UNIVERSITY OF LEEDS

This is a repository copy of Determination of the space-dependent source in the thermal-
wave model of bio-heat transfer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193570/

Version: Accepted Version

Article:

Lesnic, D orcid.org/0000-0003-3025-2770 and Alosaimi, M (2023) Determination of the
space-dependent source in the thermal-wave model of bio-heat transfer. Computers and
Mathematics with Applications, 129. pp. 34-49. ISSN 0898-1221

https://doi.org/10.1016/].camwa.2022.10.026

© 2022, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




Determination of a space-dependent source in the
thermal-wave model of bio-heat transfer

M. Alosaimil? and D. Lesnicl*

! Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box
11099, Taif 21944, Saudi Arabia

E-mails: mmmaal@leeds.ac.uk (M. Alosaimi), amt5ld@maths.leeds.ac.uk (D. Lesnic*
corresponding author)

Abstract. We consider linear but ill-posed inverse problems consisting of finding the un-
known space-dependent source in the thermal-wave model of bio-heat transfer from final-time
or time-average temperature measurements. In contrast to the previous research on parabolic
bio-heat transfer models, this work concerns a more involved and practical hyperbolic model
used in biomedical engineering. First, the unique solvability of the inverse source linear prob-
lems is established. Then, the inverse problems are recast as variational problems, allowing
the gradients of the least-squares objective functionals to be derived. These later problems
are solved iteratively using the conjugate gradient method combined with the discrepancy
principle. Finally, the inversion algorithm is tested on identifying one- and two-dimensional
space-dependent sources.

Keywords: Inverse source problem; bio-heat transfer; conjugate gradient method; regular-
ization; thermal-wave model

1. Introduction

Abnormalities associated with biological tissues, such as tumour formation, have a major
impact on organs malfunctioning. Therefore, these disorders must be detected and treated
early to save lives and improve the general health. To this end, several therapeutic inter-
ventions guided by medical imaging have been successfully discovered and developed, e.g.
hyperthermia and cryoablation treatments. For instance, in hyperthermia, tumours are de-
stroyed by increasing their temperature to about 42-46°C, while keeping the healthy tissues
undamaged [6, 29]. Optimizing the medical treatment, e.g. by regulating the tissue tem-
perature, is significant. Loulou and Scott [22] proposed such a method to determine the
optimal heating applied to reach the thermal dose required for cancer eradication. Other
applications include determining the time it would take to eliminate tumours [28], evalu-
ating the thermal response of biological tissues to medical treatment [17], and finding the
thermo-physical properties of biological tissues |3, 4].

Mathematical bio-heat transfer models have been the basis of the above-mentioned ap-
plications. The Pennes’ bio-heat parabolic model [26] has been the most widely used in
the literature despite its unphysical assumption of instantaneous heat propagation. This is
resolved by the hyperbolic thermal-wave model of bio-heat transfer [20], as it accounts for
the finite speed of thermal propagation.

Inverse problems of identifying the source from different types of measurements, e.g.
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boundary, integral or nonlocal, have been extensively studied in the past. Such problems
arise in many areas of engineering and applied sciences, e.g. tsunami source reconstruction
and pollutant source detection. Hasanov [13|, for example, investigated the possibility of
determining the sources in the wave equation and in a Neumann boundary condition from
additional terminal data. Nguyen [24] used a quasi-reversibility method to numerically recon-
struct the space-dependent source in hyperbolic equations from lateral Cauchy data, whilst
Romanov and Hasanov [27] investigated the same retrieval but from final-time measurement.
Lesnic et al. [19] developed the Landweber method and conjugate gradient method (CGM)
to numerically identify the space-dependent source in the wave equation from upper-base
or time-average displacement measurements. Inverse problems of determining the space-
and time-dependent source have also been investigated in the literature, e.g. [11, 12] for
parabolic equations and [2] for hyperbolic equations. Recently, Hao et al. [12] proved the
convergence of a Crank-Nicolson Galerkin method for the reconstruction of such a missing
source in parabolic equations from a partial boundary observation.

Inverse bio-heat transfer problems have also been formulated and investigated using
various approaches. Bazan et al. [7] used the pseudo-spectral collocation method coupled
with the regularized Gauss—Newton method to identify the space-dependent perfusion coef-
ficient in the two-dimensional Pennes’ bio-heat equation. Jalali et al. [14] used the CGM to
simultaneously reconstruct the time-dependent source and the heat transfer coefficient dur-
ing the hyperthermal treatment of a single-layered tissue. Cao and Lesnic 9] developed and
implemented the CGM to identify the space-dependent perfusion coefficient in the Pennes’
bio-heat equation from time-average or upper-base temperature measurements. Baghban
and Ayani [6] utilized a sequential method to numerically recover the time-dependent source
applied to a multi-layered tissue from skin temperature measurement.

