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In this paper we consider a level set reinitialization technique based on a high-order, local
discontinuous Galerkin method on unstructured triangular meshes. A finite volume based
subcell stabilization is used to improve the nonlinear stability of the method. Instead of the
standard hyperbolic level set reinitialization, the flow of time Eikonal equation is discretized
to construct an approximate signed distance function. Using the Eikonal equation removes
the regularization parameter in the standard approach which allows more predictable be-
havior and faster convergence speeds around the interface. This makes our approach very
efficient especially for banded level set formulations. A set of numerical experiments in-
cluding both smooth and non-smooth interfaces indicate that the method experimentally
achieves design order accuracy.
Keywords: discontinuous Galerkin, reinitialization, level set, Hamilton-Jacobi, subcell, sta-
bilization, Eikonal.

1 Introduction

Level set (LS) methods [33] are very popular to capture dynamic fronts in computational physics and
engineering [12, 32]. In a typical application, evolving the level set function in time often distorts
the regularity of level set function. The reinitialization process replaces solution with signed distance
function which satisfies the Eikonal equation |∇φ|= 1 by keeping the zero level set unchanged.

In this study, we focus on the high-order, partial differential equation (PDE) based, reinitialization
methods, and refer to Gibou et al. [12] for a recent review of a broad family of methods and their
applications on various problems. The PDE-based level set reinitialization methods can be classified
as pseudo-time first-order hyperbolic [39], parabolic [25], and quasi-linear elliptic [4] approaches. The
former approach of Sussman [39] evolves the Hamilton-Jacobi (HJ) equation in pseudotime to achieve
signed distance function at steady state as given by

∂φ

∂t
+ sgnα (φ0) (|∇φ|−1) = 0, φ (x, 0) = φ0 (x) , (1)

where sgnα(φ0) denotes α regularized sign term. The characteristics of this equation have unit speed
and move from interface in the normal direction without smoothing. However, the speed changes
with the sgnα(φ0) term such that selection of the regularization affects convergence rate, accuracy
and stability of schemes [38]. If α is selected as non-zero but too small a value, convergence speed of
the solution increases with, however, sacrificed accuracy due to artificial movement of the interface.
On the other hand, large values of α gives a profile as smooth as the initial data φ0 leading to slow
convergence to steady state due to small characteristic speeds around the interface. Thus, in practice,
α is usually chosen to be proportional to mesh size h, even though convergence property of the PDE
is not explicitly known for general problems under different selections [7].
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Most of the high-order level set reinitialization approaches for (1) are based on structured meshes
utilizing finite difference Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) schemes
[17, 34]. Although these schemes have been adapted to unstructured triangular grids [24, 44] with
highly increasing complexity, DG methods (we refer the reader to [15] and the references therein) have
the advantages of easy implementation, compactness, efficiency, and superior scalability. In [13], the
level set function is reinitialized using a standard mixed DG method with an adaptive filtering and
stream line diffusion based stabilization, but both the filter strength and diffusion coefficients remained
as parameters that may have to be tuned for a given problem. In [20, 22], the level set function was
reinitialized on unstructured triangular/tetrahedral grids with a local DG [42] space discretization
paired with an artificial diffusion-type stabilization mechanism. To ensure accuracy in the stabilized
elements, the mesh is refined to increase resolution and to decrease the diffusion added to system.
Zhang and Yue [43] recently introduced a gradient-based approach where the level set function is
determined by a weighted local projection scheme adjusted to preserve the interface location for the
elements involving the level set and used a HJ solver in conservative form for the remaining elements.

The elliptic and parabolic reinitialization approaches are based on the minimization of an energy
functional in strong form [2, 25] or by directly applying penalty terms in an FEM framework to enforce
boundary conditions at the interface [4]. The elliptic reinitialization method was later analyzed using
a DG space discretization for different potential functions and penalty parameters [40] motivated by
the indicated issues of hyperbolic reinitialization using the DG framework [29]. Applying Dirichlet
boundary conditions on an immersed implicit interface requires special techniques such as Lagrange
multipliers [1] or constructing special quadrature rules for each element cut by the interface [30]. In
fact, the smoothed sign term in the original level set formulation can be considered as a simplified
implementation of Dirichlet conditions on the interface, and elliptic type reinitialization has similar
problems to interface preservation, i.e. the definition of a penalty parameter to enforce boundary
conditions or the definition of high-order integration rules for the elements cut by interface involved
in dynamic problems. Also, the computational cost of solving a quasi-linear elliptic problem can be
prohibitively large for many practical applications.

DG methods are well-suited for level set advection [21, 27] or interface tracking in multiphase
flows [20, 43] due to their low numerical dissipation achieved by the use of local high order polyno-
mial approximations. On the other hand, level set reinitialization is generally solved with a more
robust, lower-order finite volume scheme [10] or is totally avoided using geometric distancing based on
neighbor search algorithms [26, 28] even though the other parts of the solver benefit high-order DG
discretizations. This is probably because high-order DG methods for the HJ equation, like many other
high-order methods, produce oscillations when the approximation space is inadequate to resolve the
main features of the exact solution. Designing suitable stabilization mechanisms for high-order dis-
cretizations of these problems is a challenging task on general problems and element types. Successful
approaches for nonlinear stability are limiting, which is based on reducing polynomial order near dis-
continuous regions [8], high order WENO type polynomial reconstruction [36], filtering high-frequency
solution components, e.g. [15], and artificial diffusion which relies on explicitly adding viscous terms to
the governing equations [35]. Recently, subcell-based limiters for DG [16] have received attention since
they act only on the smallest length scale within one cell to avoid the excessive numerical dissipation
which might impact global solution. The a posteriori subcell limiting process is often applied to ten-
sor product elements since with the selection of Gauss-Lobatto interpolation nodes, together with a
suitable sub-tessellation in the element, the DG and subcell FV flux computations match directly [9].

