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Abstract

In recent years, Physics-informed neural networks (PINNs) have been widely

used to solve partial differential equations alongside numerical methods because

PINNs can be trained without observations and deal with continuous-time prob-

lems directly. In contrast, optimizing the parameters of such models is difficult,

and individual training sessions must be performed to predict the evolutions of

each different initial condition. To alleviate the first problem, observed data

can be injected directly into the loss function part. To solve the second prob-

lem, a network architecture can be built as a framework to learn a finite dif-

ference method. In view of the two motivations, we propose Five-point stencil

CNNs (FCNNs) containing a five-point stencil kernel and a trainable approxima-

tion function for reaction-diffusion type equations including the heat, Fisher’s,

Allen–Cahn, and other reaction-diffusion equations with trigonometric function

terms. We show that FCNNs can learn finite difference schemes using few data

and achieve the low relative errors of diverse reaction-diffusion evolutions with

unseen initial conditions. Furthermore, we demonstrate that FCNNs can still

be trained well even with using noisy data.
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1. Introduction

To express diverse natural phenomena such as sound, heat, electrostatics,

elasticity, thermodynamics, fluid dynamics, and quantum mechanics mathe-

matically, various partial differential equations (PDEs) have been derived and

numerical methods can be applied to solve these PDEs. Representative numeri-

cal methods for solving PDEs include the finite difference method, finite element

method, finite volume method, spectral method, and so on. In this study, we

focus on the finite difference method (FDM) which divides a given domain into

finite grids and finds an approximate solution using derivatives with finite dif-

ferences [1, 2]. This method uses each points and its neighbors to predict the

corresponding point at the next time step. Likewise, in convolutional neural net-

works (CNNs) [21], convolution operators extract each pixel of outputs using

the corresponding pixel and its neighbor pixels of an input. Also, the convo-

lution operators are generally immutable. Hence, well-structured CNNs have

the potential to solve partial differential equations numerically [20]. Among

various PDEs representing natural phenomena, we consider reaction-diffusion

type equations. The reaction-diffusion model has been applied and used in

various fields such as biology [4, 5, 6], chemistry [7, 8, 9], image segmentation

[10, 11, 12], image inpainting [13, 14, 15], medicine [16, 17, 18]. In this pa-

per, we focus on second order reaction-diffusion type equations, including the

heat, Fisher’s, Allen–Cahn (AC) equation, and reaction-diffusion equations with

trigonometric function terms.

In recent years, neural networks have been widely applied to solve PDEs. As

a popular framework, Physics-informed neural networks (PINNs) [23] based on

multi-layer perceptrons (MLPs) approximate PDE solutions by the optimization

of a loss function including given laws of physics. The primary advantage of

PINNs is that PDE solutions can be inferred without any iterative process such
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as a recurrence equation with respect to time. Furthermore, it is used for diverse

applications such as Hidden Fluid Mechanics (HFMs) [26] that extract hidden

variables of a given equation using a PINN and observations. However, training

models depending on intricate PDEs and their coefficients is classically difficult.

Also, the inference of a PINN depends on a given initial condition, hence an

individual training session is required whenever the initial condition changes.

To improve the training ability, PINNs have been combined with numerical

methods as well as other neural networks such as CNNs have been selected.

M. Raissi et al. [23] added Runge-Kutta methods to a PINN model to solve

the AC equation. Aditi et al. [24] proposed transfer learning and curriculum

regularization which start training PINNs on a specific safe domain and then

transfer their learning to a target domain. Hao Ma et al. [25] proposed a U-

shaped CNN called U-net [28] and showed that the usage of target data in the

loss function part significantly improves the model optimization. Elie Bretin

et al. [27] used convolutional neural networks derived from a semi-implicit

approach to learn phase field mean curvature flows of the AC equation. We

propose Five-point stencil CNNs (FCNNs) containing a five-point stencil kernel

and a trainable approximation function to obtain the numerical solutions of

second order reaction-diffusion type equations. Our contributions are as follows:

1. We propose a five-point stencil convolution operator to solve reaction-

diffusion type equations.

2. We show that finite difference methods can be reconstructed by FCNNs

with two consecutive snapshots and that FCNNs achieve low relative errors

for diverse evolutions.

