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Abstract

Strain smoothing methods such as the smoothed finite element methods (S-FEMs) and the strain-smoothed element
method (SSE) have successfully improved the convergence behavior of finite elements. The strain smoothing meth-
ods have been applied in numerous finite element analyses, especially for analyzing solids and structures; however,
there have been no studies on efficient numerical solvers for the methods. We need mathematically and numeri-
cally well-elaborated iterative solvers for efficient applications to large-scale problems. In this study, we investigate
how to design appropriate preconditioners for the methods with inspiration from the spectral properties of the strain
smoothing methods. First, we analyze the spectrums of the stiffness matrices of the edge-based S-FEM and SSE.
Subsequently, we propose improved two-level additive Schwarz preconditioners for the strain smoothing methods by
modifying local solvers appropriately. For convenience of implementation, an alternative form of the preconditioners
is proposed by defining the coarse-scale operation in terms of the standard FEM. We verify our theoretical results
through numerical experiments.
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1. Introduction

There have been various attempts to improve the performance of finite elements, among which strain smoothing
methods can achieve the goal without introducing additional degrees of freedom. Chen et al. [1] first proposed the
concept of strain smoothing methods for the Galerkin mesh-free method. Subsequently, Liu et al. [2] applied the
strain smoothing technique to the finite element method (FEM) and developed a series of smoothed FEMs (S-FEMs).
The S-FEMs are classified according to the construction of smoothing domains; the edge-based S-FEM (ES-FEM)
and node-based S-FEM (NS-FEM) are well-known and broadly used [3, 4, 5, 6, 7]. The ES-FEM generally exhibits
the best convergence properties among the S-FEMs [4]; the NS-FEM is effective in relieving volumetric locking [3].
Several studies were conducted to establish the theoretical properties of the S-FEMs [5, 8, 9]. Recently, the strain-
smoothed element method (SSE) has been developed [10, 11, 12, 13, 14]. Whereas the S-FEMs construct strain fields
for specifically defined smoothing domains, the SSE constructs strain fields for elements. The SSE provides a finite
element solution with reduced discretization error by fully using the strains of all neighboring elements for strain
smoothing. A theoretical foundation for the convergence properties of the SSE has been established in [15].

Although there has been a vast literature on the development of new strain smoothing methods and their applica-
tions to various engineering problems (see [16] for a recent survey), there have been no studies on efficient numerical
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solvers for the strain smoothing methods, to the best of our knowledge. However, developing robust and efficient
numerical solvers is critical for successful application of the methods to large-scale engineering problems [17]. Par-
ticularly, iterative solvers are suitable for large-scale sparse linear problems [18]. Since the performance of iterative
solvers relies on the condition number of a target linear system, an effective way to improve iterative solvers is to
design good preconditioners. In this perspective, there have been plenty of notable works on preconditioning of
large-scale linear problems arising in structural mechanics; see, e.g., [19, 20, 21, 22].

In this study, we examine how to design suitable preconditioners for the strain smoothing methods. The main
observation is that the stiffness matrices of the ES-FEM and SSE are spectrally equivalent to that of the standard
FEM. This observation guarantees that the ES-FEM and SSE can adopt any preconditioner designed for the standard
FEM and enjoy the advantages of the preconditioner such as good conditioning or numerical scalability. As a con-
crete example, we consider an overlapping Schwarz preconditioner, which is one of the most broadly used parallel
preconditioners for finite element problems [23, 24, 25, 26]. We prove that the standard two-level additive Schwarz
preconditioner [23] designed for the standard FEM can be applied to the ES-FEM and SSE, satisfying the condition
number bound C(1 + H/δ), where C is a positive constant independent of the mesh and subdomain sizes, H is the
subdomain size, and δ is the overlapping width for the overlapping domain decomposition associated with the additive
Schwarz preconditioner. Additionally, we propose novel improved two-level additive Schwarz preconditioners for the
ES-FEM and SSE with better condition number estimates than the standard two-level additive Schwarz preconditioner.
With some simple modifications on the local problems of the standard Schwarz preconditioner, we obtain the proposed
preconditioners that show improved performance in both theoretical and numerical senses. The improvement strategy
can be applied to not only additive Schwarz preconditioners but also a broad range of subspace correction precon-
ditioners [27, 28] such as multigrid and domain decomposition preconditioners. Notably, several existing iterative
solvers for linear systems fit into the framework of subspace correction [27]; the improvement strategy introduced in
this study reveals new possibilities for designing efficient iterative solvers for various contemporary FEMs. Numerical
results verify the theories presented in this study and prove the superiority of the proposed improved preconditioners.

This study includes an interesting remark on the NS-FEM; although the NS-FEM and ES-FEM are considered
members of the common class of S-FEMs, their spectral properties may differ significantly. In this study, we claim
that the stiffness matrix of the NS-FEM may not be spectrally equivalent to that of the standard FEM. Specifically, we
present an example that the condition number κ(K−1K̄NS) increases as the mesh size h decreases, where K and K̄NS
are the stiffness matrices of the standard FEM and NS-FEM, respectively. This suggests the need to develop different
mathematical theories for the NS-FEM and ES-FEM. However, most of the existing theories [5, 9, 16] are based on a
unified S-FEM framework.

The remainder of this paper is organized as follows. In Section 2, we summarize the key features of the ES-FEM
and SSE. Section 3 deals with the spectral properties of the ES-FEM and SSE; specifically, we demonstrate that
the stiffness matrices of these methods are spectrally equivalent to that of the standard FEM. Utilizing the spectral
equivalence, in Section 4, we present efficient two-level additive Schwarz preconditioners for the ES-FEM and SSE
and analyze their convergence properties. Section 5 presents numerical results that support the theoretical findings. In
Section 6, we give some remarks on the spectral property of the NS-FEM. We conclude the study in Section 7.

2. Finite element methods with strain smoothing

We provide brief descriptions of the S-FEM and SSE for a model Poisson problem

−∆u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω ⊂ R2 is a bounded polygonal domain. For simplicity, we consider the case of three-node triangular elements
throughout this study; see [29] and [12] for formulations of polygonal finite elements adopting the S-FEM and SSE,
respectively. For a subregion ω ⊂ Ω and a nonnegative integer n, the collection of all polynomials of degree less than
or equal to n on ω is denoted by Pn(ω). Let Th be a quasi-uniform triangulation of Ω with a characteristic element
diameter h > 0. We define Vh as the conforming piecewise linear finite element space on Th, i.e.,

Vh =
{
v ∈ H1

0(Ω) : v|e ∈ P1(e) ∀e ∈ Th

}
,
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where H1
0(Ω) is the usual Sobolev space consisting of all functions u ∈ L2(Ω) such that ∇u ∈ (L2(Ω))2 and u|∂Ω = 0.

We also define Wh as follows:
Wh =

{
ε ∈ (L2(Ω))2 : ε|e ∈ (P0(e))2 ∀e ∈ Th

}
.

Then we readily have that v ∈ Vh implies ∇v ∈ Wh. With a slight abuse of notation, we do not distinguish between
finite element functions and the corresponding vectors of degrees of freedom in the following.

2.1. Standard finite element method

The geometry of a 3-node triangular element e ∈ Th is interpolated by

(x, y) =

3∑
i=1

hi(r, s)(xi, yi) ∈ e,

where (xi, yi), 1 ≤ i ≤ 3, is the position vector of the ith node of e in the global Cartesian coordinate system, and
hi(r, s) is the two-dimensional interpolation function of the standard isoparametric procedure corresponding to the ith
node, that is, h1(r, s) = 1− r− s, h2(r, s) = r, and h3(r, s) = s. The corresponding interpolation of the function u within
the element e is given by

u(x, y) =

3∑
i=1

hi(r, s)ui,

where ui = u(xi, yi). Note that u is continuous and piecewise linear on Th, i.e., u ∈ Vh.
The local gradient ε(e) within element e is obtained through the standard isoparametric finite element procedure as

follows:

ε(e) = B(e)u(e) with B(e) =

 ∂h1
∂x

∂h2
∂x

∂h3
∂x

∂h1
∂y

∂h2
∂y

∂h3
∂y

 , u(e) =
[
u1 u2 u3

]T
. (2.2)

The stiffness matrix K corresponding to the standard FEM is given by

uT Kv =

∫
Ω

∇u · ∇v dΩ =
∑
e∈Th

|e|
(
B(e)u(e)

)T (
B(e)v(e)

)
, u, v ∈ Vh. (2.3)

A finite element solution corresponding to the standard FEM is given by a solution of a linear system

Ku = f ,

where the load vector f is defined as

f T v =

∫
Ω

f v dΩ, v ∈ Vh. (2.4)

2.2. Edge-based smoothed finite element method (ES-FEM)

The standard FEM discretizes a region into finite elements (see Fig. 1(a)), whereas S-FEM performs discretization
based on newly defined smoothing domains. The well-known S-FEMs are the ES-FEM and NS-FEM, which form the
smoothing domains based on the edges and nodes of Th, respectively. We briefly introduce the ES-FEM; see Section 6
for a description of the NS-FEM.

