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Abstract

The purpose of this paper is to extend the versatile mixed methods originally de-

veloped by Chen and Williams for isothermal flows in “Versatile Mixed Methods

for the Incompressible Navier-Stokes Equations,” Computers & Mathematics

with Applications, 2020, (under review), to simulate non-isothermal incompress-

ible flows. These new mixed methods are particularly interesting, as with only

minor modifications they can be applied to a much broader range of flows, in-

cluding non-isothermal weakly-compressible flows, and fully-compressible flows.

In the main body of this paper, we carefully develop these mixed methods for

solving the Boussinesq model equations. Thereafter, we prove the L2-stability of

the discrete temperature field, and assess the practical behavior of the methods

by applying them to a set of well-known convection problems.

Keywords: non-isothermal, thermally-coupled, incompressible Navier-Stokes,

mixed finite element methods, versatile, symmetric
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1. Introduction

The motion of a non-isothermal incompressible fluid is frequently induced by

buoyancy forces, viscous forces, and pressure fields. In accordance with standard

practices, we refer to the motion that is induced solely by buoyancy forces as
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natural or free convection, the motion that is induced solely by viscous forces

and pressure fields as forced convection, and the motion that is induced by all

three factors as mixed convection. In order to characterize the various types

of convection, one may solve the incompressible Navier-Stokes equations for

mass and momentum conservation, in conjunction with a temperature equation

(usually obtained from the internal energy or enthalpy equations). In addition,

one may couple the momentum and temperature equations via the approach of

Oberbeck [1] and Boussinesq [2] by adding a temperature-dependent buoyancy

term to the RHS of the momentum equation. The buoyancy term is assumed to

be directly proportional to changes in the temperature field, and these changes

are assumed to be small enough such that the density remains constant. This

approximation is frequently referred to as the Boussinesq model [3], or (less

commonly) the Oberbeck-Boussinesq model [4]. For practical applications, it is

usually necessary to solve the Boussinesq model in the vicinity of complicated

geometries, using unstructured meshes. As a result, our preference is to use

finite element methods for solving the model because of their ability to operate

on both structured and unstructured meshes, while simultaneously achieving

high-order accuracy, stability, and robustness.

In what follows, we briefly review some previous efforts to apply finite el-

ement methods to the Boussinesq model. Some of the earliest work in this

area was performed by Laskaris [5] who used a high-order continuous Galerkin

(CG) method to simulate channel flows with heated walls. In addition, Young

et al. [6, 7] and Tabarrok and Lin [8] used a similar approach to study natural

convection in heated cavities. Next, Gartling [9] used a CG method to simu-

late a thin-walled tube with wall heat transfer, a rectangular heat exchanger,

and a heated hexagonal cylinder in a cooled cavity. Thereafter, Marshall et

al. [10] used a high-order CG method with a penalty function (for enforcement

of the dilatational constraint) to simulate a heated cavity. This was the first

time that a finite element method was successfully applied to natural convec-

tion problems for a wide range of Rayleigh numbers (104 − 107). Based on

this work, Reddy and Satake [11] formulated an alternative CG method, and
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used it to simulate heated, non-convex, straight-sided cavities. It is impor-

tant to note that all of the early work described above was limited to two-

dimensional geometries. Fortunately, with the advent of more powerful com-

puters and more advanced stabilization strategies, such as the Galerkin Least

Squares (GLS) approach [12, 13, 14], the solutions to three-dimensional prob-

lems became possible. Some of the early work in this area was performed by

Tang and Tsang [15, 16], who used least-square finite element methods to simu-

late three-dimensional heated cavities, and accurately reproduce the dynamics of

Rayleigh-Bénard convection cells. A detailed review of the latest efforts to apply

finite element methods to natural and mixed convection problems is beyond the

scope of the present article. However, the interested reader may consult [17, 18]

for an extensive collection of references on this topic.

Despite the many applications of finite element methods to the Boussinesq

model, there have been a relatively small number of efforts to rigorously an-

alyze the existing methods, or to develop new mixed methods which main-

tain inf-sup stability. Some pioneering efforts in this area were undertaken

by Boland and Layton [19, 20], as they derived stability and error estimates

for CG methods for steady and unsteady natural convection problems. In ad-

dition, they analyzed low-order, non-conforming discontinuous Galerkin (DG)

methods. Most notably, they were among the first researchers to recognize

the importance of using a skew-symmetrizing procedure to stabilize the con-

vective operator in the temperature equation. Subsequently, their work was

expanded by Dorok et al. [21] and Bernardi et al. [22], who developed stabil-

ity and error estimates for mixed methods. More recently, Codina et al. [23]

and Löwe and Lube [24] developed variational multiscale (VMS) methods for

problems with turbulent mixed convection. Within the VMS framework, they

constructed rigorous stability estimates and (in the case of [24]) error estimates

for the resulting schemes. Thereafter, Dallmann and Arndt [18, 4] developed

a mixed method which was stabilized using a combination of local projection

stabilization [25, 26], streamline-upwind stabilization [27, 28, 29], and grad-div

stabilization [30]. For this method, they rigorously derived stability and error
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estimates, and produced accurate numerical results for a wide range of steady

and unsteady convection problems. Next, Rebollo et al. [31] developed a mixed

method which they stabilized using an interpolation-based operator that acts as

a low-pass filter. We note that, although the performance of this method is quite

adequate from an accuracy standpoint, it is only weakly consistent. Most re-

cently, de Frutos et al. [32] derived an optimal set of stability and error estimates

for grad-div stabilized, inf-sup stable mixed methods. These methods are effec-

tively a subset of the methods constructed by Dallmann and Arndt in [18, 4].

Lastly, we note that there are ongoing efforts to analyze mixed methods for

Boussinesq models with temperature-dependent parameters (cf. [33, 34, 35, 36]

for several examples).

Due to the limited number of efforts to develop mixed methods (see above),

there are still opportunities to improve the robustness, accuracy, and flexibility

of the methods. With this in mind, the goal of the present paper is to extend the

recently developed versatile mixed methods (see [37]) to solve the Boussinesq

model with constant parameters. For the sake of completeness, let us briefly

describe the underlying philosophy of versatile mixed methods: i) we begin

with the compressible formulation of the governing equations and then enforce

the assumption of constant density, ii) we maintain the presence of dilatational

terms (and similar terms) that would usually be neglected, and iii) we discretize

the resulting formulation using standard, inf-sup stable, mixed methods. This

approach has several advantages, as most importantly, it can be immediately

applied to weakly-compressible flows, and furthermore, it ensures that the di-

latational constraint is enforced in a consistent fashion in each of the governing

equations. In [37], this philosophy was applied to the isothermal incompress-

ible Navier-Stokes equations. There, we used the full compressible stress tensor

(with the dilatational component) in the momentum conservation equation, and

we rigorously proved the stability of the discrete velocity field. The resulting

methods were successfully applied to isothermal Taylor-Green and Gresho vor-

tex problems. In this work, we apply the same methods to non-isothermal

incompressible flows.
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The format of this paper is as follows. In section 2, we formally introduce the

Boussinesq model equations for non-isothermal incompressible flows and we de-

velop the notation and mathematical machinery for discretizing these equations.

In sections 3 and 4, we introduce the versatile mixed methods, and prove the

stability of the discrete temperature field. In section 5, we apply the methods to

a set of standard benchmark problems involving natural and mixed convection.

Finally, in section 6, we conclude with a summary of our work and a few final

remarks.

