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Abstract. The main aim of this article is to analyze mixed finite element method for the second

order Dirichlet boundary control problem. Therein, we develop both a priori and a posteriori error
analysis using the energy space based approach. We obtain optimal order a priori error estimates

in the energy norm and L2-norm with the help of auxiliary problems. The reliability and the

efficiency of proposed a posteriori error estimator is discussed using the Helmholtz decomposition.
Numerical experiments are presented to confirm the theoretical findings.

1. Introduction

The optimal control problems subjected to partial differential equations have numerous applica-
tions in science and engineering. The objective of optimal control problems is to find the optimal
control which minimizes the given cost functional with certain constraints being satisfied. Finite ele-
ment methods are extensively used for the numerical approximation of the optimal control problems
as they are advantageous over other numerical methods in terms of implementation, accuracy and
adaptability. As per the literature review, previous studies have marked a significant development
in this area and the literature in this direction is too immense to mention all the results here. One
can find key contributions towards this area in the articles cited here and references therein. For
a general theory of optimal control problems constrained by partial differential equations and their
numerical approximations, we refer to [40, 51]. For the contributions towards the finite element anal-
ysis for the distributed optimal control problems, we refer to [24, 33, 25, 41, 46, 20, 32, 31, 47, 37].
The articles [24, 25, 20, 31, 47] study the convergence analysis of finite element methods for the
constrained distributed optimal control problems. In [33, 46], the authors have discussed super con-
vergence results and the articles [41, 32, 37] are devoted to a posteriori error analysis of the finite
element method for the distributed control problems. In the article [16], authors have used mixed
finite element method to derive error estimates and super-convergence results for the distributed
optimal control problem. The error estimates for the Neumann boundary control problems governed
by linear state equations and semi linear state equations can be found in [43] and [6, 14], respectively.
The article [4] concerns the finite element analysis with graded mesh refinement for the Neumann
boundary control problem. Recently in [38], the authors proved the convergence and studied the
optimal complexity of an adaptive finite element method for control constrained problems on L2

errors. Therein, the contraction property and the quasi optimality of the adaptive finite element
method is derived. The authors in [39] study the distributed convex optimal control problem with
integral control constraint and proved the optimal convergence rate for the adaptive finite element
method under a mild assumption on the initial mesh.

There is relatively less literature available for the Dirichlet boundary control problem due to vari-
ational difficulty. In the article [15], the authors have discussed the numerical approximation of
semi linear elliptic Dirichlet boundary control problems with pointwise control constraints. In this
article, an optimal error estimate for the finite element approximation of the optimal control in the
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Mixed Finite Element Method for the Dirichlet Boundary Control Problem

L2-norm is derived while the article [45] improved the error estimate for the state and adjoint state
variables. In both the articles [15, 45], an ultra weak formulation has been used for formulating the
model problem. The convergence analysis of the conforming finite element method for the Dirich-
let boundary control problem is studied in [48] using the energy space based approach. Therein,
the Steklov-Poincare operator arising from the harmonic extension is used to define the continuous
and discrete problems. The authors in [17] have used an alternative energy space based approach
in which the control is sought from H1(Ω) space and the resulting control is a harmonic function
without being explicitly imposed. In [29], the authors have used energy space based approach and
established the optimal order energy norm error estimates of the conforming finite element method
for the constrained Dirichlet boundary control problem governed by diffusion problem. A variation
of this approach using conforming finite element method is discussed in [36]. Recently in [42], two
meshless methods are proposed for solving the Dirichlet boundary optimal control problems gov-
erned by elliptic PDEs. The finite element analysis of Dirichlet control problems using an energy
regularization is carried out in [55]. We refer to the articles [28, 8] for a posteriori error analysis of
finite element methods for boundary control problems governed by elliptic PDEs.

In many applications, it is important to obtain accurate approximation of the scalar variable and its
gradient simultaneously. A common way to achieve this goal is to use mixed finite element methods
[49, 10, 11, 50]. Moreover, mixed finite element methods have the property that they maintain
the discrete conservation law at the element level. In [27], mixed finite element method is used for
the approximation of the Dirichlet boundary control problem governed by elliptic PDEs. Therein,
the control is sought from L2(∂Ω) and piece-wise constant finite element space is employed for the
discretization of control. The authors have obtained the optimal a priori error estimates of order
O(h1−1/s) with s ≥ 2 for polygonal domains and quasi optimal error estimates of order O(h|ln h|)
for smooth domains. In this article, we follow the energy space based approach for the error
analysis concerning the second order Dirichlet boundary control problem. This approach produces
a sufficiently regular control. For the variational formulation, the state equation is converted to the
mixed system using the mixed variational scheme for second order elliptic equations and then the
continuous optimality system is derived. The control is sought from the H1(Ω) space and it satisfies
the Neumann problem. The state equation needs to be understood in the very weak sense when
the control is sought in L2(Γ) space [45], since the trace operator maps H1(Ω) onto H1/2(Γ) where
Γ represents the boundary of the domain Ω. Hence the normal derivative of the costate appears
on the boundary of the domain in the first order optimality condition which makes the problem
more complicated due to its discontinuity in the standard finite element methods. Thus, the use of
mixed finite element methods is advantageous as it inserts naturally the normal derivative of costate
on the boundary in the weak formulation. In order to discretize the continuous optimality system,
we use the lowest order Raviart-Thomas space to numerically approximate the state and costate
variables whereas the continuous piece-wise linear finite element space is used for the discretization
of control. Based on this formulation, we have derived the optimal a priori error estimates for the
control of order O(h) in the energy norm and of order O(h2) in L2-norm. We have also achieved the
optimal error estimates of order O(h) for the state, costate and gradient of the costate in L2-norm.
Moreover, we have developed a reliable and efficient a posteriori error estimator using an auxiliary
system of equations. Finally, numerical experiments are presented to illustrate the theoretical results
on a priori as well as a posteriori error analysis. We remark here that the approach adopted in this
article for analyzing the mixed finite element method for the Dirichlet boundary control problem
differs significantly than that of the article [27].

The rest of the article is arranged as follows. In Section 2, we discuss the Dirichlet boundary control
problem in a precised manner and pose the mixed variational scheme for it. Therein, we also obtain
the corresponding optimality system and deduce the regularity of the optimal variables. In Section
3, we introduce some useful notations and preliminary results, formulate the mixed finite element
method for the continuous Dirichlet boundary control problem and obtain the discrete optimality
system. We discuss a priori error estimates for the optimal control in the energy norm and L2-norm
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in Section 4. In Section 5, we develop a posteriori error analysis with the help of an auxiliary
problem and the Helmholtz decomposition. Therein, we derive reliability and efficiency estimates
for the proposed a posteriori error estimator. We conclude the article in Section 6 by presenting
numerical test results supporting the theoretical findings.

2. Continuous Problem

Let Ω ⊂ R2 be a bounded convex domain with polygonal boundary ∂Ω = Γ. We assume the
boundary Γ to be the union of line segments Γi(1 ≤ i ≤ k) such that their interiors are pairwise
disjoint in the induced topology. We use the standard notation W s,p(Ω) for Sobolev spaces on Ω
with norm ‖·‖s,p,Ω and semi-norm | ·|s,p,Ω(see [3]). Further, we denote W s,2(Ω) by Hs(Ω) with norm
‖ · ‖s,Ω and semi-norm | · |s,Ω. Let (·, ·) (resp. ‖ · ‖) denote the L2(Ω) inner product (respectively

norm). We denote H−1/2(Γ) and H1/2(Γ) duality pairing by 〈·, ·〉.
Define the cost functional J(s, g) := 1

2‖s − yd‖
2 + α

2 ‖∇g‖
2 and consider the following Dirichlet

boundary control problem governed by the second order elliptic PDE:

(2.1) min
(s,g)∈K

J(s, g)

subject to

−∆s = f in Ω,(2.2)

s = g on Γ,(2.3)

where yd, f ∈ L2(Ω) are given functions and K is the admissible space (to be specified later), while
α > 0 is a fixed parameter (referred as regularization parameter). In this article, we adopt a mixed
finite element technique to solve the Dirichlet boundary control problem (2.1)-(2.3). By introducing
the flux variable, k = −∇s, (2.2) can be written in the following mixed form:{

k = −∇s,
div k = f.

(2.4)

Set V = H(div,Ω), W = L2(Ω), Q = H1(Ω), where the space H(div,Ω) with ‖ · ‖H(div,Ω) norm is
defined as

H(div,Ω) := {v ∈ (L2(Ω))2, div v ∈ L2(Ω)},
‖v‖H(div,Ω) := ‖v‖+ ‖div v‖.

Next, we introduce the trace operator defined on H(div,Ω) [11, Lemma 1.1, Chapter III].

Lemma 2.1. There exists a trace operator γ : H(div,Ω)→ H−
1
2 (Γ) defined by γ(v) = v · n in the

sense that

〈v · n,w〉 =

∫
Ω

w div v dx+

∫
Ω

v · ∇w dx ∀ w ∈ H1(Ω).

The operator γ is a continuous mapping from H(div,Ω) onto H−
1
2 (Γ) such that

‖v · n‖− 1
2 ,Γ
≤ ‖v‖H(div,Ω).

In view of (2.4), the weak mixed formulation of (2.2)-(2.3) reads as follows: find (s,k) ∈ W × V
such that

(k,v)− (s,div v) = −〈v · n, g〉 ∀ v ∈ V,(2.5)

(w,div k) = (f, w) ∀ w ∈W.(2.6)

There exists an unique solution (s,k) of (2.5)-(2.6) (we refer [11] for details). We now define the
solution operator S as follows:

Definition 2.2. For a given f ∈W and g ∈ H 1
2 (Γ), the solution operator S : W ×H 1

2 (Γ)→W ×V
is defined by S(f, g) = (s,k), where (s,k) satisfy (2.5)-(2.6).
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The mixed form of the Dirichlet boundary optimal control problem consists of finding (y,p, u) ∈
W × V ×Q such that

J(y, u) = min
(s,g)∈W×Q

J(s, g),(2.7)

subject to the condition that (s,k) = S(f, g) where J(s, g) is the underlying cost functional.
Let a(·, ·) : H1(Ω)×H1(Ω)→ R denote the bilinear form defined by

a(v, w) =

∫
Ω

∇v · ∇w dx.

We have the following result concerning the first order necessary optimality conditions.

Theorem 2.3. There exists a unique solution (y,p, u) ∈W ×V ×Q of the optimal control problem
(2.7). Furthermore, the triplet (y,p, u) is the solution of (2.7) iff there exists a unique pair (z, r) ∈
W × V such that (y,p, z, r, u) satisfies the following optimality system:

(p,v)− (y,div v) = −〈v · n, u〉 ∀ v ∈ V,(2.8)

(w,div p) = (f, w) ∀ w ∈W,(2.9)

(r,v)− (z,div v) = 0 ∀ v ∈ V,(2.10)

(w,div r) = (y − yd, w) ∀ w ∈W,(2.11)

αa(u, q) = −〈r · n, q〉 ∀ q ∈ Q.(2.12)

Proof. The proof follows from the standard arguments as in [51, 17]. �

Note that, (u, q) when restricted to the boundary Γ belong to H
1
2 (Γ)×H 1

2 (Γ) since (u, q) ∈ Q×Q.
Therefore, in light of Lemma 2.1, 〈v · n, u〉 and 〈r · n, q〉 arising in equations (2.8) and (2.12)
respectively are well defined.

Remark 2.4. In view of [17, Remark 2.4], the minimum energy in the minimization problem (2.7)

can be realized with an equivalent H
1
2 (Γ) semi-norm of the control u in the sense that the H

1
2 (Γ)

semi-norm of q ∈ H 1
2 (Γ) can be defined by the following Dirichlet norm:

|q| 1
2 ,Γ

:= ‖∇zq‖ = min
w∈Q,w=q on Γ

‖∇w‖,

where the minimizer zq ∈ Q satisfies

−∆zq = 0 in Ω,

zq = q on Γ.

Uniqueness of the optimal control u ∈ Q implies u = zu and hence

|u| 1
2 ,Γ

:= ‖∇u‖.

Now using Green’s formula in (2.12), we see that u weakly solves the following Neumann problem

(2.13)

{
−∆u = 0 in Ω,

α ∂u∂n = −r · n on Γ.

Taking q = 1 in (2.12), we observe that 〈r · n, 1〉 = 0, which is the compatibility condition for
the Neumann problem defined by (2.13). Since y − yd ∈ W , from the elliptic regularity theory on
convex polygonal domains [30, Theorem 3.1.2.1], we find that (z, r) ∈ H2(Ω) × [H1(Ω)]2. By the

trace theorem [30, Theorem 1.5.2.1], r ·n ∈ H 1
2 (Γi) ∀ 1 ≤ i ≤ k. Hence the elliptic regularity theory

for the Neumann problem [30, Theorem 3.1.2.3] implies that u ∈ H2(Ω). Now f ∈ W and trace

u ∈ H 3
2 (Γi) ∀ 1 ≤ i ≤ k, therefore y ∈ H2(Ω) by the elliptic regularity for the Dirichlet problem on

the convex polygonal domains [30, Theorem 3.1.2.1].
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3. Finite element approximation

In this section, we consider the mixed finite element approximation of the Dirichlet boundary op-
timal control problem under consideration. We introduce the following notations, which are used
throughout the article.

• Th is a regular triangulation(see [18]) of Ω.
• E ih is the set of all interior edges of Th.
• Ebh is the set of all boundary edges of Th.
• Eh = E ih ∪ Ebh is the set of all the edges of Th.
• Vih is the set of all vertices interior to Ω.
• Vbh is the set of all vertices that belong to Γ.
• Vh = Vih ∪ Vbh is the set of all vertices of Th.
• Tp denotes the set of all elements sharing the vertex p ∈ Vh and |Tp| denotes cardinality of
Tp.

• hT is the diameter of an element T ∈ Th and h = max
T∈Th

hT .

• |e| is the length of an edge e ∈ Eh and me is the midpoint of e.
• Pk(T ) is the set of all polynomials of degree less than or equal to k over T .
• Pck+1(Th) is the set of continuous piecewise polynomials of degree k + 1.

