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Abstract

This paper is devoted to the numerical analysis of a control constrained
distributed optimal control problem subject to a time fractional diffusion
equation with non-smooth initial data. The solutions of state and co-
state are decomposed into singular and regular parts, and some growth
estimates are obtained for the singular parts. By following the variational
discretization concept, a full discretization is applied to the corresponding
state and co-state equations by using linear conforming finite element
method in space and piecewise constant discontinuous Galerkin method
in time. Error estimates are derived by employing the growth estimates.
In particular, graded temporal grids are adopted to obtain the first-order
temporal accuracy. Finally, numerical experiments are performed to verify
the theoretical results.
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1 Introduction

Let Q € R? (d = 1,2,3) be a convex polytope, and assume that 0 < a < 1,
—00 < Uy < u* < o0, and 0 < v,T < oco. We consider the following distributed
optimal control problem:

. 1 2 v 2
uré%lgd J(y,u) = §||y - deL?(O,T;LZ(Q)) + §||U||L2(0,T;L2(Q))a (1)

y€L?(0,T;L%(2))
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subject to the state equation

(D4 (y — o)) (1) — Ay(t) = u(t), 0<t<T, @
?J(O) = Yo-

Here, A is the realization of the Laplace operator with homogeneous Dirichlet
boundary condition in L?*(), D, is the Riemann-Liouville fractional differen-
tial operator of order a, yo € L*(Q) and yq € L?(0,T; L?(2)) are given, and

Uaa == {v € L*(0,T; L*(Q)) : u, <v<u" ae. inQx(0,7)}.

The optimal control problem (1) subject to an elliptic or heat equation is
a classic problem, which has been thoroughly studied both in theoretical and
numerical aspects; see, e.g. [11, 24, 43] for theoretical analysis and [9, 18, 21, 45,
46] for finite element analysis. In general, there are mainly two discretization
concepts for this problem ([38, 11]): direct and variational discretizations. The
difference between these two concepts is that in the variational discretization,
the control is implicitly discretized by the L? projection of the discrete co-state
into the admissible set U,q. Since the control may has singularity near the
boundary of active set, the variational discretization is easier to obtain high
accuracy than the direct discretization. However, it should be pointed out
that the resultant discrete system of variational discretization is generally more
difficult to solve [12, 39].

The state equation (2) is a fractional diffusion equation, which is used to
model some physical processes like subdiffusion [3] and water movement in soils
[41]. There are many methods to solve this equation, including finite difference
methods [7, 13, 17, 23, 26, 49, 50|, spectral methods [22, 47], finite element
methods [20, 29, 32, 33, 34, 35] and so on.

In recent years, fractional optimal control problems have attracted more and
more research interest [1, 2, 10, 16, 25, 48, 51, 52, 53]. For problem (1), Zhou and
Gong [52] employed the conforming linear finite element method and L1 scheme
for spatial and temporal discretizations, respectively, and obtained optimal con-
vergence results for the spatially semi-discrete approximation. By using the
conforming linear finite element method in space and the L1 scheme/backward
Euler convolution quadrature in time, Jin et al. [16] gave the first error estimate
of the fully discrete scheme with yy = 0, which is nearly optimal with respect
to the regularity. In [10, 51] error estimates were derived for fully discrete finite
element approximations for problem (1) with a variant state equation like

y' —Doi* Ay = f +u.

We note that the above works [10, 16, 51, 52] all focus on the case yo = 0, and
their analyses are based on uniform or quasi-uniform temporal grids. However,
the situation will be quite subtle when considering nonvanishing yy. In fact, the
nonvanishing initial value may cause essential singularities (cf. Theorem 3.3),
which can not be handled well by using uniform or quasi-uniform temporal
grids. On the other hand, the non-vanishing y4(7") may also cause singularities.
Fortunately, all these singularities can be dealt with by using special graded
temporal grids (cf. Theorem 4.1).

In this paper, for a full discretization using the conforming linear finite
element method in space and the piecewise constant discontinuous Galerkin



method in time, we provide the first numerical analysis of problem (1) with
nonvanishing yo. Moreover, for the case with yo € H?*"(Q) with 0 < r <
min{1, =2} and yq € H'(0,T; L*()), we have the following decompositions of
the control u, the state y, and the co-state p:

u=u;+u, Y=Yy1+Yy2, pP=Dp1+Dp2,

with the regularity estimates

lwallom 0,122 < C,

u ()2 < C(E T+ (T —1)* 1),
lyillomi+aco,mr2@) + 1Yilly 0,7, 572(0) < C
lp1llo 1o 0,722 () + ||P1H0H1 o120 < O

lya ()l L2 < C(E ' +wa(T — 1), 0<t<T,

Iy (®)ll 1 ) < C (07772 1+w1<T—t>), 0<t<T,
2@ < CE T (T —)*7 "), 0<t<T,
) <

(
[[p5(
( C(torte/2=1 T—t)a/Q’l), 0<t<T,

1058) 71

where

g3a/2-1 .
wl(t):{H o=y o #2/3

[In ¢ if o =2/3,
walt) = L+ pamay  fa#1/2,
[In ¢| if a=1/2,

and C'is a generic positive constant depending only on «, r, v, u., ©*, Yo, Y4,
T, and €). By the above estimates, we obtain first-order temporal accuracy and
min{2, 1/« + 2r}-order spatial accuracy on graded temporal grids.

The rest of this paper is organized as follows. Section 2 introduces sev-
eral Sobolev spaces and the Riemann-Liouville fractional calculus operators.
Section 3 investigates the regularity of problem (1). Section 4 carries out the
convergence analysis for the discontinuous Galerkin method. Finally, Section 5
provides several numerical experiments to confirm the theoretical results.

2 Preliminaries

In this paper, we introduce the following conventions: if D C R(l =1,2,3,4) is
Lebesgue measurable, then define (v, w)p := [, v-w for scaler or vector valued
functions v and w, and if X is a Banach space, then (-,-)x means the duality
pairing between X* (the dual space of X) and X; the notation Cx means a
positive constant depending only on its subscript(s), and its value may differ
at each occurrence. Let HV(D) (—oco < v < 00) and Hj (D) (0 < v < o0) be
the usual y-th order Sobolev spaces on D with norm |[|-|| g~ (p)y and seminorm
'l 1+ (py- In particular, H°(D) = L*(D).

Sobolev Spaces. Assume that —oco < a < b < co and X is a Hilbert space.