3. We demonstrate that the robustness of FCNNs using five reaction-diffusion

type equations and noisy data.

The remainder of this paper is organized as follows. In Section 2, we present

how to create training data using explicit FDMs and explain the concept of

FCNNs, training process, and numerical solutions. In Section 3.1 and 3.2, we

measure the relative errors between FCNN and FDM solutions as well as we

3



show the robustness of FCNNs using the diverse initial conditions and noisy

data. In Section 3.3, we compare FCNN to PINN. Finally, summarizes our

results and concludes the work in Section 4.

2. Methods and numerical solutions

The FDM divides a given domain into finite grids and find an approximate

solution using derivatives with finite differences [1, 2]. To create training data

for each equation, we apply an explicit FDM to create training data with a

random initial condition. A computational domain is defined using a uniform

grid of size h = 1/Nx = 1/Ny and Ωh = {(xi, yj) = (a+(i−1.5)h, c+(j−1.5)h)}

for 1 ≤ i ≤ Nx + 2 and 1 ≤ j ≤ Ny + 2. Here, Nx and Ny are mesh sizes on the

computational domain (a, b)×(c, d). Let φnij be approximations of φ(xi, yj , n∆t)

and ∆t be temporal step size. The boundary condition is a zero Neumann

boundary condition. The Laplacian of a function φ is calculated using a five-

point stencil method, the Laplacian 4φ can be approximated as follows:

4hφ ≈
φ(x+ h, y) + φ(x− h, y)− 4φ(x, y) + φ(x, y + h) + φ(x, y − h)

h2
. (1)

In this way, the first and second derivatives of φ at each point (xi, yj) (e.g.,

φx, φy, φxx and φyy) can be approximated within the 3 × 3 local area centered

(xi, yj). This concept can be equivalent to 3 × 3 convolution kernels. The 3 ×

3 kernels K following properties:

1. k1 ⊕ k2 ∈ K for any k1, k2 ∈ K (element-wise summation).

2. k1 � k2 ∈ K for any k1, k2 ∈ K (element-wise multiplication).

3. k−1 ∈ K for any k ∈ K (element-wise division).

4. ak ∈ K for any k ∈ K and any real numbers a.

Therefore, second-order PDEs can be solved numerically by the properties

of 3 × 3 kernels [20].

To solve second order reaction-diffusion type equations

φt = α4 φ+ βf(φ), (2)
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where α is a diffusion coefficient, β is a reaction coefficient, and f is a smooth

function to present reaction effect. We propose FCNN as a recurrence relation:

φn+1 = φn + ∆tα4h φn + ∆tβf(φn). (3)

As a CNN, F (φn) containing a 5-point stencil filter and a pad satisfying

given boundary conditions solves ∆tα 4 φn. To approximate φn + ∆tβf(φn)

terms, we define a trainable polynomial function ε(φn) as follows:

ε(φn) = a0 +
N∑
k=1

ai(φ
n − b)k, (4)

with model parameters ai for any i ∈ {0, 1, · · · , N} and a real value b. Let

M(φn) = F (φn) + ε(φn) be an FCNN. Then, the inference is performed as

follows:

φn+1 = Mθ(φ
n), (5)

where θ is a set of model parameters.

Figure 1: Computational graph of FCNN for second order reaction-diffusion type equations

Figure 1 shows the computational graph of our explicit model FCNN con-

taining model parameters wi for any i ∈ {0, 1, 2, 3, 4} in a filter. Furthermore,

F represents the diffusion term on the uniform grid of x and y axises, so we set

up w1 = w3 and w0 = w4 to reduce training time. When the five-point stencil

filter is used and ε is a p-th order polynomial function, the number of model

parameters is only p + 4. Thus, the set-up enables to learn physical patterns
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from few data. In Algorithm 1, an initial image φ0(= u0) and the prediction

φ1 at the next time ∆t are used with training data u0 and u1 to train a model

Mθ. The objective function L(φ1, u1) is the mean square error function without

physics-informed loss as follows:

L(φ1, u1) =
1

N

N∑
i=1

(φ1
i − u1

i )
2, (6)

where N , φ1 and u1 are the number of pixels in an output image, a prediction

and its target respectively.