• Hs(Ω, Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T ) ∀ T ∈ Th} is the piece-wise Sobolev space with
respect to the triangulation Th.

• | · |2s,h =
∑
T∈Th | · |

2
s,T is the semi-norm on Hs(Ω, Th).

• We say a . b if there exists a positive constant C independent of the mesh parameter h
such that a ≤ Cb.

Let e ∈ E ih be the edge shared by two neighbouring triangles T+ and T− i.e. e = ∂T+∩∂T−. Further,
suppose n+ is the unit normal of e pointing from T+ to T−, and n− = −n+. We denote v|T+

by v+

and v|T− by v−. For any scalar valued function v ∈ H2(Ω, Th) and w ∈ H1(Ω, Th), we define the
jumps [[·]] across the edge e as follows:-[[

∂v

∂n

]]
=
∂v+

∂n+

∣∣∣
e
− ∂v−
∂n+

∣∣∣
e

and [[w]] =
(
w+

∣∣∣
e
− w−

∣∣∣
e

)
.

For any edge e ∈ Ebh, there is a triangle T ∈ Th such that e = ∂T ∩ Γ and let ne be the unit normal
on e that points outside T . For any v ∈ H2(Ω, Th) and w ∈ H1(Ω, Th), we set[[

∂v

∂n

]]
=
∂v|T
∂ne

and [[w]] = w|T .

For T ∈ Th , we define the lowest order local Raviart-Thomas space by

RT (T ) = P0(T )2 + xP0(T ),

where x = (x1, x2) ∈ R2. Now the global Raviart-Thomas space is defined by

Vh := {v ∈ V : v|T ∈ RT (T ) ∀ T ∈ Th}.
We define two more discrete spaces for the approximation of state y and control u as follows

Wh := {wh ∈W : wh|T ∈ P0(T ) ∀ T ∈ Th},
Qh := {qh ∈ Q : qh|T ∈ P1(T ) ∀ T ∈ Th}.

Consider the mixed finite element approximation to the variational problem (2.5)-(2.6): find (sh,kh) ∈
Wh × Vh such that

(kh,vh)− (sh,div vh) = −〈vh · n, g〉 ∀ vh ∈ Vh,(3.1)

(wh,div kh) = (f, wh) ∀ wh ∈Wh.(3.2)

Here onwards, we shall use C to denote the generic positive constant which can assume different
values at different appearances, it is independent of the discrete solutions and will depend only on
the minimum angle of the triangulation but not on the mesh size.
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We have the following well established a priori estimate for standard mixed finite element approxi-
mation [35, 23, 26].

Lemma 3.1. Let (s,k) ∈W ×V be the solution of problems (2.5)-(2.6) with data (g, f) ∈ H 3
2 (Γ)×

W and let (sh,kh) ∈Wh × Vh be the solution of (3.1)-(3.2). Then, s ∈ H2(Ω) and

‖k− kh‖+ ‖s− sh‖ ≤ Ch (‖s‖2,Ω + ‖f‖) .
Furthermore, assuming divk ∈ H1(Ω), the following estimate holds

‖div(k− kh)‖−s,Ω ≤ Ch1+s|divk|1,Ω, s = 0, 1.

Analogous to the continuous setting, we define the discrete solution operator.

Definition 3.2. For a given f ∈ W and g ∈ H
1
2 (Γ), the discrete solution operator Sh : W ×

H1/2(Γ)→Wh × Vh is defined by Sh(f, g) = (sh,kh), where (sh,kh) satisfy (3.1)-(3.2).

The mixed finite element approximation of the Dirichlet boundary control problem (2.7) consists of
finding (yh,ph, uh) ∈Wh × Vh ×Qh such that

(3.3) J(yh, uh) = min
(sh,gh)∈Wh×Qh

J(sh, gh),

subject to the condition that (sh,kh) = Sh(f, gh) where J(sh, gh) := 1
2‖sh − yd‖

2 + α
2 ‖∇gh‖

2.

In the next theorem, we obtain the discrete optimality system. This system of equations is obtained
by the first order necessary optimality conditions as in the case of continuous system (2.8)-(2.12).

Theorem 3.3. There exists a unique solution (yh,ph, uh) ∈ Wh × Vh ×Qh of the optimal control
problem (3.3). Furthermore, (yh,ph, uh) is the solution of (3.3) if and only if there exists a unique
pair (zh, rh) ∈Wh × Vh such that (yh,ph, zh, rh, uh) satisfies the following system of equations:

(ph,vh)− (yh,div vh) = −〈vh · n, uh〉 ∀ vh ∈ Vh,(3.4)

(wh,div ph) = (f, wh) ∀ wh ∈Wh,(3.5)

(rh,vh)− (zh,div vh) = 0 ∀ vh ∈ Vh,(3.6)

(wh,div rh) = (yh − yd, wh) ∀ wh ∈Wh,(3.7)

αa(uh, qh) = −〈rh · n, qh〉 ∀ qh ∈ Qh.(3.8)

Below, we define the Raviart-Thomas interpolation, L2 projection map and their properties which
will be useful in the error analysis.

Lemma 3.4. There exist linear operators Πh : V → Vh and Ph : W →Wh (L2 projection onto Wh)
such that for all v ∈ V and w ∈W,

(div (v −Πhv), wh) = 0 ∀ wh ∈Wh,(3.9)

‖v −Πhv‖s,Ω ≤ Ch1−s|v|1,Ω, v ∈ H1(Ω)×H1(Ω), s = 0, 1,(3.10)

‖div (v −Πhv)‖−s,Ω ≤ Ch1+s|div v|1,Ω, div v ∈ H1(Ω), s = 0, 1,(3.11)

(w − Phw,wh) = 0 ∀ wh ∈Wh,(3.12)

‖w − Phw‖−s,Ω ≤ Ch1+s|w|1,Ω, w ∈ H1(Ω) s = 0, 1.(3.13)

Proof. The readers may refer [35, 11] for the proof of this Lemma. �

In the next lemma, we state a well known Clément type approximation result [19] required in the
subsequent analysis.

Lemma 3.5. Let ξ ∈ H1(Ω). Then there exists ξh ∈ Pck+1(Th) such that for any T ∈ Th and
e ∈ ∂T , it holds that

‖ξ − ξh‖L2(e) ≤ C|e|
1
2 ‖∇ξ‖L2(T̃ ),

hT |ξ − ξh|H1(T ) + ‖ξ − ξh‖L2(T ) ≤ ChT ‖∇ξ‖L2(T̃ ),

where T̃ = {T ′ ∈ Th : T ∩ T ′ 6= ∅} and k is any non negative integer.
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In the further sections, for any v ∈ Q ∩ C0(Ω̄), vI ∈ Qh denotes its nodal Lagrange interpolation.
We refer to [18, 12] for the definition and approximation properties of vI .

4. A Priori error analysis

In this section, we discuss the error estimates in the energy norm and L2-norm between the
solutions of (2.8)-(2.12) and (3.4)-(3.8). In deriving the estimates for the control in the energy norm,
we first obtain the bound on H1-semi-norm and subsequently the optimal order error estimates in
the energy norm is derived with the help of intermediate results. In order to achieve the optimal
order convergence in the L2-norm, we introduce the enriched discrete control and make use of some
auxiliary results. We begin by proving intermediate results required for the further analysis.
For the optimal control u ∈ Q, let (yhf (u),phf (u)) = Sh(f, u) and (zhu , r

h
u) = Sh(yhf (u)− yd, 0) which

means (yhf (u),phf (u), zhu , r
h
u) ∈Wh × Vh ×Wh × Vh satisfies the following system of equations:

(phf (u),vh)− (yhf (u),div vh) = −〈vh · n, u〉 ∀ vh ∈ Vh,(4.1)

(wh,div phf (u)) = (f, wh) ∀ wh ∈Wh,(4.2)

(rhu,vh)− (zhu ,div vh) = 0 ∀ vh ∈ Vh,(4.3)

(wh,div rhu) = (yhf (u)− yd, wh) ∀ wh ∈Wh.(4.4)

Now for optimal state y ∈W , find (zhy , r
h
y) ∈Wh × Vh such that

(rhy ,vh)− (zhy ,div vh) = 0 ∀ vh ∈ Vh,(4.5)

(wh,div rhy) = (y − yd, wh) ∀ wh ∈Wh.(4.6)

We note that (zhy , r
h
y) = Sh(y − yd, 0) and (yhf (u),phf (u)) = Sh(f, u) are the standard mixed finite

element approximations of (z, r) and (y,p) respectively. Taking into account the standard error
estimates of mixed finite element method (stated in Lemma 3.1), we have the following result
[16, 27]:

Lemma 4.1. Let (y,p, z, r, u) be the solutions of (2.8)-(2.12). Let (zhy , r
h
y) and (yhf (u),phf (u)) be

the solution of the auxiliary problem (4.5)-(4.6) and (4.1)-(4.2) respectively. Then, we have the
following estimates:

‖z − zhy ‖+ ‖r− rhy‖H(div,Ω) ≤ Ch‖z‖2,Ω,

‖y − yhf (u)‖+ ‖p− phf (u)‖H(div,Ω) ≤ Ch‖y‖2,Ω.

This lemma is useful in establishing the auxiliary estimates which play a key role in deriving the
desired error estimates in the energy norm. We first derive the error estimates in H1 semi-norm in
the following theorem.

Theorem 4.2. Let (y,p, u, z, r) ∈ W × V × Q ×W × V be the solution of continuous optimality
system (2.8)-(2.12) and let (yh,ph, uh, zh, rh) ∈Wh×Vh×Qh×Wh×Vh be the solution of discrete
optimality system (3.4)-(3.8). Then the following estimate holds:

|u− uh|1,Ω + ‖yhf (u)− yh‖ ≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

Proof. Upon subtracting the corresponding equations of the system (3.4)-(3.7) from (4.1)-(4.4), we
obtain the following error equations:

(phf (u)− ph,vh)− (yhf (u)− yh,div vh) = −〈vh · n, u− uh〉 ∀ vh ∈ Vh,(4.7)

(wh,div(phf (u)− ph)) = 0 ∀ wh ∈Wh,(4.8)

(rhu − rh,vh)− (zhu − zh,div vh) = 0 ∀ vh ∈ Vh,(4.9)

(wh,div(rhu − rh)) = (yhf (u)− yh, wh) ∀ wh ∈Wh.(4.10)

7
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By substituting vh = rh − rhu ∈ Vh in (4.7) and using (4.8)-(4.10), we find that

〈(rh − rhu) · n, uh − u〉 = (phf (u)− ph, rh − rhu)− (yhf (u)− yh,div(rh − rhu))

= −(yhf (u)− yh, yh − yhf (u))

= ‖yh − yhf (u)‖2.(4.11)

Let uI ∈ Qh be the nodal Lagrange interpolation of u, see [18, p. 81]. Using equations (2.12) and
(3.8) for q = u− uh and qh = uh − uI respectively, we find

αa(u, u− uh) + 〈r · n, u− uh〉 = 0,(4.12)

αa(uh, uh − uI) + 〈rh · n, uh − uI〉 = 0.(4.13)

From equations (4.11)-(4.13), we observe that

α|u− uh|21,Ω + ‖yhf (u)− yh‖2 = αa(u, u− uh) + 〈rhu · n, u− uh〉
− αa(uh, u− uh)− 〈rh · n, u− uh〉

= αa(u, u− uh) + 〈r · n, u− uh〉+ 〈(rhu − r) · n, u− uh〉
− αa(uh, u− uh)− 〈rh · n, u− uh〉

= 〈(rhu − r) · n, u− uh〉+ αa(uh, uh − uI)
+ αa(uh, uI − u)− 〈rh · n, u− uI〉+ 〈rh · n, uh − uI〉

= 〈(rhu − r) · n, u− uh〉+ αa(uh, uI − u) + 〈rh · n, uI − u〉
= I + II + III.(4.14)

We now estimate each term on the right hand side of (4.14) as follows.

I = 〈(rhu − rhy) · n, u− uh〉+ 〈(rhy − r) · n, u− uh〉

= Ia + Ib.(4.15)

Using Lemma 2.1, Lemma 3.4 and equations (2.11), (4.6), we find

Ib = 〈(rhy − r) · n, u− uh〉 =

∫
Ω

div(rhy − r) (u− uh) dx+

∫
Ω

(rhy − r) · ∇(u− uh) dx

=

∫
Ω

(div rhy) (Ph(u− uh)) dx−
∫

Ω

(div r) (u− uh) dx

+

∫
Ω

(rhy − r) · ∇(u− uh) dx

=

∫
Ω

(y − yd) (Ph(u− uh)− (u− uh)) dx+

∫
Ω

(rhy − r) · ∇(u− uh) dx.

Now, using Cauchy-Schwarz inequality, Lemma 4.1, Lemma 3.4 and Young’s inequality, we find that

Ib ≤ ‖y − yd‖‖Ph(u− uh)− (u− uh)‖+ ‖rhy − r‖|u− uh|1,Ω
≤ Ch (‖y − yd‖+ ‖z‖2,Ω) |u− uh|1,Ω
≤ C(δ)h2

(
‖y − yd‖2 + ‖z‖22,Ω

)
+ δ|u− uh|21,Ω.(4.16)

Taking vh = rhu − rhy in (4.1) and (3.4) and subtract the resulting equations to find

〈(rhu − rhy) · n, u− uh〉 =
(
yhf (u)− yh,div(rhu − rhy)

)
−
(
phf (u)− ph, r

h
u − rhy

)
.