Despite much research in inverse source problems for the parabolic bio-heat equation,
only a few authors have looked at solving their counterpart for hyperbolic models. For in-
stance, in [23|, the authors used variational and spectral methods to prove the uniqueness
of the solution of the inverse space-dependent source problem for the time-fractional dual-
phase-lag model from a measured final-time observation. In this paper, we first establish the
unique solvability of the inverse problems of estimating the space-dependent source in the
thermal-wave model of bio-heat transfer from final-time or time-average temperature mea-
surements as additional information using the method of separation of variables similar to
the analysis of [8] for the wave equation. Afterwards, the CGM is employed to numerically
solve the linear but ill-posed inverse space-dependent source problems for the thermal-wave
bio-heat transfer model.

This paper is structured as follows. Section 2 describes the mathematical formulation
of the inverse space-dependent source problems. In Section 3, the inverse problems are re-
formulated as variational problems, and the least-squares objective functionals are proved
Fréchet differentiable and explicit formulae for their gradients are derived. The CGM is then
described for the minimization of the objective functionals. In Section 4, numerical results
concerning identifying one- and two-dimensional space-dependent sources exhibiting differ-
ent behaviours are presented and discussed. Finally, Section 5 highlights the conclusions of
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the work.

2. Mathematical formulation

Let Q Cc R, d = 1,2, 3, be a bounded domain with a piecewise smooth boundary 0. The
heat propagation in biological bodies is governed by the thermal-wave model of bio-heat
transfer given by, [21],

_O*T i oT ,
ptCtTﬁ -+ (ptct —+ prcbwb)ﬁ = kV*T -+ pbcbwb(Ta — T)
0
+Qm + Qe + ?a_E(Qm + Qe)a (}27 E) € Qx (O, tf]u (1)

where T', p;, ¢, and k represent the temperature [°C|, density |kg/m?3|, specific heat |J/ (kg °C)]
and thermal conductivity [W/(m °C)] of the tissue, respectively, pp, ¢, and wy, stand for the
density |kg/m?], specific heat |J/(kg °C)] and perfusion rate |[s~!] of the blood, respectively,
7 is the relaxation time [s] required for the thermal waves to propagate, T, is the (arterial)
blood temperature [°C|, @,, and Q. are heat generations [W/m?| due to metabolism and
external heating, respectively, t¢ is the duration of the thermal process [s|, X is the space
position vector with components measured in [m|, and ¢ is the time [s].
Equation (1) is considered subject to the initial conditions

Ml _y o, 2)

T|f:0 = T07 ﬁ -
t=0

and the temperature specification Dirichlet boundary condition
T‘aQX[O,tf] =1 on 00 x [O,td, (3)

assuming also the compatibility condition flopaxroy = Tolan. Instead of (3), adiabatic or
Robin boundary conditions can also be considered.

The direct problem concerns finding 7" satisfying (1)—(3) when the source Q). and/or
Q. are/is known. However, if the source Q). and/or @, cannot be directly observed and
is therefore unknown, the problem becomes an inverse problem of determining the temper-
ature T" and the source satisfying (1)-(3) alongside additional data. Such data may be the
measurement of the temperature 7" at the final time ¢ = t;, namely,

T()_(a tf) = ﬂf(i)7 X € Qa (4)
or the average temperature
te B
/ T, B)df = T (%), %€ Q. (5)
0
Measurement (5) is preferred in case the measurement (4) is too noisy. In this paper, we
investigate the spatial dependence of the governing equation (1) in case of the slab Q = [0, L]

in one-dimension d = 1 and the rectangle Q = [0, L1] x [0, Ls] in two-dimensions d = 2, where
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L, > 0 and Ly > 0 stand for the depth and width of the tissue, respectively.
In the following section, the thermal-wave model of bio-heat transfer (1)—(3) in two-
dimensions d = 2 is non-dimensionalized.

2.1 Dimensionless model
Consider the thermal-wave model of bio-heat transfer (1)—(3) in two-dimensions d = 2 and
use the following non-dimensionalization:

T To 1 - _ T—TQ
rn=—, x2=—, (t,7)=-—(t,7), 0= ,
I A Ty ©)
0 _Ta_TO f_f_TO F_(Q6+Qm)t%
.o T() ’ N TQ ’ N TT()Ct ’

where X = (Z1,T3), Cy = pycq is the heat capacity of the tissue, and the initial temperature
Ty has been assumed uniform and equal to a non-zero constant. Then, the dimensionless
version of the thermal-wave model (1)—(3) is

8—29+a@—aa—20+a@—a(9—9)+F+a—F
oz " Mor T Mgar T By T MY T e ot
x = (1,22) € (0,1)%, t€(0,1], (7)

subject to the initial conditions

00
9(%,902,0) =0, 5@1@2,0) =0, (951,$2) € [0» 1]27 (8)

and the Dirichlet boundary condition
0(w1,x,1) = f(x1,22,1), (21,22,1) € 3(0,1)* x [0,1], (9)

satisfying f(x1,z2,0) = 0 for (x1,22) € 9[0,1]?, where:

i — tf+wb0btf G — ]{Jt% G — k‘t% s — wabt%
' R o7 L o 7 L T o

(10)

where (), = pycp is the heat capacity of the blood. In the above non-dimensional form,
equations (4) and (5) can be written as

th (X) — TO

0(x,1) = = 01(x), x€(0,1)% (11)
and .
/ O(x,t)dt = % —1=0,(x), xe€(0,1)>2 (12)