2. Preliminaries

Let us start by introducing a domain Ωt = (0, tn) × Ω, where Ω ∈ Rd is a

spatial domain and (0, tn) ∈ R is a temporal domain. In a natural fashion, we de-

note the spatial and temporal coordinates by x and t, and we denote the spatial

and temporal derivatives by ∇ (·) and ∂t (·), respectively. We assume d = 2 or 3,

and that the domain boundary ∂Ω is composed from straight line segments (for

the case of d = 2) and planar faces (for the case of d = 3). Inside the domain Ωt,

we are interested in simulating the motion of a homogeneous, non-isothermal,

incompressible fluid with a constant density ρ0, and non-constant velocity, tem-

perature, and pressure fields u = u (t,x), T = T (t,x), and p = p (t,x). Since

the density is constant, we find it convenient to divide the governing equations

by ρ0, and then introduce density-weighted quantities, such as p̃ = p/ρ0 (the

kinematic pressure). We introduce the tilde symbol to avoid abuses of notation

which can result from ignoring differences between density scaled and unscaled

quantities. Now, having established the necessary background, we present the

Boussinesq model for non-isothermal flows

∇ · u = 0, in Ωt (2.1)

∂t u+∇ · (u⊗ u+ p̃ I)−∇ · τ̃ = −βTg + f̃u, in Ωt (2.2)

∂tT +∇ · (Tu)−∇ · (αγ∇T ) =
1

Cv

[
τ̃ : ∇u− p̃ (∇ · u)

]
+ f̃T , in Ωt. (2.3)

5



These equations are subject to the following boundary and initial conditions

u = 0, on ∂Ωt, (2.4)

T = 0, on ∂Ωt, (2.5)

u(0,x) = u0(x), in Ω, (2.6)

T (0,x) = T0(x), in Ω. (2.7)

Furthermore, in order to close the equations, we define τ̃ as the stress tensor

τ̃ = ν

(
∇u+∇uT − 2

3
(∇ · u) I

)
, (2.8)

g as the gravitational acceleration (where gi = −gδid with g = const), f̃u as a

source term for the linear momentum, f̃T as a source term for the temperature,

Cv as the specific heat at constant volume, Cp as the specific heat at constant

pressure, γ = Cp/Cv as the ratio of specific heats, α = κ/ (Cp ρ0) as the thermal

diffusivity coefficient, β as the thermal expansion coefficient, κ as the thermal

conductivity coefficient, ν = µ/ρ0 as the kinematic viscosity coefficient, and µ

as the dynamic viscosity coefficient.

Before proceeding further, it is important to note that our equations for the

temperature and the stress tensor (Eqs. (2.3) and (2.8)) are unconventional. In

particular, it is common practice to neglect the viscous dissipation and pressure

work terms on the RHS of Eq. (2.3), such that

∂tT +∇ · (Tu)−∇ · (αγ∇T ) = f̃T . (2.9)

In addition, most researchers neglect the divergence and gradient transpose

terms on the RHS of Eq. (2.8), as follows

τ̃ = ν∇u. (2.10)

However, we prefer to use Eqs. (2.3) and (2.8) due to their superior physical

accuracy, flexibility, and discrete consistency. We refer the interested reader

to [37] for a detailed discussion of our motivation for using the full stress tensor
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(Eq. (2.8)). In what follows, we will only discuss our motivation for using the

full temperature equation (Eq. (2.3)).

1. The formulation in Eq. (2.3) contains the viscous dissipation term, and

thereby successfully captures the physical conversion of kinetic energy into

internal energy (heat). Of course, the viscous dissipation term will be

small in most incompressible flows, however it will rarely completely van-

ish. Therefore, by neglecting this term, we introduce a small but unnec-

essary amount of error into the final solution. Furthermore, this error is

difficult to control, as it does not vanish in the asymptotic limit as the

element size goes to zero, or the polynomial order goes to infinity.

2. The formulation in Eq. (2.3) is more suitable for adaptation to compress-

ible flows, as it retains the pressure work and viscous dissipation terms

which become increasingly important in these types of flows. Retaining

these terms helps facilitate flexibility of the resulting methods, and en-

courages code-reuse between incompressible and compressible CFD codes.

3. The formulation in Eq. (2.3) is more ‘consistent’, as it enables consistent

enforcement of the dilatational constraint. In order to see this, we begin by

noting that Eq. (2.3) retains the pressure work term, which is guaranteed

to vanish at the continuous level (by Eq. (2.1)), but which may or may

not vanish at the discrete level. Evidently, for pointwise divergence-free

methods, the pressure term vanishes in both cases, but for more general

methods, the dilatation term typically only vanishes in the weak sense, and

the pressure term is non-zero. Therefore, neglecting the pressure term a

priori is inconsistent, as this effectively forces the dilatation contribution

to vanish pointwise in the temperature equation, even though it may only

vanish weakly in the mass conservation equation. Naturally, we prefer to

use Eq. (2.3), as it avoids this inconsistency.

In summary, we have introduced a ‘versatile’ approach in which we solve Eqs. (2.1)–

(2.3) in conjunction with the stress tensor in Eq. (2.8). In what follows, we will

introduce the necessary machinery for discretizing these equations.
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In accordance with standard practices, we tessellate the spatial domain Ω

with a mesh Th. The mesh is composed from straight-sided, d-dimensional

triangular or cubic elements K, with characteristic size h. The faces of elements

on the perimeter of the mesh are required to exactly conform to the domain

boundaries, and the union of all the elements is required to cover the domain.

In addition, for the sake of simplicity the elements are required to be non-

overlapping, and the mesh is required to be devoid of hanging nodes. The

boundary of each element K is denoted by ∂K and the outward-pointing unit

normal vector on this boundary is denoted by n. Elements are considered to

be ‘face neighbors’ if they share a (d − 1)-dimensional face F . We denote the

unit normal vector that points from the positive side to the negative side of the

shared face as n+, and naturally n− = −n+. The total collection of faces in

the mesh is denoted by Fh, and the faces of a single element K are denoted by

FK = {F ∈ Fh : F ⊂ ∂K}. The set of interior faces is denoted by F i
h = {F ∈

Fh : F ∩∂Ω = ∅} and the set of boundary faces by F∂
h = {F ∈ Fh : F ∩∂Ω 6= ∅}.

Finally, for a given face F , we can define a normal vector nF which points from

the positive to the negative side of the face.

Next, one may define jump [[·]] and average {{·}} operators for an interior

face F ∈ F i
h as follows

[[φ]] = φ+ − φ−, [[φn]] = φ+n+ + φ−n−, {{φ}} =
1

2
(φ+ + φ−) ,

[[v]] = v+ − v−, [[v ⊗ n]] = v+ ⊗ n+ + v− ⊗ n−, {{v}} =
1

2
(v+ + v−) ,

where φ is a generic scalar function, and v is a generic vector function. Similarly,

for all boundary faces F ∈ F∂
h , one may define

[[φ]] = φ, [[φn]] = φn, {{φ}} = φ,

[[v]] = v, [[v ⊗ n]] = v ⊗ n, {{v}} = v.

In addition, it is convenient to introduce some standard notation for repre-

senting inner products. With this in mind, let us introduce a generic vector w

and generic tensors T and U . Note: here, we assume that v, w, T , U , and φ are
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sufficiently smooth, such that the associated integrations are possible. Based

on this assumption, we can define

(v,w)Th =
∑

K∈Th

∫
K

v ·w dV, (T ,U)Th =
∑

K∈Th

∫
K

T : U dV,

〈v,w〉∂Th =
∑

K∈Th

∫
∂K

v ·w dA, 〈T ,U〉∂Th =
∑

K∈Th

∫
∂K

T : U dA,

〈v,w〉Fh
=
∑

F∈Fh

∫
F

v ·w dA, 〈T ,U〉Fh
=
∑

F∈Fh

∫
F

T : U dA.