In view of the equations (4.1)-(4.6) and (3.4)-(3.8), we have

Ia = 〈(rhu − rhy) · n, u− uh〉 =
(
div(rhu − rhy), yhf (u)− yh

)
−
(
phf (u)− ph, r

h
u − rhy

)
=
(
yhf (u)− y, yhf (u)− yh

)
−
(
zhu − zhy ,div(phf (u)− ph)

)
=
(
yhf (u)− y, yhf (u)− yh

)
.
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Using Cauchy-Schwarz inequality, Young’s inequality and Lemma 4.1, we get that

Ia ≤ ‖yhf (u)− y‖‖yhf (u)− yh‖

≤ C(δ)‖yhf (u)− y‖2 + δ‖yhf (u)− yh‖2

≤ C(δ)h2‖y‖22,Ω + δ‖yhf (u)− yh‖2.(4.17)

Combining (4.15), (4.16) and (4.17), we find

(4.18) |I| ≤ C(δ)h2
(
‖z‖22,Ω + ‖y‖22,Ω + ‖y − yd‖2

)
+ δ

(
‖yhf (u)− yh‖2 + |u− uh|21,Ω

)
.

Now we proceed to estimate II and III. Substituting q = uI − u ∈ Q in (2.12) , we find

(4.19) αa(u, uI − u) + 〈r · n, uI − u〉 = 0.

In view of (4.19), we can write

II + III = αa(uh − u, uI − u) + 〈(rh − r) · n, uI − u〉

= αa(uh − u, uI − u) + 〈(rh − rhy) · n, uI − u〉

+ 〈(rhy − r) · n, uI − u〉

= IIa + IIb + IIc.(4.20)

Using Cauchy-Schwarz inequality, Young’s inequality and approximation property of uI [18, Theo-
rem 3.1.4], we have

IIa = αa(uh − u, uI − u) ≤ C‖∇(uh − u)‖‖∇(uI − u)‖
≤ δ|u− uh|21,Ω + C(δ)h2|u|22,Ω.(4.21)

Again, by Lemma 2.1, Lemma 3.4 and equations (2.11), (4.6), we find that

IIc = 〈(rhy − r) · n, uI − u〉 =

∫
Ω

div(rhy − r) (uI − u) dx+

∫
Ω

(rhy − r) · ∇(uI − u) dx

=

∫
Ω

(div rhy) (Ph(uI − u)) dx−
∫

Ω

(div r) (uI − u) dx

+

∫
Ω

(rhy − r) · ∇(uI − u) dx

=

∫
Ω

(y − yd) (Ph(uI − u)− (uI − u)) dx+

∫
Ω

(rhy − r) · ∇(uI − u) dx.

Using Cauchy-Schwarz inequality, approximation properties of uI and Lemma 4.1, we have

IIc ≤ ‖y − yd‖‖Ph(uI − u)− (uI − u)‖+ ‖rhy − r‖|uI − u|1,Ω
≤ Ch (‖y − yd‖+ ‖z‖2,Ω) |uI − u|1,Ω
≤ Ch2

(
‖y − yd‖2 + ‖z‖22,Ω + ‖u‖22,Ω

)
.(4.22)

Finally, we estimate the term IIb. For uI ∈ Qh, let (yhf (uI),p
h
f (uI)) = Sh(f, uI) ∈Wh×Vh satisfies

(phf (uI),vh)− (yhf (uI),div vh) = −〈vh · n, uI〉 ∀ vh ∈ Vh,(4.23)

(wh,div phf (uI)) = (f, wh) ∀ wh ∈Wh.(4.24)

Upon subtracting equations (4.1) and (4.23), we find

〈vh · n, uI − u〉 = (yhf (uI)− yhf (u),div vh)− (phf (uI)− phu,vh) ∀ vh ∈ Vh.

Take vh = rh − rhy ∈ Vh in the last equation to get

IIb = 〈(rh − rhy) · n, uI − u〉 = (yhf (uI)− yhf (u),div(rh − rhy))− (phf (uI)− phu, rh − rhy).
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Using the equations (3.4)-(3.8), (4.1)-(4.6), (4.23)-(4.24), Cauchy-Schwarz inequality and Young’s
inequality, we find that

IIb = (yh − y, yhf (uI)− yhf (u)) + (zhy − zh,div(phf (uI)− phf (u)))

= (yh − y, yhf (uI)− yhf (u))

≤ C(δ)‖yhf (uI)− yhf (u)‖2 + δ‖y − yh‖2.(4.25)

Now, to estimate ‖yhf (uI)− yhf (u)‖, let (φ̃,x) = S(yhf (uI)− yhf (u), 0) ∈W × V i.e. (φ̃,x) solves the
following system:

(x,v)− (φ̃, div v) = 0 ∀ v ∈ V,

(w,div x) = (yhf (uI)− yhf (u), w) ∀ w ∈W.

By elliptic regularity theory on convex polygonal domains, we have φ̃ ∈ H2(Ω) and

(4.26) ‖φ̃‖2,Ω + ‖x‖H(div,Ω) ≤ C‖yhf (uI)− yhf (u)‖.

Further, let (φ̃h,xh) = Sh(yhf (uI) − yhf (u), 0) ∈ Wh × Vh denote the mixed finite element approxi-

mation of (φ̃,x), we have

(xh,vh)− (φ̃h,div vh) = 0 ∀ vh ∈ Vh,(4.27)

(wh,div xh) = (yhf (uI)− yhf (u), wh) ∀ wh ∈Wh.(4.28)

Setting wh = yhf (uI)− yhf (u) ∈Wh in (4.28), we get

(4.29) ‖yhf (uI)− yhf (u)‖2 = (yhf (uI)− yhf (u),div xh).

By taking vh = phf (uI)− phf (u) ∈ Vh in (4.27), we find

(4.30) (φ̃h,div(phf (uI)− phf (u)))− (xh,p
h
f (uI)− phf (u)) = 0.

Now, using equations (4.23)-(4.24), (4.1)-(4.4), (4.30), Cauchy-Schwarz inequality and approxima-
tion properties of uI [18, Theorem 3.1.4] to find

‖yhf (uI)− yhf (u)‖2 = (yhf (uI)− yhf (u),div xh) + (φ̃h,div(phf (uI)− phf (u)))− (xh,p
h
f (uI)− phf (u))

= (yhf (uI)− yhf (u),div xh)− (xh,p
h
f (uI)− phf (u))

= 〈xh · n, uI − u〉
≤ ‖u− uI‖L2(Γ)‖xh‖L2(Γ)

≤ Ch3/2‖u‖2,Ω‖xh‖L2(Γ).

(4.31)

Let Phx be the L2 projection of x from L2(Ω) to Wh×Wh. Using the inverse inequality [12, Section
4.5], Lemma 3.4 and equation (4.26), we have

‖xh‖L2(Γ) ≤ ‖xh − Phx‖L2(Γ) + ‖Phx− x‖L2(Γ) + ‖x‖L2(Γ)

≤ Ch− 1
2 ‖xh − Phx‖+ Ch

1
2 ‖x‖1,Ω + C‖x‖1,Ω

≤ Ch− 1
2 (‖xh − x‖+ ‖x− Phx‖) + C‖x‖1,Ω

≤ Ch− 1
2h(‖x‖1,Ω + ‖φ̃‖2,Ω) + C‖x‖1,Ω

≤ C(‖x‖1,Ω + ‖φ̃‖2,Ω)

≤ C‖yhf (uI)− yhf (u)‖.(4.32)

Therefore, using the estimates (4.32) and (4.31), we have

(4.33) ‖yhf (uI)− yhf (u)‖ ≤ Ch3/2‖u‖2,Ω.
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By Lemma 4.1 and triangle inequality, we find

‖y − yh‖ ≤ ‖y − yhf (u)‖+ ‖yhf (u)− yh‖

≤ Ch‖y‖2,Ω + ‖yhf (u)− yh‖.(4.34)

Using equations (4.25), (4.33) and (4.34) to get

IIb ≤ Ch2
(
‖u‖22,Ω + ‖y‖22,Ω

)
+ δ‖yhf (u)− yh‖2.(4.35)

Combining the equations (4.18), (4.21), (4.22), (4.35) and setting δ to be small enough, we find that

|u− uh|21,Ω + ‖yhf (u)− yh‖2 ≤ Ch2
(
‖u‖22,Ω + ‖z‖22,Ω + ‖y‖22,Ω + ‖y − yd‖2

)
.

Take square root on both the sides to conclude the proof. �

Corollary 4.3. The following hold:

‖y − yh‖ ≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) ,
‖r− rh‖ ≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) ,
‖z − zh‖ ≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

Proof. Using the triangle inequality, Lemma 4.1 and Theorem 4.2, we have

‖y − yh‖ ≤ ‖y − yhf (u)‖+ ‖yhf (u)− yh‖
≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .(4.36)

In view of (3.6)-(3.7) and (4.5)-(4.6), we have the following system

(rhy − rh,vh)− (zhy − zh,div vh) = 0 ∀ vh ∈ Vh,(4.37)

(wh,div (rhy − rh)) = (y − yh, wh) ∀ wh ∈Wh.(4.38)

Using discrete Babuska-Brezzi condition [11, Chapter II] to find

(4.39) ‖zhy − zh‖ ≤ C‖rhy − rh‖.

Substituting vh = rhy − rh in (4.37) and then using (4.38) to get

‖rhy − rh‖2 = (y − yh, zhy − zh).

A use of Cauchy-Schwarz inequality and (4.39) gives

‖rhy − rh‖ ≤ C‖y − yh‖.

Now, using Lemma 4.1 and (4.36), we find

‖r− rh‖ ≤ ‖r− rhy‖+ ‖rhy − rh‖
≤ C (h ‖z‖2,Ω + ‖y − yh‖)
≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

Finally, by using Lemma 4.1 and (4.39), we get

‖z − zh‖ ≤ ‖z − zhy ‖+ ‖zhy − zh‖
≤ C (h ‖z‖2,Ω + ‖y − yh‖)
≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

This concludes the proof of this Lemma. �

We now proceed to obtain some relations which will be helpful in establishing the energy norm
estimates for the control. Let (yf ,pf ) = S(f, 0) and (yu,pu) = S(0, u). By the linearity of the
solution operator S and uniqueness of (y,p), we have y = yf + yu and p = pf + pu. From the
elliptic regularity theory for convex polygon domains [30, Theorem 3.1.2.1], we have yu ∈ H2(Ω).
Using the integration by parts and standard density arguments, we find that

(4.40) a(yu, t) = 0 ∀ t ∈ H2(Ω) ∩H1
0 (Ω).
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Using the equation (2.12), we have

(4.41) a(u, t) = 0 ∀ t ∈ H1
0 (Ω).

In view of the equations (4.40), (4.41) and the Poincare inequality, we find that yu = u. Similarly,
we can write yh = yhf +yhuh

and ph = phf +phuh
where (yhf ,p

h
f ) = Sh(f, 0) and (yhuh

,phuh
) = Sh(0, uh).

We prove the consistency result in the following lemma, yielding the perturbed Galerkin orthogo-
nality which plays a key role in deriving the error estimates in the energy as well as L2-norms.

Lemma 4.4. For any qh ∈ Qh, let (yhqh ,p
h
qh

) = Sh(0, qh). Then, it holds that

αa(u− uh, qh) + (yu − yhuh
, yhqh) = (yhf − yf , yhqh) + 〈(rhy − r) · n, qh〉.

Proof. Let qh ∈ Qh, we have (yhqh ,p
h
qh

) ∈Wh × Vh satisfies

(phqh ,vh)− (yhqh ,div vh) = −〈vh · n, qh〉 ∀ vh ∈ Vh,(4.42)

(wh,div phqh) = 0 ∀ wh ∈Wh.(4.43)

From (3.8), we have that αa(uh, qh) = −〈rh · n, qh〉. Taking vh = rh in (4.42) and then using the
equations (3.6), (3.7) and (4.43), we find

−〈rh · n, qh〉 = (phqh , rh)− (yhqh ,div rh)

= (zh,div phqh)− (yh − yd, yhqh)

= −(yh − yd, yhqh) = −(yhf + yhuh
− yd, yhqh).

Therefore, we have

(4.44) αa(uh, qh) + (yhuh
, yhqh) = (yd − yhf , yhqh).

Let (zyu , ryu) = S(yu, 0), (zyf , ryf ) = S(yf−yd, 0) and their discrete approximations are (zhyu , r
h
yu) =

Sh(yu, 0) and (zhyf , r
h
yf

) = Sh(yf − yd, 0), respectively. Using the definitions of S and Sh, we have

(yu, y
h
qh

) = (yu, y
h
qh
− qh) + (yu, qh) = (div ryu , y

h
qh
− qh) + (yu, qh)

= (div ryu , y
h
qh
− Phqh) + (div ryu , Phqh − qh) + (yu, qh)

= (div rhyu , y
h
qh
− Phqh) + (div ryu , Phqh − qh) + (yu, qh),(4.45)

and

(yf − yd, yhqh) = (yf − yd, yhqh − qh) + (yf − yd, qh) = (div ryf , y
h
qh
− qh) + (yf − yd, qh)

= (div ryf , y
h
qh
− Phqh) + (div ryf , Phqh − qh) + (yf − yd, qh)

= (div rhyf , y
h
qh
− Phqh) + (div ryf , Phqh − qh) + (yf − yd, qh).(4.46)

Adding (4.45) and (4.46) and using the facts that y = yu + yf , div r = div(ryu + ryf ) and div rhy =

div(rhyu + rhyf ), we find that

(y − yd, yhqh) = (div rhy , y
h
qh
− Phqh) + (div r, Phqh − qh) + (y − yd, qh)

= (div rhy , y
h
qh

)− (div rhy , Phqh) + (div r, Phqh)− (div r, qh) + (y − yd, qh)

= (div rhy , y
h
qh

),

where in obtaining the last equation, we have used (2.11) together with the fact that (div(r −
rhy), Phqh) = 0. Using the definitions of (yhqh ,p

h
qh

) ∈Wh×Vh, (zhy , r
h
y) ∈Wh×Vh and (2.12), we find

(y − yd, yhqh) = (div rhy , y
h
qh

) = (phqh , r
h
y) + 〈rhy · n, qh〉

= (zhy ,div phqh) + 〈(rhy − r) · n, qh〉+ 〈r · n, qh〉

= 〈(rhy − r) · n, qh〉 − αa(u, qh).

Therefore, we have

(4.47) αa(u, qh) + (yu, y
h
qh

) = −(yf − yd, yhqh) + 〈(rhy − r) · n, qh〉.
Upon subtracting (4.44) from (4.47), we get the desired result. �
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Next, we obtain an intermediate estimate required for the error analysis.