For each m € N and 1 < ¢ < oo, define
W™ (a,b; X) := {v e W™ (a,b;X): v®(a) =0, 0<k < m},

Wi (a,b; X) = {v e W™ (a,b; X): v®W(b)=0, 0<k < m},

where W™4(a,b; X) is the usual vector valued Sobolev space and v(*) is the
k-th weak derivative of v. We equip the above two spaces with the norms

HUHOW’""?(a,b;X) = ||’U(m) ||Lq(a,b;X) Yo c OWW#Z(GJ, b, X),
|‘U||0WwL,q(a1b;X) = ||’U(m) HL‘l(a,b;X) Yu € OWm’q(a, b; X),
respectively. For any m € Ny and 0 < 0 < 1, define
W (0, by X) = (W a, by X), W a, b X)),
oW, X) = (oW M a, s X)), oW (a0 X)), s
OWmE (a, by X) = (OWT (0, b X)), CW(a, b X)),
where (A, B)g,4 denotes the real interpolation space of two Banach spaces, A
and B, constructed by the K-method [42]. In addition, for ¢ =2 and 0 < 8 <

o0, denote HP(a,b; X) := Wh2(a,b; X), oH?(a,b; X) := ¢W"2(a,b; X), and
YH8(a,b; X) = 0I/Vﬁ*Q(a, b; X). We also need the space

W (a,b; X) ) i={v:( t v EWH®(c,d; X) foralla<c<d<b}.

loc

Remark 2.1. If0< 60 <1 and 1 < q < oo satisfy g < 1, then
W4 (a,b; X) = oW%4(a,b; X) = "W4(a, b; X)
with equivalent norms.

Let A be the realization of the Laplace operator with homogeneous Dirichlet
boundary condition in L?(f2). For any —oco < r < 0o, define

H™(Q) :={(-A)""2v: ve L*Q)}

and endow this space with the norm
[Vl () = 1(=2)P0l 12y Vo € HP(Q).

Remark 2.2. For r € [0,1] \ {0.5}, HT(Q) = H{(Q2) holds with equivalent
norms, and for 1 < r < 2, the space H"(Q) is continuously embedded into
H"(Q).

Fractional calculus operators. For v > 0, the left-sided and right-sided
Riemann-Liouville fractional integral operators of order v are defined respec-
tively by

o - t —$) " lu(s)ds
(D0+v)(t).—F(7)/0(t P lu(s)ds, 0<t<T,

T
(D2 0)(t) == %/t (s—t)" tu(s)ds, 0<t<T,

v



for all v € L'(0,T; X), where I'(-) is the gamma function. In addition, let D,

and DY be the identity operator on L'(0,7;X). Then for 0 < v < 1, the
left-sided and right-sided Riemann-Liouville fractional differential operators of
order -y are defined respectively by

D'YJFU *DDOJF v,
D;Lv = —DD%}U

for all v € L*(0,7; X), where D is the first-order differential operator in the
distribution sense.

Lemma 2.1 ([6]). Ifv € H*/?(0,T), then
a/2 a/2
(D54 v, D2 0)0.1) > Carl[0lar20,1-
Moreover, if v,w € H*?(0,T), then

oz 2
(D52 v, D52 w) 0,1y < Carrllvll gorzomy 10l or2 0.1

a/2 a/2 o
(Dot v, w) a2 0,1y = (DoJ/r U,DTé w)o,r) = (D7_ w,v) gras2(0,1)-

3 Regularity
For any g € L9(0,T; L*(Q)) with 1 < ¢ < oo, define Sg (cf. Appendix A) such

that (Dg, —A)Sg = g. From Lemma A.2 we summarize several properties of S
as follows: (cf. Lemma A.2):

e for any g € oW?(0,T; L*(Q)) with 8 € (0,2]\ {Il —,2 —a} and 1 < ¢ < oo,
HSg||0W“+5vq(O,T;L2(Q))+HSg||0WB,q(O,T;H2(Q)) < C%BHHQHUWBWI(O,T;LZ(Q)); (3)

e for any g € oH”(0,T; L*(2)) with 0 < 8 < oo,
HSQHOH‘"+5(O,T;L2(Q)) + HSg”OHﬁ(O,T;HZ(Q)) < CO%BHQHOHB(O,T;LZ(Q))' (4)

Symmetrically, for any g € L9(0,T; L?(2)) with 1 < ¢ < oo, define S*g such
that (D_ —A)S*g = g. Similar to .S, there hold following properties of S*:

e for any g € "W?(0,T; L*(Q)) with 8 € (0,2] \ {l —,2 —a} and 1 < g < oo,
||S*gHUWO‘*B,q(O,T;LQ(Q)) + ||S*gHUW5vq(O,T;H2(Q)) < Caﬂ,q”g”(’Wﬂxq(O,T;L?(Q))é

e for any g € "H?(0,T; L*(2)) with 0 < 8 < oo,
1S*gllo ra+80,7522(2) + 157 9llo s 0,752 00y < Casllgllonso,rir2y-  (6)

In addition, by the definitions of S and S*, (4), (6) and Lemma 2.1, we obtain
that, for any v, w € L%(0,T; L*(Q)),

(Sv, w)axo,r) = (Sv )S*w)nx(o,T)
( SU S w)QX(O,T)
(’U S ’LU QX OT) (7)



Assuming that yo € L?(Q) and yq € L?(0,T; L?(Q)), we call u € Uyq a
solution to problem (1) if u solves the minimization problem

. 1 o v
Join J(u) = §||S(U + DG, o) — vall 20,7020y + 5”“”%2(0,T;L2(Q))' (8)

By (7), a routine argument gives the following theorem (cf. [11, 43]).
Theorem 3.1. Problem (1) admits a unique solution u € Ugyq, and
(5" (S(u+ DS, y0) — ya) + 16,0 — W) > 0 o)
for all v € Ugyy.

In the rest of this paper, we use u to denote the solution of problem (1) and
use

y:=S(u+Dg, y) and p:= S*(yfyd) (10)
to denote the corresponding state and co-state, respectively.
The main task of this section is to prove the following two theorems.

Theorem 3.2. Assume that yo € H?"(Q) with 0 < r < min{1,1=2}, and
ya € HY(0,T; L3(Q)). There exists a decomposition

U = uy + uz,

where
utllgrr 0,7522(0)) < C (11)
and uy € W5(0,T; L3(Q)) satisfies that
[usy(®)| 2 < CE T+ (T =), ae 0<t<T, (12)

where C' is a positive constant depending only on o, v, v, ux, u*, Yo, ya, 1T and

Q.