Using this notation, we can introduce the well-known integration by parts for-

mulas ∫
∂K

φ (v · n) dA =

∫
K

(φ (∇ · v) + v · ∇φ) dV,

∫
∂K

v · Tn dA =

∫
K

(v · (∇ · T ) + T : ∇v) dV,

which can be rewritten as

〈φv,n〉∂K = (φ,∇ · v)K + (v,∇φ)K ,

〈v,Tn〉∂K = (v,∇ · T )K + (T ,∇v)K .

In what follows, we will conclude this section by defining the standard function

spaces for mixed finite element methods. We start by introducing the broken

Sobolev space

Wm,p(Th) = {w ∈ Lp(Ω),w|K ∈Wm,p(K), ∀K ∈ Th} ,

where Wm,p (Th) = (Wm,p (Th))
d
. Next, we introduce the Hilbert spaces

H0(div; Ω) =
{
w : w ∈ L2(Ω), ∇ ·w ∈ L2(Ω), w · n|∂Ω = 0

}
,

H1
0 (Ω) =

{
w : w ∈H1(Ω), w|∂Ω = 0

}
,

where H1 (Ω) =
(
H1 (Ω)

)d
. Having established these spaces, we can define

scalar-valued polynomial spaces QDC
h and QC

h for the pressure, and RC
h for the
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temperature

QDC
h =

{
qh : qh ∈ L2

∗ (Ω) , qh|K ∈ Pk (K) ,∀K ∈ Th
}
,

QC
h =

{
qh : qh ∈ C0 (Ω) , qh|K ∈ Pk (K) ,∀K ∈ Th

}
∩ L2
∗ (Ω) ,

RC
h =

{
rh : rh ∈ C0 (Ω) , rh|K ∈ Pk (K) ,∀K ∈ Th

}
∩H1

0 (Ω) ,

where Pk (K) is the space of polynomials of degree ≤ k, and L2
∗ (Ω) is the space

of L2 functions with zero mean. Furthermore, we can define the vector-valued

Raviart-Thomas and Taylor-Hood spaces for the velocity

WRT
h = {wh : wh ∈H0 (div; Ω) ,wh|K ∈ RTk (K) ,∀K ∈ Th} ,

W TH
h =

{
wh : wh ∈ C0 (Ω) ,wh|K ∈ (Pk+1 (K))

d
,∀K ∈ Th

}
∩H1

0 (Ω),

where C0 (Ω) =
(
C0 (Ω)

)d
, and

RTk (K) = (Pk (K))
d ⊕ Pk (K)x.

Lastly, we can introduce WBDM
h , the Brezzi-Douglas-Marini space (see [38] for

an explicit definition of this space).

3. Versatile Mixed Methods

In this section, we develop a general class of mixed methods for solving

Eqs. (2.1) – (2.3). The methods can be constructed using the following steps:

i) choose function spaces Qh ⊂ L2
∗ (Ω), Rh ⊂ H1

0 (Ω), and Wh ⊂ H0(div; Ω),

ii) identify test functions (qh, rh,wh) that span Qh × Rh ×Wh, and iii) find

unknowns (p̃h, Th,uh) in Qh ×Rh ×Wh that satisfy

(∇ · uh, qh)Th = 0, (3.1)
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(∂tuh,wh)Th − (uh ⊗ uh,∇hwh)Th − (p̃h,∇ ·wh)Th + 〈σ̂inv n,wh〉∂Th

+ νh

[(
∇huh +∇hu

T
h −

2

3
(∇ · uh) I,∇hwh

)
Th
− 〈σ̂vis n,wh〉∂Th

+

〈
ϕ̂vis − uh,

(
∇hwh +∇hw

T
h −

2

3
(∇ ·wh) I

)
n

〉
∂Th

]
− 1

2
((∇ · uh)uh,wh)Th

= − (βhThg,wh)Th +
(
f̃u,wh

)
Th
, (3.2)

(∂tTh, rh)Th − (Thuh,∇hrh)Th +
〈
φ̂inv · n, rh

〉
∂Th

+ αhγh

[
(∇hTh,∇hrh)Th −

〈
φ̂vis · n, rh

〉
∂Th

+
〈
λ̂vis − Th,∇hrh · n

〉
∂Th

]
− 1

2
((∇ · uh)Th, rh)Th

=

(
1

Cv

[
νh

(
∇huh +∇hu

T
h −

2

3
(∇ · uh) I

)
: ∇huh − p̃h (∇ · uh)

]
, rh

)
Th

+
(
f̃T , rh

)
Th
. (3.3)

Here, we note that the quantities with hats (for example σ̂inv) denote numerical

fluxes. An array of possible formulas for the fluxes are given in section A.1 of

the Appendix. By substituting these formulas into Eqs. (3.1) – (3.3), one may

rewrite the equations in standard form as follows

bh (uh, qh) = 0, (3.4)

(∂t uh,wh)Th + ch (uh;uh,wh) + νhah (uh,wh)− bh (wh, p̃h)

= − (Ξ (Th) ,wh)Th +
(
f̃u,wh

)
Th
, (3.5)

(∂tTh, rh)Th + ch (uh;Th, rh) + αhγh ah (Th, rh)

= (Φ (uh) + Ψ (uh, p̃h) , rh)Th +
(
f̃T , rh

)
Th
. (3.6)
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Next, we must define the operators ah, bh, ch, ah, ch, Ξ, Φ, and Ψ. In order

to setup these definitions, we introduce functions qh ∈ Qh, rh and θh ∈ Rh,

and vh,wh and ξh ∈ Wh. Thereafter, we expand the operators in Eqs. (3.4)

and (3.5) as follows

bh (vh, qh) = (∇ · vh, qh)Th , (3.7)

ch (ξh;vh,wh) = (ξh · ∇hvh,wh)Th +
1

2
((∇ · ξh)vh,wh)Th (3.8)

− 〈(ξh · nF ) [[vh]] , {{wh}}〉Fi
h

+ ζ 〈|ξh · nF | [[vh]] , [[wh]]〉Fi
h
,

ah (vh,wh) =

(
∇hvh +∇hv

T
h −

2

3
(∇ · vh) I,∇hwh

)
Th

(3.9)

−
〈

[[vh]] ,

{{
∇hwh +∇hw

T
h −

2

3
(∇ ·wh) I

}}
nF

〉
Fh

−
〈

[[wh]] ,

{{
∇hvh +∇hv

T
h −

2

3
(∇ · vh) I

}}
nF

〉
Fh

+

〈
η

hF
[[vh]] , [[wh]]

〉
Fh

,

Ξ (rh) = βhrhg. (3.10)

In addition, the operators in Eq. (3.6) can be expanded as follows

ch (ξh; θh, rh) = (ξh · ∇hθh, rh)Th +
1

2
((∇ · ξh) θh, rh)Th (3.11)

− 〈(ξh · nF ) [[θh]] , {{rh}}〉Fi
h

+ δ 〈|ξh · nF | [[θh]] , [[rh]]〉Fi
h
,

ah (θh, rh) = (∇hθh,∇hrh)Th − 〈[[θh]] , {{∇hrh}} · nF 〉Fh
(3.12)

