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ABSTRACT. Wormhole propagation plays a very important role in the product enhancement of oil and gas reser-
voir. A new combined hybrid mixed finite element method is proposed to solve incompressible wormhole propaga-
tion problem with discontinuous Galerkin finite element procedure, in which, the new hybrid mixed finite element
algorithm is established for pressure equation, while the discontinuous Galerkin finite element method is considered
for concentration equation, and then the porosity function is computed straightly by the approximate value of the
concentration. This new combined method can keep local mass balance, meantime it also keeps the boundedness
of the porosity. The convergence of the proposed method is analyzed and the optimal error estimate is derived. Fi-
nally, numerical examples are presented to verify the validity of the algorithm and the correctness of the theoretical
results.

1. INTRODUCTION

The acid treatment of carbonate reservoirs is a widely practiced oil and gas well stimulation technique. In
fact, when acids are injected into oil production wells, chemical reactions cause the dissolution of the material
near the wellbore to result into flow channels. Such flow channels look like worm holes that they are usually
called wormholes. Because of its important role in the product enhancement of oil and gas reservoir, the
wormhole propagations have been a topic of key interest for research during recent decades. The theoretical
researches on numerical methods for these problems have extensive practicability and important significance.

Here, we will construct a new combined numerical procedure to solve the incompressible wormhole propaga-
tion problem which is usually described by the following nonlinear partial differential equations (see [1, 2, 3]):

(1)



∂φ

∂t
=
αkcav(cf − cs)

ρs
, x ∈ Ω, 0 ≤ t ≤ T,

∂φ

∂t
+∇ · u = f, x ∈ Ω, 0 ≤ t ≤ T,

u =
−k(φ)

µ
∇p, x ∈ Ω, 0 ≤ t ≤ T,

∂(φcf )

∂t
+∇ · (ucf ) = ∇ · (φD(u)∇cf ) + kcav(cs − cf ) + fIcI − fP cf ,

and the corresponding initial-boundary conditions are considered as follows:

(2)

{
φ(x, 0) = φ0(x), cf (x, 0) = c0

f (x), x ∈ Ω,

u · n = 0, (φD(u)∇cf − cfu) · n = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

where Ω ⊂ Rd(d = 2, 3) denotes a bounded polygonal/polyhedral domain; α is the dissolving constant of
the acid; ρs is the density of the rock; n is the unit outward normal vector to ∂Ω; the functions p and u
denote the pressure and Darcy velocity; φ and k are the porosity and permeability of rocks, and µ is the
viscosity of fluid; av is the interfacial area available for reaction; f , fI and fP are the external volumetric
flow rate, the injection flow rate and the production flow rate, respectively; cf , cs and cI are the concentrations
of acid in the fluid phase, the fluid-solid interface and the injected flow, respectively; Diffusion coefficient
D(u) = φ[dmI+ |u|(dIE(u)+dtE

⊥(u))] comes from two aspects: small molecule diffusion of oil field scale
problem, and speed-related diffusion in petroleum engineering, where the matrix E(u) = (uiuj/|u|2)d×d and
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E⊥(u) = I − E(u); kc is the local mass-transfer coefficient. In the case of first order kinetic reaction, the
concentrations cs and cf satisfy the relationship:

(3) cs =
cf

1 + ks/kc
,

where ks is the kinetic constant for reaction. The quantitative relationship between the coefficients k, v and φ
is as follows:

(4)
k

k0
=

φ

φ0
(
φ(1− φ0)

φ0(1− φ)
)2,

av
a0

=
1− φ
1− φ0

,

where k0, a0, and φ0 are the initial values for k, av, φ.
Many numerical methods have been constructed for simulating the wormhole propagation. In [3], Kou etc.

used a classical mixed finite element procedure to establish a fully conservative method for incompressible
wormhole problem; And then, they considered a parallel algorithm for wormhole problem in [4] under the
Darcy-Brinkman-Forchheimer framework. In [2, 5], Rui and Li studied the block-centered finite difference
methods with or without the method of characteristics for wormhole propagation. Zhang etc. established a
combined splitting mixed finite element method for compressible wormhole propagation with the method of
the characteristics in [6]. And Guo etc. studied the local discontinuous Galerkin finite element method for
incompressible problem in [7].