In the ES-FEM, each element in Th is divided into three triangular subdomains using its nodes and the barycen-
ter (r = s = 1/3). Subsequently, the edge-based smoothing domains are defined as assemblages of two neighboring
subdomains belonging to different elements; see Fig. 1(b). In the following, let Sh,ES denote the collection of all
smoothing domains constructed from Th for the ES-FEM. We define Wh,ES as the collection of all piecewise constant
vector fields on Sh,ES, i.e.,

Wh,ES =
{
ε ∈ (L2(Ω))2 : ε|e ∈ (P0(e))2 ∀e ∈ Sh,ES

}
.
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Figure 1: Discretizations based on (a) finite elements, (b) edge-based smoothing domains, and (c) node-based smoothing domains.

Figure 2: Degrees of freedom of u ∈ Vh corresponding to the vectors (a) ū(s) in (2.6) and (b) ū(e) in (2.10).
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The ES-FEM smoothing operator S h,ES : Wh → Wh,ES that maps a given gradient field ε ∈ Wh to the corresponding
smoothed gradient field ε̄ ∈ Wh,ES is defined as follows. The local smoothed gradient ε̄(s) for a smoothing domain
s ∈ Sh,ES is defined by

ε̄(s) =
|e(1)|ε(e(1)) + |e(2)|ε(e(2))

|e(1)| + |e(2)|
, (2.5)

where e(1) and e(2) are the elements in Th sharing the edge corresponding to s, and ε(e(1)) and ε(e(2)) were defined in (2.2).
The local smoothed gradient in (2.5) can be expressed in a matrix-vector form as

ε̄(s) = B̄(s)
ESū(s) with B̄(s)

ES =
|e(1)|

|e(1)| + |e(2)|
B(e1)R(e1) +

|e(2)|

|e(1)| + |e(2)|
B(e2)R(e2), ū(s) =

[
u1 u2 u(1) u(2)

]T
, (2.6)

where the vector ū(s) consists of the four degrees of freedom of u ∈ Vh at the nodes of the elements sharing the edge
corresponding to s as shown in Fig. 2(a), B(e1) and B(e2) were defined in (2.2), and R(e1) and R(e2) are boolean matrices
that extract the degrees of freedom corresponding to the elements e1 and e2, respectively, i.e.,

R(e1) =

1 0 0 0
0 1 0 0
0 0 1 0

 , R(e2) =

1 0 0 0
0 1 0 0
0 0 0 1

 .
Finally, the stiffness matrix K̄ES for the ES-FEM can be obtained as

uT K̄ESv =

∫
Ω

∇̄ESu · ∇̄ESv dΩ =
∑

s∈Sh,ES

|s|
(
B̄(s)

ESū(s)
)T (

B̄(s)
ESv̄(s)

)
, u, v ∈ Vh, (2.7)

where ∇̄ES denotes the global smoothed gradient operator corresponding to (2.5), i.e., ∇̄ES = S h,ES∇. We obtain an
ES-FEM finite element solution by solving a linear system

K̄ESu = f ,

where the load vector f was given in (2.4). That is, the ES-FEM uses an alternative stiffness matrix K̄ES, whereas its
load vector f is the same as that of the standard FEM. Among the various types of S-FEMs, it has been numerically
verified that the ES-FEM is the most effective method in reducing the discretization error of the finite element solution;
see, e.g., [4].

2.3. Strain-smoothed element method (SSE)

When the SSE is employed, a smoothed gradient field is constructed for each element in Th and the gradient
information in all elements adjacent to a target element is utilized. No smoothing domains are required; the domain
discretization with the SSE is the same as the one with the standard FEM. The space Wh,SSE for the SSE smoothed
gradient fields is given by

Wh,SSE =
{
ε ∈ (L2(Ω))2 : ε |e ∈ (P1(e))2 ∀e ∈ Th

}
.

Note that Wh,SSE includes piecewise linear polynomials, while Wh only includes piecewise constant functions. We
present how to construct the SSE smoothed gradient ε̄ = S h,SSEε ∈ Wh,SSE for ε ∈ Wh, where S h,SSE : Wh → Wh,SSE
denotes the SSE smoothing operator. For an element e ∈ Th, there can be up to three neighboring elements in Th

through element edges, say e(k), 1 ≤ k ≤ 3. An intermediate smoothed gradient ε̂(k) between e and its neighboring
element e(k) is defined by

ε̂(k) =
|e|ε(e) + |e(k)|ε(e(k))

|e| + |e(k)|
, (2.8)

where ε(e) and ε(e(k)) were defined in (2.2). If there is no adjacent element e(k) for some k, we simply use ε̂(k) = ε(e).
Subsequently, we construct a linear smoothed gradient field ε̄(e) on the target element e by unifying the intermediate
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smoothed gradients in (2.8). The values are assigned at three Gaussian integration points Gk, 1 ≤ k ≤ 3, of e as the
pointwise values of ε̄(e) as follows:

ε̄(e)(Gk) =
ε̂(k−1) + ε̂(k)

2
, (2.9)

with the convention ε̂(0) = ε̂(3). The smoothed gradient field ε̄(e) is uniquely determined within e by linear interpolation
of the pointwise values. The local smoothed gradient in (2.9) can be expressed in a matrix-vector form as

ε̄(e) = B̄(e)
SSEū(e) with B̄(e)

SSE =
1
2


B̄(s1)

ES R(s1) + B̄(s3)
ES R(s3)

B̄(s1)
ES R(s1) + B̄(s2)

ES R(s2)

B̄(s2)
ES R(s2) + B̄(s3)

ES R(s3)

 , ū(e) =
[
u1 u2 u3 u(1) u(2) u(3)

]T
, (2.10)

where the vector ε̄(e) comprises three pointwise values ε̄(e)(G1), ε̄(e)(G2), and ε̄(e)(G3), the vector ū(e) consists of at
most six degrees of freedom of u ∈ Vh at the nodes of e and its neighboring elements (see Fig. 2(b)), the matrices B̄(sk)

ES ,
1 ≤ k ≤ 3, were defined in (2.6), and R(sk) are boolean matrices that extract the degrees of freedom corresponding to
the subdomains sk, i.e.,

R(s1) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

 , R(s2) =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0

 , R(s3) =


0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0

 .
In the SSE, the smoothed gradient field is constructed for each element in Th. The stiffness matrix K̄SSE for the

SSE is calculated by

uT K̄SSEv =

∫
Ω

∇̄SSEu · ∇̄SSEv dΩ =
∑
e∈Th

|e|
3

(
B̄(e)

SSEū(e)
)T (

B̄(e)
SSEv̄(e)

)
, u, v ∈ Vh, (2.11)

where ∇̄SSE denotes the global smoothed gradient operator corresponding to (2.9), i.e., ∇̄SSE = S h,SSE∇. An SSE finite
element solution is given by a solution of a linear system

K̄SSEu = f ,

where the load vector f was defined in (2.4).
The strain-smoothed elements adopting the SSE have been verified to pass the three basic tests (zero energy

mode, isotropic element, and patch tests) and show improved convergence behaviors compared with other competitive
elements in various numerical problems [10, 11, 12].