In this work, we present a high-order local DG method for interface-preserving level set reinitial-
ization on unstructured triangular meshes. Instead of using the standard hyperbolic reinitialization
approach, we discretized flow of time Eikonal equation which removes the dependency of the solution
on the regularized sign term and improves convergence speed of solution. We also detail the efficiency
of the method in the local set formulation where reinitialization is only needed in the vicinity of inter-
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face, as encountered in a multiphase flow simulation. To stabilize the corresponding HJ equations, we
designed a priori subcell finite volume limiter on unstructured meshes that minimizes the additional
operation count and connectivity information, and maximizes the amount of data gathered from each
macro DG element. We demonstrate that the proposed approach is robust, preserves (N + 1)th order
accuracy for smooth interfacial problems using Nth order polynomial approximation space, and is
suitable for fine-grain parallelism.

The remainder of this paper is organized as follows. In Section 2, we present the mathematical
formulation for the flow of the time Eikonal equation to compute signed distance functions, including
the high-order local DG spatial discretizations and the construction of the level set function in time.
Details of the subcell finite volume solver and a priori error estimators are given in Section 3, which is
followed by numerical validation test cases in Section 4. Finally, Section 5 is dedicated to concluding
remarks and comments on future works.

2 Formulation

The general approach for solving the standard hyperbolic reinitialization (1) is to smear the signum
term in a narrow band in the vicinity of the interface. Without regularization of the sign function,
characteristics of the equation are emanating from the interface in the normal direction at unit speed.
However, the speed changes with the sgnα(φ0) term so that selection of the regularization affects the
steady state solution and the convergence rate/accuracy of the scheme.

Generally, regularized signum term is selected as

sgnα(φ0) =
φ0√
φ2

0 + α2
, (2)

where α is the amplitude parameter chosen as a non-zero value related to the characteristic mesh size,
i.e. α = O(h). Apparently, α should be large enough to ensure stability of the numerical discretization
method and to prevent artificial movement of the interface. The stability issues become more prominent
in high-order DG space discretizations [29]. A careful calibration is required to get stable solutions
[21] under these conditions. In addition, a quick analysis of the characteristic equations for large
values of α shows a source of inefficiency, since the characteristics that convey signed distance to space
travel at speed sgnα(φ0), which is small close to the interface. This suggests that constructing the
signed distance function close to the interface requires high amount of computation, and local level set
reinitialization becomes more computationally demanding.

Consider a uniformly continuous function, φ (x, t) which represents an interface, Γ as

φ (x, 0) = 0, x ∈ Γ

φ (x, 0) > 0, x ∈ Ωp

φ (x, 0) < 0, x ∈ Ωm,

where the domain Ω is partitioned as Ωp ∪ Γ ∪ Ωm, and x and t are Cartesian coordinates and time,
respectively. In [31], it is proved that the interface evolves in time as φ (x, t) = 0, x ∈ Γ (t) for the
given function φ (x, t) or dφ(x(t),t)

dt = 0. After a little manipulation, the relation can be written as

∂φ

∂t
+ γ (n) |∇φ| = 0, (3)

where γ (n) is given as a function of the normal to level sets, n = ∇φ/|∇φ|. The velocity for reinitial-
ization can be constructed such that γ (n) = 1, i.e. the flow is in the normal direction and has a speed
of 1. Then (3) takes the following form,

∂φ

∂t
+ |∇φ| = 0. (4)
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Different from the original level set reinitialization approach, (4) finds the first arrival times instead of
distance level sets and is used to solve shape-from-shading [31] and redistancing [7] problems success-
fully. Two flow fields are constructed as

∂u

∂t
+ |∇u| = 0, u (x, 0) = φ0 (x)

∂v

∂t
+ |∇v| = 0, v (x, 0) = −φ0 (x) ,

(5)

where φ0 is the initial value of the level set function. Therefore, for x ∈ Ωp, the algorithm creates a
flow such that the first arrival time of the front gives the signed distance in Ωp. The orientation of
the front is reversed to find the arrival times for x ∈ Ωm. Then the level set function is reconstructed
accordingly as the arrival time, T as follow

φ (x) =

{
T if φ0 (x) > 0 and u (x, T ) = 0
−T if φ0 (x) < 0 and v (x, T ) = 0

(6)

When the PDEs given in (5) are discretized and the level set function is reconstructed in time using
(6), the accuracy of the numerical schemes used in time integration also plays an important role in
the overall accuracy of the algorithm. We discuss the numerical discretizations we use along with the
accuracy they provide in the following sections.

2.1 Spatial Discretization

We detail the spatial discretization of time-dependent Eikonal equation, (5) in this section. We begin
by partitioning the computational domain Ω into K triangular elements Ee, e = 1, . . . ,K, such that

Ω =
K⋃
e=1

Ee.