− 〈[[rh]] , {{∇hθh}} · nF 〉Fh
+

〈
ε

hF
[[θh]] , [[rh]]

〉
Fh

,

Φ (vh) =
νh
Cv

((
∇hvh +∇hv

T
h −

2

3
(∇ · vh) I

)
: ∇hvh

)
, (3.13)

Ψ (vh, qh) = − 1

Cv
(qh (∇ · vh)) . (3.14)

It is possible to simplify these expressions in the particular case when the method

is pointwise divergence-free. One may consult section A.2 of the Appendix for

details.
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4. Analysis of Versatile Mixed Methods

In this section, we rigorously analyze the stability of the versatile mixed

methods which were introduced in section 3. In preparation for this analysis,

we first define a special set of norms on broken Sobolev spaces. Thereafter,

we establish the coercivity of the bilinear form ah (Eq. (3.12)) and the semi-

coercivity of the trilinear form ch (Eq. (3.11)). Next, we use these results to

prove the L2-stability of the discrete temperature field. Finally, we discuss the

relationship between the stability properties of the discrete temperature and

velocity fields.

4.1 Norm Definitions

Definition 4.1 (Gradient Norm). Consider the scalar-valued function r ∈

W 1,p (Th). Then,

‖r‖grad,p =

[
‖∇hr‖pLp(Ω) +

∑
F∈Fh

1

hp−1
F

‖[[r]]‖pLp(F )

]1/p

=

 ∑
K∈Th

∫
K

 d∑
j

|∂jr|p
 dV +

∑
F∈Fh

1

hp−1
F

∫
F

|[[r]]|p dA

1/p

,

is a norm on Ω. In a similar fashion, for the vector-valued function w ∈

W 1,p (Th), we have

‖w‖grad,p =

[
‖∇hw‖pLp(Ω)×Lp(Ω) +

∑
F∈Fh

1

hp−1
F

‖[[w]]‖pLp(F )

]1/p

=

 ∑
K∈Th

∫
K

 d∑
i,j

|∂jwi|p
 dV +

∑
F∈Fh

1

hp−1
F

∫
F

(
d∑
i

|[[wi]]|p
)
dA

1/p

.

(4.1)

Definition 4.2 (Full Symmetric Gradient Norm). Consider the vector-valued

13



function w ∈W 1,p (Th). Then,

‖w‖sym,p =

[∥∥∥∥∇hw +∇hw
T − 2

3
(∇h ·w) I

∥∥∥∥p
Lp(Ω)×Lp(Ω)

+
∑

F∈Fh

1

hp−1
F

‖[[w]]‖pLp(F )

]1/p

=

[ ∑
K∈Th

∫
K

 d∑
i,j

∣∣∣∣∣∂jwi + ∂iwj −
2

3

(
d∑
k

∂kwk

)
δij

∣∣∣∣∣
p
 dV

+
∑

F∈Fh

1

hp−1
F

∫
F

(
d∑
i

|[[wi]]|p
)
dA

]1/p

, (4.2)

is a norm on Ω.

4.2 Analysis of Bilinear and Trilinear Forms

Lemma 4.3 (Coercivity of the Viscous Bilinear Form). Suppose we choose a

generic test function rh ∈ Rh, and we assume that d = 2 or 3. Furthermore,

we choose ε > C2
tr,2N∂ , where Ctr,2 and N∂ are constants which depend on the

mesh topology. Then, the bilinear form ah in Eq. (3.12) is coercive on Rh, such

that

∀rh ∈ Rh, ah (rh, rh) ≥ CI ‖rh‖2grad,2 , (4.3)

where CI =
(
ε− C2

tr,2N∂

)
/ (1 + ε) is a positive constant independent of h.

Proof. The proof appears in [39] Lemma 4.12 (p. 129).

Lemma 4.4 (Semi-Coercivity of the Convective Trilinear Form). Consider test

functions ξh ∈ Wh and rh ∈ Rh. Then, the trilinear form ch in Eq. (3.11) is

semi-coercive on Wh ×Rh, such that

∀ (ξh, rh) ∈Wh ×Rh, ch (ξh; rh, rh) = |rh|2ξh , (4.4)

where

|rh|ξh =
(
δ 〈|ξh · nF | [[rh]] , [[rh]]〉Fi

h

)1/2

, (4.5)

is a seminorm on Ω.
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Proof. One may begin by substituting θh = rh into Eq. (3.11) as follows

ch (ξh; rh, rh) = (ξh · ∇hrh, rh)Th +
1

2
((∇ · ξh) rh, rh)Th (4.6)

− 〈(ξh · nF ) [[rh]] , {{rh}}〉Fi
h

+ δ 〈|ξh · nF | [[rh]] , [[rh]]〉Fi
h
.

Next, we note that the following identity holds

(ξh · ∇hrh, rh)Th +
1

2
((∇ · ξh) rh, rh)Th = 〈(ξh · nF ) [[rh]] , {{rh}}〉Fi

h
.

Upon substituting this identity into Eq. (4.6), one obtains

ch (ξh; rh, rh) = δ 〈|ξh · nF | [[rh]] , [[rh]]〉Fi
h
. (4.7)

Finally, on substituting the definition of the seminorm into Eq. (4.7), we obtain

the desired result (Eq. (4.4)).

4.3 Analysis of Discrete Stability

Theorem 4.5 (Stability of the Discrete Temperature). Consider the mixed

finite element methods in Eqs. (3.1) – (3.3), in conjunction with a forcing func-

tion f̃T where f̃T (t) ∈ L1
(
t0, tn;L2 (Ω)

)
, a discrete pressure field p̃h ∈ Qh

where p̃h (t) ∈ L2
(
t0, tn;L4 (Ω)

)
, and a discrete velocity field uh ∈ Wh where

uh (t) ∈ L2
(
t0, tn;W 1,4 (Th)

)
. Subject to these assumptions, the discrete tem-

perature Th ∈ Rh is governed by the following equation at time tn ≥ t0

1

2
‖Th (tn)‖2L2(Ω) + |Th|2L2(t0,tn;uh) + αhγhCI ‖Th‖2L2(t0,tn;grad,2)

≤ 1

2

(
4 ‖Th (t0)‖2L2(Ω) + 7CII

ν2
h

C2
v

‖uh‖4L2(t0,tn;grad,4)

+ 7
1

C2
v

‖p̃h‖2L2(t0,tn;L4(Ω)) ‖∇ · uh‖2L2(t0,tn;L4(Ω)) + 7
∥∥∥f̃T∥∥∥2

L1(t0,tn;L2(Ω))

)
,

(4.8)
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where CI and CII are constants that are independent of h, and

|Th|L2(t0,tn;uh) =

(∫ tn

t0

|Th (s)|2uh
ds

)1/2

, (4.9)

‖Th‖L2(t0,tn;grad,2) =

(∫ tn

t0

‖Th (s)‖2grad,2 ds
)1/2

, (4.10)

‖uh‖L2(t0,tn;grad,4) =

(∫ tn

t0

‖uh (s)‖2grad,4 ds
)1/2

, (4.11)

∥∥∥f̃T∥∥∥
L1(t0,tn;L2(Ω))

=

∫ tn

t0

∥∥∥f̃T (s)
∥∥∥
L2(Ω)

ds, (4.12)

are seminorms and norms on (t0, tn)× Ω.