Remark 2.1.1. We remark that through the change of variables:
0(x,t) = e 2U(x,t), (x,t)€[0,1]?, (13)
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the model (7)-(9) becomes:

2 2 2 2 F
OV _ o2 U+a38—U+ (ﬂ—a4>U+ <a49a+F+Ta—>ea1t/2,

o2~ %oz T %z T\ 14 ot
(z1,22) € (0,1)% t € (0,1], (14)
U(zy,x9,0) =0, %—(t](xl,xg,O) =Vo(x1,22), (21,29) € ]0,1]%, (15)
Ulzy, xo,t) = €12 f(x1, 29,1), (21, 22,1) € 0(0,1) x [0, 1]. (16)

There are two inverse problems, namely (7)—(9), (11) and (7)—(9), (12), termed IP1 and
IP2, respectively, which we shall consider.
If FF = F(x,t) depends on both space and time we obviously have non-uniqueness, but
when F' = F(x) is independent of ¢, equation (7) simplifies to
020 00 020 0?0
— — =ay— — —ay(0 —0,) + F(x),
ot? T ot 2 0r? + a3 03 aa )+ Fx)

x = (21,22) € (0,1)%, ¢ € (0,1], (17)
and we have the following uniqueness result.

Theorem 2.1. If

|Cy — wpCyT| 1 1
B = DT omy |55 + = 18
Nezen: Wz Iz (18)

then the inverse source problems IP1 and IP2 have at most one solution.

Proof. Let (91<:C1,x2,t),F1<£E1,£E2)) and (Hg(xl,xQ,t),Fg(xl,xg)) be two solutions of the
inverse problems associated with (8), (9), (17) and (11) or (12). Denote 6 = 6; — 05 and
F = F, — F;. Then, (G(xl,xg,t),F(xl,:cg)) satisfies

020 00 0?0 020

w—FalE :CLQa_I%+a38_I%_a49+F<x1’x2>, <x17$2) € (071)27 te <O7 1]7 (19)
00
6@1,%2,0) = E(%,xzao) =0, ($17$2) S [07 1]27 (20)

e(th%t) = Oa (xlax%t) € 8(071)2 X [07 1]7 (21)
O(z1,72,1) =0, (z1,72) € (0,1)7, (22)
or
1
/ Oar,an, 1)t = 0, (11,12) € (0,172 (23)
0
Differentiate equation (19) with respect to ¢ to eliminate the unknown source F' and obtain
Oue + a10n = a2z oyt + a302p050 — aabs. (24)

Seek the general solution of the above third-order linear PDE using the method of separation
of variables as
O(x1, 29,t) = X(x1)Y (22) Z(1).
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This gives

Z/// + alz// + a4Z/ CLQX” a3Y!/
VA = X + % = —,u2, (25)
for some constant u. From the above expression, we obtain
a X// a Y//
() &

for some constant A\. The above expression gives the ODEs

/\2 2
X'+2x=0 and V'+2y =0, (27)
a9 as

where p*> = 2 — 2. The homogeneous Dirichlet boundary conditions (21) gives A2 = (n7)?%ay
and p?, = (mm)%a3, and X,,(x;) = sin(nmx;) for n € N* and Y,,,(z3) = sin(mnz,) for m € N*.
Also, denoting Z'(t) = R(t), from (25) we have

R"+ a R + (a4 + (nm)?ag + (mn)?az)R = 0. (28)
The discriminant of the characteristic equation can be written as

Apm = ai — 4]as + (nm)%as + (mm)*as)

8 (Ct—waﬁf_4k[(n_ﬂ)2+<m”)2] . nme N, (29)

T, 7C, L, Ly

Under the assumption (18) we have that A, ,, < 0 for all n, m € N*. Then the general
solution of the second-order ODE (28) is

Z;,m(t) = Rom(t) = e~1t/2 [Amm cos(Wn,mt) + Bnm sin(wn,mt)}, (30)
1
where A, ,,, and B, ,, are coefficients to be determined and w,, ,, = 5\/—An7m for n,m € N*,

From the initial conditions (20) we have that
Zpm(0) = Z!(0) = 0.
Imposing Z), ,,,(0) = 0 yields A, ,, = 0,Vn,m € N*, and then (30) simplifies to
Z), o (t) = Brme™ 2 sin(wy, mt).