We denote the boundary of the element Ee by ∂Ee. We say that two elements, Ee+ and Ee−, are
neighbours if they have a common face, that is ∂Ee− ∩ ∂Ee+ 6= ∅. We use n = (nx, ny) to denote the
unit outward normal vector of ∂E .

We consider a finite element space on each element Ee, denoted V e
N = PN (Ee) where PN (Ee) is the

space of polynomial functions of degree N on element Ee. As a basis of the finite element spaces we
take a set of Np = |V e

n | Lagrange polynomials {len}
n=Np
n=0 , interpolating at the Warp & Blend nodes [41]

mapped to the element Ee. Next, we define the polynomial approximation of the scalar level set field
φ as

φe =

Np∑
n=0

φenl
e
n(x), for all x = (x, y) ∈ Ee.

The reinitialization equation, (5) can be written as a standard HJ equation in terms of generic field
φ as φ = u or φ = v. Considering the first evolution equation φ = u, since the second equation only
uses flipped initial condition, we arrive to

∂φ

∂t
+H (∇φ) = 0, φ(x, 0) = φ0, (7)

where the physical Hamiltonian, H denotes |∇φ|. To solve the equation, the physical Hamiltonian
is approximated by a monotone and consistent numerical Hamiltonian, H (∇φ) ≈ H̄ (p,q) such that
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p = [p1, p2]T and q = [q1, q2]T correspond to the vector of left and right upwind approximations of the
gradient vector (φx, φy), respectively:

p1 − φ+
x = 0, p2 − φ+

y = 0

q1 − φ−x = 0, q2 − φ−y = 0.

Then, we use the local Lax-Friedrichs type numerical Hamiltonian H̄ (p,q) given as

H̄ (p,q) = H

(
p1 + p2

2
,
q1 + q2

2

)
− α1 (p1 − p2)− α2 (q1 − q2) . (8)

In the equation, α1 = maxp∈D

∣∣∣∂H(p,q)
∂p

∣∣∣ and α2 = maxq∈D

∣∣∣∂H(p,q)
∂q

∣∣∣ where domain D is taken locally
in the element Ee as D = [min(p1, p2),max(p1, p2)] or D = [min(q1, q2),max(q1, q2)].

Computing (8) requires accurate approximations of solution derivatives. We apply the Local Dis-
continuous Galerkin (LDG) method [42] due to its simplicity and minimal stencil size in unstructured
triangular grids. Let p and q are left and right upwind approximation of gradient such that,

p−∇φ = 0, q−∇φ = 0.

Multiplying the equation by a test function v ∈ V e
N , integrating over the element Ee, and performing

integration by parts, we obtain the following weak variational form

(v,p)Ee = −(∇v, φ)Ee + (v, φ∗pn)∂Ee

(v,q)Ee = −(∇v, φ)Ee + (v, φ∗qn)∂Ee .
(9)

Here we have introduced the inner product (u, v)Ee to denote the integration of the product of u and v
computed over the element Ee and, analogously, the inner product (u, v)∂Ee to denote the integration
along the element boundary ∂Ee.

Due to the discontinuous approximation space, the flux functions φ are not uniquely defined in the
boundary inner product and hence, it is replaced by a numerical flux function φ∗ which depends on the
local and neighboring trace values of φ along ∂Ee. On each element we denote the local trace values of
φe as φint and the corresponding neighboring trace values as φext. Note that we will suppress the use
of the e superscript when it is clear which element is the local trace. Using this notation we choose as
a numerical flux φ∗ the alternating upwind fluxes as in [42], i.e. for i = 1, 2

φ∗p =

{
φint for n(i) > 0

φext for n(i) < 0
and φ∗q =

{
φext for n(i) > 0

φint for n(i) < 0
(10)

In order to write the discrete form of (9) on the degrees of freedom of p = [p1, p2]T and q = [q1, q2]T ,
we introduce the elemental massMe, surface massMef , and stiffness operators Sex and Sex which are
defined as follows

Me
ij =

(
lei , l

e
j

)
Ee , Mef

ij =
(
lei , l

e
j

)
∂Eef , (11)

(Sex)ij =

(
lei ,
∂lej
∂x

)
Ee
, (Sey)ij =

(
lei ,
∂lej
∂y

)
Ee
. (12)

Next, we define the weak elemental gradient operator De = [Dex,Dey]T , as well as the lifting operators
Lef , via

Dex = (Me)−1STx , Dey = (Me)−1STy , Lef = (Me)−1Mef . (13)
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Finally, for ease of notation we introduce the concatenation of the lift operators along each face, i.e.,
Le = [Le0,Le1,Le2]. Using these operators, fully discrete form of (9) can be written as

p1 = −Dexφ+ Leφ∗p,1, p2 = −Deyφ+ Leφ∗p,2
q1 = −Dexφ+ Leφ∗q,1, q2 = −Deyφ+ Leφ∗q,2,

which reduces performing excessive matrix-vector products in elemental computations. In order to
obtain a more unified expression between separate elements we introduce a mapping from each element
Ee to a reference element Ê , on which we make use of reference operators. We take the reference element
Ê to be the bi-unit triangle

Ê = {−1 ≤ r, s, r + s ≤ 1} ,
and introduce the affine mapping Φe which maps Ee to a reference triangle Ê , i.e.,

(x, y) = Φe (r, s) , (x, y) ∈ Ee, (r, s) ∈ Ê

We denote the Jacobian of this mapping as

Ge =

[
rx sx
ry sy

]
,

and denote determinant of the Jacobian as Je = detGe. We also define the surface scaling factor Jef

which is defined as the determinant of the Jacobian Ge restricted to the face ∂Eef .
Mapping each of the elemental operators defined in (11)-(13) to the reference element Ê we can

write each of the elemental operators in terms of their reference versions and the geometric factors Ge,
Je, and Jef as follows

Me = JeM, De = GeD, Lef =
Jef

Je
Lf .