Proof. We start by setting rh = Th in Eq. (3.6) as follows

(∂tTh, Th)Th + ch (uh;Th, Th) + αhγh ah (Th, Th) =
(

Φ (uh) + Ψ (uh, p̃h) + f̃T , Th

)
Th
,

or equivalently

1

2

d

dt
‖Th‖2L2(Ω) + ch (uh;Th, Th) + αhγh ah (Th, Th) =

(
Φ (uh) + Ψ (uh, p̃h) + f̃T , Th

)
Th
.

Next, we invoke the coercivity of ah (Lemma 4.3) and the semi-coercivity of ch

(Lemma 4.4) as follows

1

2

d

dt
‖Th‖2L2(Ω) + |Th|2uh

+ αhγhCI ‖Th‖2grad,2 ≤
(

Φ (uh) + Ψ (uh, p̃h) + f̃T , Th

)
Th
.

(4.13)

Based on this equation, we observe that

1

2

d

dt
‖Th‖2L2(Ω) ≤

(
Φ (uh) + Ψ (uh, p̃h) + f̃T , Th

)
Th
,

and equivalently, by the Cauchy-Schwarz and Triangle inequalities

‖Th‖L2(Ω)

d

dt
‖Th‖L2(Ω) ≤

(
‖Φ (uh)‖L2(Ω) + ‖Ψ (uh, p̃h)‖L2(Ω) +

∥∥∥f̃T∥∥∥
L2(Ω)

)
‖Th‖L2(Ω)

d

dt
‖Th‖L2(Ω) ≤ ‖Φ (uh)‖L2(Ω) + ‖Ψ (uh, p̃h)‖L2(Ω) +

∥∥∥f̃T∥∥∥
L2(Ω)

.
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Upon expanding the RHS of this expression, and using the Triangle and Cauchy-

Schwarz inequalities again, we obtain

d

dt
‖Th‖L2(Ω) ≤

νh
Cv

(
‖∇huh : ∇huh‖L2(Ω) +

∥∥∇hu
T
h : ∇huh

∥∥
L2(Ω)

+
2

3

∥∥∥(∇ · uh)
2
∥∥∥
L2(Ω)

)

+
1

Cv
‖p̃h (∇ · uh)‖L2(Ω) +

∥∥∥f̃T∥∥∥
L2(Ω)

≤ νh
Cv

(
‖∇huh : ∇huh‖L2(Ω) +

∥∥∇hu
T
h : ∇huh

∥∥
L2(Ω)

+
2

3
‖∇ · uh‖2L4(Ω)

)

+
1

Cv
‖p̃h‖L4(Ω) ‖∇ · uh‖L4(Ω) +

∥∥∥f̃T∥∥∥
L2(Ω)

≤ 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2grad,4 +

1

Cv
‖p̃h‖L4(Ω) ‖∇ · uh‖L4(Ω) +

∥∥∥f̃T∥∥∥
L2(Ω)

.

(4.14)

Note: on the last line we have used the broken norm inequalities from Lemma A.1

in the Appendix. Next, we integrate Eq. (4.14) from t = t0 to t = tn as follows

‖Th (tn)‖L2(Ω)

≤ ‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv

∫ tn

t0

‖uh (s)‖2grad,4 ds

+
1

Cv

∫ tn

t0

‖p̃h (s)‖L4(Ω) ‖∇ · uh (s)‖L4(Ω) ds+

∫ tn

t0

∥∥∥f̃T (s)
∥∥∥
L2(Ω)

ds

= ‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv

∫ tn

t0

‖p̃h (s)‖L4(Ω) ‖∇ · uh (s)‖L4(Ω) ds+
∥∥∥f̃T∥∥∥

L1(t0,tn;L2(Ω))
,
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or equivalently, after applying Holder’s inequality

‖Th (tn)‖L2(Ω)

≤ ‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv

(∫ tn

t0

‖p̃h (s)‖2L4(Ω) ds

)1/2(∫ tn

t0

‖∇ · uh (s)‖2L4(Ω) ds

)1/2

+
∥∥∥f̃T∥∥∥

L1(t0,tn;L2(Ω))

≤ ‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv
‖p̃h‖L2(t0,tn;L4(Ω)) ‖∇ · uh‖L2(t0,tn;L4(Ω)) +

∥∥∥f̃T∥∥∥
L1(t0,tn;L2(Ω))

. (4.15)

We will utilize this result shortly. For now, we turn our attention back to

Eq. (4.13). On integrating this equation from t = t0 to t = tn, we find that

1

2
‖Th (tn)‖2L2(Ω) +

∫ tn

t0

(
|Th (s)|2uh

+ αhγhCI ‖Th (s)‖2grad,2

)
ds

≤ 1

2
‖Th (t0)‖2L2(Ω) +

∫ tn

t0

(
Φ (uh (s)) + Ψ (uh (s) , p̃h (s)) + f̃T (s) , Th (s)

)
Th
ds.

(4.16)

We can rewrite the last term on the RHS of Eq. (4.16) as follows∫ tn

t0

(
Φ (uh (s)) + Ψ (uh (s) , p̃h (s)) + f̃T (s) , Th (s)

)
Th
ds

≤
∫ tn

t0

[(
‖Φ (uh (s))‖L2(Ω) + ‖Ψ (uh (s) , p̃h (s))‖L2(Ω) +

∥∥∥f̃T (s)
∥∥∥
L2(Ω)

)
‖Th (s)‖L2(Ω)

]
ds

≤
∫ tn

t0

[(
‖Φ (uh (s))‖L2(Ω) + ‖Ψ (uh (s) , p̃h (s))‖L2(Ω) +

∥∥∥f̃T (s)
∥∥∥
L2(Ω)

)

×

(
‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,s;grad,4)

+
1

Cv
‖p̃h‖L2(t0,s;L4(Ω)) ‖∇ · uh‖L2(t0,s;L4(Ω)) +

∥∥∥f̃T∥∥∥
L1(t0,s;L2(Ω))

)]
ds,
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and furthermore∫ tn

t0

(
Φ (uh (s)) + Ψ (uh (s) , p̃h (s)) + f̃T (s) , Th (s)

)
Th
ds

≤
∫ tn

t0

(
‖Φ (uh (s))‖L2(Ω) + ‖Ψ (uh (s) , p̃h (s))‖L2(Ω) +

∥∥∥f̃T (s)
∥∥∥
L2(Ω)

)
ds

×

(
‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv
‖p̃h‖L2(t0,tn;L4(Ω)) ‖∇ · uh‖L2(t0,tn;L4(Ω)) +

∥∥∥f̃T∥∥∥
L1(t0,tn;L2(Ω))

)
.

Here, we have used the Cauchy-Schwarz inequality, the Triangle inequality, and

Eq. (4.15). Next, we bound the remaining terms in the integrand above (em-

ploying the same techniques that we used to derive Eq. (4.15)), and we obtain∫ tn

t0

(
Φ (uh (s)) + Ψ (uh (s) , p̃h (s)) + f̃T (s) , Th (s)

)
Th
ds

≤

(
2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv
‖p̃h‖L2(t0,tn;L4(Ω)) ‖∇ · uh‖L2(t0,tn;L4(Ω)) +

∥∥∥f̃T∥∥∥
L1(t0,tn;L2(Ω))

)

×

(
‖Th (t0)‖L2(Ω) + 2d

(
1 +

√
d

3

)
νh
Cv
‖uh‖2L2(t0,tn;grad,4)

+
1

Cv
‖p̃h‖L2(t0,tn;L4(Ω)) ‖∇ · uh‖L2(t0,tn;L4(Ω)) +

∥∥∥f̃T∥∥∥
L1(t0,tn;L2(Ω))

)

≤ 3

2
‖Th (t0)‖2L2(Ω) +

7

2
CII

ν2
h

C2
v

‖uh‖4L2(t0,tn;grad,4)

+
7

2

1

C2
v

‖p̃h‖2L2(t0,tn;L4(Ω)) ‖∇ · uh‖2L2(t0,tn;L4(Ω)) +
7

2

∥∥∥f̃T∥∥∥2

L1(t0,tn;L2(Ω))
,

(4.17)

where CII = 4d2
(

1 +
√
d

3

)2

. Finally, upon combining Eq. (4.17) with Eq. (4.16),

and substituting in the space-time norm definitions from Eqs. (4.9)–(4.12), we

obtain the desired result (see Eq. (4.8)).