Remark 2.1. The ES-FEM and SSE are variationally consistent numerical schemes in the sense that they are derived
from a particular variational principle for (2.1). More precisely, it was proven in [15] that the ES-FEM and SSE are
conforming Galerkin approximations of the following mixed variational principle: find (u, ε1, ε2, σ1, σ2) ∈ V ×W ×
W ×W ×W such that∫

Ω

σ1 · ∇v dΩ +

∫
Ω

(−σ1 + σ2) · δ1 dΩ +

∫
Ω

(ε2 − σ2) · δ2 dΩ =

∫
Ω

f v dΩ ∀v ∈ V, δ1 ∈ W, δ2 ∈ W,∫
Ω

τ1 · (∇u − ε1) dΩ +

∫
Ω

τ2 · (ε1 − ε2) dΩ = 0 ∀τ1 ∈ W, τ2 ∈ W,
(2.12)

where V = H1
0(Ω) and W = (L2(Ω))2; the equivalence between (2.1) and (2.12) is presented in [15, Proposition 4.1].

Because of variational consistency, the existence and uniqueness of a solution for both methods can be proven and
a discretization error bound can be obtained by invoking the standard theory of mixed FEMs [30, 31]; see [15] for
details.
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3. Spectral equivalence among stiffness matrices

In this section, we prove that the stiffness matrices of the ES-FEM and SSE defined in (2.7) and (2.11), respectively,
are spectrally equivalent to that of the standard FEM defined in (2.3). The results of this section imply that the ES-
FEM and SSE can adopt any preconditioner designed for the standard FEM without degrading the performance of
the preconditioner. In this sense, they are advantageous for use with preconditioned iterative schemes such as the
preconditioned conjugate gradient method and other Krylov space methods [18] compared to other FEMs with strain
smoothing. In contrast, in Section 6, we will demonstrate that the stiffness matrix of the NS-FEM is not spectrally
equivalent to that of the standard FEM in general.

First, we present a simple but useful lemma that is required for the spectral analysis of the ES-FEM and SSE.

Lemma 3.1. Let ω1 and ω2 be polygonal regions in R2 sharing an edge f , i.e., ω1 ∩ ω2 = f . If a continuous and
piecewise linear function u : ω1 ∪ ω2 → R satisfies w1∇u|ω1 + w2∇u|ω2 = 0 for some w1, w2 > 0, then it is constant
along f .

Proof. Let t be a unit vector along the direction of the edge f . If we suppose that u is not constant along f , then it
follows that ∇u|ω1 · t = ∇u|ω2 · t , 0. However, it contradicts (w1∇u|ω1 + w2∇u|ω2 ) · t = 0.

Using Lemma 3.1 and the fact that the strain smoothing operation of the ES-FEM is an orthogonal projection in
(L2(Ω))2 [9], we can prove the spectral equivalence between the stiffness matrices of the standard FEM and ES-FEM
as follows.

Theorem 3.2. The stiffness matrices K and K̄ES of the standard FEM and ES-FEM defined in (2.3) and (2.7), respec-
tively, are spectrally equivalent. That is, there exists two positive constants C and C independent of the mesh size h
such that

CuT Ku ≤ uT K̄ESu ≤ CuT Ku ∀u ∈ Vh.

Proof. We recall that the ES-FEM smoothing operator S h,ES defined in Section 2.2 is an (L2(Ω))2-orthogonal projec-
tion. More precisely, it was shown in [9, Remark 4] that

S h,ESε = Ph,ESε ∀ε ∈ Wh,

where Ph,ES : (L2(Ω))2 → Wh,ES is the (L2(Ω))2-orthogonal projection onto Wh,ES. Then it follows that

uT K̄ESu =

∫
Ω

|∇̄ESu|2 dΩ =

∫
Ω

|Ph,ES∇u|2 dΩ ≤

∫
Ω

|∇u|2 dΩ = uT Ku ∀u ∈ Vh.

Consequently, we have C = 1. Next, we estimate C. For any element e ∈ Th intersecting three smoothing domains
s(k) ∈ Sh,ES, 1 ≤ k ≤ 3, we have∫

e
|∇̄ESu|2 dΩ =

3∑
k=1

∫
e∩s(k)
|∇̄ESu|2 dΩ =

|e|
3

3∑
k=1

(ε̂(k))T ε̂(k),

where ε̂(k) was given in (2.8). In order for
∫

e |∇̄ESu|2 dΩ to be zero, we must have ε̂(k) = 0 for all k. If s(k) ⊂ e for some
k, i.e., if e is a boundary element, then we have

ε(e) = ε̂(k) = 0,

where ε(e) was defined in (2.2). If e is an interior element with three adjacent elements, Lemma 3.1 implies that u is
constant along all the edges of e, such that u is constant on e and∫

e
|∇u|2 dΩ = |e|(ε(e))T ε(e) = 0,

Up to this point, we have shown that∫
e
|∇̄ESu|2 dΩ = 0 implies

∫
e
|∇u|2 dΩ = 0.
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Hence there exists a positive constant Ce such that∫
e
|∇̄ESu|2 dΩ ≥ Ce

∫
e
|∇u|2 dΩ ∀u ∈ Vh. (3.1)

Now, we verify that the constant Ce in (3.1) is independent of the mesh size h using a scaling argument (cf. [23,
Section 3.4]). The transformation x = hx̂ maps the domain Ω̂ = h−1Ω with the same shape as Ω into Ω. The domain
Ω̂ naturally admits a triangulation

T̂1 =
{
ê = h−1e : e ∈ Th

}
,

whose characteristic element diameter is 1. Spaces V̂1 and Ŵ1 are defined as

V̂1 =
{
v̂ ∈ H1

0(Ω̂) : v̂|ê ∈ P1(ê) ∀ê ∈ T̂1

}
,

Ŵ1 =
{
ε̂ ∈ (L2(Ω̂))2 : ε̂|ê ∈ (P0(ê))2 ∀ê ∈ T̂1

}
.

We define an ES-FEM smoothing operator Ŝ 1,ES on Ŵ1 in the same manner as S h,ES. The inequality (3.1) is valid for
ê = h−1e ∈ T̂1, with a constant Ĉê that only depends on ê and ê(k) = H−1e(k) (1 ≤ k ≤ 3), i.e., only on the geometries
of e and e(k): ∫

ê
|Ŝ 1,ES∇û|2 dΩ̂ ≥ Ĉê

∫
ê
|∇û|2 dΩ̂ ∀û ∈ V̂1. (3.2)

We observe that

∇̄ESu|e∩e(k) =
|e|

|e| + |e(k)|
∇u|e +

|e(k)|

|e| + |e(k)|
∇u|e(k) =

|ê|
|ê| + |ê(k)|

h−1∇û|ê +
|ê(k)|

|ê| + |ê(k)|
h−1∇û|ê(k) = h−1Ŝ 1,ES∇û|ê∩ê(k) , (3.3)

where û(x̂) = u(hx̂) is a transformed function. It follows that∫
e
|∇̄ESu|2 dΩ

(3.3)
=

∫
ê
|h−1Ŝ 1,ES∇û|2h2 dΩ̂

(3.2)
≥ Ĉê

∫
ê
|∇û|2 dΩ̂ = Ĉê

∫
e
|h∇u|2h−2 dΩ.

Hence, the inequality (3.1) holds with Ce = Ĉê, i.e., Ce is independent of the mesh size h and depends only on the
geometries of e and e(k).

Since Th is quasi-uniform, the constant Ce in (3.1) has a uniform positive lower bound, say C, over all e ∈ Th. For
any u ∈ Vh, we have

uT K̄ESu =
∑
e∈Th

∫
e
|∇̄ESu|2 dΩ ≥ C

∑
e∈Th

∫
e
|∇u|2 dΩ = CuT Ku,

which completes the proof.

A useful consequence of Theorem 3.2 is that any preconditioner for the standard FEM works for the ES-FEM.
Corollary 3.3 presents a rigorous statement on the performance of a preconditioner applied to the ES-FEM. Note that,
for a symmetric and positive definite matrix A, κ(A) denotes the condition number of A, i.e.,

κ(A) =
λmax(A)
λmin(A)

,

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A, respectively.

Corollary 3.3. Any preconditioner M−1 for the standard FEM Ku = f works for the ES-FEM K̄ESu = f as well.
More precisely, there exists a positive constant C independent of the mesh size h such that

κ(M−1K̄ES) ≤ Cκ(M−1K).