Lemma 4.5. For any (q, qh) ∈ Q×Qh, let (yq,pq) = S(0, q) and (yqh ,pqh) = S(0, qh). Then,

‖pq − pqh‖+ ‖yq − yqh‖ ≤ C‖q − qh‖1,Ω.

Proof. Since (yq,pq) = S(0, q) ∈W × V and (yqh ,pqh) = S(0, qh) ∈W × V , we have

(pq − pqh ,v)− (yq − yqh ,div v) = −〈v · n, q − qh〉 ∀ v ∈ V,(4.48)

(w,div(pq − pqh)) = 0 ∀ w ∈W.(4.49)

Taking v = pq − pqh ∈ V in (4.48) and using (4.49) to find

‖pq − pqh‖2 = −〈(pq − pqh) · n, q − qh〉.
From (4.49), it is evident that ‖div(pq − pqh)‖ = 0. Now, using Cauchy-Schwarz inequality and
Lemma 2.1, we find

(4.50) ‖pq − pqh‖ ≤ C‖q − qh‖ 1
2 ,Γ
≤ C‖q − qh‖1,Ω.

Since yq − yqh ∈W , there exists v ∈ V such that div v = yq − yqh and ‖v‖H(div,Ω) ≤ ‖yq − yqh‖ [9,
Lemma 2.2, p. 6]. Substituting div v = yq−yqh in (4.48) and then using Cauchy-Schwarz inequality
together with (4.50), we obtain

‖yq − yqh‖2 = (pq − pqh ,v) + 〈v · n, q − qh〉
≤ ‖pq − pqh‖‖v‖+ ‖q − qh‖ 1

2 ,Γ
‖v · n‖− 1

2 ,Γ

≤ ‖pq − pqh‖‖v‖+ ‖q − qh‖ 1
2 ,Γ
‖v‖H(div,Ω)

≤ C‖q − qh‖ 1
2 ,Γ
‖v‖H(div,Ω) ≤ C‖q − qh‖1,Ω‖yq − yqh‖.(4.51)

In view of (4.50) and (4.51), we have the desired estimate of this lemma. �

Lemma 4.6. Let (yhq ,p
h
q ) = Sh(0, q) and (yhqh ,p

h
qh

) = Sh(0, qh) for (q, qh) ∈ Q×Qh. Then,

‖phq − phqh‖+ ‖yhq − yhqh‖ ≤ C‖q − qh‖1,Ω.

Proof. For a given wh ∈ Wh, there exists vh ∈ Vh such that div vh = wh and ‖vh‖H(div,Ω) ≤ ‖wh‖
[9, Lemma 3.5, p. 17]. Taking this into account, the proof of this lemma follows using the similar
arguments as in the Lemma 4.5. �

We now derive the error estimates for the control in the energy norm.

Theorem 4.7. It holds that,

‖u− uh‖1,Ω ≤ Ch (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

Proof. In view of Theorem 4.2, it suffices to estimate ‖u− uh‖. Let uI ∈ Qh be the Lagrange nodal
interpolation of u. Let qh = uI − uh ∈ Qh, (yhqh ,p

h
qh

) = Sh(0, qh) and (yhu,p
h
u) = Sh(0, u). Using

Lemma 4.4, we find

‖yhqh‖
2 + α|qh|21,Ω = (yhu − yu, yhqh) + (yhuI

− yhu, yhqh) + αa(uI − u, qh)

+ (yhf − yf , yhqh) + 〈(rhy − r) · n, qh〉,(4.52)

where (yhuI
,phuI

) = Sh(0, uI). We now estimate each term in the right hand side of (4.52). Using
Cauchy-Schwarz inequality, Young’s inequality and Lemma 3.1, we find that

(yhu − yu, yhqh) ≤ ‖yhu − yu‖‖yhqh‖ ≤ C(δ)h2‖yu‖22,Ω + δ ‖yhqh‖
2,(4.53)

(yhf − yf , yhqh) ≤ ‖yhf − yf‖‖yhqh‖ ≤ C(δ)h2‖yf‖22,Ω + δ ‖yhqh‖
2.(4.54)

Again using Cauchy-Schwarz inequality, Young’s inequality, Lemma 4.6 and approximation proper-
ties of uI , we have

(yhuI
− yhu, yhqh) ≤ ‖yhuI

− yhu‖‖yhqh‖ ≤ C‖uI − u‖1,Ω‖y
h
qh
‖ ≤ C(δ)h2‖u‖22,Ω + δ ‖yhqh‖

2,

αa(uI − u, qh) ≤ C|u− uI |1,Ω|qh|1,Ω ≤ C(δ)h2‖u‖22,Ω + δ |qh|21,Ω.
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Lastly, we consider 〈(rhy − r) · n, qh〉. In view of Lemma 2.1, Lemma 3.4, equations (2.11) and (4.6),
we observe that

〈(rhy − r) · n, qh〉 =

∫
Ω

div (rhy − r) qh dx+

∫
Ω

(rhy − r) · ∇qh dx

=

∫
Ω

(div rhy) (Ph qh) dx−
∫

Ω

(div r) qh dx+

∫
Ω

(rhy − r) · ∇qh dx

=

∫
Ω

(y − yd) (Ph qh − qh) dx+

∫
Ω

(rhy − r) · ∇qh dx.

Therefore, using Cauchy-Schwarz inequality, Young’s inequality, Lemma 3.4 and Lemma 4.1, we get

〈(rhy − r) · n, qh〉 ≤ ‖y − yd‖‖Ph qh − qh‖+ ‖rhy − r‖|qh|1,Ω
≤ Ch (‖y − yd‖+ ‖z‖2,Ω) |qh|1,Ω
≤ C(δ)h2

(
‖z‖22,Ω + ‖y − yd‖2

)
+ δ |qh|21,Ω.(4.55)

Combining estimates (4.53)-(4.55) together with (4.52) and choosing δ sufficiently small, we obtain

(4.56) ‖yhqh‖+ |qh|1,Ω ≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) .

Further, let (y(ψ),p(ψ)) = S(ψ, 0) and (yh(ψ),ph(ψ)) = Sh(ψ, 0), where ψ = Ph qh−yhqh . By elliptic
regularity results

(4.57) ‖p(ψ)‖H(div,Ω) + ‖y(ψ)‖2,Ω ≤ C‖ψ‖.

We see that (yh(ψ),ph(ψ)) = Sh(ψ, 0) satisfy the following system of equations:

(ph(ψ),vh)− (yh(ψ),div vh) = 0 ∀ vh ∈ Vh,

(wh,div ph(ψ)) = (ψ,wh) ∀ wh ∈Wh.(4.58)

Taking wh = ψ in (4.58) and using Lemma 3.4 and integration by parts, we get

‖ψ‖2 = (div ph(ψ), ψ) = (div ph(ψ), Ph qh)− (yhqh ,div ph(ψ))

= (div ph(ψ), qh)− (phqh ,p
h(ψ))− 〈ph(ψ) · n, qh〉

= −(ph(ψ),∇qh) + 〈ph(ψ) · n, qh〉 − (phqh ,p
h(ψ))− 〈ph(ψ) · n, qh〉

= −
(
ph(ψ),∇qh

)
−
(
yh(ψ),div phqh

)
= −

(
ph(ψ),∇qh

)
.

Now using Cauchy-Schwarz inequality, (4.56), Lemma 3.1 and (4.57), we find

‖ψ‖2 ≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) ‖ph(ψ)‖

≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) (‖ph(ψ)− p(ψ)‖+ ‖p(ψ)‖)
≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) (h‖y(ψ)‖2,Ω + ‖p(ψ)‖)
≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) ‖ψ‖.

Thus, we obtain

(4.59) ‖ψ‖ ≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) .

Therefore, using Lemma 3.4, (4.59) and (4.56), we have

‖uI − uh‖ = ‖qh‖ ≤ ‖qh − Ph qh‖+ ‖Ph qh − yhqh‖+ ‖yhqh‖

≤ Ch|qh|1,Ω + ‖Ph qh − yhqh‖+ ‖yhqh‖
≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) .(4.60)

Finally, a use of triangle inequality, approximation properties of uI and (4.60) yields

(4.61) ‖u− uh‖ ≤ Ch (‖u‖2,Ω + ‖y‖2,Ω + ‖z‖2,Ω + ‖y − yd‖) .

The proof of this theorem is completed by taking into account (4.61) and Theorem 4.2. �
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Next, we proceed to obtain some auxiliary results in order to derive L2-norm error estimates. We
introduce an enriched discrete optimal control ũh [17] which is essential for the subsequent analysis.
For any boundary edge e which is such that e = Γ ∩ ∂T for some T ∈ Th, let je ∈ P6(T ) be the
bubble function defined by je = b2i b

2
j (3bi − 1)(3bj − 1) with bi, bj as the barycentric coordinates

associated to the endpoints of the edge e. Now, for T ∈ Th, if T shares an edge e with Γ, we define
the enriched Hermite element EH(T ) on T by

EH(T ) := H(T )⊕ span{je},

where H(T ) denotes the cubic Hermite finite element space defined on T . The enriched cubic
Hermite finite element space is then defined by

EQh := {w ∈ C0(Ω̄) : v|T ∈ Q(T ) ∀ T ∈ Th},

where Q(T ) = H(T ) if T does not share an edge to Γ and Q(T ) = EH(T ) if T shares an edge e to
Γ. The enriched discrete optimal control ũh ∈ EQh is defined by averaging as follows:

ũh(v) = uh(v) ∀ v ∈ Vh,
ũh(bT ) = uh(bT ) ∀ T ∈ Th,

∇ũh(v) =
1

|Tv|
∑
T∈Tv

∇(uh|T )(v) ∀ v ∈ Vh,∫
e

ũh ds =

∫
e

uh ds ∀ e ∈ Ebh,(4.62)

where bT denotes the barycenter of the element T . We state the approximation properties of the
enriched discrete optimal control in the following lemma. For the discrete optimal control uh and
the enriched discrete optimal control ũh, we have the following estimates.

Lemma 4.8. Let Th be a quasi uniform triangulation. Then, it holds that

‖uh − ũh‖+ h‖uh − ũh‖1,Ω ≤ Ch(‖u− uh‖1,Ω + h‖u‖2,Ω).

Proof. We refer the readers to the article [17] for the proof. �

Lemma 4.9. Let (yũh
,pũh

) = S(0, ũh) ∈W × V . Then,

‖yũh
− ũh‖ ≤ Ch (‖u− uh‖1,Ω + h‖u‖2,Ω) .

Proof. Note that ũh|Γi ∈ C1(Γ̄i) for all 1 ≤ i ≤ k, therefore ũh|Γi ∈ H3/2(Γi) for all 1 ≤ i ≤ k. Also
ũh is a continuous function on Ω̄, we have yũh

∈ H2(Ω) by the elliptic regularity theory on convex
polygonal domains. Since (yũh

,pũh
) = S(0, ũh), they satisfy the following system of equations:

(pũh
,v)− (yũh

,div v) = −〈v · n, ũh〉 ∀ v ∈ V,(4.63)

(w,div pũh
) = 0 ∀ w ∈W.(4.64)

Taking v = ∇x in (4.63) for x ∈ D(Ω), we get

(pũh
,∇x)− (yũh

,∆x) = −〈∇x · n, ũh〉.

Integrating by parts and using (4.64), we get

a(yũh
, x) = 0 ∀ x ∈ D(Ω).

Using the density of D(Ω) in H1
0 (Ω), we conclude that

(4.65) a(yũh
, x) = 0 ∀ x ∈ H1

0 (Ω).

Let w0 := yũh
− ũh ∈ H1

0 (Ω). Using (4.65) and (2.12), we find

a(w0, w0) = −a(ũh, w0) = a(u− ũh, w0).

Therefore, using Cauchy-Schwarz inequality together with Lemma 4.8, we find

(4.66) |w0|1,Ω ≤ C (|u− uh|1,Ω + |uh − ũh|1,Ω) ≤ C (‖u− uh‖1,Ω + h‖u‖2,Ω) .
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In order to obtain the L2-norm error estimates, we make use of the Aubin-Nitsche duality techniques.
Let w ∈ H1

0 (Ω) be the solution of {
−∆w = w0 in Ω,

w = 0 on Γ.

By the elliptic regularity theory on the convex polygonal domains, w ∈ H2(Ω) and ‖w‖2,Ω . ‖w0‖.
Let wI ∈ Qh ∩H1

0 (Ω) be the Lagrange interpolation of w. Since w0 ∈ H1
0 (Ω), we find

‖w0‖2 = a(w0, w) = a(w0, w − wI) + a(w0, wI) = a(w0, w − wI)− a(ũh, wI)

= a(w0, w − wI) + a(uh − ũh, wI − w) + a(uh − ũh, w)− a(uh, wI)

= I + II + III + IV.

Using Cauchy-Schwarz inequality, approximation properties of wI , Lemma 4.8 and (4.66), we find

I + II ≤ (|w0|1,Ω + |uh − ũh|1,Ω) |w − wI |1,Ω
≤ Ch‖w‖2,Ω (‖u− uh‖1,Ω + h‖u‖2,Ω) .(4.67)

Now, we apply integration by parts on III to get

III = a(uh − ũh, w) = −
∫

Ω

(uh − ũh)∆w dx+

∫
∂Ω

(uh − ũh)
∂w

∂n
ds.

We have
∫
e
ũh ds =

∫
e
uh ds ∀ e ∈ Ebh. Hence we can rewrite III as follows

III = −
∫

Ω

(uh − ũh)∆w dx+

∫
∂Ω

(uh − ũh)
∂(w − wI)

∂n
ds.

A use of Cauchy-Schwarz inequality, approximation property of wI , trace inequality and Lemma 4.8
yields

(4.68) III ≤ Ch‖w‖2,Ω (‖u− uh‖1,Ω + h‖u‖2,Ω) .