19



Corollary 4.6 (Pointwise Divergence-Free Case). Suppose that the mixed finite

element methods in Eqs. (3.1) – (3.3) are pointwise divergence-free. In addition,

suppose we impose a forcing function f̃T where f̃T (t) ∈ L1
(
t0, tn;L2 (Ω)

)
and a

discrete velocity field uh ∈Wh where uh (t) ∈ L2
(
t0, tn;W 1,4 (Th)

)
. Subject to

these assumptions, the discrete temperature Th ∈ Rh is governed by the following

equation at time tn ≥ t0

1

2
‖Th (tn)‖2L2(Ω) + |Th|2L2(t0,tn;uh) + αhγhCI ‖Th‖2L2(t0,tn;grad,2)

≤ 1

2

(
4 ‖Th (t0)‖2L2(Ω) + 7CII

ν2
h

C2
v

‖uh‖4L2(t0,tn;grad,4) + 7
∥∥∥f̃T∥∥∥2

L1(t0,tn;L2(Ω))

)
.

(4.18)

Proof. The proof immediately follows from setting ∇ · uh = 0 pointwise in

Theorem 4.5.

Theorem 4.7 (Stability of the Discrete Velocity Field). Consider the mixed fi-

nite element methods in Eqs. (3.1) – (3.3), in conjunction with a forcing function

f̃u ∈ L1
(
t0, tn;L2 (Ω)

)
and an initial condition uh (t0) ∈ Wh ⊂ H0(div; Ω).

Subject to these assumptions, the velocity field is governed by the following equa-

tion at time tn ≥ t0

1

2
‖uh (tn)‖2L2(Ω) + |uh|2L2(t0,tn;uh) + CIIIνh ‖uh‖2L2(t0,tn;sym,2)

≤ 1

2

(
3 ‖uh (t0)‖2L2(Ω) + 5β2

hg
2 ‖Th‖2L1(t0,tn;L2(Ω)) + 5

∥∥∥f̃u∥∥∥2

L1(t0,tn;L2(Ω))

)
,

(4.19)

where CIII is a constant independent of h, and

‖uh‖L2(t0,tn;sym,2) =

(∫ tn

t0

‖uh (s)‖2sym,2 ds

)1/2

, (4.20)

is a norm on (t0, tn)× Ω.

Proof. The important aspects of the proof are standard, and follow the argu-

ments in Lemma 3.1 of [40] and Theorem 7.1 of [37].
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Remark 4.1. The stability of the discrete temperature field depends on the sta-

bility of the discrete velocity field, as shown by Theorem 4.5 and Corollary 4.6.

Conversely, the stability of the discrete velocity field depends on the stabil-

ity of the discrete temperature field, as shown by Theorem 4.7. Therefore, it

is difficult to establish independent stability of either field, and (theoretically

speaking) this may result in undesirable interference between the two fields.

Fortunately, in most cases the coupling between fields is weak as one of the

following assumptions holds true:

• The buoyancy term (with coefficient 5β2
hg

2) on the right hand side of

Eq. (4.19) is small.

• The viscous dissipation term (with coefficient 7CIIν
2
h/C

2
v ) on the right

hand side of Eq. (4.8) or Eq. (4.18) is small.

5. Numerical Experiments

In this section, the results of several numerical simulations are presented to

demonstrate the performance of the proposed methods. The following simula-

tions were all performed using Taylor-Hood elements with polynomials of degree

k, k+1, and k+1 for the pressure, temperature, and velocity spaces respectively;

i.e. for cases with k = 1 the polynomials for each space were degree 1, 2, and

2 respectively. In addition, we imposed a zero integral mean condition for the

pressure via a Lagrange multiplier. The convective numerical fluxes were com-

puted using upwind biased fluxes with ζ = δ = 0.5, and the viscous numerical

fluxes were computed using η = ε = 3(k + 1)(k + 2). In each case, a high-order

BDF3 scheme was used for the time discretization. The meshes were developed

using rectangular grids where the quadrilateral elements were split along the

diagonals to create triangles. Throughout this section, mesh dimensions are

reported as N×M , where N and M refer to the number of quadrilaterals in the

x and y directions, respectively. The total number of elements for each case was

2N × 2M due to the splitting mentioned previously. Finally, each simulation

was performed in the open-source finite element software package FEniCS [41].
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5.1 Order of Accuracy Test

For the first test case, we compared solutions from our method to an exact

solution in order to check the convergence rate. To this end, we considered

the traveling temperature wave proposed by [18], which can be defined on the

rectangular domain Ω = [−0.5, 1.5]× [0, 1] as follows

u = (100, 0) , p̃ = 1,

T =
1√

1 + 3200αt
exp

[
−200 (1 + 200t− 2x)

2

1 + 3200αt

]
,

for t ∈ [0, 0.005]. We also defined the gravitational acceleration and forcing

functions as follows

g = (0,−1) , f̃T = 0,

f̃u =

(
0,−β 1√

1 + 3200αt
exp

[
−200 (1 + 200t− 2x)

2

1 + 3200αt

])
.

Here, we considered a dimensionless formulation with α = β = γ = ν = ρ = 1.

In subsequent cases, a dimensional formulation was considered.

For this case, a temperature peak was initially located at x = 1
2 at t = 0 and

moved to x = 1 at the final time t = 0.005. We compared our results to the exact

solution at the final time. The time step for all polynomial degrees considered

was ∆t = 1 × 10−5. Periodic boundary conditions were applied at the domain

boundaries. The meshes were uniform and consisted of N × N
2 elements. On

these meshes, we utilized Taylor-Hood spaces with degrees k = 1, 2, and 3. For

the case of k = 1, mesh resolutions of N = 16, 32, 64, and 128 were used, and for

k = 2 and 3 mesh resolutions of N = 4, 8, 16, and 32 were used. We expected

the discrete temperature to converge at a rate of k + 2 since the associated

polynomial space was degree k + 1. We see from table 1 that we recovered the

expected orders of accuracy.