Integrating from 0 to ¢ yields

¢
Znm(t) = Bn,m/ e~ 1¢/2 sin(wy, m()d¢
0

2Bnm 2 n,m _alt/Q nmt —a1t/2 . nmt - 2 n,m
_ 2B, [2wn, me cos(w ” )—I—c;le sin(wp, mt) — 2wy, ]’ nom e N,
aj + 4wn,m




Denote

ai

Pm(t) =1— e—ut/2 (cos(wmmt) +

sin(wmmt)) :

Wn,m

Then, since
a aq sin(w
€2 > 14 = > cos(wnm) + @1 S0 (nm)
2 ' 2 Wnm

it follows that p,,,(1) > 0,¥n,m € N*. Then, for the measurement (21) it follows that

o0

B mpnm(DwWnm . .
0=0(x1,29,1) = B — sin(nmzy ) sin(mrxs).
n,%:l CL% + 4w72"7m

This yields B,,, = 0,Vn,m € N*. Hence, § = 0. Also, from (19) it follows that F' = 0.
Hence, uniqueness of solution holds.
Similarly, for the time-average measurement (23) we get

1 o
B
O:/ O(x1, xo,t)dt = Z Msin(nﬂxl)sin(mwm),
0 n,m=1 ay + 4wn,m

where &, ,, = fol pnm(t)dt > 0 since, based on

ayt sin(wy, mt)

t
e % > cos(wWn,mt) + . Vte(0,1],

2 Wr,mt
Pnm(t) > 0 for t € (0, 1], and uniqueness follows from the same argument.

Remark 2.1. If the boundary OS2 is insulated, then the Dirichlet boundary condition (9) is
replaced by the adiabatic zero Neumann boundary condition

g—i(xl,xg,t) =0 for(x1,x9,t) € 0Q x 00, 1]2 x (0,1), (31)

where v is the outward unit normal to the boundary. Then, the previous analysis modifies
to give \2 = (nm)%ag and X, (z1) = cos(nwxy) for n € N, and p?, = (mn)az and Yy, () =
cos(mmxzy) for m € N. We also obtain that

Zl () = Rom(t) = Bpme Y2 sin(wymt) for (n,m) € N2\ {(0,0)}, Rop(t) = Cre*" +
Cye-t, where Ay = 2;{% [—(Cy + wpCyT) £ |Cy — wyCyT|]. Observe that A < Ay < 0. Since
Z}0(0) = Ro(0) = 0 it follows that Cy = —Cy hence Roo(t) = Cy(eM! — ).

Also,

t 6/\+t -1 6)\_t -1
ZO,O(t> = BO,O/ RQ’()(T)dT = BO,O < )\ — )\ ) y
0 + -

where we have redenoted Cy by Byg. Then,

o

BTL mrHrn,m t n,m
O(x1,x9,t) = Zoo(t) + Z ’a%p—l—’ 4L£: — cos(nmxy) cos(mmas).
(n,m)€eN2\(0,0) ’




Then, for the measurement (21) it follows that

0=0(z1,29,1) = Zy (1) + Z ’a%p%_’ 451723: — cos(nmzy) cos(mmxs).
(n,m)eN2\(0,0) )

This yields that B,,., = 0, Y(n,m) € N*\ (0,0). Then, Zyo(1) = 0 which implies Byy = 0

since the function (e — 1)/z is strictly increasing and positive for z € R_.

Similarly, for the time-average measurement it yields that B,, ,, = 0, VYn,m € N. There-
fore, under assumption (18) the uniqueness of solution for the Neumann problem also holds.

Remark 2.2. In d = 1, one-dimension with Q = [0, Ly], the problem (8)—(10) and (17),

simplifies to
020 00 %0

+a1—

ﬁ ot = G'Qw - CL4(9 - Qa) —|—F($>, HS (071)7 S (Oa 1]7

subject to the initial conditions

6(x,0) =0, %(az,O):O, x € [0,1],

and the Dirichlet boundary condition
0(x,t) = f(z,t), (2,t) €{0,1} x (0,1],

where

tf ’wabtf k’tfc wabt]%
— + ) (o = — 29 ay = — )
T Ct TCtLl TCt

and we have re-denoted x1 by x. Also, the condition (18) simplifies to

|Ct — wb(]bﬂ 2T

< —.
\/?Ctk Ll

(32)

(33)

(34)

(36)

Although, as seen in Theorem 2.1, a solution to the IP1 (and IP2) is unique, these
problems are still ill-posed since the continuous dependence upon the data (stability) is vi-

olated. This can be seen from the following example.

Example of instability. For each n € N*, consider the IP1 given by

O + a10; = a9l — ayf + F(x), z € (0,1), t € (0,1],
9(:1770) = gt(ﬂf,O) = Oa ZAES [Oa ]-]7
6(0,t) =0(1,t) =0, te(0,1],

a

O(x,1) = by,(z) = [e“”/Q (cos(ﬁn) + ﬁ sin(ﬁn)> -1

(psin(nmx)

ay + asn?m?’



4(aq + agn?n?) — a3 . . . .
where 3, = \/ (s a;n ™)~ ai and (, is vet to be prescribed. Assuming that the condi-

tion (18) holds it follows that 3, is a well-defined positive real number. Then, one can easily
derive/check that the above problem has a unique solution given by

0 (1) = le“l“?(coswnm%sinwnt))—1 CsT) e (0,1), e (0,1

a4 + asn?m?’
(37)

and
F,(z) = —=(,sin(nmz), x € [0,1]. (38)

As in [8], on choosing, ¢, = v/, a sequence of source solutions F, is obtained whose L*(0, 1)-
norms tend to infinity, while the data 6,(x) tends to zero uniformly, as n — oco. On the
other hand, on choosing, ¢, = 1, a sequence of source solutions F, is obtained whose L?(0, 1)-
norms remain constant, while the data 6y,,(x) tends again to zero uniformly, as n — oo.