Theorem 3.3. Assume that yo € H>"(Q) with 0 < r < min{1,1 =<}, and
ya € HY(0,T; L?(Q2)). There exist decompositions

Y=Y +Yy2, Dp=Dp1+Dp2,

where
y1 € oH'T(0,T; L2 () (o H' (0,7 H*(Q2)), (13)
pr € "H'T(0,T; L) () °H' (0, T H* () (14)
and ya,ps € C((0,7); (). (15)
Moreover,
Y1 llo 1+ 0,7;02(0)) + ||y1||0H1(o,T;H2(Q) <C, (16)
[p1llorrveo,7;22(0)) + [Pl 0,7 172(02)) < C (17)
Y2l 1.y < C(tr=ol (T —1), 0<t<T, (18)
s ()l r2@) < C(E ' +wa (T — 1)), 0<t<T, (19)
P51 g1 (g < C (22 H/2 T—t)a/H)a 0<t<T, (20)
o5 ()|l L2 < C(E o (T =127, 0<t<T. (21)



The above C' is a positive constant depending only on o, v, v, u«, u*, Yo, Ya, T
and ), and for any t > 0,

3a/2—1 i
wr(f) = L+ momsay Fa#2/3, (22)
[In¢| if o =2/3,
wQ(t) — 1 + |O¢(1 2a)| Zfod # 1/27 (23)
[In ¢| ifa=1/2.

Remark 3.1. The resulls of Theorems 3.2 and 3.5 can be easily extended to
the case yo € H*"(Q) with r > min{1,1=2}.

3.1 Proofs of Theorems 3.2 and 3.3

For g € LY(0,T; L*(Q)), we have that [15]

(Sg)(t) = /0 E(s)g(t — s)ds, ae. 0<t<T, (24)
= /T E(s—1t)g(s)ds, ae 0<t<T, (25)

where, for each 0 < s < T,
E(S) o L > e—rs((rae—ioﬂr _ A)_l _ (rozeiom' _ A)_l) dr
To2mi '
Lemma 3.1 ([15]). The function E is an L(L?(Q), H'(Q))-valued analytic func-
tion on (0,00), and
IE®) | 2(z2@)) + P NE@) 22 @) < Cat®™ >0,
In the rest of this subsection, for convenience we will always assume that

ya € HY(0,T; L*(Q)) and yo € H*"(Q2), where 0 < 7 < min{1, =2}

Lemma 3.2. Assume that g € WL°(0,T; L2()) and A is a positive constant.

If
g’ (¢ )||L2(Q) A(tertet 4 (T — 1)), e 0<t<T, (26)
(

then Sg € C1((0,T); HX(Q)) and, for any 0 <t < T,

ot (A4 19(0) 220) (2971 + wa (T — 1)), (27)
w1 (A+119(0) L2 (27 +wi (T — 1)) (28)

Q Q

159)' (Dl L2() <
159) )l 1 (0 <

If
Hg/(t)”L?(Q) < A(tar71 +w2(T — t)), ae 0<t<T,

then S*g € C1((0,T); H(Q)) and, for any 0 <t < T,
1(579)" ()l L2 ()
159)' )l 771 ()

The above w1 and we are defined by (22) and (23), respectively.

< Cor(A+ 9Tl 2(e)) (#7777 + (T =) 71),
< Cor (A+ [l9(T) L) (1727 4 (T = 1)*/271).



Proof. By (24), (26) and Lemma 3.1, a straightforward computation gives

(Sg)'(t) = E(t)g(0) +/0 E(s)g'(t—s)ds, 0<t<T, (29)

and, by the techniques in the proof of [4, Theorem 2.6], it is easy to verify that
Sg € CY(0,T); HY(Q2)). Furthermore, by (26), (29) and Lemma 3.1,

t
1(5) 2oy < Co (17 a0y + 4 [ 577 (6= )77 (b)) )

1
= Ca (ta_lllg(O)HLz(g) + At””“‘l/ 271 — 2) Tl
0

£/(T—t)
+A(T—t)2a_1/ M1+ z) ! dx)
0

< Carr(A+ 9(0)llr2(e) (77" + (T = 1))

and
t
H(Sg)/(t)HHl(Q) < Ca<ta/2_l||g(0)”L2(Q)+A/ so/271 ((t — s)w+a_l+(T—t+s)°‘_1)d5)
0
1
N G L el R G
0
t/(T—t)

+A(T7t)3a/2—1/ xa/2—1(1+x)a—1 d.fE)
0

<Car(A+ HQ(OHLZ(Q)) (ta/%l +wi (T —1))

for all 0 < ¢ < T. This proves estimates (27) and (28). Since the rest of this
lemma can be proved analogously, this completes the proof. |

From (9) it follows that

u= f(p), (30)
where f: R — R is defined by
u* if v < —vu,
f):=4q —v/v if —vu* <v < —vuy,
Uy if v > —vu,.
We set
0 if r < —vu®,
f'(r) =< —1/v if —vu* <r < vu,,
0 if r > —vu,.

For any v € W11(0,T; L?(2)), from [8, Thoerem 7.8] we conclude that f(v) €
W(0,7; L?(2)) and

(f)'(®) = f@)'(t), 0<t<T.
Furthermore, applying [42, Lemma 28.1] yields the following interpolation result.
Lemma 3.3. Ifve W20, T; L?(Q)) with 0 < <1 and 1 < q < oo, then

£ (0)[lws.a0,152(0)) < Couw = qr.0(1+ ”vHWﬂ’q(O,T;L?(Q)))'



Lemma 3.4. If u € W5%(0,T; L%(Q)) with B € (0,1 — a) \ {1 — 2a} and
1<qo<1/(1—ar), then
||u||Wmi“{2a+Bv1}vq0(0,T;L2(Q))
< Carao,rwsuus 1,2 (1+ 1ol gar ) + lyall g o, mic2) + 1ullws.ao o2 0))-

(31)
Proof. We only prove the case f < 1 — 2, since the other cases can be proved
analogously. For simplicity, we denote by C' in this proof a generic positive
constant depending only on «, 3, qo, 7, v, us, u*, T and €2, and its value may
differ in different places. Some straightforward calculations give