Since wI ∈ H1
0 (Ω), equation (3.8) implies IV = 0. Now, the proof is completed by taking into

account (4.67), (4.68) and the estimate ‖w‖2,Ω . ‖w0‖. �

Lemma 4.10. Let (sh,k) ∈Wh × V be such that

(k,vh)− (sh,div vh) = 0 ∀ vh ∈ Vh,(4.69)

(wh,div k) = 0 ∀ wh ∈Wh.(4.70)

Then, there exists a positive constant C such that

‖sh‖ ≤ Ch‖k‖H(div,Ω).

Proof. We apply the Aubin-Nitsche duality arguments. Let w ∈ H1
0 (Ω) be the weak solution of{

∆w = w1 in Ω,

w = 0 on Γ.

where w1 ∈ L2(Ω) is a given function. Convexity of the domain Ω implies that w ∈ H2(Ω) and
‖w‖2,Ω . ‖w1‖. Using (3.9) and (4.69), we have

(sh, w1) = (sh,div∇w) = (sh,div(Πh(∇w))) = (k,Πh(∇w))

= (k,Πh(∇w)−∇w) + (k,∇w)

= I + II.(4.71)

Using Cauchy-Schwarz inequality and Lemma 3.4, we get

(4.72) I ≤ ‖k‖‖Πh(∇w)−∇w‖ ≤ Ch‖∇w‖1,Ω‖k‖ ≤ Ch‖w1‖‖k‖H(div,Ω).

To estimate the term II, a use of integration by parts and (4.70) yields

II = (k,∇w) = −(div k, w) = (div k, Phw − w).
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Now, applying Cauchy-Schwarz inequality and Lemma 3.4 to get

(4.73) II ≤ ‖div k‖‖Phw − w‖ ≤ Ch‖w‖1,Ω‖k‖H(div,Ω) ≤ Ch‖w1‖‖k‖H(div,Ω).

Combining (4.71)-(4.73) completes the proof of this lemma. �

In the following theorem, we establish L2-norm error estimates for the control by exploiting the
Aubin-Nitsche duality argument.

Theorem 4.11. For the optimal control u ∈ Q and discrete optimal control uh ∈ Qh, the following
estimate holds

‖u− uh‖ ≤ Ch2 (‖u‖2,Ω + ‖z‖2,Ω + ‖y‖2,Ω + ‖y − yd‖) .

Proof. We begin the proof by defining the following auxiliary problem: to find φ ∈ Q such that

(4.74) Ja(φ) = min
t∈Q

Ja(t),

where Ja(t) := 1
2‖S1(0, t)− (u−uh)‖2 + α

2 ‖∇t‖
2 and S1(0, t) denotes the first component of S(0, t).

By the optimal control theory [51, Theorem 2.14], there exists a unique solution φ ∈ Q of the
minimization problem (4.74). Using the first order necessary optimality conditions, the unique
minimizer φ ∈ Q satisfies the following optimality condition

(4.75) αa(t, φ) + (yt, yφ) = (u− uh, yt) ∀ t ∈ Q,

where (yt,pt) = S(0, t) and (yφ,pφ) = S(0, φ). The optimality equation (4.75) can equivalently be
written as

(4.76) αa(φ, t) = −〈ra · n, t〉 ∀ t ∈ Q,

where (za, ra) = S(yφ − (u− uh), 0). By taking t = 1 in (4.76), find that

〈ra · n, 1〉 = 0,

which is the compatibility condition for the Neumann problem weakly solved by φ
−∆φ = 0 in Ω,

α
∂φ

∂n
= −ra · n on Γ.

Since yφ− (u−uh) ∈W , by the elliptic regularity theory on convex polygonal domains za ∈ H2(Ω)
and ra ∈ [H1(Ω)]2. We also have ‖za‖2,Ω ≤ C‖yφ − (u − uh)‖. By the trace theorem, we have

ra · n ∈ H
1
2 (Γi) ∀ 1 ≤ i ≤ k, which implies φ ∈ H2(Ω) by the elliptic regularity theory for the

Neumann problem [30, Theorem 3.1.2.3]. Therefore yφ ∈ H2(Ω) by the elliptic regularity theory on
convex polygonal domains [30, Theorem 3.1.2.1]. Taking t = φ in (4.75), then using the Cauchy-
Schwarz inequality together with the fact yφ = φ, we have the following estimate

‖φ‖1,Ω = ‖yφ‖1,Ω ≤ C‖u− uh‖.

Subsequently we get ‖za‖2,Ω ≤ C‖u− uh‖ and ‖φ‖2,Ω ≤ C‖u− uh‖.
Let (yuh

,puh
) = S(0, uh) and (yhφI

,phφI
) = Sh(0, φI) where φI ∈ Qh is the Lagrange interpolation

of φ. Taking t = u− uh in (4.75) and using Lemma 4.4, we obtain

‖u− uh‖2 = (u− uh, u− uh) = (u− uh, yu − yuh
) + (u− uh, yuh

− uh)

= (u− uh, yu−uh
) + (u− uh, yuh

− uh)

= αa(φ, u− uh) + (yφ, yu−uh
) + (u− uh, yuh

− uh)

= αa(φ− φI , u− uh) + (yφ − yhφI
, yu − yuh

) + αa(φI , u− uh)

+ (yhφI
, yu − yhuh

) + (yhφI
, yhuh

− yuh
) + (u− uh, yuh

− uh)

= αa(φ− φI , u− uh) + (yφ − yhφI
, yu − yuh

) + (yhf − yf , yhφI
)

+ 〈(rhy − r) · n, φI〉+ (yhφI
, yhuh

− yuh
) + (u− uh, yuh

− uh)

= I + II + III + IV + V + V I.(4.77)
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We now individually estimate each of the six terms in the right hand side of the (4.77). Using
Cauchy-Schwarz inequality and approximation property of φI , we get

I ≤ C|u− uh|1,Ω|φ− φI |1,Ω ≤ Ch‖φ‖2,Ω|u− uh|1,Ω ≤ Ch|u− uh|1,Ω‖u− uh‖.

Next, we consider the term II. Let (yhφ,p
h
φ) = Sh(0, φ). A use of Cauchy-Schwarz inequality, Lemma

4.5, Lemma 4.6, Lemma 3.1 and approximation properties of φI implies that

II = (yφ − yhφI
, yu − yuh

) = (yφ − yhφ, yu − yuh
) + (yhφ − yhφI

, yu − yuh
)

≤
(
‖yφ − yhφ‖+ ‖yhφ − yhφI

‖
)
‖yu − yuh

‖
≤ C (h‖φ‖2,Ω + ‖φ− φI‖1,Ω) ‖u− uh‖1,Ω
≤ Ch‖u− uh‖1,Ω‖u− uh‖.

Next, we consider the term III. By Lemma 3.4, we can write

III = (yhf − yf , yhφI
) = (Ph(yhf − yf ), yhφI

),

recall that (yf ,pf ) = S(f, 0) and (yhf ,p
h
f ) = Sh(f, 0). We find that

(
Ph(yhf − yf ),phf − pf

)
satisfy

the following equations:

(phf − pf ,vh)− (Ph(yhf − yf ),div vh) = 0 ∀ vh ∈ Vh,

(wh,div(phf − pf )) = 0 ∀ wh ∈ Wh.

Therefore, (Ph(yhf −yf ),phf −pf ) ∈Wh×V satisfy both the conditions (4.69)-(4.70) of Lemma 4.10.
Hence, from Lemma 4.10 and Lemma 3.1, we have

(4.78) ‖Ph(yhf − yf )‖ ≤ Ch‖phf − pf‖H(div,Ω) ≤ Ch2‖yf‖2,Ω ≤ Ch2‖y‖2,Ω.

Now using triangle inequality, Lemma 4.6, Lemma 3.1 and approximation properties of φI , we find

‖yhφI
‖ ≤ ‖yhφI

− yhφ‖+ ‖yhφ − yφ‖+ ‖yφ‖
≤ C (‖φ− φI‖1,Ω + h‖yφ‖2,Ω + ‖φ‖2,Ω)

≤ C‖u− uh‖.(4.79)

Combining (4.78) and (4.79), we have

III ≤ Ch2‖y‖2,Ω‖u− uh‖.

Now we move on to estimate the term IV . We have,

IV = 〈(rhy − r) · n, φI〉 = 〈(rhy − r) · n, φI − φ〉+ 〈(rhy − r) · n, φ〉.

Recalling that (yφ,pφ) = S(0, φ), we have

〈(rhy − r) · n, φ〉 = −(pφ, r
h
y − r) + (yφ,div(rhy − r))

= (phφ − pφ, r
h
y − r) + (yφ − yhφ,div(rhy − r))

+ (phφ, r− rhy) + (yhφ,div(rhy − r))

= (phφ − pφ, r
h
y − r) + (yφ − yhφ,div(rhy − r)) + (z − zhy ,div phφ)

= (phφ − pφ, r
h
y − r) + (yφ − yhφ,div(rhy − r)),

where we have used that div phφ = 0 and (wh,div(rhy − r)) = 0 ∀ wh ∈ Wh. Therefore term IV can
be written as

IV = 〈(rhy − r) · n, φI − φ〉+ (phφ − pφ, r
h
y − r) + (yφ − yhφ,div(rhy − r))

= IV a + IV b + IV c.

18



Mixed Finite Element Method for the Dirichlet Boundary Control Problem

By the use of Cauchy-Schwarz inequality, approximation properties of φI , Lemma 2.1 and Lemma
4.1, we find

IV a ≤ C‖φI − φ‖ 1
2 ,Γ
‖(rhy − r) · n‖− 1

2 ,Γ

≤ C‖φI − φ‖1,Ω‖rhy − r‖H(div,Ω)

≤ Ch2‖u− uh‖‖z‖2,Ω.

Again using Cauchy-Schwarz inequality, Lemma 3.1 and Lemma 4.1, we have

IV b + IV c ≤
(
‖phφ − pφ‖+ ‖yφ − yhφ‖

)
‖rhy − r‖H(div,Ω)

≤ Ch2‖yφ‖2,Ω‖z‖2,Ω
≤ Ch2‖u− uh‖‖z‖2,Ω.

Combining, we get

IV ≤ Ch2‖u− uh‖‖z‖2,Ω.
Let (yũh

,pũh
) = S(0, ũh) and (yhũh

,phũh
) = Sh(0, ũh), which is the standard mixed finite element

approximation of (yũh
,pũh

) where ũh is the enriched discrete control. We estimate the term V as
follows.

V = (yhφI
, yhuh

− yuh
)

= (yhuh
− yhũh

, yhφI
) + (yhũh

− yũh
, yhφI

) + (yũh
− yuh

, yhφI
)

= V a + V b + V c.

Firstly, we claim that V a = 0. Using (4.62) and definitions of (yhũh
,phũh

) and (yhuh
,phuh

), we see

(phuh
− phũh

,vh)− (yhuh
− yhũh

,div vh) = 0 ∀ vh ∈ Vh,(4.80)

(wh,div(phuh
− phũh

)) = 0 ∀ wh ∈Wh.(4.81)

Putting vh = phuh
− phũh

in (4.80) and using (4.81), we get phuh
= phũh

. Subsequently using the

surjectivity of div : Vh → Wh map, see [9, Lemma 3.5, p. 17], we have yhuh
= yhũh

and hence
V a = 0. Using exactly the same arguments as in estimating the term III, and the fact that
div puh

= div phũh
= div pũh

= 0, we have

V c ≤ Ch‖u− uh‖1,Ω‖u− uh‖,(4.82)

V b ≤ Ch2‖yũh
‖2,Ω‖u− uh‖.(4.83)

By the elliptic regularity theory on convex polygonal domains, we have

(4.84) ‖yũh
‖2,Ω ≤ C

k∑
i=1

‖ũh‖ 3
2 ,Γi

.

Let uc be a C1 interpolation of Clément type [12, Section 4.8] of u, then using trace and inverse
inequality and approximation properties of uc, we find

h2
k∑
i=1

‖ũh‖ 3
2 ,Γi
≤ Ch2

k∑
i=1

(
‖ũh − uc‖ 3

2 ,Γi
+ ‖uc‖ 3

2 ,Γi

)
≤ Ch 3

2

k∑
i=1

‖ũh − uc‖1,Γi
+ Ch2‖u‖2,Ω

≤ Ch (‖ũh − uc‖1,Ω + h‖u‖2,Ω)

≤ Ch (‖ũh − uh‖1,Ω + ‖uh − u‖1,Ω + h‖u‖2,Ω)

≤ Ch (‖u− uh‖1,Ω + h‖u‖2,Ω) .(4.85)

In view of (4.82)-(4.85), we have

V ≤ Ch‖u− uh‖‖u− uh‖1,Ω.
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Lastly, we handle the term V I,

V I = (u− uh, yuh
− uh)

= (yuh
− yũh

, u− uh) + (yũh
− ũh, u− uh) + (ũh − uh, u− uh)

= V Ia + V Ib + V Ic.

Using the same arguments as before and Lemma 3.4, Lemma 4.5 and Lemma 4.8, we find that

V Ia = (yuh
− yũh

, u− uh)

= (yuh
− yũh

− Ph (yuh
− yũh

), u− uh) + (Ph (yuh
− yũh

), u− uh)

≤ Ch (|yuh
− yũh

|1,Ω + ‖yuh
− yũh

‖) ‖u− uh‖
≤ Ch‖uh − ũh‖1,Ω‖u− uh‖
≤ Ch‖u− uh‖1,Ω‖u− uh‖.