Generally speaking, the mixed finite element methods can be used to obtain more accurate approximation
of the velocity function. However, the classical mixed element methods usually result into some saddle point
problems, in which the coefficient matrix of the mixed system loses the symmetric positive definite property
and the finite element spaces require the LBB condition. By introducing the Lagrange multiplier, a symmetric
and positive definite system is obtained by hybrid mixed element method ( [8, 9, 10, 11, 12, 13] ). Therefore,
the hybrid technique will be considered for the pressure and velocity equations. In the procedure, the velocity
and pressure are eliminated by use of the Lagrange multiplier, so that they can be solved element by element. In
addition, the resulted global mixed system only involves the degrees of freedom with the Lagrange multiplier,
so this technique can significantly improve the computational efficiency.

As we know, the concentration equation is usually characterized as convection-dominant, the traditional
Galerkin finite element method is not well applied, in particular for the discontinuous problems. The discon-
tinuous Galerkin (DG) methods in [14, 15, 16] were introduced. They have several advantages over other types
of finite element methods. For example, test functions across the finite element interfaces do not explicitly
impose continuity constraints. As a result, the finite element spaces allow highly nonuniform and unstructured
meshes. These methods have been more and more widely used, such as [17, 18]. Zhu and his coauthors studied
the discontinuous Galerkin finite element methods for nonlinear reaction diffusion equations in [19, 20], and
then extended these techniques to the dipolar Bose-Einstein condensation and Lagrangian compressible Euler
equations in [21, 22]. Based on the traditional mixed finite element methods and DGFE methods, the combined
mixed DG methods were proposed to solve the compressible and incompressible miscible displacement prob-
lems in [23, 24, 25, 26]. However, there is little research on the discontinuous Galerkin methods for wormhole
propagation.

The focus of this article is to combine the discontinuous Galerkin finite element method with the hybrid
mixed technique to simulate the incompressible wormhole propagation. In the combined method, a new hybrid
mixed finite element (HMFE) procedure is constructed to solve pressure equation, and the symmetric interior
penalty discontinuous Galerkin (SIPDG) procedure is proposed to solve the concentration equation, then the
porosity is computed straightly by the approximated value of the concentration. Compared with other existing
combined methods, the proposed method not only keeps mass balance locally, but also keeps the boundedness
of the porosity, especially it can deal well with the discontinuous case. The consistency and stability of the
proposed method are analyzed, and then the corresponding error estimate is given under the case that the
diffusion coefficient includes the molecular diffusion and dispersion, unlike the ones in [2, 5, 7] where only
molecular diffusion was considered. Finally, numerical examples are presented to verify the validity of the
algorithm and the correctness of the theoretical results.

For the convenience of analysis, we make the following assumptions:

Assumption 1.1. Assume that the parameters µ, kc, ks, α, ρs are positive constants, and that φ0, k(φ)
µ and

f(·, t) are bounded as follows:

(5) 0 < a∗ ≤
k(φ)

µ
≤ a∗, 0 < φ0 < 1, |f(·, t)| ≤ C,
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where a∗, a∗ andC are some positive constants. And we also assume that the diffusion coefficient D(u) satisfies
the uniformly positive definiteness and Lipschitz continuousness

D(u)∇c · ∇c ≥ D∗|∇c|2

and

(6) ‖D(u)−D(v)‖[L2]d ≤ D∗‖u− v‖[L2]d ,

where D∗ and D∗ are two positive constants independent of u and v and c.

Assumption 1.2. Assume that the solution (p,u, cf ) of the system (1) has the regularities as follows:

(7)

(a) p ∈ L2(0, T ;Hk+2(Ω)), φ0 ≤ φ ≤ C1 < 1,

(b) u ∈ L∞(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;L∞(Ω)),

(c) cf ∈ H1(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;W 1,∞(Ω)),

(d)
∂cf
∂t
∈ L2(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;L∞(Ω)).

Moreover, we only consider the homogeneous boundary condition case in this article for simplification. For
nonhomogeneous boundary value problem, we can use some simple technique to transform it into homogeneous
boundary value problem, so our method proposed later is still valid.

2. THE FORMULATION OF HMDG METHOD

In order to illustrate our method, we first give a uniform regular partition of Ω, denoted by Th = {K1,K2, ...,Kn}.
We denote Eh = ∪K∈Th{e|e ∈ ∂K} to be the set of all cell edges and E ih = Eh\∂Ω as all the interior ones.
Furthermore, let he = diam(e) for all e ∈ Eh. Introduce the following piecewise Sobolev spaces associated
with Th

Hs(Th) = {v ∈ L2(Ω) : v|K ∈ Hs(K),K ∈ Th}, s ≥ 0.