Algorithm 1 Training Procedure

Set an initial value φ0 = u0, a small constant δ > 0

Initialize Mθ(φ
0) = F (φ0) + ε(φ0) with model parameters θ

while ` > δ do

φ1 ←Mθ(φ
0)

Compute loss ` = L(φ1, u1)

Update θ

end while

2.1. Reaction-diffusion type equations

To demonstrate the robustness of FCNNs, we consider reaction-diffusion

type equations including the heat, Fisher’s, AC equation, reaction-diffusion

equations with trigonometric function terms. The reaction and diffusion coeffi-

cients used in each formula are shown in Table 1. For the AC equation, β = 1/ρ2

Table 1: Diffusion (α) and reaction (β) coefficients for the simulations.

Heat Fisher’s AC Sine Tanh

α 1 1 1 0.1 0.5

β 0 20 6944 40 10

where ρ is the thickness of the transition layer and ρ5 ≈ 0.012 [20]. For the other
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equations, we select arbitrary reaction coefficients. The zero Neumann bound-

ary condition is used. For all the following equations, the continuous equations

and the discretized equations are described in turn.

• Heat equation:

φt = α4 φ. (7)

• Fisher’s equation:

φt = α4 φ+ β(φ− φ2). (8)

• AC equation:

φt = α4 φ+ β(φ− φ3). (9)

• Reaction-diffusion equation with trigonometric function(sin):

φt = α4 φ+ β sin(πφ). (10)

• Reaction-diffusion equation with trigonometric function(tanh):

φt = α4 φ+ β tanh(φ). (11)

When α = 1 and β = 1 , all the equations show similar evolutions, so we use

different reaction coefficient β much larger than diffusion coefficient α as shown

in Table 1.

3. Simulation results

3.1. FCNNs

Assume that we observe a reaction-diffusion pattern and investigate the pat-

tern rule under the constraint meaning that the observations and predictions

follow the same PDE. Our proposed FCNN is trained using only two consecu-

tive snapshots including the initial and next time step results for each equation.

Then, we evaluate the model using diverse unseen initial values.
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In the simulations, we use data with random initial values with a 100× 100

mesh so that the size of the input data is 102 × 102 containing a padding as a

boundary condition. Also, N = 3 (heat, Fisher’s, AC) or 9 (sine, tanh) for ε(φn)

is fixed depending on given equations and a 3×3 convolutional filter is used with

the stride of 1 in Eq. (4). Hence, the filter has 10,000 (= ((100 + 2−3)/1 + 1)2)

chances to learn the evolution of results images, so training a model using only

two consecutive images suffices to optimize nine or thirteen model parameters

(w0, · · · , w4, a0, · · · , a3).

As an optimizer, we use ADAM [22] with a learning rate of 0.01 and without

any regularization. We apply early stopping [29] based on validation data to

avoid overfitting. To demonstrate the approximation ε(φn) for non-polynomial

functions f(φn), we additionally consider sine and tanh functions in addition to

heat, Fisher’s, and AC equations.

For the evaluation, we implement FCNN and FDM respectively and then

measure the averaged relative L2 error with 95% confidence interval over 100

novel random initial values as shown in Table 2.

Table 2: Relative L2 error between FCNN and FDM. The ± shows 95% confidence intervals

over 100 different random initial values.

Equations Relative L2 error

Heat 8.4× 10−5 ± 4× 10−6

Fisher’s 4.0× 10−5 ± 2× 10−6

AC 1.3× 10−6 ± 8× 10−7

Sine 7.0× 10−5 ± 5× 10−6

Tanh 1.9× 10−4 ± 4× 10−6

Furthermore, we validate the errors using different types of initial values for

each equation as shown in Table 3. The initial conditions are described in the

Appendix Section.

As shown in Fig. 2, the function c(φij) calculates the φij term in the explicit

method. Also, the neighboring coefficient of the five-stencil kernel of the explicit
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Table 3: Relative L2 error between FCNN and FDM with diverse initial values.