HereM, D = [Dr,Ds]T , and Lf are the mass, derivative, and lifting operators defined on the reference
element Ê . Therefore, we can write the local DG scheme on each element using only these reference
operators and the geometric data Ge, Je, and Jef . We also emphasize that volume terms of p1, q1 and
p2, q2 share the same operations as seen in the discrete form.

Finally, the semi-discrete form of the local DG scheme is written as,

∂φ

∂t
= −H̄ (p,q) . (14)

It is important to mention that when the solution is smooth p is very close to q, while they differ
significantly near the discontinuities. Thus, at discontinuous regions, (p, q) can capture the complete
information of ∇φ. For a piecewise constant approximation, this scheme is monotone and converges
to the entropy solution. However, stabilization is needed for higher order approximations. The use of
subcell finite volume stabilization and regularity detector is discussed in Section 3.

2.2 Constructing Distance Function

Overall accuracy in constructing the signed distance function depends on the time discretization scheme
and the algorithm to find the first arrival time as given in (6). For the time discretization, we use the
low-storage fourth-order explicit Runge-Kutta scheme [5] for the resulting ODEs. Then, the high-order
determination of first arrival time of u and v remain to finish the overall discretization.

Any interpolation scheme can be used to compute an approximation of the time that u and v
become zero. In order to achieve high order interpolation, ENO schemes offer desirable properties [7],
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especially if u or v has kinks in time. In this work, we consider a third order ENO interpolation that
provides fourth order accurate approximation of the root when u, v are smooth. We store the central
time stencil for any grid point xi as

{
un−2
i , un−1

i , uni , u
n+1
i , un+2

i , un+3
i

}
where uni = u (xi, tn). Since

roots of the ENO interpolating polynomial are always located in time interval [tn, tn+1], we choose the
initial stencil E1 = {tni , tn+1

i } which provides first order polynomial as

p1(t) = u[tn, 0] + u[tn, 1](t− tn),

where any u[tj , k] is the kth order classical Newton divided difference for k = 0, 1, 2, 3 and j =
n− 2, . . . , n+ 3 given by

u [tj , 0] = uji , u [tj , k + 1] =
u [j + 1, k]− u [j, k]

tj+k+1 − tj
.

Although selection of initial stencil E1 is natural, since it is the closest to the root, the stencil E2,
which is required to construct a quadratic polynomial, is not fixed as either E2 = {tn−1, tn, tn+1} or
E2 = {tn, tn+1, tn+2} can be used to locate the root when u is smooth in the interval. In this case,
avoiding the candidate stencil which yields more a oscillatory interpolation is crucial to improve the
accuracy. The ENO method [14] is to choose the stencil S adaptively and automatically based on the
local smoothness of the function u. The idea is to add the left or right neighbour point to the previous
stencil each time step, depending on which one gives a smoother option using the highest degree term
as indicator,

Ek+1 =

{
Ek ∪ {tl−1} if |u [tl−1, k]| ≤ |u [tl, k]|
Ek ∪ {tl+k+1} else ,

where l is the left most point in stencil Ek. Following this discussion, the (k+ 1)th order interpolating
polynomial can be constructed as follows,

pk+1(t) = pk(t) + (t− Ek1 )(t− Ek2 ) . . . (t− Ekk+1)

{
u [tl−1, k + 1] if |u [tl−1, k + 1]| ≤ |u [tl, k + 1]|
u [tl, k + 1] if |u [tl−1, k + 1]| > |u [tl, k + 1]| .

Here Ekl shows the lth entry of the stencil Ek. Then, classical root finding methods can be utilized
to locate the roots of the polynomials. We use Newton’s method with initial guess of (tn + tn+1)/2 ,
which gives a second order initial approximation with respect to time-step size. Our numerical tests
demonstrated that only a couple Newton iterations allow us to find the root in targeted accuracy.

Close to the interface, there may not be enough values for an interpolation scheme to use. For
example, if n = 0, then u0

i and u
1
i are of different signs and we do not have sufficient number of history

points. In order to use high order interpolation, we insert values from the approximation of v. Let
vni denote the value computed by the scheme to approximate v(xi, tn). Then we set u−1

i = −v1
i and

u−2
i = −v2

i . This is because the level sets of u and v have initially the values of φ0 , and u flows in its
outward normal directions while v flows in its inward normal directions.

3 A Finite Volume Subcell Stabilization

Effective stabilization of high-order DG discretizations of the reinitialization is critical to damp out high
frequency solution components. Among the various techniques to prevent oscillations and to ensure
stability in high-order discretizations, such as artificial diffusion and filtering, FV subcell limiting has
favorable properties for nonlinear stability. Since all these mechanisms are designed to be integrated
into DG schemes, detecting where the solution reaches its stability limits a priori is crucial for effective
solvers. In this work, we use a modal regularity detector introduced by Klöckner et.al. [23] as an
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improvement to the method proposed in [35] by taking into account all the modes of expansion space
for high-order DG solutions. This approach was adapted to 2D and 3D on triangular/tetrahedral
elements in [22] where its effectiveness in terms of simplicity and marking of troubled elements in PDE
based high-order level set reinitialization was shown.

