom G, 7(©) = 75, w > wp, and p € (0,1).
forn=20,1,2,... do

w,i"H) € argmin {F(u(")) + (F'(u™), Riwy) 4 wdy (wr, w™) + Gy (wy, u("))} ,1<kE<N

wg €V
T T(n)/p
repeat
N
w( D = () 4 TZRZWI(:H)
k=1
N
if E(u(n+1)) > (1— TN)E(u(")) + TZE(U(") + szl(;ﬁl)) then
k=1
T < pT
end if
N
until B(u™+Y) < (1= rN)B@™) + 73" Bu®™ + Riw"™*")
k=1
F+D)
end for

Different from the existing approaches [10, 20, 28], the backtracking scheme in
Algorithm 3.1 does not depend on the distance function M (-,-) but the energy
functional E only. Hence, the stop criterion

N
(3.1) E@™) < (1 -7N)E@™) + 13" E(u™ + Rjw{™")
k=1

for the backtracking process can be evaluated without considering to solve the infimum
in the definition (2.6) of M, (-, -). Moreover, the backtracking process is independent
of local problems (2.1). That is, the stop criterion (3.1) is universal for any choices of
dk and Gk.

The additional computational cost of Algorithm 3.1 compared to Algorithm 2.1
comes from the backtracking process. When we evaluate the stop criterion (3.1),

the values of E(u™*tD), E(u™), and E(u™ + R,’;w,(cnﬂ)) are needed. Among them,

Eu™) and E(u(™ + R,’;w,(cnﬂ)) can be computed prior to the backtracking process
since they require u(™ and RZw,inH) only in their computations. Hence, the com-
putational cost of an additional inner iteration of the backtracking process consists
of the computation of E(u("ﬂ)) only, which is clearly marginal. In conclusion, the
most time-consuming part of each iteration of Algorithm 3.1 is to solve local problems
on Vi, i.e., to obtain w,(cnﬂ)7 and the other part has relatively small computational
cost. This highlights the computational efficiency of the backtracking process in Al-

gorithm 3.1.
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Next, we analyze the convergence behavior of Algorithm 3.1. First, we prove that
the backtracking process in Algorithm 3.1 ends in finite steps and that the step size
7(") never becomes smaller than a particular value.

LEMMA 3.1. Suppose that Assumption 2.3 holds. The backtracking process in
Algorithm 3.1 terminates in finite steps and we have

7(m) > 719

for n >0, where 19 was given in Assumption 2.3.

Proof. Since Assumption 2.3 implies that the stop criterion (3.1) is satisfied when-
ever 7 € (0, 7], the backtracking process ends if 7 becomes smaller than or equal to
70. Now, take any n > 1. If 7(") were less than 7y, say 7(") = p/7 for some j > 1,
then 7 in the previous inner iteration is p’ !y < 79, so that the backtracking process
should have stopped there, which is a contradiction. Therefore, we have 7(") > 7o, O

Lemma 3.1 says that Assumption 2.3 is a sufficient condition to ensure that
(1) ig successfully determined by the backtracking process in each iteration of
Algorithm 3.1. It is important to notice that 7(") is always greater than or equal to
To; the step sizes of Algorithm 3.1 are larger than or equal to that of Algorithm 2.1.
Meanwhile, similar to the plain additive Schwarz method, Algorithm 3.1 generates the
sequence {u(™} whose energy is monotonically decreasing. Hence, {u(™} is contained
in Ky defined in (2.3).

LEMMA 3.2. Suppose that Assumption 2.3 holds. In Algorithm 3.1, the sequence
{E(™)} is decreasing.

Proof. Take any n > 0. By the stop criterion (3.1) for backtracking and the

(n+1)

minimization property of w,, , we get

N
BE@™) < (1 -7 FDN)B@™) + 7D 3" Bu™ + Riw") < Bu™),
k=1

which completes the proof. 0

Note that [23, Lemma 4.6] played a key role in the convergence analysis of Algo-
rithm 2.1 presented in [23]. Relevant results for Algorithm 3.1 can be obtained in a
similar manner.

LEMMA 3.3. Suppose that Assumptions 2.3 and 2.4 hold. In Algorithm 3.1, we
have

DF(u(nJrl)’ u(n)) + G(u(”“)) < MT(HH)M(U(HH)’ u(n))

for n > 0, where the functional M, ,(-,-) and the set K, were defined in (2.5) and
(2.6), respectively, for T,w > 0.