Initial shapes: circle star circles torus maze

Heat 3.4× 10−5 4.4× 10−5 1.1× 10−5 1.1× 10−4 4.9× 10−5

Fisher’s 8.7× 10−4 7.2× 10−4 1.9× 10−4 1.3× 10−4 3.7× 10−5

AC 2.6× 10−7 2.7× 10−7 2.3× 10−7 2.0× 10−7 1.9× 10−7

Sine 3.7× 10−4 2.2× 10−4 9.5× 10−5 7.5× 10−5 4.1× 10−5

Tanh 1.8× 10−3 1.4× 10−3 6.3× 10−4 2.5× 10−5 2.9× 10−5

method is ∆tα/h2 and the averaged absolute error between the coefficients

w0, w1, w3, w4 and ∆tα/h2 is 1.6 × 10−5. For instance, the explicit method of

the AC equation can be expressed as

φn+1
i,j =

∆tα

h2
(φni,j+1 + φni,j−1 + φni−1,j + φni+1,j) + c(φni,j), (12)

where c(φni,j) = −4∆tα
h2 φ

n
i,j+β∆tφni,j−β∆t(φni,j)

3. Finally, it is shown that each

numerical scheme can be reconstructed by the proposed FCNN with given u0

and u1.

Figure 2: Center function c(φij): (blue line) FDMs, (dashed orange line) FCNNs

Figures 3-7 show the time evolution results from unseen initial shapes (circle,

star, three circles, torus, and maze) using the pre-trained FCNN of each equation

to compare them to the FDM results.
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(a)

(b)

(c)

(d)

(e)

Figure 3: Time evolution of a circle shape of (a) Heat, (b) Fisher’s, (c) AC, (d) Sine, and (e)

Tanh equations.
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(a)

(b)

(c)

(d)

(e)

Figure 4: Time evolution of a star shape of (a) Heat, (b) Fisher’s, (c) AC, (d) Sine, and (e)

Tanh equations.
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(a)

(b)

(c)

(d)

(e)

Figure 5: Time evolution of a three circles shape of (a) Heat, (b) Fisher’s, (c) AC, (d) Sine,

and (e) Tanh equations.
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(a)

(b)

(c)

(d)

(e)

Figure 6: Time evolution of a torus shape of (a) Heat, (b) Fisher’s, (c) AC, (d) Sine, and (e)

Tanh equations.
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(a)

(b)

(c)

(d)

(e)

Figure 7: Time evolution of a maze shape of (a) Heat, (b) Fisher’s, (c) AC, (d) Sine, and (e)

Tanh equations.
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3.2. FCNNs with noisy data

Data-driven models are sensitive to data noise. To investigate the effects of

noise on the our proposed model, we inject Gaussian random noise η ∼ N(0, σ2)

to u1 and then the model is trained using u0 and u1 + η for the AC equation.

Table 4 shows that the model could be trained under the noise condition.

Table 4: Relative L2 error with noise. The ± shows 95% confidence intervals over 100 different

random initial values.

σ Relative L2 Error σ Relative L2 Error

0 1.3× 10−6 ± 8× 10−7 10−4 3.3× 10−4 ± 2× 10−4

10−6 9.1× 10−5 ± 6× 10−4 10−2 1.4× 10−1 ± 3× 10−2

Figure 8 shows the results of the inference using contaminated models.

Figure 8: Inference using a contaminated model with the noise impact σ
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3.3. Comparison between PINNs and FCNNs

Table 5: PINNs vs. FCNNs in second order reaction-diffusion type equations

PINNs FCNNs

model type continuous discretized

domain mesh-free mesh-dependency

observation not required only u1

optimization hard easy

training u0-dependency u0-free

As shown in Table 5, a mesh-free and continuous-time PINN has no con-

straint on domain structures. Hence, it has the potential to solve PDE solutions

without any discretization. Also, observation data are not required to train a

model. Nevertheless, several problems remain, such as the untractable PINN

optimization and the long training runtime as well as PINNs with each differ-

ent initial condition u0 should be trained respectively, despite considering the

same PDE. On the contrary, FCNNs can solve the PDE solutions for any initial

conditions using a pretrained model that learned evolution patterns from two

consecutive snapshots.