Proof. By [23, Corollary C.2], it follows that

κ(M−1K̄ES) ≤ κ(K−1K̄ES)κ(M−1K) ≤
C
C
κ(M−1K),

where C and C were given in Theorem 3.2. Setting C = C/C completes the proof.
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We provide a detailed explanation for Corollary 3.3. Suppose that we have a preconditioner M−1 for the standard
FEM such that κ(M−1K) = O(h−α) for some α ≥ 0. Then, Corollary 3.3 implies that preconditioning the stiffness
matrix of the ES-FEM by M−1 yields the same condition number estimate as the standard FEM, i.e., κ(M−1K̄ES) =

O(h−α). Therefore, it is ensured that any preconditioned iterative scheme for the ES-FEM reaches a target accuracy
within the same number of iterations up to a multiplicative constant as the case of the standard FEM.

Similar results can be obtained for the SSE. The spectral equivalence between the stiffness matrices of the standard
FEM and SSE can be deduced by invoking the fact that the strain smoothing step of the SSE can be represented as a
composition of orthogonal projection operators among some assumed strain spaces [15].

Theorem 3.4. The stiffness matrices K and K̄SSE of the standard FEM and SSE defined in (2.3) and (2.11), respec-
tively, are spectrally equivalent. That is, there exists two positive constants C and C independent of the mesh size h
such that

CuT Ku ≤ uT K̄SSEu ≤ CuT Ku, u ∈ Vh.

Proof. Let Sh,SSE be the collection of quadrilaterals formed by joining the centroid and midpoints of the edges of each
element in Th; see [15, Figure 3(c)]. The collection of all piecewise constant vector fields on Sh,SSE is denoted by
W ′h,SSE, i.e.,

W ′h,SSE =
{
ε ∈ (L2(Ω))2 : ε|e ∈ (P0(e))2 ∀e ∈ Sh,SSE

}
.

Additionally, let Ph,SSE : (L2(Ω))2 → W ′h,SSE denote the (L2(Ω))2-orthogonal projection onto W ′h,SSE. Then the SSE
smoothing operator S h,SSE defined in Section 2.3 satisfies the following equality [15, Theorem 3.3]:∫

Ω

|S h,SSEε|
2 dΩ =

∫
Ω

|Ph,SSEPh,ESε |
2 dΩ ∀ε ∈ Wh,

where Ph,ES was defined in the proof of Theorem 3.4. Hence, we deduce that uT K̄SSEu ≤ uT Ku for all u ∈ Vh, i.e.,
C = 1. In order to prove the C-inequality, it suffices to show that∫

e
|∇̄SSEu|2 dΩ = 0 implies

∫
e
|∇u|2 dΩ = 0 (3.4)

for any e ∈ Th; if we show (3.4), we can deduce the C-inequality by the same argument as in Theorem 3.2. We take
an element e ∈ Th and suppose that

∫
e |∇̄SSEu|2 dΩ = 0. Observing that∫

e
|∇̄SSEu|2 dΩ =

|e|
3

3∑
k=1

(
ε̂(k−1) + ε̂(k)

2

)T (
ε̂(k−1) + ε̂(k)

2

)
,

where ε̂(k) was defined in (2.8), we have ε̂(k−1) + ε̂(k) = 0 for all k. Equivalently, we get ε̂(k) = 0 for all k. If e is a
boundary element, i.e., ε(e) = ε̂(k) for some k, we readily obtain ε(e) = ε̂(k) = 0. If e is an interior element, invoking
Lemma 3.1, we deduce that u is constant on e such that

∫
e |∇u|2 dΩ = 0. Therefore, (3.4) holds.

The following corollary is a direct consequence of Theorem 3.4; it says that any preconditioner for the standard
FEM is also well-suited for the SSE. Corollary 3.5 is derived in the same manner as Corollary 3.3.

Corollary 3.5. Any preconditioner M−1 for the standard FEM Ku = f works for the SSE K̄SSEu = f as well. More
precisely, there exists a positive constant C independent of the mesh size h such that

κ(M−1K̄SSE) ≤ Cκ(M−1K).

We present another useful consequence of Theorems 3.2 and 3.4: a Poincaré–Friedrichs-type inequality for the
ES-FEM and SSE. Poincaré–Friedrichs-type inequalities are especially useful for convergence analysis of FEMs with
strain smoothing; see, e.g., [9, 15].

Proposition 3.6. Let ∇̄ denote the smoothed gradient operator for either the ES-FEM or SSE. Then, there exists a
positive constant C independent of the mesh size h such that∫

Ω

|∇̄u|2 dΩ ≥ C
∫

Ω

u2 dΩ, u ∈ Vh.
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Proof. Combining the standard Poincaré–Friedrichs inequality [23, Lemma A.14] with Theorems 3.2 and 3.4 yields
the desired result.

Remark 3.7. Proposition 3.6 indicates that the bilinear form

ā(u, v) =

∫
Ω

∇̄u · ∇̄v dΩ, u, v ∈ Vh

is coercive. Coercivity of the bilinear form ā(·, ·) corresponding to the S-FEMs was first proven in [32] using a
positivity relay argument. We note that the coercivity constant C in Proposition 3.6 is proven to be independent of h,
whereas that in [32] was not. Thus, Proposition 3.6 provides a sharper result than [32].

4. Improvement of preconditioners

As we observed in Section 3, existing preconditioners for the standard FEM can be applied to the ES-FEM and
SSE, inheriting good convergence properties from the case of the standard FEM. Meanwhile, when applied to the
ES-FEM and SSE, the performance of preconditioners based on subspace correction [27, 28] can be further improved
by modifying local solvers appropriately. In this section, we present how to construct improved subspace correction
preconditioners for the ES-FEM and SSE. Specifically, we propose two-level additive Schwarz preconditioners [23]
for the ES-FEM and SSE; note that Schwarz preconditioning is a standard methodology of parallel computing for
large-scale finite element problems; see, e.g., [24, 25, 26]. Although we utilize the two-level additive Schwarz pre-
conditioner as descriptive examples, the method of improvement introduced in this section can be applied to various
subspace correction preconditioners such as multigrid and domain decomposition preconditioners. Throughout this
section, we omit the subscript h standing for the mesh size if there is no ambiguity.

4.1. Two-level additive Schwarz preconditioner

First, we summarize key features of the standard two-level additive Schwarz preconditioner for the standard
FEM [23]. Assuming that the domain Ω admits a coarse triangulation TH with the characteristic element diame-
ter H, it is decomposed into N nonoverlapping subdomains {Ω j}

N
j=1 such that each Ω j is the union of several coarse

elements in TH , and the number of coarse elements consisting of Ω j is uniformly bounded. Each Ω j is enlarged to
form a larger region Ω′j by adding layers of fine elements with the overlap width δ. If we set

V j =
{
v j ∈ H1

0(Ω′j) : v j|e ∈ P1(e) ∀e ∈ Th inside Ω′j

}
, 1 ≤ j ≤ N ,

and
V0 =

{
v0 ∈ H1

0(Ω) : v0|e ∈ P1(e) ∀e ∈ TH

}
,

then {V j}
N
j=0 forms a space decomposition of V = Vh, i.e.,

V =

N∑
j=0

RT
j V j,

where RT
j : V j → V , 0 ≤ j ≤ N , is the natural interpolation operator. In this setting, the standard two-level additive

Schwarz preconditioner is given by

M−1 =

N∑
j=0

RT
j K−1

j R j, (4.1)

where K j : V j → V j, 0 ≤ j ≤ N , is the local stiffness matrix on the subspace V j, i.e., K j = R jKRT
j . The additive

Schwarz condition number (see (A.1)) of the preconditioned operator M−1K satisfies the following upper bound [23,
Theorem 3.13].
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Proposition 4.1. Let M−1 be the two-level additive Schwarz preconditioner defined in (4.1). Then it satisfies

κASM(M−1K) ≤ C
(
1 +

H
δ

)
,

where κASM denotes the additive Schwarz condition number defined in (A.1) and C is a positive constant independent
of h, H, and δ.

Proposition 4.1 can be proven by using the abstract convergence theory of additive Schwarz methods presented
in [23, 33]; see Appendix A for a brief summary. Combining Corollaries 3.3 and 3.5 with Proposition 4.1, we deduce
that the preconditioner M−1 works for the ES-FEM and SSE as well as for the standard FEM.