We also define the following spaces on Eh:

L2(Eh) = {v ∈ L2(e), ∀e ∈ Eh}, L2(E ih) = {v ∈ L2(e),∀e ∈ E ih}.

For e ∈ E ih, denote by ne a fixed unit normal direction. For e ∈ ∂Ω, ne = n. We define averages {·} and
jumps [·]:

{v} =
1

2
[(v|Ki)|e + (v|Kj )|e], [v] = (v|Ki)|e − (v|Kj )|e, on e ∈ E ih.

In particular, if e ∈ ∂Ω, {v} = v|e, [v] = v|e. Meantime, we define inner products as follows:

(·, ·)Th =
∑
K∈Th

(·, ·)K , 〈·, ·〉Eh =
∑
e∈Eh

〈·, ·〉e, 〈·, ·〉Eih =
∑
e∈Eih

〈·, ·〉e,

and the norms ‖ · ‖Th =
√

(·, ·)Th and | · |∂Th =
√
〈·, ·〉Eh .

Introduce the discrete approximate spaces denoted by Ψh,Λh,Πh and Σh as follows:

Ψh = {v ∈ Hk(Th) : v|K ∈ Pk(K),K ∈ Th},
Λh = {v ∈ L2(Th) : v|K ∈ Pk(K),K ∈ Th},

Πh = {v ∈ [Hk(Th)]d : v|K ∈ RTk(K),K ∈ Th},
Σh = {v ∈ L2(Eh) : v|e ∈ Pk(e), e ∈ Eh},

where Pk(K),Pk(e) are the spaces of polynomial functions of degree at most k for each K ∈ Th and each
e ∈ Eh, respectively, RTk(K) = [Pk(K)]d ⊕ xPk(K) denotes the Raviart-Thomas mixed finite element space
as in [9, 27, 28].

Set

κ =
kcksa0

(kc + ks)(1− φ0)
.
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Using (3) and (4), we can rewrite (1) in the following equivalent form:

(8)

∂φ

∂t
=
ακ

ρs
(1− φ)cf ,

ακ

ρs
(1− φ)cf +∇ · u = f, u =

−k(φ)

µ
∇p,

∂(φcf )

∂t
+∇ · (ucf ) = ∇ · (φD(u)∇cf )− κ(1− φ)cf + fIcI − fP cf , .

Next, we will formulate our method for wormhole propagation.
For the discretization of the porosity, we consider the similar technique as in [3]. The discrete porosity is

point-wise defined and can be stated as follows:

(9)
∂φh
∂t

=
ακ

ρs
(1− φh)c̄h,

where c̄h = max(0,min(ch, 1)), ch is a given approximation of the concentration cf .

2.1. Hybrid mixed finite element scheme for pressure and velocity. In this subsection, we give the hybrid
mixed finite element (HMFE) method for pressure and velocity. which can be written as below:

Algorithm 1. For given approximate values of φh and ch, seek (ph,uh, λh) ∈ Λh ×Πh × Σh such that

(10)

∑
K∈Th

(
ακ

ρs
(1− φh)c̄h, vh)K +

∑
K∈Th

(∇ · uh, vh)K =
∑
K∈Th

(f, vh)K , ∀vh ∈ Λh,∑
K∈Th

(a(φh)uh, ωh)K −
∑
K∈Th

(ph,∇ · ωh)K +
∑
e∈Eh

〈λh, [ωh] · ne〉e = 0, ∀ωh ∈ Πh,∑
e∈Eih

〈µh, [uh] · ne〉e = 0, ∀µh ∈ Σh,

where a(φh) = µ
k(φh) and c̄h = max(0,min(ch, 1)).

Define the bilinear form:
Bu((uh, ph, λh), (ωh, vh, µh)) =:(uh,∇vh)Th + (∇ph, ωh)Th + (a(φh)uh, ωh)Th

+ 〈λh − ph, [ωh] · ne〉Eh + 〈[uh] · ne, µh − vh〉Eih ,

Bφ(ch;φh, vh) :=− (
ακ

ρs
(1− φh)c̄h, vh)Th .