15 Dos yollwrao0.7:22(0)) < Cllyoll grar ) (by (94))

and

Cllullyws.a0 0, 1:22(0))  (by (3))
Cllullwe.aoo,m;02())  (by the fact Bgo < 1),

1Sullywe+s.00 (0,12 () <
<

so that
yllwets.a00,m;200)) = IS (w + Das yo)llwe+s.00 (0,7:02(02))
< C(llullws.ao (0,7:22(02)) + ||y0||H2r(Q))-
By (5) and the fact (a+ )qo < 1,

[[plloyw2a+s.40 (0,T5L2(Q)) — 15 (y — ya)llow2a+s.40 (0,T;L2(Q))

< Clly — vallowa+s.a0 (0,7:L2(2)) S Clly — yd”WO‘*B’qO(O,T;Lz(Q))
< C(HyHW“*Bvqo(O,T;LZ(Q)) + ||yd||H1(o,T;L2(Q)))-

In addition,
||u||W2“+5vqo(O,T;L2(Q)) = ||f(p)||W2“+5v‘10(0,T;L2(Q)) (by (30))
< C(l 4+ ||p||W2a+L‘3,q0 (O,T;LQ(Q))) (by Lemma 33)

Finally, combining the above three estimates proves (31) and hence this lemma.
[ |

Lemma 3.5. Assume that 1 < ¢ <2,0< A < oo, and u(t) = ui(t) + ua(t) for
each 0 < t < T, with u; € oWH9(0,T; L2(Q)) and us € W5°(0,T; L*(Q)). If

ub(t)p2) < AT (T —4)°7Y), ae. 0<t<T,
then there exists a decomposition
u(t) =u1(t) +ua(t), 0<t<T, (32)
such that

@]l gwratara-ar 0.1 r20)) < C(llutllywrao,r2@) + lwallao,mc2))) (33)



and
@2 ()] 2@y < C<A + w(0) 220y + llvoll gr2r @y + 1Yall 10, 7:22 () (34
+ HungWlxq(O,T;L?(Q))) (et (T -0

for almost all 0 < t < T, where C is a positive constant depending only on «,
r, U, U, u*, q, T and 2.

Proof. A simple calculation gives, by (10), that

p=T +1Iy, (35)
where
I := S*(Sur — ya — (Sur — ya)(T)),
I := S*(S(uz + D§y yo) + (Sur — ya)(T)).
We have

(L1 [low1+a.a(0,7522(02))
< CllSur = ya = (Sur — ya)(T)[owr.ao,m;r2(0))  (by (5))
< C(|1Sutllgwraqo,rsr2)) + Yl o 0,7:02(0)))
< C(HUl”oleq(o,T;L?(Q)) =+ ||yd||H1(o,T;L2(Q))) (by (3))

As owitea(o,1;02()) is continuously embedded into °whate/G-) (0 1;L2(Q)), it
holds

T flowrra+asa—e o, r2(0)) < C(luallowrao,rc2)) + 1all g 0,7:22(02))) - (36)
From (27) it follows that
[[(Su2) (t)]| 120y < C(A + 1&(0))(15“71 +wo (T — t))
Therefore, the fact that
H(Sul)(T)||L2(Q) <C”SUI||0w1+a/2,q(o,T;L2(Q)) <CHul||0W1ﬂ/2’q(0,T;L2(Q)) (by (3))

and
(S DG yo)' (O < Ct"Hiyoll rae(y  (by (94)),

together with Lemma 3.2 and (92), yields

I ()]l 2 (@) < C(A + w(O)llz2(0) + llvoll zr2r () + lwallywriao,riz2(0))

ar+a—1 a—1 (37)
+ ||yd||H1(O,T;L2(Q))) ( +(T-1)7")
forall 0 <t <T.
Finally, letting
t
T (t) = / PN (s)ds, 0<t<T, (38)
0
t
us(t) := u(0) +/ fp(s)Hh(s)ds, 0<t<T, (39)
0

10



by (30) and (35) we obtain

(1) +ia(t) = u(0) + F(p(t) — F(p(0) = u(®), 0<t<T,

which proves (32). Furthermore, (33) follows from (36) and (38), and (34)
follows from (37) and (39). This completes the proof. |

Finally, we are in a position to prove Theorems 3.2 and 3.3.

Proof of Theorem 3.2. By the fact u € U,q C L?(0,T;L*(Q)), a similar
proof as that of Lemma 3.4 gives

l|wllwea00,1:22(0)) < C,
and then applying Lemma 3.4 several times yields
llullwi.a0 0,7,22(0)) < C,

where o := 1(141/(1—ar)) < 1/(1—ar) and C'is a positive constant depending
only on «, 7, v, us, u*, Yo, Y4, 1 and Q. Letting

m:=min{n € N: ¢ +nao/(1 —a) > 2}

and applying Lemma 3.5 m time(s) then prove Theorem 3.2 (ug = 0 for the first
time). [ |

Proof of Theorem 3.3. Let y; := Su; and y2 := S(u2 + D@, o), where u;
and ug are defined in Theorem 3.2. By (4) and (11) we have

lyallo e 052200 + 1Y1lly 1 0,712 0)) < C (40)
and by (12), (27), (28) and (94) we have that
y2 € C([0,T); L*(2)) () CH((0, T); ()
and

()2 < C(tF +wa(T —t)), 0<t<T,
s @)1y < CETV2 b wn(T = 1)), 0<t<T,
where C' is a positive constant depending only on a, r, v, u., u*, yo, Y4, T and

Q. Hence, y = y1 + y2 is the desired decomposition in Theorem 3.3. Since the
rest of this theorem can be proved analogously, this concludes the proof. |

4 Discretization

Assume that 0 < r <1, M > 1 is an integer and

2—
01 > max 1,m},

1. 2=

09 > max yatt (-

11



Let 0 =ty <t1 <...<tay =T be a graded partition of the temporal interval
[0, T] with

()73 if 0<j<M,
tj =
T-(2-4)° g if M <j<2M.
Define 7j := t; —t;—1 for each 1 < j < 2M and set 7 := max{7; : 1 < j <

2M}. Let Ky, be a conventional conformmg and shape-regular triangulation of )
consisting of d-simplexes with mesh size h := max ke, {diameter of K'}. Then
we introduce the following finite element spaces:

Vy = {vh € Hl(Q) : vy, is linear on K for each K € ICh},
Wiy 1= {V € L*(0,T;Vy,) : V is constant on (tj—1,tj) for each 1 < j < 2M}.