A similar example can be constructed for the IP2 by integrating with respect to t
expression (37) and remarking that the obtained data ©1,(z) tends to zero uniformly, as
n — oo.

The above analysis shows that the IP1 (and IP2) does not depend continuously on the
input data, hence they are ill-posed.

3. Variational problems
To solve the IP1 or TP2, we minimize the least-squares objective functionals defined by:

2
9

Ji(F) = %H@(x, 1) — 6(x) (39)

or
2

JQ(F) = 1

. , (10)

/1 0(x,t)dt — ©7(x)

where 6 solves (7)—(9) for a given source F, 65 and Of are noisy perturbations of the exact
data (11) and (12), and the norms are in L*((0,1)?).

Next, in Theorem 3.1 below, we prove that the objective functional (39) (or (40)) is
Fréchet differentiable and derive a formula for its gradient. But before that let us formulate
the weak form of the direct problem. Let us denote Dy = {(z;,72) € (0,1)?}, D =
{(x1, 29,t)|(x1,22) € Dy, t € (0,1]} and T := {(z1, 22, t)|(x1,x2) € DDy, t € [0,1]}, and, for
simplicity, let us assume that the Dirichlet boundary condition (9) is of the homogeneous
form

0(1’1,1’2,t) = 0, (I1,$2,t) el. (41)

Then the weak solution v € H}(D) of the direct problem (8), (17) and (41) satisfies the
integral identity

/ (=00 + O(aqv — a1vy) + agb,, 05, + 30,0, |dxdt
D

9



:/D F(x) (/Olv(x, t)dt) dx+a4/Dt9avdxdt,

for any v(x,t) € Hy(D) with v(-,1)|p, = 0, where H}(D) = {v € HYD); v(-,t)|ap, =
0,vt € (0,1]}. Using the theory of hyperbolic partial differential equations (Chapter IV,
Section 3 of [18]), under general regularity on the input data, e.g. F € L*(Dy) and 6, €
L*!Y(D), the above formulation yields a unique solution of the direct problem (8), (17) and
(41) satisfying the stability estimate

ull 71y + l|well 20y < CUIF||L2(po) + 10all 221 (D)), (42)

for some positive constant C. In the above, the space L?!(D) consists of all elements of
LY(D) with finite norm [|0|21(py := [y [10a(-,1)]|dt < oo.

Theorem 3.1. The objective functional (39) is Fréchet differentiable and its gradient is

given by
1
TE) == [ vt (43)
0
where x = (11, x2) in two-dimensions and v(xy,Ta,1t) is the solution of the following adjoint
problem:
Vg — A1V = AgUsyzy + A3Vpyzy — Aav, (71, T2,1) € D, (44)
U(x17$271) = 07 Ut(xlang)l) = 0(1)1,1’2,1) —gi(l'l,xg), (x17$2) 6D_07 (45)
v(zy,x9,t) =0, (x1,29,t) €T (46)

Proof. Taking a small variation AF € L?(Dy) of F, we have

Ji(F + AF) = Ji(F) = (0(x,1; F) — 0{(x), A0(x, 1, F))

L2(Do)
1 2
1800 15 ) )
where A# is the solution of the sensitivity problem:

(A0)y + a1 (A0); = as(A0)y 2y + a3(A0)pyw, — as A0 + AF,  (21,29,t) € D, (48)
A0<x17 T, 0) = (Ae)t<x17 T, 0) = 07 (1:17:1:2) S ﬁ(ﬁ (49)
(A@)(l’l,l‘z,t) = 0, (Il,l’g,t) el. (50)

From the a priori estimate (42) applied to the sensitivity problem (48)—(50), we have
|AO(x, 1; F)||> = o(||AF]) as [|AF| — 0. (51)

Moreover, multiplying (44) by Af(x,t) and integrating by parts twice, using (45)—(50), yield

O(x,1; F) —0{(x))Ad(x,1; F)dx = — v(x,t)AF (x)dt |dx. 52
[, 0612~ 0100) A0t 1:) /()(/()( ) <>t> (52)
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Therefore, equation (47) becomes

JU(F + AF) — Jy(F) = _/
(0,1)2

(/(0 e t)AF(x)dt) dx+o(|AF]).  (53)

From the right-hand side of the above equation and the definition of the Fréchet derivative,
we see that J; is Fréchet differentiable and its gradient at F is given by (43).

Remark 3.1. The objective functional Jo(F') of the IP2 is Fréchet differentiable and its
gradient is given by

J(F) = — /O Vi), (54)

where V(x,t) is the solution of the following adjoint problem:
Vie— a1V, = agViy oy + a3Viye, — a4V, (21, 29,t) € D, (55)
V(zy,20,1) =0, Vi(x1,29,1) = /01 O(x1, 20, t)dt — O% (1, 35), (x1,72) € Dy,  (56)
V(xy,x0,t) =0, (x1,29,t) €T. (57)

The next subsection describes the CGM utilized for the minimization of the objective
functional J; given by (39) (or J; given by (40)).