Corollary 4.2. Let M−1 be the two-level additive Schwarz preconditioner defined in (4.1) and let K̄ be the stiffness
matrix of either the ES-FEM or SSE. Then it satisfies that

κASM(M−1K̄) ≤ C
(
1 +

H
δ

)
,

where κASM denotes the additive Schwarz condition number defined in (A.1) and C is a positive constant independent
of h, H, and δ.

Corollary 4.2 means that preconditioning the ES-FEM and SSE by M−1 is as advantageous as preconditioning the
standard FEM by M−1. For instance, the M−1-preconditioned SSE is scalable in the sense that its condition number
does not deteriorate even if the fine mesh size h decreases when the coarse mesh size H and overlap width δ decrease
keeping H/δ and δ/h constant. Therefore, the M−1-preconditioned SSE is suitable for large-scale parallel computing
in a manner that each subspace V j is assigned to a processor; this aspect is a usual advantage of subspace correction
methods as parallel numerical solvers [23].

4.2. Enhanced local problems
Until now, we have observed that subspace correction preconditioners designed for the standard FEM perform their

roles properly even if they are applied to either the ES-FEM or SSE. Meanwhile, for each of the methods, precondi-
tioners can be modified to be more suitable to the method to achieve better performance. The idea is straightforward;
we simply replace the local stiffness matrices in (4.1) defined in terms of the standard FEM with those defined in
terms of either the ES-FEM or SSE. Let K̄ : V → V be the stiffness matrix of either the ES-FEM or SSE. We set

M̄−1 =

N∑
j=0

RT
j K̄−1

j R j, (4.2)

where K̄ j : V j → V j, 0 ≤ j ≤ N , is defined by K̄ j = R jK̄RT
j . That is, K̄ j is the local stiffness matrix of either the

ES-FEM or SSE on the subspace V j. Invoking Theorem Appendix A.4, we can mathematically explain why the
preconditioner M̄−1 performs better than M−1 when it is applied to either the ES-FEM or SSE. Theorem 4.3 says that
M̄−1 is a better preconditioner for K̄ than M−1, and that it inherits good properties of M−1 such as the scalability.

Theorem 4.3. The enhanced additive Schwarz preconditioner M̄−1 defined in (4.2) performs better than the original
additive Schwarz preconditioner M−1 defined in (4.1). More precisely, it satisfies

κASM(M̄−1K̄) ≤ κASM(M−1K̄),

where K̄ is the stiffness matrix of either the ES-FEM or SSE, and κASM denotes the additive Schwarz condition number
defined in (A.1).

Proof. By the definition of κASM, it suffices to show that

ω0(M̄−1K̄)C2
0(M̄−1K̄) ≤ ω0(M−1K̄)C2

0(M−1K̄), τ0(M̄−1K̄) ≥ τ0(M−1K̄),

where C0, τ0, and ω0 are defined in Assumptions Appendix A.1, Appendix A.2, and Appendix A.3, respectively.
First, we readily get τ0(M̄−1K̄) = τ0(M−1K̄) because Assumption Appendix A.2 does not rely on which local operators
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are used. Since K̄ j = R jK̄RT
j , 0 ≤ j ≤ N , it follows by the definition of ω0 that ω0(M̄−1K̄) = 1. Meanwhile, as the

inequality
vT

j K̄ jv j ≤ λmax(K−1
j K̄ j)vT

j K jv j ∀v j ∈ V j

is sharp for all 0 ≤ j ≤ N , we get
ω0(M−1K̄) = max

0≤ j≤N
λmax(K−1

j K̄ j).

Next, we take any v ∈ V and let v =
∑N

j=0 RT
j v j be a decomposition of v such that

N∑
j=0

vT
j K jv j = C2

0(M−1K̄)vT K̄v.

We refer to [23, Lemma 2.5] for the existence of this decomposition. It follows that

N∑
j=0

vT
j K̄ jv j ≤

N∑
j=0

λmax(K−1
j K̄ j)vT

j K jv j ≤ ω0(M−1K̄)
N∑
j=0

vT
j K jv j = ω0(M−1K̄)C2

0(M−1K̄)vT K̄T v,

which implies C2
0(M̄−1K̄) ≤ ω0(M−1K̄)C2

0(M−1K̄) by the definition of C0. Consequently, we have

ω0(M̄−1K̄)C2
0(M̄−1K̄) = C2

0(M̄−1K̄) ≤ ω0(M−1K̄)C2
0(M−1K̄),

which completes the proof.

We conclude this section by introducing a variant of (4.2) that is more convenient to implement. When we
implement (4.2), a cumbersome step is to assemble the coarse stiffness matrix K̄0 = R0K̄RT

0 . While the interpolation
operator RT

0 is defined for functions in the coarse space V0, the strain smoothing procedure in K̄ is defined in the
fine-scale space V . Hence, to assemble K̄0, fine-scale computations are required, although it acts on the coarse space
V0. To explain in detail, we consider how to compute each entry of the coarse stiffness matrix K̄0. The entry (K̄0)i j on
the ith row and jth column is given by

(K̄0)i j =

∫
Ω

∇̄(RT
0 φi) · ∇̄(RT

0 φ j) dΩ,

where ∇̄ is either ∇̄ES or ∇̄SSE, and φi and φ j denote the ith and jth nodal basis functions for V0, respectively. For
simplicity, we suppose that ∇̄ = ∇̄ES and that Th is a refinement of TH . Since RT

0 φi is continuous and piecewise linear
on TH , ∇(RT

0 φi) is contained in a coarse-scale space WH , where

WH =
{
ε ∈ (L2(Ω))2 : ε|e ∈ (P0(e))2 ∀e ∈ TH

}
.

In contrast, by the definition of ∇̄ES, ∇̄ES(RT
0 φi) is contained in a fine-scale space Wh,ES. Hence, we need integration on

the fine mesh Th in order to compute (K̄0)i j, while it suffices to perform integration on the coarse mesh TH to compute
(K0)i j.

To avoid such fine-scale computations, we propose the following alternative two-level additive Schwarz precon-
ditioner:

M̄−1
alt = RT

0 K−1
0 R0 +

N∑
j=1

RT
j K̄−1

j R j. (4.3)

Note that if Th is a refinement of TH , then K0 agrees with the stiffness matrix of the standard FEM associated with
the coarse mesh TH . The alternative preconditioner M̄−1

alt involves the stiffness matrices of the strain smoothing
methods in the fine-scale subspaces, whereas its coarse-scale operation is defined in terms of the standard FEM.
Therefore, it is easier to implement than M̄−1. Because M̄−1

alt is a type of hybrid of M−1 and M̄−1, it is expected that
the convergence behavior of the M̄−1

alt -preconditioned operator lies between those of the M−1- and M̄−1-preconditioned
operators. Numerical comparisons among the preconditioners M−1, M̄−1, and M̄−1

alt will be presented in Section 5.
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Figure 3: (a) Square domain Ω = (−1, 1)2 ⊂ R2 for the model Poisson and linear elasticity problems. (b) Domain decomposition settings for
structured and unstructured meshes when n = 24,N = 22, and δ = 2h. The blue and black lines represent the coarse and fine triangulations TH and
Th, respectively.

n = 23 n = 24 n = 25 n = 26 n = 27

ES-FEM Structured mesh 1.90e0 2.04e0 2.07e0 2.08e0 2.09e0
Unstructured mesh 2.21e0 2.60e0 2.88e0 3.05e0 3.12e0

SSE Structured mesh 2.87e0 3.24e0 3.34e0 3.37e0 3.38e0
Unstructured mesh 3.45e0 4.32e0 4.90e0 5.26e0 5.40e0

Table 1: Condition numbers κ(K−1K̄ES) and κ(K−1K̄SSE) for the model Poisson problem (2.1).