For any g € L?(0,T; L*(R)), define Sy, g, S;. g € Wi, respectively by that

( a/2 Stha Da/2 V) % (0,T) + (VStha VV) (0,T) (ga V)QX(O,T); (42)
( a/2 ShT ,Da/Q V) x (0,T) + (VSth, VV) (0,T) (9; V)QX(O,T)) (43)

for all V€ W,,. It is evident that

(Shrg1,92)ax0.1) = (91, Shr92)0x(0.1) (44)
for all g1, g2 € Wh.

Remark 4.1. By Lemma 2.1 and the Lax-Milgram theorem, it is easy to verify
that the operators Sp. and Sy are well defined.

With the above two operators, we consider the following optimal control

problem:

. 12
min. J(U) = —||Shr(U + D5 yo) — yd”%?(O,T;L?(Q))+§HUH%2(O,T;L2(Q))' (45)

Similar to the continuous case, there exists a unique discrete control U € Uyq
such that

(i (Shr (U + D&y yo) — ya) +vU, v —="U) >0, Yv€ U  (46)

Qx(0,T)
The corresponding discrete state Y and co-state P are defined respectively by
Y := S (U+Dgyy) and P :=S; (Y —ya). (47)

Remark 4.2. Since the co-state P is in the finite dimensional space Wy, the
control u is indirectly discretized by the projection

U= QUad(_P/V)’

where Qu,, is the L? projection onto the admissible set Uyq. This is the key
point of the variational discretization concept (cf. [11]).
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In this section, we use @ < b to denote a < Cb, where C is a positive
constant independent of A and M. The main result of this section is the following
theorem.

Theorem 4.1. Assume that 0 < r < min{1/2, (1 — «)/a}. Let u and y be the
control and state of (1) respectively, and let U and Y be the control and state
of (45) respectively. If yo € H*"(Q) and yq € HY(0,T; L*(Q2)), then

llu— U||L2(O,T;L2(Q)) + 1y — YHLZ(O,T;LQ(Q)) < pmin{1/a+2r,2} + ML (48)

Remark 4.3. By following a similar routine in the proof of Theorem 4.1, we

can show that the estimate (48) also holds for 0 <r <1 withr # 1 —1,1 — 1

Remark 4.4. Note that, under the condition that yo = 0 and yq € H*(0,T; L*(%)),
Jin et al. [16, Theorem 3.10] derived temporal accuracy O(7'/>+min{1/2.a=ehy
where € > 0 can be arbitrarily small.

4.1 Proof of Theorem 4.1
Throughout this subsection, u, y and p are the control, state and co-state of
(1), respectively. By (9), (46) and the standard technique in [12], we obtain
flu— UHLz(O,T;L?(Q)) +lly — Y||L2(0,T;L2(Q))
Sy = Ylleeo,mic20)) + 1P = Pllzzo.1:L2(0)

where

Y := Spr(u+DE, vo), (49)
P =S5 (y — ya)- (50)
Therefore, to conclude the proof of Theorem 4.1, it remains to prove
ly = ynllL20.1:L2()) + 1P = Prllzzomizzy S P22 (51)
lyn — Y201 0209 + lpn — Pllz2o.rr2) S M1 (52)

where yj, is the solution of the equation

Dgy (yn — Qnyo) — Anyn = Qnu, (53)
Yr(0) = Qnyo,
and py, is the solution of the equation
D7_—-A = —
(D7— —An)pr = Qn(y — va), (54)
ph(T) =0.

Here @, is the L?(Q2)-orthogonal projection operator onto V, and Ay, : Vi, — Vi,
is the discrete Laplace operator defined by

(Ahvh,wh)g = 7(Vvh, V’u}h)g Vvh,wh c V. (55)

Let us first prove estimate (51) in the following lemma.
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Lemma 4.1. Under the condition of Theorem 4.1, we have
ly = ynll 20, 7:22(0y) S RT3, (56)
Ip = pallL20.1:L2(0)) S B> (57)
Proof. By (4) and the fact u € U,q, we have
Su e oHY(0,T; L*(Q)) N L*(0,T; H*(Q)),
so that by interpolation we obtain
Su € oH*?(0,T; HY(Q)).
In addition, Lemma A.4 implies
SDY, yo € GH/? (0,T;Hmin{l/a+2rfl,1}(ﬂ)) A L2 (O’T;Hmin{l/aJrQr,Q}(Q)).
Consequently, we conclude from the fact y = S(u + D '\ Yo) that
y € oH? (O,T;Hmin{l/a-{-QT—l,l}(Q)) A L2 (O,T;Hmin{l/a+2r,2} Q).

A routine energy argument (cf. [20]) then yields (56). Since (57) can be derived
analogously, this completes the proof. |

Then let us prove estimate (52). Similar to the properties of y and p pre-
sented in Theorem 3.3, under the condition of Theorem 4.1, we have the follow-
ing properties: there exist decompositions

Yn =Yn1 + Ynz2, DPh=DPh1+tDn2, (58)
where

Nyn,illo oo o,502(0)) + 1ARYR om0, 15220 S 1 (59)
pnllomi+ao,miz2(0)) + 1ArPR o (0,7502(0)) S 1 (60)
1oz St +wa(T—1t) YO<t<T, (61)
”y;v,,Q(t)HHl(Q) Storme2 (T'—t) YO<t<T, (62)
1Ph o2y ST+ (T =) Vo<t <T, (63)
1Pk 2l 1) S gorte2ml (T — )27 o <t < T. (64)

Here w; and wy are defined by (22) and (23), respectively. For any v €
L?(0,T; L?(Q)), space, define Q,v € L>(0,T; L*())) by
I ,
(Q,,—’U)|(tj71,tj) = — o(t)dt, V1<j<2M.