We consider the heat equation (7) to compare between the pretrained FCNN

and the standard PINN. For the implementation of a PINN, we use 50,000

(20× 50× 50) collocation data, the circle initial condition u0 (14), with a zero

Neumann boundary condition. The baseline network is a MLP consisting of an

input layer, three hidden layers, and an output layer with an activation function

tanh in each hidden layer. Each hidden layer has 50 nodes. In the training

session, we use the ADAM with a learning rate of 10−4. The loss function is

defined as

L =Lc + Lb + λLini (13)

where Lc =
∑Nc

i=1 f(ti, xi, yi)
2 is the physics-informed loss, Lb =

∑Nb

i=1 û(ti, x
b
i , y

b
i )

2

is the boundary condition loss with the coordinates (t, xb, yb) on the boundary,
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Lini =
∑
x,y∈Ωh

(û(0, x, y) − u0(x, y))2 is the initial condition loss, and λ is a

positive weight of the initial condition loss. When λ = 1, it is observed that the

Lc and the Lb converge much faster than the Lini causing the training to be

biased towards Lc and Lb. Thus, λ = 50 is selected to alleviate the optimization

issue. We perform the simulation on the following specifications: Intel (R) Core

(TM) i9-10900K CPU @3.70 GHz, 128 GB RAM/NVIDIA GeForce RTX 3090.

Table 6: FCNN vs. PINN: training runtime and relative L2 error

FCNN PINN

Relative L2 error 6.03× 10−5 1.65× 10−1

Training runtime (hours) 0 7

Table 6 shows that training the PINN requires a considerable runtime, and that

it is hard to optimize the model despite the expensive training cost. In contrast,

the FCNN can predict the evolution without an additional training session by

using the pretrained model in Section 3.1. It takes 2 minutes to obtain the

pretrained model. The predictions of each method are shown in Fig. 9.

Figure 9: Time evolution of the circle shape of FCNN, FDM, and PINN. PINNs even learn

the initial condition from Lini so the trained initial values could not be exactly the same as

the given values.
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4. Conclusions

In this paper, we proposed Five-point stencil CNNs (FCNNs) containing a

five-point stencil kernel and a trainable approximation function. We considered

reaction-diffusion type equations including the heat, Fisher’s, Allen–Cahn equa-

tions, and reaction-diffusion equations with trigonometric function terms. We

demonstrated that our proposed FCNN can be trained using only two consec-

utive snapshots and can then predict reaction-diffusion evolutions with unseen

initial conditions. Also, the robustness of FCNNs was shown by the noise tests

and diverse initial conditions. In future works, the characteristics of PINNs

are intriguing, although the optimization of PINNs is an intractable problem.

We expect that it would be feasible to train FCNNs without u1 by a physics-

informed loss.
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Appendix

In this appendix session, we describe the initial conditions used in the sim-

ulation results session 3. A detailed description of these initial conditions can

be found in our previous research paper [20].

(1) The initial condition of a circle shape

φ(x, y, 0) = tanh

(
R0 −

√
(x− 0.5)2 + (y − 0.5)2

√
2ε

)
, (14)
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where R0 is the initial radius of a circle.

(2) The initial condition of a star shape

φ(x, y, 0) = tanh

(
0.25 + 0.1 cos(6θ)−

√
(x− 0.5)2 + (y − 0.5)2

√
2ε

)
, (15)

where

θ =

tan−1
(
y−0.5
x−0.5

)
, if (x > 0.5)

π + tan−1
(
y−0.5
x−0.5

)
, otherwise.

(3) The initial condition of a torus shape

φ(x, y, 0) = −1 + tanh

(
R1 −

√
XY√

2ε

)
− tanh

(
R2 −

√
XY√

2ε

)
, (16)

where R1 and R2 are the radius of major (outside) and minor (inside) circles,

respectively. And, for simplicity of expression, XY = (x− 0.5)2 + (y − 0.5)2.

(4) The initial condition of a maze shape

The initial condition of a maze shape is complicated to describe its equa-

tion, so refer to the codes which are available from the first author’s GitHub

web page (https://github.com/kimy-de/fcnn) and the corresponding author’s

web page (https://sites.google.com/view/yh-choi/code).

(5) The initial condition of a random shape

φ(x, y, 0) = 0.1rand(x, y), (17)

here the function rand(x, y) has a random value between −1 and 1.
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