5.2 Heated Cavity Test

The second test case was a heated cavity as described by [18]. This case

consisted of a square cavity Ω = [0, 1]
2

with stationary walls. The flow was
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k h dofs L2 error order

1

0.17677 1777 1.8287e-3 -

0.08838 6881 2.3516e-4 2.9591

0.04419 27073 2.4724e-5 3.2496

0.02209 107393 2.8976e-6 3.0930

2

0.70710 293 2.4046e-2 -

0.35355 1081 4.0106e-3 2.5839

0.17677 4145 1.9883e-4 4.3342

0.08838 16225 1.0639e-5 4.2241

3

0.70710 517 2.0978e-2 -

0.35355 1945 2.1626e-3 3.2780

0.17677 7537 2.5591e-5 6.4010

0.08838 29665 7.6643e-7 5.0613

Table 1: Temperature L2 error for various polynomial degrees k and maximum element di-

ameters h.

driven by a temperature difference between the left and right walls, and thus

consisted of purely natural convection. Gravity g = (0,−1)T m
s2 in conjunc-

tion with buoyancy effects influenced the fluid motion. For all heated cavity

simulations, a fixed Prandlt number Pr = 0.71 defined as

Pr =
ν

α
,

was used. Fluid properties for all cases were α = 2.208× 10−5 m2

s , Cv = 717.8

J
kg−K , γ = 1, ρ = 1 kg

m3 and ν = 1.568 × 10−5 m2

s which denote an air-like

fluid. All walls were equipped with no-slip boundary conditions, where the left

and right walls had fixed Dirichlet temperature boundary conditions Tleft = 0.5

K and Tright = −0.5 K, and where the top and bottom walls were adiabatic.

For this set of simulations the Rayleigh number Ra was varied throughout.

Specifically, we decided to vary the Rayleigh number by varying the parameter
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β, using the following formulas

Ra =
gβ∆TL3

ν2
, ∆T = (Tleft − Tright),

where L is the width of the cavity. We were interested in computing the average

steady state Nusselt number Nu based on the horizontal heat flux as follows

Nu =

∫ 1

0

HL

α
dx, H =

〈qx〉y
A∆T

,

〈qx〉y =

∫ 1

0

qxdy, qx = uxT − α
∂T

∂x
,

where A is the domain area, and ux is the velocity in the x direction. The

Nusselt number was calculated at Rayleigh numbers of Ra = 104, 105, 106, and

107 which enabled the flow to remain laminar. At each Rayleigh number, four

different grids of size N × N were considered with N = 8, 16, 32, and 64. The

only exception was Rayleigh number Ra = 107 as the 8 × 8 grid could not be

converged for this mesh. The mesh used for each simulation was biased towards

the walls using the mapping proposed by [42].

xrefined =
(
x− 1

2π
(1− a) sin(2πx)

)
yrefined =

(
y − 1

2π
(1− b) sin(2πy)

)
a =

(
Nu

)−1
, b =

(
Nu

)−1/3
.

Note: in order to generate our meshes, we used the average Nusselt numbers

reported in [18]. On each mesh, Taylor-Hood elements of degree k = 2 and 3

were used.

At the lowest Rayleigh number, the flow was dominated by a large central

vortex seen in figure 1. As the Rayleigh number was increased, this vortex

disappeared and thin boundary layers developed on the left and right walls as

seen in figures 2 and 3. This is the same behavior observed by [18].

We also saw very close agreement with the average Nusselt number for all

mesh resolutions and polynomial degrees as seen in table 2. This leads us to

believe that our method is able to accurately capture purely buoyancy-driven

flows.
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Figure 1: Temperature (left) and velocity magnitude (right) for Rayleigh number Ra = 104.

The 64 × 64 mesh with k = 3 was used to generate these results.

Figure 2: Temperature (left) and velocity magnitude (right) for Rayleigh number Ra = 106.

The 64 × 64 mesh with k = 3 was used to generate these results.

Figure 3: Temperature (left) and velocity magnitude (right) for Rayleigh number Ra = 107.

The 64 × 64 mesh with k = 3 was used to generate these results.
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Ra N Nu ref.
Nu

k = 2 k = 3

104

8 - 2.24480 2.24481

16 2.24478 2.24481 2.24481

32 2.24481 2.24481 2.24481

64 2.24482 2.24481 2.24481

105

8 - 4.52206 4.52162

16 4.52124 4.52163 4.52163

32 4.52162 4.52163 4.52163

64 4.52163 4.52163 4.52163

106

8 - 8.81679 8.82497

16 8.81573 8.82514 8.82519

32 8.82502 8.82520 8.82520

64 8.82519 8.82520 8.82520

107

16 15.3718 16.5190 16.5227

32 16.5156 16.5229 16.5230

64 16.5230 16.5230 16.5230

Table 2: Average Nusselt numbers compared at various Rayleigh numbers, mesh resolutions,

and polynomial degrees. Reference values are taken from [18].

5.3 Heated Cavity with Moving Wall Test

The final test case was a heated cavity with one moving wall, i.e. a mixed

convection case. Here, the top wall moved at constant velocity Vlid and was

heated, while the bottom wall was cooled as proposed by [43]. This case was

run at a fixed Grashof number Gr = 104 along with varied Richardson numbers

Ri, where

Gr =
gβL∆T

ν2
, ∆T = (Ttop − Tbottom), Ri =

Gr

Re2
, Re =

VlidL

ν
.
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We used the same fluid properties prescribed in the previous heated cavity case.

In this case, we considered Richardson numbers Ri = 0.01, 0.06 and 1.0. The

domain was a box Ω = [0, 1]
2

with a uniform mesh that consisted of 64 × 64,

k = 2 Taylor-Hood elements. The heated top wall was held at a constant

temperature Ttop = 1 K, while the bottom cold wall was held at Tbottom = 0 K,

with the remaining walls having adiabatic boundary conditions. Gravity was

again present in this case with g = (0,−1)T m
s2 . The quantity of interest for

this case was again the average steady state Nusselt number Nu, however for

this case we were only interested in the Nusselt number along the top heated

wall, referred to henceforth as Nuwall. We define the vertical heat flux qy and

Nuwall as

Nuwall =
HL

α
, H =

〈qy〉x
A∆T

,

qy = −∂T
∂y

, 〈qy〉x =

∫ 1

0

[qy]y=1dx.

In this case, the best agreement with the reference data occurs for the largest

Richardson number Ri = 1 as seen in table 3. The other two cases with Richard-

Ri Nuwall ref. Nuwall

1.0 1.34 1.39

0.06 3.62 3.87

0.01 6.29 6.52

Table 3: Comparison of Nuwall for our method with reference data at various Richardson

numbers. We use [43] for the reference values.

son numbers Ri = 0.06 and 0.01 show some deviation from the reference. We

expected to see this deviation because in our method, unlike the reference’s

method, we included the viscous dissipation term inside the temperature equa-

tion. The viscous dissipation term became relevant at these Richardson numbers

because as the Richardson numbers decreases the lid velocity increases, as seen

in figures 4, 5, and 6. The flow at these Richardson numbers behaves more
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like a lid-driven cavity flow as opposed to a natural convection dominated flow.

Therefore at these higher lid speeds, the velocity gradients in the flow became

non-negligible and have a more pronounced effect on the temperature field (via

the dissipation term). This deviation in Nusselt number was absent from the

heated cavity case because the flow in that case was subject to natural con-

vection only, and thus possessed smaller velocity gradients as compared to the

mixed convection case.

Figure 4: Temperature contours (left) and velocity magnitude contours with streamlines

(right) for Richardson number Ri = 1. A 64 × 64 mesh with k = 2 was used to generate

these results.

Figure 5: Temperature contours (left) and velocity magnitude contours with streamlines

(right) for Richardson number Ri = 0.06. A 64 × 64 mesh with k = 2 was used to gen-

erate these results.
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Figure 6: Temperature contours (left) and velocity magnitude contours with streamlines

(right) for Richardson number Ri = 0.01. A 64 × 64 mesh with k = 2 was used to gen-

erate these results.