Tj ti—1

By (59) and (60) it is standard that

(I = Qr)ynallw S M~1He/2, (65)
(I = Qr)pnalw S M~1Te/2, (66)
where
||HW = ||'||0Ha/2(o,T;L2(Q)) + ”'HLZ(O,T;Hl(Q))'

14



Lemma 4.2. Under the condition of Theorem 4.1, we have
(T = Qrynllw S M~1Fo72, (67)
(I = Qr)pnllw S M1/, (68)

Proof. We only prove (68), since (67) can be derived analogously. By (58)
and (66) it remains to prove

(I —Q-) oHe2(0, L2 () 5 M T2, (69)
”(I - QT)ph72HL2(O,T;Hl(Q)) 5 M~ 1+a/2. (70)

We will give the proof of (69), the proof of (70) being easier. To this end, we
proceed as follows. Let

gi(t) = { (Pr2 = Qrpn2)(t) ift € EO \T/2),

0 ift e 0) U (T/2, 00),

(t) := (pn2 — Q-pr2)(t) ift € (T/2,T),
92\ =19 9 ifte(— oo,T/Q)U(T,OO>'

By [42, Lemma 16.3] we obtain

g1l Frar2(— oo 00iz2(y) S Tt + T2 + 15 + I, (71)

where

I := / /tl e |S - t|1+JJL2(Q dsdt,

L /tj /t] llg1(s |S . t|f+>c|v|%2(n) dsdr,

Iy = / o3 e (61— 07 + ) de,

Iy := Z t ||91 Wiy (=)~ + (t —t;—1)~*) dt.

i1

By (21), an elementary calculation gives the following four estimates:

tortflga(s )HLz(Q)
]11—2/ / |57t|1+a dsdt
t1 t1 garta taT-i-Oé)
/ / G f)ite dsdt
t1 pta ar-l—oz 2 _ —(14a)
L () e

< t2ar+a fa/t ( ar+ao 2 —(1+a)
< x - 1) (:c - 1) dadt
0 1

t1 ¢ 2ar+a
5/ t2ar+a 1+ <_1> dt
0 t

5 t%ar-ﬁ-a—i—l,
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tj tj gl
s
to ot (s—t) ||ph2HLoo<stL2<n>>
<Z/ / CENECE
j=2
t; ti
(1 n t2(o¢7‘+oz 1) / / (S o t)l*a dsdt
tj—1 Jt

(1 + t (ar+a 1))(tj o tj_1)3_0‘,

2

Mz

j=2

<
U

Mz

<.
||
N

=
w

t1
< 91112~ (01ps25(60) / (b1 — 1) + 170 dt

ty
<yt / ((tr =)™ +t7) dt
0

2ar+a+1
St

and
M tj
I S Z(t - tj—1)2||P;1,2H%oc(tj,1,tj;LZ(Q)) / ((t; =t)7 + (t —tj1)"%) dt
Jj=2 i-1
M
Z (1 + t (ar+a 1))(tj - tj_1)3_a.
=2
Since
M M
Z(tj _ tj71)3—oz < M (@=3)o Z(jal _ (] _ 1)01)3_
j=2 j=2
M
5 M(a73)01 Zj(alfl)(Bfa)
j=2
5 Ma72
and
ZtQ(ar-i-oz 1) t - t]_71>37a
M
< M7(2ar+a+1)61 Z(J _ 1)2(ar+a71)01 (jal _ (] _ 1)01)3*0¢
j=2

M

5 M—(2ar+a+1)01 Zj2(ar+a—1)01j(01—1)(3—a)
=2
M

_ M—(2a7‘+oz+1)<71 Zj(2a7‘+a+1)a1+a—3

j=2
SMe? (by (41)),

16



combining the above estimates for I, and 14 yields
Ip + I, < M2,
In addition, combining the above estimate for I; and I3 yields
I+ S B0t M (Gertaton < 41a=2 - (by (41)).

Consequently, we conclude from (71) that

1910l 12— 00,00:L2(02)) S M2

A similar argument yields

192]l 70 /2(—o0,00:12(02)) S M2

Therefore, (69) follows from the estimate
91 + g2l mor2(0,m50200)) S 91 + 92l Hor2(— 00 00522(02))
S 91l e r2(—o0,00;22(02)) T 1921 /2 (—o0,00;2(02))-
This completes the proof. |
Lemma 4.3. Under the condition of Theorem 4.1, we have
lyn — Yllz2(0,1:2200)) S M, (72)
lon — Pllzzo,1200)) S M (73)
Proof. By an energy argument (cf. [20]), we obtain
lyn = Y ll 2052220y S M ™21 — Q7 )ynllw,
o — Pllz20,1:02(9) S M1 - Qr)pnlw.

so that (72) and (73) follows from (67) and (68), respectively. This completes
the proof. |

5 Numerical results

This section provides three numerical experiments to verify the theoretical re-
sults. We use uniform grids for the spatial discretization and employ a fixed
point method [11] to solve the discrete system. The convergent condition is that
the difference of the discrete control (in [? norm) between two steps is less than
le-13. We adopt the following setting:

a=040r08; r=0or0.25

v=1 T=1;, Q=(0,1); wu.=-0.1; u*=0.1;

yo(z) =2 "1 —2) forall 0< o< 1;

ya(r,t) =27 " (1 —2) forall 0<x<land0<t<T.
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Let U™™ be the numerical solution of (46) with the mesh parameters M = 2™,

h=1/n and
= max 1,%}, (74)
= max\ 1, Z_ch .
Define the discrete state and co-state respectively as
Y™™ = Sp(U™" 4+ Dgy yo),
P 5= 8 (Sur (U™ + D 30) — ).
Throughout this section, ||| z2(0,7;22(q)) is abbreviated to [|-|| for convenience.

Experiment 1. This experiment verifies the spatial accuracy. The reference
solutions are U'4512 Y4512 and pl4512,
the accuracies of state are close to O(h™M{2:1/a+2r}h) “and this agrees well with
Theorem 4.1. In particular, it is observed that the convergence orders of the
co-state and control are higher than the state in the case o = 0.8.

Tables 1 and 2 demonstrate that

n Ilyl4,512 _ Y14,n” ||P14,512 _ P14,n” ||U14,512 _ U14,n”
10 2.12e-3 Order 1.60e-3 Order 1.50e-3 Order
20  5.94e-4 1.84 4.38e-4 1.87 4.16e-4 1.85
a=04 30 2.78e-5 1.87 2.03e-4 1.90 1.94e-4 1.89
40 1.6le-5 1.90 1.17e-4 1.92 1.12e-4 1.91
50  1.05e-5 1.99 7.57e-5 1.94 7.26e-5 1.94
10  1.01le-2 Order 1.60e-3 Order 1.49e-3 Order
20  4.23e-3 1.25 4.38e-4 1.87 4.13e-4 1.85
a=08 30 2.53e-3 1.27 2.03e-4 1.90 1.93e-4 1.88
40  1.74e-3 1.30 1.17e-4 1.92 1.11e-4 1.90
50  1.30e-3 1.31 7.57e-5 1.94 7.22e-5 1.94
Table 1: Convergence history with r = 0.
n Ilyl4,512 _ Y14,n” ||P14,512 _ P14,n” ||U14,512 _ U14,n”
10 5.77e-4 Order 1.56e-3 Order 1.49e-3 Order
20 1.45e-4 2.00 4.30e-4 1.86 4.14e-4 1.85
a=04 30 6.43e-5 2.01 2.00e-4 1.89 1.93e-4 1.89
40  3.58e-5 2.03 1.15e-4 1.91 1.11e-4 1.90
50  2.28e-5 2.03 7.46e-5 1.94 7.23e-5 1.94
10 1.70e-3 Order 1.57e-3 Order 1.48e-3 Order
20 5.07e-4 1.74 4.31e-3 1.86 4.12e-3 1.85
a=08 30 2.46e4 1.78 2.00e-3 1.89 1.92e-4 1.88
40  1.45e-4 1.83 1.15e-3 1.91 1.11e-4 1.91
50  9.58e-5 1.86 7.47e-4 1.94 7.21e-5 1.93

Experiment 2.

graded temporal grids. The reference solutions are

Table 2: Convergence history with r = 0.25.