The main idea of FV subcell stabilization is to replace the DG solution in troubled elements with
a FV scheme on a subcell level, which is constructed by sub-tessellation of the macro DG element.
Although FV subcell stabilization in a DG framework is well established in tensor product elements,
as there is a natural balance between DG and FV data structures and communication patterns with
suitable subdivisions [37], the idea does not apply directly to simplices. Hence, special attention should
be paid to designing efficient subcell limiting for triangular elements such that additional connectivity
information storage size be minimized and information gathered from macro DG element should be
maximized for FV solution.

The space of Nth order Lagrange polynomial functions on a triangular element can be constructed
usingNp = |V e

n | nodes, which hasN+1 nodes on each face. The same polynomial space can be obtained
from cell averages of at least Ns = (N + 1)2 subcells. In other words, any function represented by
DG finite element space can be represented equivalently by a collection of piecewise constant finite
volume cell data on a subgrid for Ns ≥ (N + 1)2. Although the number of FV subcells and the type
of minor tessellation can be obtained in different ways, we choose Ns = (N + 1)2 which is constructed
at (N + 1)th order Warp & Blend nodes [41] as shown in the figure 1 for N = 5. The motivation
of our particular choice is both to keep computational complexity of DG and FV cell workloads as
close as possible and to preserve the subscale resolution of Nth order DG method the same with FV
characteristic length scale of h/(N + 1) [3].

Let φ̄ (x, t) represent φ (x, t) with the same nominal accuracy, i.e. Ns ≥ (N + 1)2, in terms of a
set of piecewise constant subcell averages φ̄i for i = 1 . . . Ns. Then the φ̄ei are computed as the L2

projection of φe onto the space of piecewise constant functions on subcell Sei on macro element Ee
given by,

φ̄ei =
1

|Sei |
(φe,1)Sei =

1

|Sei |
(len,1)Sei φ

e
n, ∀Sei ∈ Ee, n = 1 . . . Np. (15)

Since the integrand only includes the Lagrange interpolating polynomials over the subcells, it can be
written on the macro reference element and its subdivision as follow,

Pi,j =
1

|Ŝi|
(ln,1)Ŝi ∀Ŝi ∈ Ê , n = 1 . . . Np. (16)

This defines the projection operator P that gives elemental mean values at subcells via φ̄e = Pφe. We
also define the projection operator restricted to the face, ∂Êf ,

Pfi,j =
1

|Ŝfi |
(ln,1)Ŝf i

∀Ŝf i ∈ Êf , i = 1 . . . (N + 2), j = 1 . . . (N + 1). (17)

Pf plays an important role in conservative couplings of a DG element with a FV subcell as piecewise
constant mean values at faces can be obtained by φ̄e,f = Pfφe,f .

Reconstruction of a high-order polynomial representation from subcell averages obviously leads an
over-determined system as Ns > Np by construction. Hence this recovery problem can be solved in
constrained least squares sense, where the constraint preserves the mean value of the high-order poly-
nomial reconstruction on macro element,

(
φ̄,1

)
Ee = (φ,1)Ee . Following this relation, the reconstruction

operator, R becomes pseudo-inverse of projection operator, R such that RP = I, where I denotes the
identity matrix. Similarly, reconstruction from face mean values satisfies RfPf = I.

After obtaining cell averages on the subgrid, any stable finite volume scheme can be used to evolve
(5). Since we choose the minimum required number of subcells for minor tessellation to get an efficient
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(a) (b)

Figure 1: Interpolation nodes and subcells used for a priori finite volume limiting. Warp&Blend
interpolation nodes [41] for N = 5 (a) and subcells and their centroids created on the same node
distribution for Ns = (N + 1)2 (b).

scheme, the quality of the FV update is critical to achieve accurate solutions in troubled cells. The
accuracy of a finite volume scheme is highly dependent on the approximation quality of gradients.
Obviously, the simplest choice is to use a first order scheme which assumes a constant field or zero
gradient over the subcells, but this results in a highly dissipative scheme even in subcell resolution
on unstructured grids. To obtain second-order accuracy in the FV subcells, a gradient scheme is
needed to be at least first-order in general unstructured grids. Although the Green-Gauss gradient
reconstruction is a computationally attractive technique, it requires special conditions on unstructured
grids to achieve first-order accuracy in gradient. Alternatively, a least-squares gradient reconstruction,
which minimizes the magnitude of gradient, provides first-order accuracy unconditionally on all grids
but requires that the obtained linear system is not singular.