3.1 Iterative procedure
The CGM is utilized to reconstruct the unknown space-dependent source F in equation (7)
by minimizing the objective functional J, where J stands for J; or J,. The iterative CGM
procedure reads:

Friix) = F*(x) — a,P(x), n=0,1,2,... (58)

where the direction of descent P, is given by

(x) =J'(F™), if n =0, (59)
P.(x) =
—J'(F™) 4+ B,Py—1, ifn=12,...,

the Fletcher-Reeves conjugate coefficient (3, is given by

| (F)|J?
Bo =0, Op=——r—"—, n=12,..., (60)
[ (Fr=1)]1?
and the search step size a,, is computed as the minimizer
a, = argmin J(F" —aP,), n=0,1,.... (61)

a>0
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For IP1, following the rule (61), we have
1
J(F" = aP,) = o||6(x, 1L F" — aP,) - 65 (x)||”. (62)

We set AF™ = P, and linearize 0(x, 1; F" — aP,) by a first-order Taylor series expression to
obtain

00 e,
0F"

where Af(x,1; F") is found by solving the sensitivity problem (48)—(50) with AF"™ = P,.
Then, differentiating J;(F™ — aP,) with respect to o and making it zero yield

0(x,1; F" —aP,) =~ 0(x,1; F") — LF") = 0(x,1; F") — aAf(x,1; F"), (63)

o — <9(x, 1, F™) — Qf(x),AG(;c, 1; F”)> (64)
|A6(x, 1; F)|

The search step size o, for IP2 can be obtained by the same method and it is given by

<f0 (x,t; F™)dt — ©5(x), [, AextF")dt> o
e Hfo Af(x, t; F")dtH | ()

3.2 Stopping criterion
Because the inverse source problems at hand are ill-posed, the CGM is unstable, i.e. small
errors in the input data (11) or (12) lead to large errors in the output source solution
F. Therefore, we restore stability by stopping the iterations according to the discrepancy
principle, i.e. we stop the iterations at the first iteration n, for which the following stopping
criterion is satisfied:

J(F™) ~ €, (66)

where € is a small positive value, e.g. € = 1075, for exact data or
—~ 1 exact
e= Il - e (67

for noisy data, where J and Y mean J; and 6] or J, and ©f for IP1 and IP2, respectively.

3.3 Algorithm
The CGM’s steps for IP1 (and similarly for IP2) are described as follows:

1. Set n = 0 and select an arbitrary initial guess F° € L?((0,1)?).

2. Solve the direct problem given by equations (7)—(9) to obtain 0(x,¢; F) and compute
J1(F™) from equation (39).

3. Stop if the stopping criterion (66) is satisfied. Else go to step 4.

12



4. Solve the adjoint problem given by equations (44)—(46) to find v(x,t; F"). Compute
the gradient Jj(F™) from equation (43), the conjugate coefficient 3, from equation
(60), and the direction of descent P, from equation (59).

5. Solve the sensitivity problem given by equations (48)—(50) to obtain Af(x,t; F™) by
taking AF™ = P, and compute the search step size «,, from equation (64).

6. Update F"*! from equation (58), set n =n + 1 and go to step 2.

4. Numerical results and discussion

The direct, adjoint and sensitivity problems present in the CGM described in Section 3.3
are solved using the Crank-Nicolson scheme [10], in one-dimension (d = 1) with uniform
mesh size Az = 1/M® and time step At = 1/N, or the alternating direction implicit (ADI)
scheme [5], relying on the Peaceman-Rachford splitting strategy in two-dimensions (d = 2)
with mesh sizes Az; = 1/M™ and Az, = 1/M® | and time step At = 1/N. The trapezoidal
rule is used for discretizing all the integrals in this paper, e.g. the objective functionals (39)
and (40). The measurements ¢; and ©; are generated numerically by solving the direct
problem (7)—(9) using the aforementioned finite-difference methods with M® = N = 80 in
d=1or MY = M@ = N =80 in d = 2. Moreover, to avoid committing an inverse crime
we employ half the mesh sizes used to generate 6; and ©; when solving the inverse problems.
The noisy data { and ©f are simulated by adding random noise to the noise-free data 6,
and O, as follows:

0] = 01 + epmax|6,]|, O] = O; + epmax |O], (68)

where p represents the percentage of noise and e are random variables generated from a
Gaussian normal distribution with mean 0 and variance 1 using the MATLAB command
randn(size(0;)) or randn(size(O;)).

The accuracy error functional, as a function of the number of iterations n, is defined
as:

E(F") = |[F" = F|, (69)

where F™ denotes the numerical result obtained by the CGM at the iteration number n and
F' stands for the exact source, if available.

We finally mention that the dimensional source Q. in (1) is obtained via (6) after F
has been reconstructed.