This experiment investigates the temporal accuracy with

14,512 /14,512
U Y

and P14’512.

Tables 3 and 4 illustrate that the temporal accuracy of the numerical control,
state and co-state are close to O(M ~!), which agrees well with Theorem 4.1.
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m Ilym,512 _ Y14,512H IIPm,512 _ P14,512” HUm,512 _ U14,512H
8 3.06e-4 Order 2.29e-4 Order 2.28e-4 Order
9 1.54e-4 0.99 1.36e-4 0.75 1.36e-4 0.75
a=04 10 7.72e-5 1.00 7.87e-5 0.79 7.86e-5 0.79
11 3.85e-5 1.00 4.40e-5 0.84 4.39e-5 0.84
12 1.88e-5 1.03 2.33e-5 0.91 2.33e-5 0.91
8 9.13e-4 Order 2.02e-4 Order 1.97e-4 Order
9 4.53e-4 1.01 1.0le-4 0.99 9.91e-5 0.99
a=08 10 2.25e-4 1.01 5.03e-5 1.01 4.92e-5 1.01
11 1.11e-4 1.02 2.46e-5 1.03 2.40e-5 1.03
12 5.39e-5 1.04 1.17e-5 1.07 1.14e-5 1.07
Table 3: Convergence history with r = 0.
m Ilym,512 _ Y14,512H IIPm,512 _ P14,512” HUm,512 _ U14,512H
8 4.30e-4 Order 2.23e-4 Order 2.22e-4 Order
9 2.33e-4 0.89 1.33e-4 0.75 1.32e-4 0.75
a=04 10 1.25e-4 0.90 7.67e-5 0.79 7.66e-5 0.79
11 6.57e-5 0.92 4.29e-5 0.84 4.28e-5 0.84
12 3.37e-5 0.96 2.28e-5 0.91 2.28e-5 0.91
8 1.30e-3 Order 1.95e-4 Order 1.94e-4 Order
9 7.3le-4 0.84 9.82e-5 0.99 9.76e-5 0.99
a=08 10 4.05e-4 0.85 4.88e-5 1.01 4.85e-5 1.01
11 2.19e-4 0.88 2.38e-5 1.03 2.38e-5 1.03
12 1.14e-4 0.95 1.13e-5 1.08 1.13e-5 1.08

Table 4: Convergence history with r = 0.25.

Experiment 3. This experiment investigates the temporal accuracy with uni-

form temporal grids. The reference solutions are

14,512 114,512
U , Y

and

14,512
P ;

and we use U512, ym512 and Pmi512 to denote the corresponding numerical
solutions of (46) with the mesh parameters M = 2™, h =512 and 01 = 03 = 1.
From Tables 5 and 6, it is easy to see that the errors are generally larger than

the cases with graded temporal grids.

”?m,SlQ _ yl4,512 H

”ﬁm,512 _ pl4,512 ”

HUm,512 _ U14,512 H

m
8 4.66e-3 Order 3.88e-4 Order 3.64e-4 Order
9 3.35e-3 0.48 2.49e-4 0.64 2.36e-4 0.63

a=04 10 2.40e-3 0.48 1.56e-4 0.67 1.49e-4 0.66
11 1.71e-3 0.48 9.55e-5 0.71 9.19e-5 0.70
12 1.22¢-3 0.49 5.72e-5 0.74 5.53e-5 0.73
8 1.11e-2 Order 2.09e-4 Order 1.97e-4 Order
9 7.86e-3 0.49 1.05e-4 0.99 9.97e-5 0.99

a=08 10 5.57e-3 0.50 5.21e-5 1.01 4.95e-5 1.01
11 3.94e-3 0.50 2.55e-5 1.03 2.42e-5 1.03
12 2.78e-4 0.50 1.22e-5 1.06 1.15e-5 1.07

Table 5: Convergence history with r = 0.
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m ”f/m,slz _ Y14,512|| Hﬁm,slz _ P14,512” ||[7m,512 _ U14,512||

8 2.14e-3 Order 3.60e-4 Order 3.53e-4 Order

9 1.45e-3 0.56 2.33e-4 0.63 2.29e-4 0.62
a=04 10 9.68e-4 0.58 1.47e-4 0.67 1.45e-4 0.66
11 6.42e-4 0.59 9.02e-5 0.70 8.93e-5 0.70
12 4.24e-5 0.60 5.42e-5 0.73 5.37e-5 0.73
8 2.45e-3 Order 1.97e-4 Order 1.94e-4 Order
9 1.51e-3 0.70 9.92e-5 0.99 9.78e-5 0.99
a=0.8 10 9.24e-4 0.71 4.92e-5 1.01 4.85e-5 1.01
11 5.62e-4 0.72 2.41e-5 1.03 2.37e-5 1.03
12 3.39e-4 0.73 1.14e-5 1.07 1.13e-5 1.07

Table 6: Convergence history with r = 0.25.

A Regularity of a fractional diffusion equation

A.1 Regularity in interpolation spaces

We first introduce the interpolation space theory (cf. [27, Chapter 2, pp. 54—
55]). Assume that (X,Y) is an interpolation couple of complex Banach spaces.
Forany 0 <0y <f:<1,0<6<1land1<q< o0,

([Xa Y]017 [Xa Y]Oz)e,q = (Xa Y)(1—9)91+992,q (75)

with equivalent norms, where [-,-]g and (-, -)s,, denote the interpolation spaces
defined by the complex method and the real method, respectively. For each
w e [X,Y]p with 0 < 0 < 1,

K(tw) < 2wy, ¢> 0, (76
where
Ktw)= il flalx +tlyly.
If Y is continuously embedded into X, then
[X,Y]g, is continuously embedded into [X,Y]e, (77)
for any 0 < 07 < 65 < 1.
Lemma A.l. If0<r<s<1andl <q < oo, then
lwll(x,vy,., <Cllwlix,y, (78)
for all w € [X,Y]s, where C is a positive constant independent of w.