In this study, we utilize a second-order WENO approach [11] to reconstruct gradients on subcell
centers which results in a first-order accurate gradient approximation on general grids and avoids
singularity problems with proper selection of nonlinear weights. For second-order accuracy, the degree
of the required polynomial approximation of the gradient is 1, which can be constructed from mean
values with stencil size of 3. The polynomials pj for j = 1, 2, 3 are constructed for the subcell S0

i using
the compact stencils {S0

i , S
1
i , S

2
i }, {S0

i , S
2
i , S

3
i } and {S0

i , S
3
i , S

1
i } as illustrated in the figure 2. We use

the standard notation for the reconstruction polynomials as pj = a0
j + a1

j

(
x− x̄0

i

)
+ a2

j

(
y − ȳ0

i

)
where

(x̄, ȳ) represents center coordinates of the indicated subcell. The unknowns a are uniquely solvable for
mean values φ̄ for the the given admissible stencils. By construction, a0

j = φ̄0
i for all polynomials and

[a1
j , a

2
j ] are the components of gradient at S0

i computed on the stencil j. Then, the resulting linear
system for the first stencil can be written as[

x̄1
i − x̄0

i ȳ1
i − ȳ0

i

x̄2
i − x̄0

i ȳ2
i − ȳ0

i

] [
a1

1

a2
1

]
=

[
φ̄1
i − φ0

i

φ̄2
i − φ0

i

]
,

and similar for the stencils 2 and 3. For the subcells connected on DG elements, required stencils are
constructed considering the corresponding face mean values of connected DG elements instead of using
the mean values of subcells created on dummy minor tessellation of neighbor DG elements.

In WENO schemes, the reconstruction polynomial p (x) is obtained as a weighted sum of all poly-
nomials, p (x) =

∑
j ωjpj (x). The weights wj are chosen depending on smoothness of pj to minimize

oscillations. We use a normalized L2 norm on the first derivative of pj (x) to detect how much it
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Figure 2: (a) Finite volume stencil and data structure for WENO reconstruction and (b) computation
of the flux function on a face of a DG element which is connected to FV elements.

oscillates
γj = |Si|−2 (|∇pj (x)|2, 1

) 1
2

Si

which reduces to the simpler form of γj = |Si|−1
(

(a1
j )

2 + (a2
j )

2
) 1

2 for second-order reconstruction
polynomials. The weights are then computed as

ωi =
(ε+ γi)

−r∑3
j=1 (ε+ γj)

−r

where r is a positive integer selected as 4 and ε is a small positive number that we take as 10−6. Our
numerical tests show that results are not overly sensitive to selection of r and ε.

p (x) is then used to obtain face values on the subcells, φ̄fi in Si which follows the discretization of
the flow of the time Eikonal equation (7). With the piecewise constant approximation space, volume
terms in the LDG discretization described in (9) vanishes and the scheme degenerates to

p̄i =
1

|Si|

Nf∑
f=1

φ̄∗p|Sfi |nf , q̄i =
1

|Si|

Nf∑
f=1

φ̄∗q |Sfi |nf , (18)

where p̄i = [p̄1, p̄2]T and q̄i = [q̄1, q̄2]T correspond to the vector of left and right upwind approximations
of the gradient vector [φ̄x, φ̄y]

T on Si. The alternating upwind fluxes,φ̄∗p and φ̄∗q on subcell faces Sfi are
defined similarly to the (10). Finally, with the computation of derivatives for internal and boundary
elements, we arrive to the semi-discrete form by using a LLF numerical Hamiltonian,

∂φ̄

∂t
= −H̄ (p̄, q̄) . (19)

which completes the spatial discretization on subcells.
The degenerated scheme simply leads to a block-structured upwind FV scheme which offers inherent

coupling of DG and FV elements through the same numerical fluxes. The numerical flux for a face
of DG element is computed on FV side using face projection operator, Pf as shown in Figure 2 (b).
After this operation, external and internal trace values coincide at the FV element’s degrees of freedom
where upwind fluxes are evaluated. These fluxes are used to update the FV subcells directly and are
reconstructed back to DG degrees of freedom to evolve the solutions in the DG elements i.e. φ∗p = Rf φ̄∗p
and φ∗q = Rf φ̄∗q .
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4 Results

In this section, we show the accuracy in local and global LS formulations, interface preservation,
and long-term stability of the presented algorithm. Reinitialization tests are solved for both smooth
and non-smooth interface problems on 2D unstructured triangular grids. To evaluate the accuracy of
the numerical scheme, we define the following L∞ and L2 norms of error according to the following
relations,

L∞ = max
Ee∈Γε

|φe − φexact|, L2 =
∑

(φe − φexact, φe − φexact)Ee∈Γε (20)

where ε is the predefined band thickness and Γε is the ε neighbourhood of the interface or whole
computational domain depending on the location where the error is computed. φexact denotes the
exact solution or a very accurate approximation of the exact solution if it is not explicitly known. To
assess the interface preservation of the method, we introduced the averaged L1 error which measures
displacement of the interface

L1 =
1

LΓ
(Hh (φe)−Hh

(
φexact

)
,1)Ee , (21)

where LΓ is length of the interface and Hh is a smoothed Heaviside function defined as Hh (φ) =

0.5
(

1 + tanh(πφh )
)
, h being the characteristic length of mesh.

In all the test cases, unless explicitly stated otherwise, we use Ns = N + 1 for the subcells and
the low storage, fourth-order explicit Runge-Kutta [5] (LSERK) time discretization with unit CFL
number.