5. Numerical results

In this section, we verify the theoretical results presented through numerical experiments. We solve two-dimensional
Poisson and linear elasticity problems using three-node triangular elements with the ES-FEM and SSE. The precon-
ditioned conjugate gradient method is used to solve a linear system Au = f , A ∈ {K, K̄ES, K̄SSE}, with a stop criterion

‖Au(k) − f ‖`2

‖ f ‖`2
< 10−12,

and with zero initial guess, where ‖ · ‖`2 denotes the `2-norm of degrees of freedom and u(k) is the kth iterate of
the preconditioned conjugate gradient method. We verify the spectral equivalence among the stiffness matrices of
the standard FEM, ES-FEM, and SSE. Additionally, we compare the performance of the two-level additive Schwarz
preconditioners M−1, M̄−1, and M̄−1

alt introduced in (4.1), (4.2), and (4.3), respectively.

5.1. Poisson equation

The first example is the Poisson problem (2.1) defined on the domain Ω = (−1, 1)2 ⊂ R2 shown in Fig. 3(a),
where the function f is given such that the problem has the exact solution u(x, y) = e8(x+y) sin(πx) sin(πy). The
side length of the square domain Ω is denoted by L = 2. We employ two types of coarse triangulations TH: the
standard checkerboard type structured triangulation and an unstructured triangulation with nonuniform nodal points,
with 2×N ×N coarse elements (N = 2, 22, . . . , 25). Fine triangulations Th are constructed as the uniform refinements
of TH such that there are 2 × n × n fine elements in the whole domain Ω (n = 23, 24, . . . , 27). Each nonoverlapping
subdomain Ω j, 1 ≤ j ≤ N = N ×N, is a quadrilateral region composed of two coarse elements, and the corresponding
overlapping subdomain Ω′j is formed by adding δ/h layers of fine elements; see Fig. 3(b) for the case of n = 24 and
N = 22. The characteristic sizes of the fine and coarse meshes are calculated by h = L/n and H = L/N, respectively.
We set the overlap width δ as h or 2h, such that δ/h is constant.
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Precond. N
n = 23 n = 24 n = 25 n = 26 n = 27

#iter κ #iter κ #iter κ #iter κ #iter κ

None 17 1.73e1 34 6.92e1 69 2.77e2 138 1.11e3 278 4.43e3

M−1

2 13 5.73e0 14 6.67e0 13 6.41e0 14 7.99e0 15 1.52e1
22 - - 16 5.98e0 17 6.63e0 17 6.91e0 21 1.07e1
23 - - - - 16 5.86e0 18 6.72e0 19 7.00e0
24 - - - - - - 18 6.00e0 19 6.76e0
25 - - - - - - - - 18 6.04e0

M̄−1

2 9 4.81e0 9 5.58e0 10 6.84e0 11 1.00e1 12 1.76e1
22 - - 14 5.45e0 14 5.88e0 15 6.98e0 20 1.20e1
23 - - - - 15 5.49e0 15 5.91e0 17 7.00e0
24 - - - - - - 16 5.50e0 16 5.91e0
25 - - - - - - - - 16 5.45e0

M̄−1
alt

2 9 4.75e0 9 5.62e0 9 6.88e0 11 1.00e1 12 1.76e1
22 - - 14 5.33e0 14 5.90e0 15 7.00e0 20 1.20e1
23 - - - - 15 5.37e0 15 5.95e0 16 7.00e0
24 - - - - - - 16 5.35e0 16 5.94e0
25 - - - - - - - - 16 5.24e0

Table 2: Condition numbers κ and iteration counts #iter of the ES-FEM applied to the model Poisson problem (2.1) for the structured meshes and
δ = 2h with the two-level additive Schwarz preconditioners M−1, M̄−1, and M̄−1

alt defined in (4.1), (4.2), and (4.3), respectively.

Precond. N
n = 23 n = 24 n = 25 n = 26 n = 27

#iter κ #iter κ #iter κ #iter κ #iter κ

None 15 1.32e1 30 5.22e1 59 2.08e2 119 8.30e2 240 3.32e3

M−1

2 14 7.16e0 16 9.49e0 16 9.55e0 15 9.30e0 16 1.40e1
22 - - 18 7.62e0 20 9.53e0 20 1.01e1 21 1.01e1
23 - - - - 19 7.72e0 20 9.47e0 22 1.03e1
24 - - - - - - 20 7.55e0 22 9.59e0
25 - - - - - - - - 21 7.74e0

M̄−1

2 9 4.77e0 9 5.48e0 9 6.73e0 10 9.49e0 12 1.67e1
22 - - 14 5.42e0 14 5.77e0 15 6.87e0 20 1.18e1
23 - - - - 15 5.46e0 15 5.79e0 16 6.87e0
24 - - - - - - 16 5.46e0 16 5.79e0
25 - - - - - - - - 16 5.43e0

M̄−1
alt

2 9 4.69e0 9 5.53e0 9 6.79e0 10 9.49e0 12 1.67e1
22 - - 14 5.27e0 14 5.80e0 15 6.90e0 20 1.18e1
23 - - - - 15 5.30e0 15 5.85e0 16 6.88e0
24 - - - - - - 16 5.29e0 16 5.84e0
25 - - - - - - - - 16 5.23e0

Table 3: Condition numbers κ and iteration counts #iter of the SSE applied to the model Poisson problem (2.1) for the structured meshes and δ = 2h
with the two-level additive Schwarz preconditioners M−1, M̄−1, and M̄−1

alt defined in (4.1), (4.2), and (4.3), respectively.
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Figure 4: Condition numbers κ(M̄−1
alt K̄) of the ES-FEM and SSE applied to the model Poisson problem (2.1) when n varies and n/N (= H/h) is

fixed as 4.

Figure 5: Condition numbers κ(M̄−1
alt K̄) of the ES-FEM and SSE applied to the model Poisson problem (2.1) when H/δ varies and n/N (= H/h) is

fixed as 32 or 64.
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n = 23 n = 24 n = 25 n = 26 n = 27

ES-FEM 2.27e0 2.30e0 2.32e0 2.33e0 2.33e0
SSE 3.68e0 3.78e0 3.84e0 3.86e0 3.87e0

Table 4: Condition numbers κ(K−1K̄ES) and κ(K−1K̄SSE) with the structured meshes for the model linear elasticity problem (5.1).

Table 1 provides the condition numbers κ(K−1K̄ES) and κ(K−1K̄SSE) for the structured and unstructured meshes
for various values of n. The condition numbers κ(K−1K̄ES) and κ(K−1K̄SSE) are eventually bounded when n increases.
Hence, the stiffness matrices K̄ES and K̄SSE of the ES-FEM and SSE, respectively, are spectrally equivalent to the
stiffness matrix K of the standard FEM. This numerically verifies Theorems 3.2 and 3.4. Tables 2 and 3 exhibit
the condition numbers of the M−1-, M̄−1-, and M̄−1

alt -preconditioned stiffness matrices of the ES-FEM and SSE, re-
spectively, and the corresponding conjugate gradient iteration counts denoted as #iter for the structured meshes with
various values of n and N. Fig. 4 depicts the condition numbers of the M̄−1

alt -preconditioned ES-FEM and SSE for the
structured and unstructured meshes when n/N (= H/h) is fixed as 4. As we have explained theoretically in Section 4,
M−1-, M̄−1-, and M̄−1

alt -preconditioned ES-FEM and SSE are all numerically scalable in the sense that the condition
number and iteration count are eventually bounded when n and N increase keeping n/N constant. Moreover, we
observe that each iteration count for the preconditioner M̄−1 is less than the corresponding counterpart for the pre-
conditioner M−1, which numerically verifies Theorem 4.3. We also highlight that the condition numbers and iteration
counts for the preconditioner M̄−1

alt are comparable to those for M̄−1. Hence, as we have claimed in Section 4, M̄−1
alt can

be a good alternative to M̄−1 with a comparable performance and easy implementation. In addition, Fig. 5 provides
the condition numbers of the M̄−1

alt -preconditioned ES-FEM and SSE for the structured meshes when H/δ varies and
n/N (= H/h) is fixed as 32 or 64. We verify the linear growth of the condition numbers for increasing values of H/δ.