Proof. Take any wy, € Vi such that

N
(3.2) WD (M) — (1) ZRZwk~
k=1
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By Assumption 2.4 and (3.1), we get
N

r(nt1) Z wdy + Gi) (wi, u™) 4+ (1 = 7T G (™)
k=1

N

> (1 — "IN EW™) 4 7+ Z E@™ + Riwy) — F(u™) — (F'(u™), ™) — 4,
k=1

> DF(u(n-&-l)’u(n ) + G( (n+1) )

Taking the infimum over all wy, satisfying (3.2) yields the desired result. |

LEMMA 3.4. Suppose that Assumption 2.2 holds. Let 7,w > 0. For any bounded
and convex subset K of V', we have

wCi 1
(3.3) M; o(u,v) < e ||u—v||q+7'G< u— (—1) v) +(1-7)G(v)
T
for u,v € K Ndom G, where the functional M, ,(-,-) was given in (2.6) and

K;:{lu—<1—1>v:u,v€K}.
T T

In addition, the right-hand side of (3.3) is decreasing with respect to 7. More precisely,
if 11 > 19 > 0, then we have

34) —tllu—o|"+nG | —u—{(=—=1)v]+(1-7)G(v)
qr T1 T1
(.(.)Cq ’ ]. ]-
<ttt e (S (2 -1)0) + (- nioe)
qTy I b

foru,v € KNdomG@G.

Proof. Equation (3.3) is identical to the second half of [23, Lemma 4.6]. Never-
theless, it is revisited to highlight that some assumptions given in [23, Lemma 4.6]
are not necessary for Lemma 3.4; for example, 7 need not be less than or equal to 7
as stated in [23, Lemma 4.6] but can be any positive real number.

Now, we prove (3.4). Since 71 > 7o, one can deduce from (2.5) that K. C K’ .
Hence, by the definition of Cy x given in Assumption 2.2, we get Co, K < Cy, KL, -
Meanwhile, the convexity of G implies that

e (Tllu _ (Tll - 1) v) + (1= m)G) < G (leu - (:2 - 1) v) + (1= m)G(w),

which completes the proof. 0

Recall that the sequence {T(”)} generated by Algorithm 3.1 has a uniform lower
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bound 7y by Lemma 3.1. Hence, for any n > 0, we get

(3.5)
By = F(u™) + (F'(u™), ) — ™) 4 Dp(u™D ™) + Gu+Y)
@)
< F(u™) + (F' (™), a™D = u) 4 M (a0, u™)

D min {P@) + (@)1= 0®) 4 Mo ™) |

ue Ko

(iif) wC{

< min ¢ F(u™) + (F/@™), 0= ul) 4 —Z fu = a1
ue Ko ng

e o A ) R

where (i), (ii), and (iii) are because of Lemmas 2.1, 3.3, and 3.4, respectively. Starting
from (3.5), we readily obtain the following convergence theorems for Algorithm 3.1
by proceeding in the same manner as in [23, Appendices A.3 and A.4].

PROPOSITION 3.5. Suppose that Assumptions 2.2 to 2.4 hold. In Algorithm 3.1,
we have

B(u™) - Bu’) = 0 (=),

na—1

where kr, ., was defined in (2.7).

PROPOSITION 3.6. Suppose that Assumptions 2.2 to 2.4 and 2.6 hold. In Algo-

rithm 3.1, we have
%1 n
) (1—(1—;)mm{n(wiw) }) )7 ifp=aq,

I L :
O ( Op(qi—l)) ) pr>q7

n pP—4q

E(u™) — BE(u*) =

where Ky, ., was defined in (2.7).

Although Propositions 3.5 and 3.6 guarantee the convergence to the energy min-
imum as well as they provide the order of convergence of Algorithm 3.1, they are
not fully satisfactory results in the sense that they are not able to explain why Al-
gorithm 3.1 achieves faster convergence that Algorithm 2.1. In order to explain the
acceleration property of the backtracking process, one should obtain an estimate for
the convergence rate of Algorithm 3.1 in terms of the step sizes {7(™)} along the iter-
ations [10]. We first state an elementary lemma that will be used in further analysis
of Algorithm 3.1 (cf. [31, Lemma 3.2]).