Proof. A straightforward calculation gives that

o dt
luliny,, = [ 1K@l

t

! s—r 4 > —r @ dit

<2q/ (T lwllixr.)” _+2q/ (el 5 (o (76))

0 1
29+ +1

-z )mey iy, ,

< Cllwley,,  (by (77),
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where C' is a positive constant independent of w. This proves (78) and hence
this lemma. |

For m € Nyg, 0 <0 <1 and 1 < g < oo, define
oH™9(0,T; X) = [LU0,T; X), gW™%(0,T; X)],.

where X is a Hilbert space. We use o H%%(0,T’; X) to denote the space L4(0,T'; X).
For 0 < f < oo and 1 < ¢ < oo, we have the following properties: if 5 € Ny
then

oHP(0,T; X) = ¢W"4(0,T; X)  with equivalent norms; (79)

if ¢ = 2 then (cf. [27, Corollary 4.37])
oH?9(0,T; X) = (W?590,T; X)  with equivalent norms. (80)

By [37, Theorem 4.5.15], for any g € o H%9(0,T; L?*(Q)) with 0 < 8 < oo and
1 < ¢ < oo, there exists a unique Sg € ( H*T59(0,T; L*(Q)) o H?(0, T; H*(Q))
such that
(DG —A)Sg = g;

moreover,

199lg mre+2.9(0,7;22(02)) + 1991l 1159 (0,7 822)) S Cavallgllorrsao,ripzy- (81)

Lemma A.2. Assume that 1 < q < oo. If g € L9(0,T; L*(R)), then
[1S9llows.a0,1;22(2)) < CapallgllLer;r2@) (82)

for all 0 < B < a. If g € JWP9(0,T; L?(2)) with 0 < § < oo, then

HSgHOWﬁ,Q(QT;HZ(Q)) < Coz,B,q| gHOWviI(O,T;LZ(Q))- (83)

If g € gW59(0,T; L%(Q)) with 0 < B < o0 and a + B ¢ N, then

HSQHOWQMA(O,T;N(Q)) < Ca,ﬁ,qHQHOWM(O,T;Lz(Q))- (84)

Proof. Estimate (82) follows from Lemma A.1 and (81), and estimate (83) fol-
lows from (79), (81) and [27, Theorem 1.6]. Let us proceed to prove (84) for the
case B € (0,1]\ {1 — a}. By (81) it holds that

| Swll, mrea0,m502(0)) < Cangllwll e, m502(0))

for all w € L9(0,T; L*(Q2)) and that
|Swl|yga+ra,1;22(9) < Cagllwllywrao,rL2)

for all w € W9(0,T; L*(€2)). Hence, applying (75) and the real interpolation
of type (5, q) yields that

[ Swllywats.a0,1;2(0) < Cangoallwllows.aor;L2)

for all w € (W59(0,T; L*(Q)). For 1 < 8 < oo and a + B ¢ N, (84) can be
proved analogously. This completes the proof. |
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Remark A.1. In the above proof of (84), we have used the following well-
known result (cf. [27, Proposition 3.8]): if j,k,m,n € N and 0 < r,s < 1 satisfy
that j <k, m <n and (1 —7r)j +rk = (1 —s)m+ sn ¢ N, then
(oW74(0,T; L*(92)), OW’“‘?(O,T;L2(Q)))M
= (oW™(0,T; L*(2)), oW™(0,T; L*()))

)

5,9

with equivalent norms, where 1 < q < oo.

A.2 Regularity from the Mittag-Leffler function
For any /3,y > 0, define the Mittag-Leffler function Eg , by that

Bpn(2) = TR A€ C. (85)

|Eg ~(—t)| < , t>0. (86)

Moreover, the Mittag-Leffler function admits the asymptotic expansion (cf. [5,
pp. 207)):

N k+1t k

E
pa(= r1—/<;ﬁ

+ OtV ast — oo,
=1

A straightforward calculation gives that [40], for any v € L?(Q),

(SU) =t Z Ea 1+a —ARt” )(U’ ¢k)Q Pk, (87)
k=0
(DG ) () =D Eat (=t (v, $1) br, (88)

for each 0 <t < T. Here
{¢n +k € N} C Hy(Q)n H?(Q) (89)
is an orthonormal basis of L?(Q) such that for all k € N,
— A¢p, = A, in Q, (90)

where {\; : k € N} C Ry is a non-decreasing sequence.

By the above properties of Mittag-Leffler function, [28, Lemma 3.4] and
some techniques in [31], a few straightforward calculations yield the following
two lemmas.

Lemma A.3. Assume that 0 <t <T and v € L*(2) then

NSV (O 2y + A (SV) (W)l L2@) < Callvllz),  (91)
(T =)~ 1(S*0) D) 2y + (T =)' (S*0) (B L20) < Callvllz2).  (92)
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Moreover, if v € H? () with 0 <r < 1 then

(S Doy 0) (W)l z2) < Cat™ vl g2r(q)- (93)
165 DEs ©) (D20 + t°/*I1(S DEs 0)ll 310 < Cat™ M [oll g2 (- (94)

Lemma A.4. Assume that v € H* (Q) with 0 <r < 1. If 0 < o < 1/3, then

1SDGy vl grarz (o, 12420 () S Cararllvll gor (oy-

If « = 1/3, then for any 0 < e < 1/2,

||SD3+ /UHOHQ/Q(O’T;HZ#»QTfE(Q)) < Ca,r,(Z,Teil/QHU”HQT(Q)'

If1/3 < a < 1, then

|‘SD3+ UHUHa/Q(oﬁT;Hl/a+2T71(Q)) < Ca,T,Q,T”vHHZT(Q)-

If 0 < o < 1/2, then

1S Dgy ”HLZ(O,T;HHM(Q)) < Cam,ﬂ,T”UHHZT(Q)-

If « = 1/2, then for any 0 < e < 1/2,

HSD8+ ’UHLZ(O7T;H‘2+2T7€((2)) < Ca,r,Q,T€71/2||UHH2T(Q)'

If1/2 < a < 1, then

IS DG UHL2(07T;H2T+1/OL(Q)) < Ca,r,Q,THUHH%(Q)-
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