5.2. Linear elasticity
We consider the following model linear elasticity problem defined on the domain Ω = (−1, 1)2 ⊂ R2:

− divσ(u) = b in Ω, (5.1)

where σ(u) is the Cauchy stress, b is the body force given by b(x, y) = (−y2, 1 − x2), and the Dirichlet boundary
condition u = 0 is given along line AB (see Fig. 3(a)). The plane stress condition is employed with Young’s modulus
E = 1×103 and Poisson’s ratio ν = 0.2. The finite element models are constructed using 2×n×n fine elements (n = 23,
24, . . . , 27) and 2×N×N coarse elements (N = 2, 22, . . . , 25) with the overlap width δ = h or 2h, as shown in Fig. 3(b).
We only present the results for the structured meshes; as in the case of the Poisson’s equation, the unstructured meshes
show similar behaviors as the structured meshes.

Table 4 provides the condition numbers κ(K−1K̄ES) and κ(K−1K̄SSE) for various n. Since the condition numbers for
both ES-FEM and SSE are eventually bounded when n becomes larger, we confirm the spectral equivalence among
the stiffness matrices of the standard FEM, ES-FEM, and SSE. Table 5 presents the condition numbers of the M−1-
, M̄−1-, and M̄−1

alt -preconditioned stiffness matrices and the corresponding conjugate gradient iteration counts #iter
for the ES-FEM. Table 6 presents the results corresponding to the SSE. Fig. 6 shows the condition numbers when
the preconditioner M̄−1

alt is used and n/N (= H/h) is fixed as 4 for the ES-FEM and SSE. Similar to the Poisson
problem, it is observed that both the condition number and iteration count are eventually bounded when n and N
increase, keeping the ratio n/N constant, which implies that all the preconditioned methods are numerically scalable.
Moreover, the iteration counts for the preconditioners M̄−1 and M̄−1

alt are smaller than the corresponding values for
M−1 for most of the cases; this indicates the numerical efficiency of the proposed enhanced preconditioners M̄−1 and
M̄−1

alt applied to the linear elasticity problem. In conclusion, we have numerically proven that all the theoretical results
developed in this study are valid for the Poisson and linear elasticity problems.

6. Remarks on node-based strain smoothing

We observed that the ES-FEM and SSE enjoy the spectral equivalence with the standard FEM. In contrast, not
every FEM with strain smoothing satisfies such equivalence property. Particularly, we present an example in which
the stiffness matrix of the NS-FEM may not be spectrally equivalent to that of the standard FEM.
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Precond. N
n = 23 n = 24 n = 25 n = 26 n = 27

#iter κ #iter κ #iter κ #iter κ #iter κ

None 71 1.05e3 139 3.71e3 272 1.38e4 535 5.32e4 1065 2.08e5

M−1

2 21 8.80e0 22 9.73e0 24 1.16e1 30 1.76e1 40 3.14e1
22 - - 23 8.96e0 25 9.20e0 28 1.17e1 37 2.01e1
23 - - - - 23 8.33e0 25 9.20e0 28 1.19e1
24 - - - - - - 23 8.24e0 25 9.32e0
25 - - - - - - - - 23 8.16e0

M̄−1

2 18 7.66e0 20 9.26e0 22 1.22e1 28 1.94e1 38 3.51e1
22 - - 20 6.88e0 21 7.58e0 26 1.18e1 33 2.13e1
23 - - - - 20 6.83e0 22 8.58e0 26 1.19e1
24 - - - - - - 20 6.72e0 22 8.78e0
25 - - - - - - - - 20 6.71e0

M̄−1
alt

2 18 8.52e0 20 1.00e1 24 1.26e1 29 1.95e1 39 3.52e1
22 - - 21 7.77e0 23 9.25e0 28 1.24e1 36 2.17e1
23 - - - - 21 7.63e0 23 9.23e0 28 1.25e1
24 - - - - - - 21 7.60e0 24 9.50e0
25 - - - - - - - - 21 7.61e0

Table 5: Condition numbers κ and iteration counts #iter of the ES-FEM applied to the model linear elasticity problem (5.1) for the structured
meshes and δ = 2h with the two-level additive Schwarz preconditioners M−1, M̄−1, and M̄−1

alt defined in (4.1), (4.2), and (4.3), respectively.

Precond. N
n = 23 n = 24 n = 25 n = 26 n = 27

#iter κ #iter κ #iter κ #iter κ #iter κ

None 67 8.00e2 123 2.80e3 237 1.04e4 464 3.99e4 922 1.56e5

M−1

2 24 1.29e1 26 1.23e1 28 1.28e1 30 1.70e1 38 3.03e1
22 - - 27 1.43e1 28 1.32e1 29 1.36e1 36 1.96e1
23 - - - - 27 1.41e1 29 1.35e1 30 1.39e1
24 - - - - - - 27 1.33e1 30 1.36e1
25 - - - - - - - - 26 1.11e1

M̄−1

2 18 7.45e0 19 9.02e0 22 1.20e1 28 1.90e1 36 3.43e1
22 - - 20 6.76e0 21 7.34e0 25 1.15e1 33 2.08e1
23 - - - - 20 6.67e0 22 8.35e0 25 1.16e1
24 - - - - - - 20 6.55e0 22 8.55e0
25 - - - - - - - - 20 6.54e0

M̄−1
alt

2 18 8.33e0 20 9.82e0 23 1.24e1 29 1.91e1 37 3.44e1
22 - - 21 7.56e0 23 9.00e0 27 1.21e1 35 2.11e1
23 - - - - 21 7.25e0 23 8.99e0 27 1.22e1
24 - - - - - - 21 7.31e0 23 9.19e0
25 - - - - - - - - 21 7.32e0

Table 6: Condition numbers κ and iteration counts #iter of the SSE applied to the model linear elasticity problem (5.1) for the structured meshes
and δ = 2h with the two-level additive Schwarz preconditioners M−1, M̄−1, and M̄−1

alt defined in (4.1), (4.2), and (4.3), respectively.
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Figure 6: Condition numbers κ(M̄−1
alt K̄) of the ES-FEM and SSE applied to the model linear elasticity problem (5.1) for the structured meshes when

n varies and n/N (= H/h) is fixed as 4.

In the NS-FEM, each element in Th is divided into three quadrilateral subdomains using its nodes, midpoints of
element edges, and barycenter. The node-based smoothing domains consist of assemblages of adjacent subdomains
belonging to different elements based on nodes; see Fig. 1(c). Denoting the collection of all smoothing domains
constructed from Th for the NS-FEM by Sh,NS, a smoothed gradient ε̄(s) for a smoothing domain s ∈ Sh,NS is defined
by

ε̄(s) =

∑m
k=1 |e

(k)|ε(e(k))∑m
k=1 |e(k)|

, (6.1)

where e(k) is the kth element in Th neighboring to the node corresponding to s, ε(e(k)) was defined in (2.2), and m is
the number of neighboring elements in Th. The number m varies per node in general. Using the smoothed gradient
in (6.1), the stiffness matrix K̄NS for the NS-FEM is defined in a similar manner as (2.7). It is known that the NS-FEM
is effective in alleviating volumetric locking [3].

The following example shows that the NS-FEM in one-dimension is not spectrally equivalent to the standard FEM;
examples corresponding to higher-dimensional cases can be constructed similarly.

Example 6.1. Let Ω = [0, 1] ⊂ R and let Th be the uniform partition of Ω into n subintervals, where n is a positive
even integer. In this case, the space Vh is defined as the collection of all piecewise linear and continuous functions on
Th satisfying the homogeneous Dirichlet boundary condition. As depicted in Fig. 7(a), we set u ∈ Vh such that

u
( i
n

)
=

0 if i is even,
1 if i is odd,

i = 1, 2, . . . , n − 1.

In each subinterval i/n < x < (i + 1)/n, i = 0, 1, . . . , n − 1, we have

u′(x) =

n if i is even,
−n if i is odd.

By applying the node-based smoothing to u′, we obtain the smoothed derivative ū′NS as follows:

ū′NS(x) =


n if 0 < x < 1

2n ,

0 if 1
2n < x < 1 − 1

2n ,

−n if 1 − 1
2n < x < 1.
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Figure 7: Graphs of (a) the function u, (b) its derivative u′, and (c) the node-based smoothed derivative ū′NS in Example 6.1, when n = 8.

Figure 8: Graphs of (a) the function v, (b) its derivative v′, and (c) the node-based smoothed derivative v̄′NS in Example 6.1, when n = 8.
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n = 23 n = 24 n = 25 n = 26 n = 27

NS-FEM 9.36e1 3.75e2 1.53e3 6.21e3 2.50e4

Table 7: Condition numbers κ(K−1K̄NS) with the structured meshes for the model linear elasticity problem (5.1).