LEMMA 3.7. Suppose that a,b > 0 satisfy the inequality
a—b>Ca”,
where C > 0 and v > 1. Then we have

b< (Cly—1)+a )T <a.
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Proof. Tt suffices to show that (C'(y—1)+ al_"y)ﬁ > a— Ca”. We may assume
that a—Ca” > 0. By the mean value theorem, there exists a constant ¢ € (a—Ca?,a)
such that

Cly—1)+a'™ —(a—Ca)'™7
=Cly—1)+Ca"(1—=7v)c"=C(y-1) (1 - <9)7> <0.

Hence, we have C(y — 1) +a'~7 < (a — Ca”)'~7, which yields the desired result. O
We also need the following lemma that was presented in [23, Lemma A.2].

LEMMA 3.8. Let a,b > 0, ¢ > 1, and 8 > 0. The minimum of the function

g(t) = gt —bt, t €10,0] is given as follows:

min

209 — b if al=1 — b <0,
u{q !
t€0,0]

_bas) (B)TT f gl — > 0.

q a

Now, we present a convergence theorem for Algorithm 3.1 that reveals the depen-
dency of the convergence rate on the step sizes {7(™} determined by the backtracking
process. More precisely, the following theorems show that the convergence rate of Al-
gorithm 3.1 is dependent on the v-averaged additive Schwarz condition number K,
defined by

NG

n

1
(3.6) Ky = I Z HZ(J‘)WJ )
j=1

1

where v = — =5 and was defined in (2.7).

()

THEOREM 3.9. Suppose that Assumptions 2.2 to 2.4 hold. In Algorithm 3.1, if
Co:= E(u®) — E(u*) < wC§ , RY, then

q? Ro“u

(n+a(RY ) )"

E@u™) ~ E(u") <

forn > 1, where Ky, Ry, and R, were given in (2.3), (2.4), and (3.6), respectively.

Proof. We take any n > 0 and write ¢, = E(u(™) — E(u*). For u € Ky, we write

Y= et T\ ey )
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so that u — u(®) = 7(**D (g — 4(™). It follows that

(3.7)
(3.5)
E™) < min {F(u(")) + (F'(u™), u — u™) 4+ M, (i) w(u,u(”))}
ueKy s
i) TG
< min F(u(n)) + T(n+1)<F1(u(n))’a _ u(n)) + F(n+1) ||~ u(n)”q
ueKy q
+ 7 G @) + (1 - T(”H))G(u("))}
(ii) T DLCE
< min {<1 — 7" ) B™) 4+ 70D B(@) + e u“‘)“"} 7
ue Ko q

where (i) is due to Lemma 3.4 and (ii) is due to the convexity of F. If we set
u = tu* + (1 —t)u™ for t € [0,7("+ V], then u € K, and

t t
= LR I C))
(3.8) U=l + (1 T(n+1))u € Kp.
Substituting (3.8) into (3.7) yields
(3.9)

u
T tefo,r(nt)] 7(n+1)

q q
n M”“* o
PRI

Eu™) < min {(1 — N EW™) 4 7V R ( LA + (1 _t ) u(")>

wCi g 1
< min E@™) —t¢, + — =D RIS

T telo,r(ntD)] g(r(nt1))a-1

where the last inequality is due to the convexity of E and (2.4). The definition (2.5)
of K (n+1y implies that Ky C K (n+1), so that Cyp g, < Co x (ns1, - Hence, we have
Cn S wC g i) R{. Invoking Lemma 3.8, we get

q q
wCO*KT(n+1)t q _ q— 1 1 ngl
_ 0 - _1_5n ’
q(T(n-i-l))q 1 q (IiT(nJrl),ng)qil

where K n+1) ,, was defined in (2.7). Combining (3.9) and (3.10) yields

te[0,7(n+1)]

(3.10) min {—t{n +

q_l 1 #Cﬁ,

Cn - CnJrl > q
T (Kremn RG)TT

By Lemma 3.7, it follows that

1 1 1
(3.11) — 2 = Tt —v
Cn+1 (n q (HT(T,,+1)7UJR8)
Summation of (3.11) over 0,...,n — 1 yields
1 1 n
> — +

G TG q(RERYHTY
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or equivalently,
1
q v Rol‘iu
(n+ g (RER, /) )

which is the desired result. 0

Cn <

)