6. Conclusion

In the present study, the mixed methods first put forward by Chen and

Williams [37] are extended to non-isothermal incompressible flows. The primary

advantages that these new methods possess are their generality and flexibility,

as they utilize the full compressible formulation of the stress tensor and the ex-

panded formulation of the temperature equation (which retains the dilatational

pressure work and viscous dissipation terms). In this paper, the new versatile

methods are constructed for weakly divergence-free Taylor-Hood elements, and

pointwise divergence-free BDM and RT elements. Next, we rigorously derive a

new condition that governs the L2-stability of the discrete temperature fields

for these methods. Finally, the accuracy of the Taylor-Hood method is tested

using three well-known cases from the literature; these tests are used to confirm

the formal order of accuracy of the method, and demonstrate its performance

on problems with natural and mixed convection. The analysis and numerical

experiments in this article serve as a stepping stone towards the application of

these methods to weakly-compressible and fully-compressible flows.
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Appendix

A.1 Numerical Fluxes

We suggest the following formulations for the numerical fluxes

σ̂inv = {{uh}} ⊗ {{uh}}+ {{p̃h}} I + ζ |uh · nF | [[uh ⊗ n]] , (A.1)

σ̂vis =

{{
∇huh +∇hu

T
h −

2

3
(∇ · uh) I

}}
− η

hF
[[uh ⊗ n]] , (A.2)

φ̂inv = {{Th}}uh + δ |uh · nF | [[Th n]] , (A.3)

φ̂vis = {{∇hTh}} −
ε

hF
[[Th n]] , (A.4)

ϕ̂vis = {{uh}} , (A.5)

λ̂vis = {{Th}} , (A.6)

where ζ, η, δ, and ε are parameters which control the amount of dissipation

introduced by the fluxes.

A.2 Pointwise Divergence-Free Methods

In this section, we construct a pointwise divergence-free class of mixed meth-

ods for solving Eqs. (2.1) – (2.3). These methods can be formally stated as

follows: i) identify function spaces Qh = QDC
h , Rh = RC

h , and Wh = WRT
h or

Wh = WBDM
h , ii) choose test functions (qh, rh,wh) that span Qh ×Rh ×Wh,

and iii) find unknowns (p̃h, Th,uh) in Qh ×Rh ×Wh that satisfy

(∇ · uh, qh)Th = 0, (A.7)
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(∂tuh,wh)Th − (uh ⊗ uh,∇hwh)Th − (p̃h,∇ ·wh)Th + 〈σ̂inv n,wh〉∂Th

+ νh

[ (
∇huh +∇hu

T
h ,∇hwh

)
Th
− 〈σ̂vis n,wh〉∂Th

+
〈
ϕ̂vis − uh,

(
∇hwh +∇hw

T
h

)
n
〉
∂Th

]

= − (βhThg,wh)Th +
(
f̃u,wh

)
Th
, (A.8)

(∂tTh, rh)Th − (Thuh,∇hrh)Th +
〈
φ̂inv · n, rh

〉
∂Th

+ αhγh

[
(∇hTh,∇hrh)Th −

〈
φ̂vis · n, rh

〉
∂Th

+
〈
λ̂vis − Th,∇hrh · n

〉
∂Th

]

=
νh
Cv

((
∇huh +∇hu

T
h

)
: ∇huh, rh

)
Th

+
(
f̃T , rh

)
Th
. (A.9)

This set of equations can be rewritten compactly as follows

bh (uh, qh) = 0, (A.10)

(∂t uh,wh)Th + ch (uh;uh,wh) + νhah (uh,wh)− bh (wh, p̃h)

= − (Ξ (Th) ,wh)Th +
(
f̃u,wh

)
Th
, (A.11)

(∂tTh, rh)Th + ch (uh;Th, rh) + αhγh ah (Th, rh)

= (Φ, rh)Th +
(
f̃T , rh

)
Th
. (A.12)

The operators bh, Ξ, and ah were previously defined in Eqs. (3.7), (3.10), and

(3.12). The remaining operators ch, ah, ch, and Φ can be written as follows

ch (ξh;vh,wh) = (ξh · ∇hvh,wh)Th (A.13)

− 〈(ξh · nF ) [[vh]] , {{wh}}〉Fi
h

+ ζ 〈|ξh · nF | [[vh]] , [[wh]]〉Fi
h
,
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ah (vh,wh) =
(
∇hvh +∇hv

T
h ,∇hwh

)
Th
−
〈
[[vh]] ,

{{
∇hwh +∇hw

T
h

}}
nF

〉
Fh

−
〈
[[wh]] ,

{{
∇hvh +∇hv

T
h

}}
nF

〉
Fh

+

〈
η

hF
[[vh]] , [[wh]]

〉
Fh

,

(A.14)

ch (ξh; θh, rh) = (ξh · ∇hθh, rh)Th (A.15)

− 〈(ξh · nF ) [[θh]] , {{rh}}〉Fi
h

+ δ 〈|ξh · nF | [[θh]] , [[rh]]〉Fi
h
,

Φ (vh) =
νh
Cv

((
∇hvh +∇hv

T
h

)
: ∇hvh

)
. (A.16)

A.3 Supporting Results

Lemma A.1 (Broken Norm Inequalities). Suppose that w ∈ W 1,p (Th) and

p ≥ 2. Then, the following inequalities hold

‖∇h ·w‖Lp(Ω) ≤ d
(p−1)/p ‖w‖grad,p , (A.17)

‖∇hw : ∇hw‖Lp/2(Ω) ≤ d
2(p−2)/p ‖w‖2grad,p , (A.18)

∥∥∇hw
T : ∇hw

∥∥
Lp/2(Ω)

≤ d2(p−2)/p ‖w‖2grad,p . (A.19)

Proof. Let us begin by noting that

‖∇h ·w‖Lp(Ω)

=

( ∑
K∈Th

∫
K

(
d∑
i

(∂iwi)

)p

dV

)1/p

≤

( ∑
K∈Th

∫
K

(
d∑
i

|∂iwi|

)p

dV

)1/p

≤ d(p−1)/p

( ∑
K∈Th

∫
K

d∑
i

(∂iwi)
p
dV

)1/p

≤ d(p−1)/p

 ∑
K∈Th

∫
K

d∑
i,j

(∂jwi)
p
dV

1/p

.

Here, we have used the power mean inequality. Upon combining this result with

the definition for the norm ‖·‖grad,p, we obtain the first result (Eq. (A.17)).

The proofs of the remaining results (Eqs. (A.18) and (A.19)) are virtually

identical. In what follows, we will simply show the proof for Eq. (A.18). We
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begin by expanding the Lp/2-norm

‖∇hw : ∇hw‖Lp/2(Ω) =

∥∥∥∥∥∥
d∑
i,j

(∂jwi)
2

∥∥∥∥∥∥
Lp/2(Ω)

=

 ∑
K∈Th

∫
K

 d∑
i,j

(∂jwi)
2

p/2

dV


2/p

.

(A.20)

Then, by the power mean inequality, we have

∑
K∈Th

∫
K

 d∑
i,j

(∂jwi)
2

p/2

dV ≤ d(p−2)

 ∑
K∈Th

∫
K

d∑
i,j

|∂jwi|p dV


 ∑

K∈Th

∫
K

 d∑
i,j

(∂jwi)
2

p/2

dV


2/p

≤ d2(p−2)/p

 ∑
K∈Th

∫
K

d∑
i,j

|∂jwi|p dV

2/p

.

(A.21)

Upon combining this result with Eq. (A.20), and the definition for the norm

‖·‖grad,p, we obtain the inequality in Eq. (A.18).
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