4.1 Smooth Interfaces

In the first test case, the reinitialization problem proposed by [38] is solved to show convergence rate
and interface preservation of the algorithm. The interface of interest is a circle centered at the origin
with radius of 1.0. The signed distance function in a computational domain of [−2, 2]2 is perturbed
into the following initial level set function

φ0 = ((x− 1)2 + (y − 1)2 + 0.1)(
√
x2 + y2 − 1), (22)

to create a smooth function with widely changing gradients in the vicinity of the interface. Compu-
tations are performed on the successively refined meshes by uniformly dividing the initial coarse level
grid which is constructed by triangles having edge length of h = 0.4 on the boundary of domain, Ω
and element number of K = 240.

The first row of Figure 3 shows the measured order of accuracy for N = 3, 4, 5 using L2, L1 and
L∞ error estimates near the interface with the condition of ε = 0.3 such that kink point at (0, 0) is
excluded. Although limiting is active for all numerical tests, troubled cell detector either do not mark
elements in the narrow band region, or only a small number of elements are detected when the the
solution is smooth and the mesh is fine enough to resolve high gradients near the interface. Because of
this, the numerical scheme reaches optimal N + 1 convergence rates near the smooth interface region.

To illustrate the effect of subcell limiting on the convergence rates, which is not straight forward as
the number of troubled elements are problem dependent, we artificially activated the subcell limiting
on all cells for the same set of numerical experiments. The resulting convergence properties are given
in the second row of Figure 3. Our scheme achieves its designed second-order accuracy in all error
norms.

Figure 4 illustrates the reinitialized level set function for the computational grids of h, h/2, and
h/4 for the approximation order N = 5. A good recovery of the signed distance function is obtained
for highly disturbed initial data even on the coarse grid. Upon increasing the resolution, the accuracy

11
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Figure 3: Spatial accuracy test for reinitialization of the level set function on the circular interface
problem. L2 and L∞ errors are computed on the band thickness of ε = 0.3 so that the kink point at
the center of circle is avoided. L1 error computation uses corresponding characteristic mesh length to
smooth the Heaviside function.

of the solution is improved around the kink point as expected. We also emphasize that proposed
method does not cause the artificial movement of the interface after reinitialization as supported by
the computed L1 errors in the first row.
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Figure 4: Reinitialization of the level set function for the circle test on grids with characteristic length
h, h/2 and h/4 for N = 5. Drawn are contour levels from −0.9 to 0.9 with step size 0.1.
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As a second smooth interface problem, we consider the computation of signed distance function
from the reinitialization of an ellipse starting with the following initial LS function,

φ0 (x, y) =
(

(x− x0)2 + (y − y0)2 + 0.1
)(√ x2

A2
+
y2

B2
− 1

)

with A = 1,B = 0.5, x0 = 0.875 and y0 = 0.5. Similar to the circle test, the initial LS has both small
and large gradients near the interface with an extended kink region between the line segment (−A,A)
on the x axis. In addition, the interface has a non-smooth region at the intersection point with y axis.
The closed form of the exact signed distance function is not known for the ellipse so it is accurately
approximated by creating a finite number of points on the interface with coordinates,

xn = A cos (2πn/Nn) and yp = B sin (2πn/Nn)

where n and Nn are the index and total number of the points inserted on the interface respectively.
Then, the approximated distance function is defined as

φexact(xi, yi) = min(
√

(xi − xn)2 + (yi − yn)2)sgn(φ0(xi, yi)).

In all tests, we use the same mesh configuration as with the circle test case above. Figure 5
illustrates the reinitialization of the highly perturbed LS function at different solution times for the
meshes h/2 and N = 5. As seen in the figure, the signed distance function is recovered well from the
strongly distorted initial data.
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(a) t = 0s
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(b) h/2
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2

1

0

1

2

(c) h/4

Figure 5: Reinitialization of the level set function for the elliptic interface test for grids h/2, h/4 and
for N = 5 at initial state (a) and final time of t = 1.5 (b-c). Drawn are contour levels from −0.4 to
1.5 with step size 0.1.

To illustrate the effectiveness and accuracy of the reinitialization method in local problems, we
measure the error computed on a narrow band using three different thicknesses,ε = 0.1, 0.2, 0.3. Figure
6 shows the change of L2 and L∞ norms of error in time on the relatively coarse grid h/2 and polynomial
order N = 5. For each local level set representation, the signed distance function is obtained at around
the same time with the band thicknesses. With the increasing band thickness, error in both norms
increases with including more troubled elements in error computations. Also, the test reveals that that
pollution caused by the limiting does not spread out and degrade the solution outside of the region
having kinks.

13



0 0.1 0.2 0.3 0.4 0.5
10 -8

10 -6

10 -4

10 -2

10 0

(a)

0 0.1 0.2 0.3 0.4 0.5
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

(b)

Figure 6: Local level set reinitialization for the elliptic interface test for grid h/2 and N = 5. Time
history of L2 (a) and L∞ (b) norms of error measured on band thicknesses of ε = 0.1, 0.2, 03.

4.2 Non-smooth Interfaces

In the first non-smooth interface test, reinitialization of two intersecting circles of radii r centered at
(±a, 0) and 0 < a < r is considered. Because 0 < a < r holds, the circles intersect and the interface of
interest is the union of the two circles. The signed distance function to the interface is given as

d(x, y) =


min

(√
x2 +

(
y ±
√
r2 − a2

)2
)

if a−x√
(a−x)2+y2

>
a

r
and a+x√

(a+x)2+y2
> a

r

min

(√
(x± a)2 + y2 − r

)
else.