1
v

THEOREM 3.10. Suppose that Assumptions 2.2 to 2.4 and 2.6 hold. In Algo-
rithm 3.1, we have the following:

1. In the case p = q, we have

E(u™t)) — E(u*)
E(u™) — E(u*)

(3.12)

1

wCd _ a1
<1—70"Dmin{1— 0K iy g1 ( K )

2 T q QWCO,KT(”H)

forn > 0. In particular, if p < qwC&KU, then

q qky

forn > 1, where Ko and k, were given in (2.3) and (3.6), respectively.
2. In the case p > q, if Co := BE(u®) — E(u*) < (p%oJC&KO/M%)ﬁ, then

pa=1) e o
( pq > P (ppm)
. . P—4q po
E(’U,( )) - E(U ) < p(g—1)

e —v - P—q
z _
n_l’_ﬂ p ':” COT—'(LI*U
p—q nr

forn > 1, where Ko and R, were given in (2.3) and (3.6), respectively.

Proof. We again take any n > 0 and write ¢, = E(u(™) — E(u*). By (3.9) and
Assumption 2.6, we get
(3.13)

Pu™) < min {(1 D) B0y 4 D R (L - (1 ;> u(n))

u
te[0,7(n+1)] r(n+1)
q
wC, t4
0,K_(nt1
+ #Hu* _ u(")”‘l

(Tt

q
prwCy 4 g
< min {E(u(”)) — G + Mﬁrf .

te[0,r(n+1)] qu%(T("Jrl))qfl

First, we consider the case p = ¢q. Equation (3.13) reduces to

(3.14) Cns1 < i 1 t+ng’KT(”+”tq ¢
' M o) p(rnD)a=t [
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Invoking Lemma 3.8, we have

wCE Al
. y B (n+41)
i { - T
1

wCq 5 _ =1
< -7 mind1-— S i a1 K )
% ¢ \awCok (.1

which implies (3.12). Now, we assume that p < qwC{ . Since p < qwC{ 5 <
quwC{ iy 1 follows by Lemma 3.8 that

ngK t? 1 =
(3.15) min { —t4 w0 b1 ( g ) :
te[0,r(n+1)] p(rnt)ya— q  \gErm+n

where k. (m+1) , was defined in (2.7). Combining (3.14) and (3.15), it readily follows
that

1
q—1 2 ot
3.16 nt1 <[ 1 n
( ) C +1 < q (q/ﬁ_,_(n+1)7w> ) C

Applying (3.16) recursively, we obtain

& g—1/ u 7 a-1( un\"\
C"SCOH<1q<an<j),w> >§<lq<%> )C‘”

where the last inequality is due to the concavity of the logariqthmic func;cio%.
Next, we consider the case p > ¢; we assume that (o < (p» wC&KO /ur)r-4. Using
Lemma 3.8 the fact that Co,x, < Co x_,,,,, one can deduce from (3.13) that

1
a 7—1 _1
q-— 1 P q(p7
Cn - <n+l Z ( q K ) CTZL)(Q 1)-

q DP Kr(nt1) 4

Invoking Lemma 3.7 yields

1
(3.17) — >

B
n+1

q —v
— P
+ pP—q . I ,
pq pr HT(n+1)7w

where 8 = %. Applying (3.17) recursively, we get

q —V
1 1 — P
*12*1+u Z n,
oG P APTR

N
3@\»—“ =

which is equivalent to

This completes the proof. 0
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Remark 3.11. If one sets 7(") = 7 for all n in the proof of Theorem 3.9, then the
following estimate for the convergence rate of Algorithm 2.1 is obtained:

-1 pg
qT Rykrw

(n+a (R3wrf) 7))

E@w™) — B(u*) <

This estimate is asymptotically equivalent to [23, Theorem 4.7], but differs by a
multiplicative constant. A similar remark can be made for Theorem 3.10 and [23,
Theorem 4.8].

Similar to the discussions made in [10], Theorems 3.9 and 3.10 can be interpreted
as follows: since the convergence rate of Algorithm 3.1 depends on the averaged
quantity (3.6), adaptive adjustment of 7 depending on the local flatness of the energy
functional can be reflected to the convergence rate of the algorithm. As we observed
in Lemma 3.1, 7" in Algorithm 3.1 is always greater than or equal to 7. There-
fore, Theorems 3.9 and 3.10 imply that Algorithm 3.1 enjoys better convergence rate
estimates than Algorithm 2.1.