A use of Lemma 4.8 and Lemma 4.9 yields

V Ib + V Ic ≤ Ch (‖u− uh‖1,Ω + h‖u‖2,Ω) ‖u− uh‖.
Therefore, we get

V I ≤ Ch‖u− uh‖1,Ω‖u− uh‖.
The proof is completed by combining (4.77) with the estimates on all the six terms I, II, III, IV, V, V I
and using Theorem 4.7. �

5. A Posteriori Error Analysis

In this section, a reliable and efficient a posteriori error estimator is derived with the help of
auxiliary problems and Helmholtz decomposition [9]. To this end, we define the following auxiliary
problem: Find (ỹ, p̃, z̃, r̃, ũ) ∈W × V ×W × V ×Q such that

(p̃,v)− (ỹ,div v) = −〈v · n, uh〉 ∀ v ∈ V,(5.1)

(w,div p̃) = (f, w) ∀ w ∈W,(5.2)

(r̃,v)− (z̃,div v) = 0 ∀ v ∈ V,(5.3)

(w,div r̃) = (yh − yd, w) ∀ w ∈W,(5.4)

αa(ũ, q) = −〈rh · n, q〉 ∀ q ∈ Q.(5.5)

We note that (yh,ph) and (zh, rh) are the standard mixed finite element approximation of (ỹ, p̃)
and (z̃, r̃), respectively. And uh is the standard conforming finite element approximation of ũ. By
substracting the corresponding equations of the system (5.1)-(5.5) from (2.8)-(2.12), we get the error
equations:

(p− p̃,v)− (y − ỹ,div v) = −〈v · n, u− uh〉 ∀ v ∈ V,(5.6)

(w,div(p− p̃)) = 0 ∀ w ∈W,(5.7)

(r− r̃,v)− (z − z̃,div v) = 0 ∀ v ∈ V,(5.8)

(w,div(r− r̃)) = (y − yh, w) ∀ w ∈W,(5.9)

αa(u− ũ, q) = −〈(r− rh) · n, q〉 ∀ q ∈ Q.(5.10)

Below, we prove a lemma which is useful in deriving a posteriori error estimates.

Lemma 5.1. The following estimate holds:(
|u− uh|1,Ω + ‖z − zh‖+ ‖y − yh‖+ ‖p− ph‖H(div,Ω) + ‖r− rh‖H(div,Ω)

)
≤ C

(
|ũ− uh|1,Ω + ‖ỹ − yh‖+ ‖z̃ − zh‖+ ‖r̃− rh‖H(div,Ω) + ‖p̃− ph‖H(div,Ω)

)
.

Proof. Take q = u− ũ ∈ Q in (5.10) to get

α|u− ũ|21,Ω = −〈(r− rh) · n, u− ũ〉
= −〈(r− r̃) · n, u− ũ〉 − 〈(r̃− rh) · n, u− ũ〉
= −〈(r− r̃) · n, u− uh〉 − 〈(r− r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉.
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Using (5.6) and (5.8) for v = r− r̃ and v = p− p̃, respectively, taking into account (5.9) and (5.7),
we find

α|u− ũ|21,Ω = (p− p̃, r− r̃)− (y − ỹ,div(r− r̃))− 〈(r− r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉
= (z − z̃,div(p− p̃))− (y − yh, y − ỹ)− 〈(r− r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉
= −(y − yh, y − ỹ)− 〈(r− r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉
= −(y − ỹ, y − ỹ)− (ỹ − yh, y − ỹ)− 〈(r− r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉.

Adding ‖y − ỹ‖2 to both the sides of the last equation to find

α|u− ũ|21,Ω + ‖y − ỹ‖2 = (yh − ỹ, y − ỹ)− 〈(r− rh) · n, uh − ũ〉
− 〈(rh − r̃) · n, uh − ũ〉 − 〈(r̃− rh) · n, u− ũ〉.

Upon taking q = uh − ũ ∈ Q in (5.10) and applying Lemma 2.1, we get

α|u− ũ|21,Ω + ‖y − ỹ‖2 = (ỹ − y, ỹ − yh) + αa(u− ũ, uh − ũ)

+ 〈(rh − r̃) · n, ũ− uh〉+ 〈(r̃− rh) · n, ũ− u〉
= (ỹ − y, ỹ − yh) + αa(u− ũ, uh − ũ)

+ 〈(rh − r̃) · n, u− uh〉
= (ỹ − y, ỹ − yh) + αa(u− ũ, uh − ũ)

+

∫
Ω

div (rh − r̃)(u− uh) dx+

∫
Ω

(rh − r̃) · ∇(u− uh) dx

= (ỹ − y, ỹ − yh) + αa(u− ũ, uh − ũ) +

∫
Ω

(rh − r̃) · ∇(u− uh) dx

+

∫
Ω

div (rh − r̃)((u− uh)− Ph(u− uh)) dx,(5.11)

where in the last equality we have used (5.4) and (3.7). Now, taking w = div(r− r̃) ∈ W in (5.9),
we find

‖div(r− r̃)‖2 = (y − yh,div(r− r̃)),

which yields

(5.12) ‖div(r− r̃)‖ ≤ ‖y − yh‖.
Now, take v = r− r̃ ∈ V in (5.8) to get

(5.13) ‖r− r̃‖2 = (z − z̃,div(r− r̃)).

Since z − z̃ ∈W , there exists v ∈ H1(Ω)2 such that div v = z − z̃ and

(5.14) ‖v‖1,Ω ≤ C‖z − z̃‖.
Further, using (5.8), (5.14) and Cauchy-Schwarz inequality, we have

‖z − z̃‖2 = (r− r̃,v) ≤ ‖r− r̃‖‖v‖ ≤ C‖r− r̃‖‖z − z̃‖,

which yields

(5.15) ‖z − z̃‖ ≤ C‖r− r̃‖.
In view of (5.15) and (5.13), we get

‖r− r̃‖ ≤ C‖div(r− r̃)‖.
Therefore,

(5.16) ‖r− r̃‖H(div,Ω) ≤ C‖div(r− r̃)‖.
Combining (5.15), (5.16) and (5.12), we get

‖z − z̃‖ ≤ C‖r− r̃‖H(div,Ω) ≤ C‖y − yh‖(5.17)

≤ C (‖y − ỹ‖+ ‖ỹ − yh‖) .(5.18)
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Using Cauchy-Schwarz inequality, Young’s inequality, Lemma 3.4 in (5.11), we find

α|u− ũ|21,Ω + ‖y − ỹ‖2 ≤ δ1‖y − ỹ‖2 +
C1

δ1
‖ỹ − yh‖2 + αδ2|u− ũ|21,Ω

+
C2α

δ2
|uh − ũ|21,Ω + δ3|u− uh|21,Ω +

C3

δ3
‖rh − r̃‖2H(div,Ω).

(5.19)

From (5.19), (5.18) and choosing δ1, δ2, δ3 small enough to get

|u− ũ|21,Ω + ‖z − z̃‖2 + ‖y − ỹ‖2 ≤ C
(
|ũ− uh|21,Ω + ‖ỹ − yh‖2 + ‖r̃− rh‖2H(div,Ω)

)
.(5.20)

A use of triangle inequality and (5.20) yields

|u− uh|1,Ω + ‖z − zh‖+ ‖y − yh‖ ≤ C (|ũ− uh|1,Ω + ‖ỹ − yh‖+ ‖z̃ − zh‖
+‖r̃− rh‖H(div,Ω)

)
.(5.21)

Now we estimate ‖r− rh‖H(div,Ω) and ‖p− ph‖H(div,Ω) as follows. A use of triangle inequality,
(5.17) and (5.21) gives

‖r− rh‖H(div,Ω) ≤ ‖r− r̃‖H(div,Ω) + ‖r̃− rh‖H(div,Ω)

≤ C
(
‖y − yh‖+ ‖r̃− rh‖H(div,Ω)

)
≤ C

(
|ũ− uh|1,Ω + ‖ỹ − yh‖+ ‖z̃ − zh‖+ ‖r̃− rh‖H(div,Ω)

)
.(5.22)

Put v = p− p̃ in (5.6) and using (5.7), Lemma 2.1 and Cauchy-Schwarz inequality, we find

‖p− p̃‖2H(div,Ω) = ‖p− p̃‖2 = 〈(p− p̃) · n, uh − u〉

=

∫
Ω

div (p− p̃)(uh − u) dx+

∫
Ω

(p− p̃) · ∇(uh − u) dx

=

∫
Ω

(p− p̃) · ∇(uh − u) dx

≤ |u− uh|1,Ω‖p− p̃‖.(5.23)

By triangle inequality, (5.23) and (5.21), we find

‖p− ph‖H(div,Ω) ≤ ‖p− p̃‖H(div,Ω) + ‖p̃− ph‖H(div,Ω)

≤ |u− uh|1,Ω + ‖p̃− ph‖H(div,Ω)

≤ C
(
|ũ− uh|1,Ω + ‖ỹ − yh‖+ ‖z̃ − zh‖+ ‖r̃− rh‖H(div,Ω) + ‖p̃− ph‖H(div,Ω)

)
.(5.24)

The proof is completed by combining (5.21), (5.22) and (5.24). �

Next, we introduce some notations which are required for further analysis. Let t be the unit tangent
vector on e ∈ Eh oriented clockwise. For an interior side e ∈ E ih shared by two neighboring triangles
T1 and T2 with corresponding unit tangent vectors t1 and t2 on e, we define the tangential jump of
v ∈ H(div,Ω) across the interior edge e as follows:

[[v · t]] = v|T1
· t1 − v|T2

· t2.
For a boundary edge e ∈ Ebh, there is a triangle T ∈ Th such that e = ∂T ∩ Γ. The tangential jump
across the boundary edge e is defined as follows:

[[v · t]] = v|T · t.
For v = (v1, v2) ∈ H1(Ω)2, w ∈ H1(Ω), we define rot v and curlw as follows:

rot v =
∂v2

∂x1
− ∂v1

∂x2

curlw =

(
∂w

∂x2
,− ∂w

∂x1

)
.

The following lemma is crucial to establish the reliability of the error estimator. The error is
decomposed by using a generalized Helmholtz decomposition under the assumption that the domain
is simply connected.
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Lemma 5.2. For v ∈W ×W , there exist w1 ∈ H1
0 (Ω) and w2 ∈ Q such that

v = ∇w1 + curlw2.

Moreover, the following estimate holds:

‖∇w1‖+ ‖∇w2‖ . ‖v‖.

Proof. For the proof, we refer the readers to [9, Lemma 4.1, p. 27]. �

We now define the estimator terms.
The volume residuals are defined as follows

η1,T = ‖yh − yd − div rh‖L2(T ), η1 =

(∑
T∈Th

η2
1,T

) 1
2

,

η2,T = hT ‖rot rh‖L2(T ), η2 =

(∑
T∈Th

η2
2,T

) 1
2

,

η3,T = hT ‖rot ph‖L2(T ), η3 =

(∑
T∈Th

η2
3,T

) 1
2

,

η4,T = ‖f − div ph‖L2(T ), η4 =

(∑
T∈Th

η2
4,T

) 1
2

,

η5,T = hT ‖ph +∇yh‖L2(T ), η5 =

(∑
T∈Th

η2
5,T

) 1
2

,

η6,T = hT ‖rh +∇zh‖L2(T ), η6 =

(∑
T∈Th

η2
6,T

) 1
2

.

The edge residuals are defined by

η1,e = |e| 12 ‖[[rh · t]]‖L2(e), η7 =

∑
e∈Eih

η2
1,e

 1
2

,

η2,e = |e| 12 ‖[[ph · t]]‖L2(e), η8 =

∑
e∈Eih

η2
2,e

 1
2

,

η3,e = |e| 12 ‖[[yh]]‖L2(e), η9 =

∑
e∈Eih

η2
3,e

 1
2

,

η4,e = |e| 12 ‖[[zh]]‖L2(e), η10 =

∑
e∈Eih

η2
4,e

 1
2

,

η5,e = α|e| 12
∥∥∥∥[[∂uh∂n

]]∥∥∥∥
L2(e)

, η11 =

∑
e∈Eih

η2
5,e

 1
2

,
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and the boundary residuals are given by

η6,e = |e| 12
∥∥∥∥α∂uh∂n + rh · n

∥∥∥∥
L2(e)

, η12 =

∑
e∈Ebh

η2
6,e

 1
2

,

η7,e = |e| 12
∥∥∥∥∂uh∂t + ph · t

∥∥∥∥
L2(e)

, η13 =

∑
e∈Ebh

η2
7,e

 1
2

,

η8,e = |e| 12 ‖uh − yh‖L2(e) , η14 =

∑
e∈Ebh

η2
8,e

 1
2

,

η9,e = |e| 12 ‖zh‖L2(e) , η15 =

∑
e∈Ebh

η2
9,e

 1
2

,

η10,e = |e| 12 ‖rh · t‖L2(e), η16 =

∑
e∈Ebh

η2
10,e

 1
2

.

The total error estimator is given by

ηh =
(
η2

1 + η2
2 + η2

3 + η2
4 + η2

5 + η2
6 + η2

7 + η2
8 + η2

9 + η2
10 + η2

11 + η2
12 + η2

13 + η2
14 + η2

15 + η2
16

) 1
2 .

In the next theorem, we prove the reliability of the error estimator ηh.

Theorem 5.3. (Reliability of the error estimator) It holds that

|u− uh|1,Ω + ‖z − zh‖+ ‖y − yh‖+ ‖p− ph‖H(div,Ω) + ‖r− rh‖H(div,Ω) . ηh.

Proof. In view of Lemma 5.1, it suffices to estimate |ũ−uh|1,Ω+‖ỹ−yh‖+‖z̃ − zh‖+‖r̃− rh‖H(div,Ω)+
‖p̃− ph‖H(div,Ω). Using (5.1)-(5.5) and (3.4)-(3.8), we find

(p̃− ph,vh)− (ỹ − yh,div vh) = 0 ∀ vh ∈ Vh,(5.25)

(wh,div(p̃− ph)) = 0 ∀ wh ∈Wh,(5.26)

(r̃− rh,vh)− (z̃ − zh,div vh) = 0 ∀ vh ∈ Vh,(5.27)

(wh,div(r̃− rh)) = 0 ∀ wh ∈Wh,(5.28)

αa(ũ− uh, qh) = 0 ∀ qh ∈ Qh.(5.29)

Using (5.29) and similar arguments as in [52, 54], we find

(5.30) |ũ− uh|21,Ω . η2
11 + η2

12.