Comparing with the previous two tests, this one is more critical because the signed distance function
has kinks on the whole y axis for φ > 0 and line segment [−a, a] on the x axis. The problem is solved
for r = 1 and a = 0.7 on a computational domain of [−2, 2]2. Similar to the previous tests, the initial
LS function is defined by multiplying the signed distance with a perturbation function to create highly
varying gradients near the interface as follows

φ0 (x, y) =
(

(x− 1)2 + (y − 1)2 + 0.1
)
d (x, y) .

Figure 7 shows the reinitialization of LS function at different solution times including the initial
solution for the meshes h/2 and h/4, and polynomial order N = 5. As seen in the figure, the signed
distance function is generated accurately without any stability issue and the kinks are more resolved
with increasing resolution.

As a second non-smooth test, construction of the signed distance function is considered for a square
inside the computational domain of [−2, 2]2 starting with following initial LS function

φ0(x, x) = 0.8 max (|x− xc|−w/2, |y − yc|−w/2) .

For w = 2, xc = yc = 0, the initial LS creates concentric squares centered at the origin with the
interface having width of 2. Obviously, φ0 is not a signed distance function and includes kinks along the

14



2 1 0 1 2
2

1

0

1

2

(a) t = 0s

2 1 0 1 2
2

1

0

1

2

(b) h/2

2 1 0 1 2
2

1

0

1

2

(c) h/4

Figure 7: Reinitialization of the level set function for the intersecting circles test for grids h/2, h/4
and N = 5 at initial state t = 0 (a) and final time t = 1.0 (b-c). Drawn are contour levels from −0.9
to 0.9 with step size 0.1.

diagonals of the domain. The exact distance function is approximated similarly to the ellipse test and
has kinks at the diagonals for φ ≤ 0. The LS function is reinitialized well for smooth and non-smooth
regions with sharp corners as illustrated in the figure 8.
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Figure 8: Reinitialization of the level set function for the square interface test for grids h/2, h/4 and
for N = 5 at initial state (a) and final time (b-c),t = 1.5. Drawn are contour levels from −0.9 to 1.0
with step size 0.1.

We emphasize that after projecting the initial condition to the approximation polynomial space,
corners become rounded and lose their sharp profile. A better way of handling this deficiency is to
refine the mesh around sharp corners and start with a more resolved initial condition [22], but this is
out of the scope of this study. Even without any special treatment of the interface singularities, the
proposed technique provides an accurate interface representation as shown in Figure 9. The L1 norm
of errors are computed for the intersecting circles and square interface test problems for N = 3, 4, 5 on
the same sequence of meshes in the Figure. Estimated orders of convergence on the error norm suggest
convergence rates between N + 1 and 2 resulting from the stabilization on elements located on the
interface. As the polynomial order increases, oscillations of initial condition at corners and deficiency
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Figure 9: Spatial accuracy test for non-smooth interface problems. L1 norm of errors are computed
for square interface and intersecting circles tests.

from the optimal convergence rate of (N + 1) increases.

4.3 Multiple Interfaces

A final numerical test contains a more complex interface structure that might be more relevant to
practical physical problems such as motion of multiple bubbles in multiphase flows. For this case,
we have defined 12 circular interfaces of the same radius distributed over the computational domain
[−2, 2]2. The signed distance function to the interface is given as the minimum of distance functions
of each circle

d (x, y) = min (di(x, y)) , di (x, y) =
√

(x− xi)2 + (y − yi)2 − ri,

where (xi, yi) and ri are the center coordinates and radius of circle i for i = 1 . . . 12. To make the
problem more challenging, initial value of the level set function is obtained by multiplying the distance
function with the following function similar to the previous test cases.

φ0 (x, y) =
(

(x− 1)2 + (y − 1)2 + 0.1
)
d (x, y)

The initial field has highly varying gradients and curvatures, and creates a complex structure having
a range of kinks over the domain as shown in the Figure 10 (a). We use this test case to illustrate
stability of the algorithm in a more realistic case. In Figure 10, the solution is obtained on the h/4
grid for N = 5 with second-order finite volume subcell stabilization. The signed distance function is
recovered well even under highly complex kink structures.

5 Conclusion

We have presented a high-order, local discontinuous Galerkin approach to reinitialize level set functions
through flow of the time Eikonal equation. To stabilize the resulting Hamilton-Jacobi equations, we
utilized a subcell finite volume limiter based on second-order WENO reconstruction on triangular grids.
We showed that the scheme achieves designed order of accuracy and preserves stability using smooth
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Figure 10: Reinitialization of the level set function for the multiple interfaces test for the h/4 grid and
N = 5 at initial state (a), and final time, t = 1.1 (b). Drawn are contour levels from −0.5 to 1.0 with
step size 0.05.

and non-smooth interface problems with highly varying gradients. The presented approach offers a
high-order level set reinitialization by addressing stability and accuracy issues of standard hyperbolic
reinitialization in the DG framework [1, 40].

The presented solver is implemented on the open source project libParanumal (LIBrary of PARAllel
NUMerical ALgorithms) [6]. libParanumal consists of a collection of mini-apps with high-performance
portable implementations of high-order finite element discretizations for a range of different fluid flow
models [18, 19, 45].

The GPU performance of the scheme in triangular/tetrahedral elements remains to be investi-
gated. Furthermore, extension to contact line problems and multiphase flows with sharp interfaces by
considering potential performance gains will be studied in future works.
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