4. Further acceleration by momentum. In the author’s recent work [22], it
was shown that the convergence rate of the additive Schwarz method can be signifi-
cantly improved if an appropriate momentum acceleration scheme (see, e.g., [6, 20]) is
applied. More precisely, Algorithm 2.1 was integrated with the FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) momentum [6] and the gradient adaptive restart-
ing scheme [21] to form an accelerated version of the method; see [22, Algorithm 5].

Meanwhile, two acceleration schemes for gradient methods, full backtracking and
momentum, are compatible to each other; they can be applied to a gradient method
simultaneously without disturbing each other and reducing their accelerating effects.
Indeed, some notable works on full backtracking [10, 20, 28] considered momentum
acceleration of gradient methods with full backtracking. In this viewpoint, we present
an further accelerated variant of Algorithm 3.1 in Algorithm 4.1, which is a unification
of the ideas from [22, Algorithm 5] and Algorithm 3.1.

As mentioned in [22], a major advantage of the momentum acceleration scheme
used in Algorithm 4.1 is that a priori information on the sharpness of the energy E such
as the values of p and px in Assumption 2.6 is not required. Such adaptiveness to the
properties of the energy has become an important issue on the development of first-
order methods for convex optimization; see, e.g., [21, 26]. Compared to Algorithm 3.1,
the additional computational cost of Algorithm 4.1 comes from the computation of
momentum parameters t, and (,, which is clearly marginal. Therefore, the main
computational cost of each iteration of Algorithm 4.1 is essentially the same as the
one of Algorithm 3.1. Nevertheless, we will observe in section 5 that Algorithm 4.1
achieves much faster convergence to the energy minimum compared to Algorithms 2.1
and 3.1.

For completeness, we present a brief explanation on why Algorithm 4.1 achieves
faster convergence than Algorithm 3.1; one may refer to [21, 22] for more details.
On the one hand, the recurrence formula ¢,+1 = (1 4+ /1 + 4¢2)/2 for the momen-
tum parameter ¢, in Algorithm 4.1 is the same as that in FISTA [6]. Hence, the
overrelaxation step v("t1) = ﬁn(u(”"’l) — u(”)) in Algorithm 4.1 is expected to result
acceleration of the convergence by the same principle as in FISTA; see [13, Figure 8.5]
for a graphical description of momentum acceleration. On the other hand, the restart
criterion (v(™ — 4+ 4+ _ 4(M)) > 0 in Algorithm 4.1 means that the update
direction u(™*t1 — (") is on the same side of the M. ,-gradient direction p(M) gy (n 1)
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Algorithm 4.1 Additive Schwarz method for (1.1) with backtracking and momentum

Choose u(?) = v € dom G, 79 = 79, w > wp, p € (0,1), and to = 1.
forn=20,1,2,... do

w,(c"H) € arg min {F(v(")) + (F' (™), Riwy) 4 wdy (wg, v™) + Gk(qu,v<”))} ,1<k<N
w €Vy

7M™ /p

repeat

N
D) = () 4 TZRZU);(C”H)
k=1

N
if Ew™) > (1—7N)EW™) + TZE(U(") + R,’;wl(cnﬂ)) then
k=1

T < pT
end if
N
until B ) < (1= 7N)B@™) +7 > B™ + Rjw{"")
k=1

) — ¢
thi1 =1, B =0, if (™) — () g () g ()Y > 0
2
lny1 = w, Bn = %, otherwise.

D) () g, (1) )y

end for

In the sense that the energy decreases fastest toward the minus gradient direction,
satisfying the restart criterion implies that the overrelaxation step was not beneficial,
so that we reset the overrelaxation parameter f3,, as 0. In view of dynamical systems,
it was observed in [21] that the restarting scheme used in Algorithm 4.1 prevents
underdamping of a dynamical system representing the algorithm, so that oscillations
of the energy do not occur.