4.1 Example 1 (exponential-type source)

We first consider the model (1)—(3) for heat transfer in tissues radiated by an electromagnetic
antenna during thermal therapy in one-dimension d = 1 on Q = [0, L;] with the physical
parameters taken from [1, 16, 25| as

k=0.5W/(m °C), py = pp = 1050 kg/m*, ¢, = ¢, = 3800 J/(kg °C), w, = 0.04 5%, (70)
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F=20s, Ty=Ty=f=37C, Ly = 0.05m, tr = 60's, Q, = 0, (71)
and the following source taken from [16] as
Qe(T) = prNge®@ 00 7z € [0, Ly], (72)

where k = 12.5 kg! and @ = —127 m~! are the antenna constants, and Ag = 1 W is the
transmitted power. One can easily check that condition (36) with the above parameters
is marginally violated. However, as the numerical investigation below will indicate, the
uniqueness of solution seems to hold for Example 1 (and also for Examples 2 and 3) even
when the sufficient condition (36) for uniqueness is violated.

Equivalent to the one-dimensional version of (1)-(3) we consider (32)—(34) with the
following parameters obtained via (6), (35) and (70)—(72) as

ay =54, ag =9.0226 x 107°, ay = 7.2, 7=0.3333, 0, =V, = f =0, (73)
F(x) = 1.6003 x 10203127 = 4 < [0, 1]. (74)

We employ the CGM described in Section 3.3 to minimize the objective functionals
(39) and (40) starting from the initial guess given as the linear interpolant of (74) at the
boundary x € {0, 1}, namely,

F%z) = —0.0569x + 0.057, =z € [0,1]. (75)

Figures 1(a) and 2(a) show the monotonic decreasing convergence of the objective
functionals (39) and (40) that are minimized for IP1 and IP2, respectively, as functions
of the number of iterations n, for p € {0,5%,20%} noise. For exact data, ie. p = 0
in (68), the objective functionals (39) and (40) rapidly attain very low values of O(107'2)
and O(1071), respectively, and we stop the iterative process after 10 iterations. For noisy
data p € {5,20}%, the stopping iteration numbers n, € {1,1} are chosen according to the
discrepancy principle (66). The error curves (69) for IP1 and IP2, as functions of the number
of iterations n, are depicted in Figures 1(b) and 2(b), and the numerical solutions for the
source (). are displayed in Figures 1(c) and 2(c) alongside the exact source (72). The errors
(69) of the numerical solutions for IP1 and IP2 are shown in Table 1. From these results, it
can be seen that the numerical solutions agree very well with the exact source (72) in the
case of noise-free data. Furthermore, in the case of noisy data, it can be concluded that the
numerical solutions are accurate and reasonably stable and they become more accurate as
the percentage of noise p decreases.

4.2 Example 2 (Gaussian-type source)
In this example, the model (1)—(3) in one-dimension d = 1 on Q = [0, L;] is considered with
the parameters (70), (71) and the following source taken from [17] as

Qe(j) = QeOe_a%(i‘_O'OzS)a x e [07 L1]7 (76)

where Q. = 7.58 x 10> W/m? is a reference heat source and ay = 100 m~! is the scattering
parameter.
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Figure 1: The objective functional (a) given by (39), (b) the error (69), and (c) the exact
(72) and numerical source Q.(Z), for p € {0,5%,20%} noise, for Example 1.

Table 1: The error (69) of the numerical solutions for IP1 and IP2 of Examples 1-4.

P Example 1

Example 2 Example 3

Example 4

IP1 IP2

IP1 IP2 IP1 IP2

IP1 IP2

0 24E-4  24EA4
5% 1.1E-3  1.1E-3
20% 4.0E-3  3.6E-3

72E-7 11E-6 7.3E-11 6.1E-11
22E-4  25E-4 T7.7E-10 8.7E-10
83E4 85E4 27E-9 3.1E-9

3.1E-3  3.3E-3
1.0E-2  1.5E-2
4.4E-2  4.1E-2

Equivalent to (1)—(3) in one-dimension d = 1, we consider (32)—(34) with the parameters
(73) and the source obtained via (6), (70), (71) and (76) as

F(z) = 9.242 x 1073205 2 ¢ [0, 1].

(77)

The CGM described in Section 3.3 is employed to minimize the objective functionals
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Figure 2: The objective functional (a) given by (40), (b) the error (69), and (c) the exact
(72) and numerical source Q.(Z), for p € {0,5%,20%} noise, for Example 1.

(39) and (40) starting from the initial guess FY(z) = 1.7841 x 107° for = € [0, 1], which
ensures that F°(0) = F(0) and F°(1) = F(1), where F is given by (77).

Figures 3(a) and 4(a) show the monotonic decreasing convergence of the objective
functionals (39) and (40) that are minimized for IP1 and IP2, respectively, as functions of
the number of iterations n, for p € {0,5%,20%} noise. For exact data, i.e. p =0 in (68), the
objective functionals (39) and (40) rapidly attain very low values of O(107!%) and we stop
the iterative process after 10 iterations. For noisy data p € {5,20}%, the stopping iteration
numbers n, € {1,1} are chosen according to the discrepancy principle (66). The error curves
(69) for IP1 and IP2, as functions of the number of iterations n, are shown in Figures 3(b)
and 4(b), and the numerical solutions for the source @), are displayed in Figures 3(c) and
4(c) along with the exact source (76). The errors (69) of the numerical solutions for IP1 and
[P2 are presented in Table 1. Conclusions identical to these reported for Example 1 can be
drawn for Example 2.
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Figure 3: The objective functional (a) given by (39), (b) the error (69), and (c) the exact
(76) and numerical source Q.(Z), for p € {0,5%,20%} noise, for Example 2.