Using the system of equations (5.25)-(5.28) and similar arguments as in [13, 9], we obtain

(5.31) ‖r̃− rh‖2H(div,Ω). η
2
1 + η2

2 + η2
7 + η2

16,

(5.32) ‖ỹ − yh‖2 . η2
5 + η2

9 + η2
14 + ‖p̃− ph‖2,

and

(5.33) ‖z̃ − zh‖2 . η2
6 + η2

10 + η2
15 + ‖r̃− rh‖2.

It remains to estimate ‖p̃− ph‖H(div,Ω). By Lemma 5.2, there exist γ ∈ H1
0 (Ω) and β ∈ H1(Ω)

such that

(5.34) p̃− ph = ∇γ + curlβ,

and

(5.35) ‖∇γ‖+ ‖∇β‖ . ‖p̃− ph‖.
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Using the error decomposition (5.34), we have

(5.36) ‖p̃− ph‖2 =

∫
Ω

(p̃− ph) · ∇γ dx+

∫
Ω

(p̃− ph) · curlβ dx.

Integrating by parts and using (5.2), we have∫
Ω

(p̃− ph) · ∇γ dx = −
∫

Ω

div(p̃− ph) γ dx =

∫
Ω

(div ph − f) γ dx

=

∫
Ω

(div ph − f)(γ − Phγ) dx,

where in obtaining the last equation, we have used
∫

Ω
(div ph − f)Phγ dx = 0 which follows from

(3.5). Using Cauchy-Schwarz inequality and Lemma 3.4, we find that

(5.37)

∫
Ω

(p̃− ph) · ∇γ dx . ‖div ph − f‖‖∇γ‖.

Now, consider the second term of the right hand side of (5.36). Let βh ∈ Pc1(Th) be an approximation
of β as defined in Lemma 3.5 such that curlβh ∈ Vh. Using (5.25), integration by parts and

p̃ · t = −∂uh

∂t on e ∈ Ebh, we get∫
Ω

(p̃− ph) · curlβ dx =

∫
Ω

(p̃− ph) · curl(β − βh) dx+

∫
Ω

(p̃− ph) · curlβh dx

=
∑
T∈Th

∫
T

(p̃− ph) · curl(β − βh) dx

=
∑
T∈Th

{∫
T

(rot(p̃− ph)(β − βh) dx−
∫
∂T

(p̃− ph) · t (β − βh) dx

}

= −
∑
T∈Th

∫
T

(rot ph)(β − βh) dx−
∑
e∈Eh

∫
e

[[(p̃− ph) · t]](β − βh) ds

= −
∑
T∈Th

∫
T

(rot ph)(β − βh) dx+
∑
e∈Eih

∫
e

[[ph · t]](β − βh) ds

+
∑
e∈Ebh

∫
e

(
∂uh
∂t

+ ph · t
)

(β − βh) ds,(5.38)

where in the second step we have used that

(5.39)

∫
Ω

(p̃− ph) · curlβh dx =

∫
Ω

(ỹ − yh) div(curlβh) dx = 0.

Using Cauchy-Schwarz inequality and Lemma 3.5, we get∫
Ω

(p̃− ph) · curlβ dx .

∑
T∈Th

h2
T ‖rot ph‖2L2(T ) +

∑
e∈Eih

|e|‖[[ph · t]]‖2L2(e)

+
∑
e∈Ebh

|e|
∥∥∥∥∂uh∂t + ph · t

∥∥∥∥2

L2(e)

 1
2

‖∇β‖L2(Ω).(5.40)

Finally, using the equations (5.35), (5.36), (5.37) and (5.40), we get

(5.41) ‖p̃− ph‖2H(div,Ω) . η
2
3 + η2

4 + η2
8 + η2

13.

The proof is concluded by combining (5.30), (5.31), (5.32), (5.33) and (5.41). �

Next, we proceed to discuss the efficiency estimates of the error estimator ηh. For T ∈ Th, we denote
by DT , union of the elements of triangulation that share an edge with T . Also for an edge e ∈ Eh,
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Te denotes the union of elements having e as an edge. Note that if e ∈ Ebh, then Te = T such that
e = ∂T ∩ Γ. We now briefly sketch the proof for local efficiency estimates for the error estimators.

Theorem 5.4. (Efficiency for the error estimator) The following estimates hold:

η1,T . ‖y − yh‖L2(T ) + ‖r− rh‖H(div,T ),(5.42)

η2,T . ‖r− rh‖L2(DT ),(5.43)

η3,T . ‖p− ph‖L2(T ),(5.44)

η4,T . ‖p− ph‖H(div,T ),(5.45)

η5,T . ‖y − yh‖L2(T ) + hT ‖p− ph‖L2(T ),(5.46)

η6,T . ‖z − zh‖L2(T ) + hT ‖r− rh‖L2(T ),(5.47)

η1,e . ‖r− rh‖L2(DT ),(5.48)

η2,e . ‖p− ph‖L2(Te),(5.49)

η3,e . ‖y − yh‖L2(Te) + |e|‖p− ph‖L2(Te),(5.50)

η4,e . ‖z − zh‖L2(Te) + |e|‖r− rh‖L2(Te),(5.51)

η5,e . |u− uh|H1(Te),(5.52)

η6,e . |u− uh|H1(Te) + ‖r− rh‖H(div,Te),(5.53)

η7,e . |u− uh|H1(Te) + ‖p− ph‖L2(Te),(5.54)

η8,e . ‖y − yh‖L2(Te) + |e| ‖p− ph‖L2(Te) + ‖u− uh‖L2(Te) + |e||u− uh|H1(Te),(5.55)

η9,e . ‖z − zh‖L2(Te) + |e| ‖r− rh‖L2(Te),(5.56)

η10,e . ‖r− rh‖L2(DT ).(5.57)

Proof. • (Lower bound of η1,T :) In view of (2.11), (5.4) and Cauchy-Schwarz inequality, we have

η1,T = ‖div(r̃− rh)‖L2(T ) ≤ ‖div(r̃− r)‖L2(T ) + ‖div(r− rh)‖L2(T )

. ‖y − yh‖L2(T ) + ‖r− rh‖H(div,T ).

• (Lower bounds of η2,T , η1,e and η10,e:) Set η2
T,e = η2

2,T + η2
1,e + η2

10,e. Let ω ∈ H1
0 (DT ) be an

interior bubble function defined on DT . Since ω vanishes at the boundary of DT , it can be extended
by zero outside DT , say ω̃ ∈ H1

0 (Ω) be its extension by zero to Ω. Then using the similar arguments
as in [9, Theorem 4.2, p. 29] by taking into account (2.10) and (5.3), we find

η2
T,e =

∫
DT

(r̃− rh) · curlω dx =

∫
DT

(r̃− r) · curlω dx+

∫
DT

(r− rh) · curlω dx

=

∫
Ω

(r̃− r) · curl ω̃ dx+

∫
DT

(r− rh) · curlω dx

=

∫
DT

(r− rh) · curlω dx.

Using ‖∇ω‖L2(DT ) . ηT,e, [9, Lemma 4.2, p. 28] and Cauchy-Schwarz inequality, we get

ηT,e . ‖r− rh‖L2(DT ).

• (Lower bound of η3,T :) Let T ∈ Th be arbitrary and bT ∈ P3(T ) be an interior bubble function
which takes the unit value at the barycenter of T and vanishes on ∂T . Define θ = bT (rot ph) on T

and θ̃ ∈ H1
0 (Ω) be the extension of θ by zero to Ω. Using norm equivalence on finite dimensional

vector spaces, we have

‖rot ph‖2L2(T ) .
∫
T

bT |rot ph|2 dx =

∫
T

θ rot ph dx =
∑
T∈Th

∫
T

θ̃ rot ph dx.
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Using equations (5.39), (5.38), (2.8) and (5.1) we get∑
T∈Th

∫
T

θ̃ rot ph dx = −
∫

Ω

(p̃− ph) · curl θ̃ dx

= −
∫

Ω

(p̃− p) · curl θ̃ dx−
∫

Ω

(p− ph) · curl θ̃ dx

= −
∫

Ω

(y − ỹ) div(curl θ̃) dx+

∫
Γ

(u− uh) (curl θ̃ · n) ds−
∫
T

(p− ph) · curl θ dx

=

∫
T

(ph − p) · curl θ dx.

Therefore, using Cauchy-Schwarz inequality and ‖∇θ̃‖L2(T ) ≤ h−1
T ‖rot ph‖L2(T ) [52, 53], we get

(5.58) η3,T . ‖p− ph‖L2(T ).

• (Lower bounds of η4,T , η5,T and η6,T :) The estimate (5.45) is immediate with the observation that

‖f − div ph‖L2(T ) = ‖div(p− ph)‖L2(T ) ≤ ‖p− ph‖H(div,T ),

and a use of the arguments as in [9, Lemma 4.5, p. 33 ] yields

(5.59) η5,T . ‖y − yh‖L2(T ) + hT ‖p− ph‖L2(T ),

(5.60) η6,T . ‖z − zh‖L2(T ) + hT ‖r− rh‖L2(T ).

• (Lower bound of η2,e:) We begin by observing that for any β ∈ Q, using (5.39) and (5.38), we
have ∑

e∈Eih

∫
e

[[ph · t]]β ds =
∑
T∈Th

∫
T

(rot ph)β dx+

∫
Ω

(p̃− ph) · curlβ dx

−
∑
e∈Ebh

∫
e

(
∂uh
∂t

+ ph · t
)
β ds.

(5.61)

Let e ∈ E ih be an interior edge. Let be ∈ P4(Te) be an edge bubble function which takes the unit
value at the midpoint of e and vanishes on ∂Te \ e . Define θ = be [[ph · t]] on Te, where t is the

unit tangent vector on e. Let θ̃ ∈ H1
0 (Ω) be an extension of this function by zero to Ω. Further, θ

satisfies the following estimates [52, 53]

‖∇θ‖L2(Te) . |e|−
1
2 ‖[[ph · t]]‖L2(e),(5.62)

‖θ‖L2(Te) . |e|
1
2 ‖[[ph · t]]‖L2(e).(5.63)

Using the norm equivalence on finite dimensional vector spaces and (5.61), we have

‖[[ph · t]]‖2L2(e) .
∫
e

θ [[ph · t]] ds =
∑
e∈Eih

∫
e

[[ph · t]] θ̃ ds

=
∑
T∈Th

∫
T

(rot ph) θ̃ dx+

∫
Ω

(p̃− ph) · curl θ̃ dx−
∑
e∈Ebh

∫
e

(
∂uh
∂t

+ ph · t
)
θ̃ ds

=

∫
Ω

(p̃− p) · curl θ̃ dx+

∫
Ω

(p− ph) · curl θ̃ dx+

∫
Te

(rot ph) θ dx

=

∫
Ω

(y − ỹ) div(curl θ̃) dx−
∫

Γ

(u− uh) (curl θ̃ · n) ds

+

∫
Te

(p− ph) · curl θ dx+

∫
Te

(rot ph) θ dx

=

∫
Te

(p− ph) · curl θ dx+

∫
Te

(rot ph) θ dx.(5.64)
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Finally, using Cauchy-Schwarz inequality, (5.58) and estimates (5.62), (5.63) in (5.64), we get the
estimate (5.49).
• (Lower bound of η7,e:) Let e ∈ Ebh and T ∈ Th be the triangle having an edge e. Let be ∈ P2(T )

be an edge bubble function such that it vanishes on ∂T \ e and takes the unit value at the midpoint

of e. We define θ = be
(
∂uh

∂t + ph · t
)

on T where t is the unit tangent vector on the edge e. We

extend this function by zero to Ω and call it to be θ̃. The function θ satisfies the following estimates
[52, 53]

‖∇θ‖L2(Te) . |e|−
1
2

∥∥∥∂uh
∂t

+ ph · t
∥∥∥
L2(e)

,(5.65)

‖θ‖L2(Te) . |e|
1
2

∥∥∥∂uh
∂t

+ ph · t
∥∥∥
L2(e)

.(5.66)

Now using the norm equivalence on finite dimensional spaces and equations (5.39), (5.38), we have∥∥∥∂uh
∂t

+ ph · t
∥∥∥2

L2(e)
.
∫
e

θ

(
∂uh
∂t

+ ph · t
)
ds =

∑
e∈Ebh

∫
e

θ̃

(
∂uh
∂t

+ ph · t
)
ds

=

∫
Ω

(p̃− ph) · curl θ̃ dx+
∑
T∈Th

∫
T

(rot ph) θ̃ dx−
∑
e∈Eih

∫
e

[[ph · t]] θ̃ ds

=

∫
Ω

(p̃− p) · curl θ̃ dx+

∫
T

(p− ph) · curl θ dx+

∫
T

(rot ph) θ dx

=

∫
Ω

(y − ỹ) div(curl θ̃) dx−
∫

Γ

(u− uh) (curl θ̃ · n) ds

+

∫
T

(p− ph) · curl θ dx+

∫
T

(rot ph) θ dx

=

∫
T

(p− ph) · curl θ dx+

∫
T

(rot ph) θ dx−
∫
e

(u− uh) (curl θ · n) ds.

Using Cauchy-Schwarz inequality, Lemma 2.1, (5.58), (5.65) and (5.66), we get

(5.67) η7,e . |u− uh|H1(Te) + ‖p− ph‖L2(Te).

• (Lower bound of η3,e:) Let e ∈ E ih. A use of trace inequality [12, Section 1.6] yields

|e| 12 ‖[[yh]]‖L2(e) = |e| 12 ‖[[yh − y]]‖L2(e)

. ‖yh − y‖L2(Te) + |e|‖∇(yh − y)‖L2(Te)

= ‖yh − y‖L2(Te) + |e|‖∇yh + p‖L2(Te)

. ‖y − yh‖L2(Te) + |e|‖∇yh + ph‖L2(Te) + |e|‖p− ph‖L2(Te).

We finally get the desired estimate by using (5.46).
• (Lower bound of η4,e:) Let e ∈ E ih. A use of trace inequality [12, Section 1.6] yields

|e| 12 ‖[[zh]]‖L2(e) = |e| 12 ‖[[zh − z]]‖L2(e)

. ‖zh − z‖L2(Te) + |e|‖∇(zh − z)‖L2(Te)

= ‖zh − z‖L2(Te) + |e|‖∇zh + r‖L2(Te)

. ‖z − zh‖L2(Te) + |e|‖∇zh + rh‖L2(Te) + |e|‖r− rh‖L2(Te).