5. Numerical results. In order to show the computational efficiency of Algo-
rithms 3.1 and 4.1, we present numerical results applied to various convex optimization
problems. As in [22], the following three model problems are considered: s-Laplace
equation [31] with two-level domain decomposition, obstacle problem [5, 29, 30] with
two-level domain decomposition, and dual total variation (TV) minimization [11, 25]
with one-level domain decomposition. All the details such as problem settings, finite
element discretization, space decomposition, stop criteria for local and coarse prob-
lems, and initial parameter settings for the algorithms are set in the same manner as
in [22, section 4] unless otherwise stated, so that we omit them. We set the fine mesh
size h, coarse mesh size H, and overlapping width 6 among subdomains by h = 1/25,
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Fig. 1: Decay of the energy error E(u(™) — E(u*) in Algorithm 3.1 with respect to
various p (h =1/2%, H =1/23, § = 4h). “Plain” denotes Algorithm 2.1.
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Fig. 2: Step sizes {T(”)} generated by Algorithm 3.1 with respect to various p (h =
1/2%, H = 1/23, § = 4h). “Plain” denotes Algorithm 2.1, which has the constant step
size T = T1p.

H =1/23 and 6/h = 4, respectively, in all experiments.

First, we observe how the choices of the adjustment parameter p affect on the
convergence behavior of Algorithm 3.1. Figure 1 plots the energy error E(u(”)) —
E(u*) of Algorithm 2.1 and Algorithm 3.1 with p € {0.5,0.7,0.9}. For every model
problem and every value of p, Algorithm 3.1 shows faster convergence to the energy
minimum than Algorithm 2.1. That is, Algorithm 3.1 outperforms Algorithm 2.1
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Fig. 3: Decay of the energy error E(u(™) — E(u*) in various additive Schwarz meth-
ods (h =1/2 H =1/23,6 = 4h). “Plain”, “Adapt”, “Backt”, and “Unifi” denote Al-
gorithm 2.1, Algorithm 5 of [22], Algorithm 3.1 (p = 0.5), and Algorithm 4.1 (p = 0.5),
respectively.

regardless of the choice of p in the sense of the convergence rate. Indeed, as shown
in Figure 2, the step sizes {7(™} generated by Algorithm 3.1 always exceed the step
size 19 of Algorithm 2.1. Hence, Figure 2 verifies Lemma 3.1, and faster convergence
of Algorithm 3.1 can be explained by Theorems 3.9 and 3.10. Meanwhile, Figures 1
and 2 do not show a clear pattern on the convergence rate of Algorithm 3.1 with
respect to p. It would be interesting to find a theoretically optimal p that results in
the fastest convergence rate of Algorithm 3.1, which is left as a future work.

Next, we compare the performance of various additive Schwarz methods consid-
ered in this paper. Figure 3 plots E(u(™) — E(u*) of Algorithm 2.1 (Plain), Algo-
rithm 5 of [22] (Adapt), Algorithm 3.1 with p = 0.5 (Backt), and Algorithm 4.1 with
p = 0.5 (Unifi). In each of the model problems, the performance of Backt seems
similar to that of Adapt. More precisely, Backt outperforms Adapt in the s-Laplace
problem, shows almost the same convergence rate as Adapt in the obstacle prob-
lem, and shows a bit slower energy decay than Adapt in the first several iterations
but eventually arrive at the comparable energy error in the dual TV minimization.
Hence, we can say that the acceleration performance of Backt is comparable to that of
Adapt. Meanwhile, as we considered in section 4, acceleration schemes used by Adapt
and Backt are totally different to each other, and they can be combined to form a
further accelerated method Unifi. One can observe in Figure 3 that Unifi shows the
fastest convergence rate among all the methods for every model problem. Since the
difference between the computational costs of a single iteration of Plain and Unifi is
insignificant, we can conclude that Unifi possesses the best computational efficiency
among all the methods, absorbing the advantages of Adapt and Backt.

6. Conclusion. In this paper, we proposed a novel backtracking strategy for the
additive Schwarz method for the general convex optimization. It was proven rigorously



ADDITIVE SCHWARZ WITH BACKTRACKING 19

that the additive Schwarz method with backtracking achieves faster convergence rate
than the plain method. Moreover, we showed that the proposed backtracking strategy
can be combined with the momentum acceleration technique proposed in [22], and
proposed a further accelerated additive Schwarz method, Algorithm 4.1. Numerical
results verifying our theoretical results and the superiority of the proposed methods
were presented.

We observed in section 5 that the additive Schwarz method with backtracking
achieves faster convergence behavior than the plain method for any choice of the
adjustment parameter p. However, it remains as an open problem that what value of
p results the fastest convergence rate. Optimizing p for the sake of construction of a
faster additive Schwarz method will be considered as a future work.
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