The graphs of u′ and ū′NS are plotted in Figs. 7(b) and (c), respectively. Hence, it follows that

λmin(K−1K̄NS) ≤
uT K̄NSu
uT Ku

=

∫
Ω
|ū′NS|

2 dx∫
Ω
|u′|2 dx

=
1
n
. (6.2)

Meanwhile, as shown in Fig. 8(a), we set v ∈ Vh such that

v
( i
n

)
= 1, i = 1, 2, . . . , n − 1.

Then one can readily obtain

v′(x) =


n if 0 < x < 1

n ,

0 if 1
n < x < 1 − 1

n ,

−n if 1 − 1
n < x < 1,

and

v̄′NS(x) =



n if 0 < x < 1
2n ,

n
2 if 1

2n < x < 3
2n ,

0 if 3
2n < x < 1 − 3

2n ,

− n
2 if 1 − 3

2n < x < 1 − 1
2n ,

−n if 1 − 1
2n < x < 1.

See Figs. 8(b) and (c) for the graphs of v′ and v̄′NS, respectively. By direct calculation, we have

λmax(K−1K̄NS) ≥
vT K̄NSv
vT Kv

=

∫
Ω
|v̄′NS|

2 dx∫
Ω
|v′|2 dx

=
3
4
. (6.3)

Combining (6.2) and (6.3) yields

κ(K−1K̄NS) =
λmax(K−1K̄NS)
λmin(K−1K̄NS)

≥
3n
4

= O(h−1),

which implies that K̄NS and K are not spectrally equivalent.
We revisit the linear elasticity problem in Section 5.2 using the structured meshes, as shown in Fig. 3; Table 7

provides the condition numbers κ(K−1K̄NS) for various values of n. The results show that the stiffness matrix of the
NS-FEM is not spectrally equivalent to that of the standard FEM; κ(K−1K̄NS) increases approximately four times
whenever n doubles. Table 8 presents the condition numbers of the M−1-, M̄−1-, and M̄−1

alt -preconditioned stiffness
matrices and the corresponding conjugate gradient iteration counts #iter for the NS-FEM. As expected, the condition
number and iteration count increase when n and N increase, keeping the ratio n/N constant for all the preconditioners
considered. Additionally, it is numerically confirmed that the preconditioners M̄−1 and M̄−1

alt reduce the condition
number to some extent, whereas the preconditioner M−1 does not.

7. Conclusion

Based on the fact that the stiffness matrices of the standard FEM, ES-FEM, and SSE are spectrally equivalent,
we proved that any existing preconditioner for the standard FEM can be applied to the ES-FEM and SSE, inheriting
good convergence properties such as numerical scalability. We proposed the improved two-level additive Schwarz
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Precond. N
n = 23 n = 24 n = 25 n = 26 n = 27

#iter κ #iter κ #iter κ #iter κ #iter κ

None 60 4.03e2 112 1.40e3 204 5.19e3 393 1.99e4 743 7.81e4

M−1

2 60 1.22e2 133 7.81e2 270 3.87e3 498 1.77e4 906 7.62e4
22 - - 116 4.47e2 269 3.26e3 515 1.58e4 943 6.54e4
23 - - - - 218 1.82e3 496 1.30e4 963 6.24e4
24 - - - - - - 389 7.25e3 906 5.14e4
25 - - - - - - - - 694 2.69e4

M̄−1

2 18 6.94e0 23 1.07e1 31 2.12e1 44 4.37e1 62 8.98e1
22 - - 29 1.80e1 37 3.70e1 54 8.23e1 78 1.76e2
23 - - - - 52 6.82e1 66 1.48e2 97 3.40e2
24 - - - - - - 95 2.74e2 119 6.03e2
25 - - - - - - - - 172 1.11e3

M̄−1
alt

2 18 7.85e0 24 1.10e1 32 2.16e1 45 4.39e1 63 8.99e1
22 - - 29 1.82e1 38 3.97e1 56 8.57e1 80 1.78e2
23 - - - - 52 6.93e1 69 1.62e2 102 3.59e2
24 - - - - - - 96 2.80e2 125 6.63e2
25 - - - - - - - - 173 1.13e3

Table 8: Condition numbers κ and iteration counts #iter of the NS-FEM applied to the model linear elasticity problem (5.1) for the structured
meshes and δ = 2h with the two-level additive Schwarz preconditioners M−1, M̄−1, and M̄−1

alt defined in (4.1), (4.2), and (4.3), respectively.

preconditioners for the ES-FEM and SSE. Theoretically and numerically, the proposed preconditioners outperformed
the standard one when they were applied to the ES-FEM and SSE.

This study suggests several interesting topics for future research. The motivation for developing iterative solvers
may influence their application to large-scale problems; we must solve more complex engineering problems on a
large scale using FEMs with strain smoothing, equipped with the proposed preconditioners. It is interesting to con-
sider large-scale problems with oscillatory and high contrast coefficients [34, 35], which appear in the mathematical
modeling of the flow in heterogeneous porous media. Meanwhile, we observed in Section 6 that the spectral property
of the NS-FEM is different from the ES-FEM and SSE. This proves that mathematical properties of the NS-FEM are
somewhat different from those of other FEMs with strain smoothing. Hence, developing a mathematical theory on the
NS-FEM should be considered as a separate study.

Appendix A. Convergence theory of additive Schwarz methods

In this appendix, we provide a brief summary on the abstract convergence theory of additive Schwarz methods
introduced in [23, 33]. Let V be a Hilbert space. We consider the model linear problem

Au = f ,

where A : V → V is a symmetric and positive definite linear operator and f ∈ V . In what follows, an index j runs
from 1 to N . For a Hilbert space V j, we assume that there exists an interpolation operator RT

j : V j → V such that
V =

∑N
j=1 RT

j V j. Let Ã j : V j → V j be a symmetric and positive definite linear operator which plays a role of a local
operator on V j. In this setting, the additive Schwarz preconditioner M−1 : V → V is given by

M−1 =

N∑
j=1

RT
j Ã−1

j R j.

In order to obtain an upper bound for the condition number of the preconditioned operator M−1A, we need the follow-
ing three assumptions [33, Assumptions 4.9–4.11].
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Assumption Appendix A.1. There exists a constant C0 > 0 which satisfies the following: for any v ∈ V , there exists
v j ∈ V j, 1 ≤ j ≤ N , such that

v =

N∑
j=1

RT
j v j

and
N∑
j=1

vT
j Ã jv j ≤ C2

0vT Av.

Assumption Appendix A.2. There exists a constant τ0 > 0 which satisfies the following: for any v j ∈ V j, 1 ≤ j ≤ N ,
and τ ∈ (0, τ0], we have  N∑

j=1

RT
j v j


T

A

 N∑
j=1

RT
j v j

 ≤ 1
τ

N∑
j=1

(RT
j v j)T A(R jv j).

Assumption Appendix A.3. There exists a constant ω0 > 0 which satisfies the following: for any v j ∈ V j, 1 ≤ j ≤ N ,
we have

(RT
j v j)T A(RT

j v j) ≤ ω0vT
j Ã jv j.

For detailed explanations of the assumptions above, we refer to [23, 33]. Under Assumptions Appendix A.1, Ap-
pendix A.2, and Appendix A.3, we define the additive Schwarz condition number κASM as follows:

κASM =
ω0C2

0

τ0
, (A.1)

where C0, τ0, and ω0 are chosen as optimal as possible. That is, C0 is chosen as the minimum one satisfying As-
sumption Appendix A.1, τ0 as the maximum one satisfying Assumption Appendix A.2, and ω0 as the minimum one
satisfying Assumption Appendix A.3. The following theorem suggests that the convergence rate of a preconditioned
iterative algorithm for M−1A relies on the additive Schwarz condition number κASM [33].

Theorem Appendix A.4. Under Assumptions Appendix A.1, Appendix A.2, and Appendix A.3, we have

τ0

ω0
vT Av ≤ vT Mv ≤ C2

0vT Av ∀v ∈ V.

Consequently, the following holds:
κ(M−1A) ≤ κASM,

where κASM was given in (A.1).
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