We finally get the desired estimate by using (5.47).
• (Lower bound of η8,e:) For any v ∈ V , using the equations (5.1), (5.2) and Green’s identity, we

find that ∑
e∈Ebh

∫
e

(uh − yh)(v · n) ds =
∑
T∈Th

∫
T

(ph − p̃) · v dx+
∑
T∈Th

∫
T

(ỹ − yh)div v dx

−
∑
T∈Th

∫
T

(∇yh + ph) v dx+
∑
e∈Eih

∫
e

[[yh]](v · n) ds.

(5.68)
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Let e ∈ Ebh be arbitrary and T be the triangle such that e = ∂T ∩ Γ. Let be ∈ V be a lowest order
Raviart-Thomas basis function corresponding to an edge e such that be ·ne = 1 on e and be ·n = 0
for all other edges except e (see [7]). Define ve = be (uh−yh) on Ω. Note that ve and div ve vanish
outside T . Using the standard scaling arguments, we have the following estimates

‖div ve‖L2(Te) . |e|−
1
2 ‖uh − yh‖L2(e),(5.69)

‖ve‖L2(Te) . |e|
1
2 ‖uh − yh‖L2(e).(5.70)

Then using the norm equivalence on finite dimensional spaces and (5.68), we have that

‖uh − yh‖2L2(e) =

∫
e

ve · ne (uh − yh) ds

=
∑
T∈Th

∫
T

(ph − p̃) · ve dx+
∑
T∈Th

∫
T

(ỹ − yh)div ve dx

−
∑
T∈Th

∫
T

(∇yh + ph) · ve dx+
∑
e∈Eih

∫
e

[[yh]](ve · n) ds

=

∫
T

(ph − p) · ve dx+

∫
Ω

(p− p̃) · ve dx

+

∫
T

(y − yh) div ve dx+

∫
Ω

(ỹ − y) div ve dx

−
∫
T

(∇yh + ph) · ve dx

=

∫
T

(ph − p) · ve dx+

∫
T

(y − yh) div ve dx−
∫
T

(∇yh + ph) · ve dx

−
∫
T

(u− uh) div ve dx−
∫
T

∇(u− uh) · ve dx,

where in the last equality, we have used equation (5.6) and Lemma 2.1. By the use of Cauchy-
Schwarz inequality, (5.69), (5.70) and (5.59), we have the desired estimate (5.55).
• (Lower bound of η9,e:) The desired estimate (5.56) can be obtained by applying the same set

of arguments used for obtaining (5.55).
• (Lower bound of η5,e:) Let q ∈ Q be arbitrary. Then using (2.12), we find that

αa(ũ, q)− αa(uh, q) = −
∫

Γ

q (rh · n) ds− α
∫

Ω

∇uh · ∇q dx

= −
∑
T∈Th

{∫
Γ∩∂T

q (rh · n) ds+ α

∫
T

∇uh · ∇q dx

}
.(5.71)

Apply integration by parts on the second term on the right hand side of (5.71) to get

αa(ũ− uh, q) =
∑
T∈Th

{
−
∫

Γ∩∂T
q (rh · n) ds+ α

∫
T

∆uh q dx− α
∫
∂T

∂uh
∂n

q ds

}

= −α
∑
e∈Eih

∫
e

[[
∂uh
∂n

]]
q ds−

∑
e∈Ebh

∫
e

(
α
∂uh
∂n

+ rh · n
)
q ds.(5.72)

Let e ∈ E ih and be ∈ P4(Te) be an edge bubble function which vanishes on ∂Te \ e and takes the
value one at the midpoint of e. Then by equivalence of two norms on finite dimensional spaces, we
get

α

∥∥∥∥ [[∂uh∂n
]] ∥∥∥∥2

L2(e)

. α
∫
e

be

[[
∂uh
∂n

]]2

ds.
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Define θ = be
[[
∂uh

∂n

]]
on Te where n is the outward unit normal vector on e and θ̃ ∈ H1

0 (Ω) be an
extension of θ by zero to Ω. Then using the equation (5.72) and (5.10), we have

α

∥∥∥∥ [[∂uh∂n
]] ∥∥∥∥2

L2(e)

≤ α
∫
e

θ

[[
∂uh
∂n

]]
ds = α

∑
e∈Eih

∫
e

θ̃

[[
∂uh
∂n

]]
ds

= −α
∑
T∈Th

∫
T

∇(ũ− uh) · ∇θ̃ dx

= −α
∫

Ω

∇(ũ− u) · ∇θ̃ dx− α
∫
Te

∇(u− uh) · ∇ θ dx

= 〈(r + rh) · n, θ̃〉 − α
∫
Te

∇(u− uh) · ∇θ dx

= −α
∫
Te

∇(u− uh) · ∇θ dx.

Using the estimate ‖∇θ‖L2(Te) ≤ |e|−
1
2

∥∥ [[∂uh

∂n

]] ∥∥
L2(e)

[52, 53] and Cauchy-Schwarz inequality, we

obtain the estimate (5.52).
• (Lower bound of η6,e:) Let e ∈ Ebh and be ∈ P2(T ) be an edge bubble function which vanishes

on ∂T \ e, where T ∈ Th is the triangle such that e ⊂ ∂T . Define θ = be
(
∂uh

∂n + rh · n
)

on T where

n is the outward unit normal vector on e. Let θ̃ be an extension of θ by zero to Ω. Then using the
norm equivalence on finite dimensional spaces, equations (5.10) and (5.72), we have∥∥∥α∂uh

∂n
+ rh · n

∥∥∥2

L2(e)
.
∑
e∈Ebh

∫
e

θ̃

(
α
∂uh
∂n

+ rh · n
)
ds

= −α
∫

Ω

∇(ũ− uh) · ∇θ̃ dx

= −α
∫

Ω

∇(ũ− u) · ∇θ̃ dx− α
∫
T

∇(u− uh) · ∇θ dx

=

∫
e

θ (rh − r) · nds− α
∫
T

∇(u− uh) · ∇θ dx.

Now, using the estimate ‖∇θ‖L2(T ) . |e|−
1
2

∥∥∥α∂uh

∂n + rh ·n
∥∥∥
L2(e)

[52, 53], Cauchy-Schwarz inequality

and Lemma 2.1 in the last equation, we get the desired estimate. �

6. Numerical Realization

In this section, we present the numerical results of two test examples to validate the theoretical
findings. The results of a priori error estimates derived in Section 4 are validated by the first
experiment. On the other hand the second experiment validates the reliability and the efficiency of
the error estimator discussed in Section 5. In the first example, mesh is refined uniformly while in
the second example instead of uniform mesh refinement, the following adaptive strategy is used for
mesh refinement :

SOLVE → ESTIMATE → MARK → REFINE.

First, we solve the discrete system (3.4)-(3.8) and then compute the error estimator ηh in the step
ESTIMATE. We use the Dörfler’s marking strategy [22] with parameter θ = 0.4 for marking
the elements for refinement. Using the newest vertex bisection algorithm, the marked elements are
refined to obtain a new adaptive mesh. All the computations have been performed using the software
package MATLAB and the discrete system is solved using a preconditioned projection algorithm. In
this direction, we modify the cost functional with known solution. The cost functional J is modified
to Jm, which is defined by

Jm(w, p) =
1

2
‖w − yd‖2 +

α

2
|p− ud|21,Ω,
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where (w, p) ∈W ×Q and ud ∈ Q is a given function. Then the minimization problem reads: Find
(y, u) ∈W ×Q such that

Jm(y, u) = min
(w,p)∈W×Q

Jm(w, p),

subject to the condition that (w,k) = S(f, p). It can be easily checked that the continuous optimality
system takes the form:

(p,v)− (y,div v) = −〈v · n, u〉 ∀ v ∈ V,
(w,div p) = (f, w) ∀ w ∈W,

(r,v)− (z,div v) = 0 ∀ v ∈ V,
(w,div r) = (y − yd, w) ∀ w ∈W,
αa(u, q) = −〈r · n, q〉+ αa(ud, q) ∀ q ∈ Q.

Accordingly, the discrete optimality system is modified as well.

(ph,vh)− (yh,div vh) = −〈vh · n, uh〉 ∀ vh ∈ Vh,
(wh,div ph) = (f, wh) ∀ wh ∈Wh,

(rh,vh)− (zh,div vh) = 0 ∀ vh ∈ Vh,
(wh,div rh) = (yh − yd, wh) ∀ wh ∈Wh,

αa(uh, qh) = −〈rh · n, qh〉+ αa(ud, qh) ∀ qh ∈ Qh.

In this case, a posteriori error estimator η5,e is modified as follows:

η5,e = |e| 12
∥∥∥∥α∂(uh − ud)

∂n
+ rh · n

∥∥∥∥
L2(e)

.

Example 6.1. In this experiment, we consider Ω = (0, 1) × (0, 1) and the parameter α = 1 to-
gether with the following data: the state y(x1, x2) = e(x1+x2), p(x1, x2) = −∇y, the adjoint state
z(x1, x2) = x2

1(1 − x2
1)2x2

2(1 − x2
2)2, r(x1, x2) = −∇z and the control u(x1, x2) = e(x1+x2). Then

obtain f = −∆y and yd = y + ∆z. Note that the choice of z leads to ud = u.
Table 1 shows the errors and order of convergence of the numerical approximations of the state,
adjoint state and control in L2-norm. The errors and the orders of convergence of the numerical
approximations of the gradient of state, gradient of adjoint state and control in H(div,Ω) norm
and H1-norm are computed and shown in Table 2. It is evident from these tables that the error
converges with optimal rate in the respective norms.The plots of the exact and discrete controls are
shown in the Figure 1.

h ‖y − yh‖ Order ‖z − zh‖ Order ‖u− uh‖ Order

2−2 3.712 x 10−1 - 3.183 x 10−3 - 5.064 x 10−2 -

2−3 1.877 x 10−1 1.187 1.520 x 10−3 1.286 1.593 x 10−2 2.014

2−4 9.405 x 10−2 1.094 7.446 x 10−4 1.130 4.298 x 10−3 2.074

2−5 4.705 x 10−2 1.046 3.700 x 10−4 1.056 1.102 x 10−3 2.056

2−6 2.353 x 10−2 1.023 1.847 x 10−4 1.025 2.778 x 10−4 2.034

2−7 1.176 x 10−2 1.011 9.230 x 10−5 1.012 6.961 x 10−5 2.019

Table 1. Errors and orders of convergence in L2-norm.
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h ‖p− ph‖H(div,Ω) Order ‖r− rh‖H(div,Ω) Order ‖u− uh‖1,Ω Order

2−2 9.818 x 10−1 - 2.040 x 10−1 - 5.852 x 10−1 -

2−3 4.980 x 10−1 1.182 1.130 x 10−1 1.029 3.137 x 10−1 1.086

2−4 2.493 x 10−1 1.095 5.740 x 10−2 1.071 1.609 x 10−1 1.057

2−5 1.246 x 10−1 1.048 2.880 x 10−2 1.042 8.118 x 10−2 1.034

2−6 6.227 x 10−2 1.023 1.441 x 10−2 1.022 4.070 x 10−2 1.019

2−7 3.113 x 10−2 1.012 7.207 x 10−3 1.011 2.037 x 10−2 1.010

Table 2. Errors and orders of convergence in H(div,Ω) and H1-norm.

Figure 1. The computed control(left) and exact control(right) for Example 6.1.

Example 6.2. In this example, we consider the L−shaped domain as shown in the Figure 3a and
the regularization parameter α = 1. The data is chosen as follows: the state y(r, θ) = r(2/3) sin ( 2θ

3 ),

the adjoint state z(x1, x2) = x2
1(1−x2

1)2x2
2(1−x2

2)2 and control variable u(r, θ) = r(2/3) sin ( 2θ
3 ). We

then compute p = −∇y, r = −∇z, f = −∆y, yd = y + ∆z and ud = u as in the previous example.
Figure 2a illustrates the behavior of the error estimator ηh and the total error |u−uh|1,Ω+‖z−zh‖+
‖y− yh‖+ ‖p− ph‖H(div,Ω) + ‖r− rh‖H(div,Ω) with respect to increasing number of total degrees of
freedom (total number of unknowns for optimal state y, p, optimal control u and optimal adjoint
state z, r). This figure confirms the reliability of the error estimator and we observe that the error
and the estimator both converge with the linear rate which is optimal. The convergence history
of the estimator contributions η1, ηi for 5 ≤ i ≤ 16 is recorded in Figures 4a and 4b, note that
η2 = η3 = η4 = 0 for this experiment. Figure 2b shows the efficiency of the error estimator using
the efficiency indices(estimator/total error). The adaptive mesh refinement is depicted through
Figure 3a, as expected we observe more refinement near the corner where the optimal variables have
singular behavior. The plots of the exact and discrete controls on an adaptive mesh is shown in the
Figure 3b. We have compared the error and estimator for different values of marking parameter θ
in Figure 5a and 5b.

7. Conclusions

In this article we have developed a priori and a posteriori error analysis of mixed finite element
method for the second order Dirichlet boundary control problem using energy space based ap-
proach. It is advantageous to use the mixed finite element methods for Dirichlet boundary control

32



Mixed Finite Element Method for the Dirichlet Boundary Control Problem

(a) Error and estimator (b) Efficiency Index

Figure 2. Error, Estimator and Efficiency Index for Example 6.2.

(a) Adaptive mesh refinement (b) Discrete control and exact control

Figure 3. Adaptive mesh refinement and plots of the discrete (left) and the
exact control (right) for Example 6.2.

problem as it naturally incorporate the normal derivative of costate on the boundary in the weak
formulation. The optimality system, construction of the suitable auxiliary problems and Helmholtz
decomposition are crucial ingredients used in the analysis. The convergence of the method is illus-
trated over both uniform and adaptive meshes through numerical experiments. Though the analysis
is carried out in two dimension but the same ideas can be extended to three dimension.
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