4.3 Example 3 (piecewise smooth source)

As in Examples 1 and 2, in this example we consider (1)—(3) in one-dimension d = 1 on §2 =
[0, L;] with the parameters (70), (71), and the following piecewise smooth and continuous
source

(7)) = - 78
Q() Ll—.f', 0.5 <z < L. ( )

Equivalent to (1)—(3) in one-dimension d = 1 , we consider (32)—(34) with the parame-
ters (73) and the source obtained via (6), (70), (71) and (78) as

6.0963 x 108z, 0<2<0.5,
F(z) = (79)
6.0963 x 1078(1 —x), 0.5 <z <1.

We invoke the CGM described in Section 3.3 to minimize the objective functionals
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Figure 4: The objective functional (a) given by (40), (b) the error (69), and (c) the exact
(76) and numerical source Q.(Z), for p € {0,5%,20%} noise, for Example 2.

(39) and (40) starting from the initial guess F°(z) = 0 for x € [0,1], which ensures that
F°(0) = F(0) and F°(1) = F(1), where F is given by (79).

Numerical results and errors displayed in Table 1 as well as Figures 5 and 6 illustrate
the same conclusions as these reported for Examples 1 and 2.

4.4 Example 4 (two-dimensional source)

In this final example, we consider equations (1)—(3) on the rectangular domain Q = [0, L] x
[0, Lo] with the parameters given by (70), (71) and L, = 0.025 m. The external heat source
is taken from [15] as

=2
bx;

Qe(T1,T2) = pyrlgexp(a(zy — 0.01)) exp( >, (Z1,Z2) € [0, L1] x [0, Ls],  (80)

T+ c

where k = 12.5kg !, a = —127m™!, b = —129 m~! and ¢ = 0.0245 m are antenna con-
stants, and Ag = 20 W is the transmitted power. One can easily check that condition (18)
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Figure 5: The objective functional (a) given by (39), (b) the error (69), and (c) the exact
(78) and numerical source Q.(z), for p € {0,5%,20%} noise, for Example 3.

with the chosen parameters is satisfied such that the uniqueness of solution of the inverse
source problems IP1 and IP2 holds.

As before, equivalent to (1)—(3) we consider (7)—(9) with the following parameters ob-
tained via (6), (10), (70), (71) and (80) as

a1 =54, ay =9.0226 x 1072, a3 = 3.609 x 1072, a, = 7.2, 7 = 0.3333, (81)

ea = f - O, (82)
—1.612522

F(z1,22) = 3.2006 x 10" exp(—6.3521 + 1.27) exp | — 2 | (21, 22) € [0,1]2. (83)

We run the CGM described in Section 3.3 to minimize the objective functionals (39)
and (40) starting from initial guess

FOx1,20) = F(21,22) + 100z122(1 — 21)(1 — 29), (21, 22) € [0,1], (84)
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Figure 6: The objective functional (a) given by (40), (b) the error (69), and (c) the exact
(78) and numerical source Q.(z), for p € {0,5%,20%} noise, for Example 3.

which ensures that on the boundary 9[0, 1]%, F° is equal to the exact source (83).

Figures 7(a) and 9(a) demonstrate the monotonic decreasing convergence of the objec-
tive functionals (39) and (40) that are minimized for IP1 and IP2, respectively, as functions
of the number of iterations n, for p € {0,5%,20%} noise. For exact data, i.e. p = 0 in
(68), the objective functionals (39) and (40) rapidly attain very low values of O(1071%), and
we stop the iterative process after 10 iterations. For noisy data p € {5,20}%, the stopping
iteration numbers n, € {2, 1} are obtained according to the discrepancy principle (66). The
error curves (69) for IP1 and IP2, as functions of the number of iterations n, are shown in
Figures 7(b) and 9(b), respectively. Moreover, the errors (69) of the numerical solutions for
[P1 and IP2 are displayed in Table 1.

Figure 8 and 10 depict the corresponding numerical identifications of the source @), in
comparison with the exact source (80). Concluding remarks analogous to those of previous
examples can be drawn for Example 4.
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5. Conclusions
This paper has considered the inverse problems of identifying the unknown space-dependent
source in the thermal-wave model of bio-heat transfer from final-time or time-average temper-
ature measurements. First, the uniqueness of the solutions of these inverse source problems
has been proved using the separation-of-variables method. Establishing the necessity of con-
dition (18) in the uniqueness Theorem 2.1 remains open for research. Then, the inverse
problems have been solved numerically by minimizing the least-squares objective functionals
using the CGM combined with the discrepancy principle. To show the accuracy and stability
of the numerical results, examples concerning the reconstruction of sources of different forms
in one and two dimensions have been presented and thoroughly discussed.

Simultaneous recovery of the space-dependent source and perfusion coefficient in the
thermal-wave model of bio-heat transfer can also be attempted using the CGM, but this
extension is deferred to future work.
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