We can rewrite (10) into the following equivalent form:

Algorithm 2 (HMFE Algorithm). For given φh and ch, find (uh, ph, λh) ∈ Πh × Λh × Σh such that

(11)
Bφ(ch;φh, vh) +Bu((uh, ph, λh), (ωh, vh, µh)) = −(f, vh)Th ,

∀(ωh, vh, µh) ∈ Πh × Λh × Σh.

2.2. DGFE method for the concentration. Due to the flexibility of the discontinuous Galerkin finite element
method in constructing feasible local-shape function spaces and the advantage in capturing non-smooth or
oscillatory solutions effectively, we consider it to be applied for the concentration.

Define the bilinear form

Bc(ch, zh) :=
∑
K∈Th

∫
K

(φhD(uh)∇ch − uhch)∇zhdx−
∑
e∈Eih

∫
e
{(φhD(uh)∇zh − uhzh) · ne}[ch]ds

−
∑
e∈Eih

∫
e
{(φhD(uh)∇ch − uhch) · ne}[zh]ds+ Jγ0 (ch, zh),

where Jγ0 (ch, zh) denotes the penalty term defined by

Jγ0 (ch, zh) =
∑
e∈Eih

∫
e

γ

hβe
[ch][zh],

where γ is called penalty parameter and bounded below by a large enough constant, and β denotes some positive
constant.

Now we can reach the SIPDG method for the concentration equation.
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Algorithm 3 (SIPDG Algorithm). For given uh and φh, find ch ∈ Ψh such that

(12) (
∂(φhch)

∂t
, zh)Th +Bc(ch, zh) + (κ(1− φh)ch, zh)Th = (fIcI − fP ch, zh)Th , ∀zh ∈ Ψh.

2.3. The combined HMDG method. Here, we will present the new combined SIPDG finite element method
for incompressible wormhole problem with hybrid mixed finite element procedure.

Algorithm 4 (HMDG Algorithm). For the given initial value functions φ0 and c0
f , find (ch, ph,uh, λh) ∈

Ψh × Λh ×Πh × Σh such that

(13)

(a)
∂φh
∂t

=
ακ

ρs
(1− φh)c̄h, c̄h = max(0,min(ch, 1)),

(b) Bφ(ch;φh, vh) +Bu((uh, ph, λh), (ωh, vh, µh)) = −(f, vh)Th ,

(c) (
∂(φhch)

∂t
, zh)Th +Bc(ch, zh) + (κ(1− φh)ch, zh)Th = (fIcI − fP ch, zh)Th .

Theorem 2.1. Algorithm 4 is consistent. That is, define λ = p, then the solution (p, u, λ, φ, c) of system (8)
satisfies (13). Conversely, if (ph, uh, λh, φh, ch) satisfies (13), then (ph, uh, λh, φh, ch) are the solutions of
problem (8).

Proof. Substituting the weak solution (p, u, φ, c) of problem (8) into the first equation of (13) with ωh = µh =
0, we can get

−(
ακ

ρs
(1− φ)cf , vh)Th − (∇ · u, vh)Th = −(f, vh)Th .

Next, we test with vh = ωh = 0 and get the equation

〈u · ne, µh〉Eih = 0,

so the normal component of the flux u is continuous at element interfaces.
Now we will prove the consistency between the model problem (8) and HMDG Algorithm (13).
Firstly, we prove that the solution of (8) also solves (13). For this, let z be an element in Ψh. We multiply

the third equation of (8) by z and integrate on one element K:∫
K

∂(φcf )

∂t
zdx+

∫
K

(φD(u)∇cf − ucf )∇zdx−
∫
∂K

(φD(u)∇cf − ucf ) · nKzds

=

∫
K

(fIcI − fP cf − κ(1− φ)cf )z)dx.

Summing it over all elements and using (2), we observe that∑
K∈Th

∫
∂K

(φD(u)∇cf − ucf ) · nezds =
∑
e∈Eih

∫
e
(φD(u)∇cf − ucf ) · ne[z]ds.

By the regularities of the solution φ, u and c, we have

(a) (φD(u)∇cf − ucf ) · ne[z] = {(φD(u)∇cf − ucf ) · ne}[z],
(b) [cf ] = 0.

Therefore, we obtain the second equation of the scheme (13).
Conversely, take z ∈ H1(Ω) and cf ∈ H1(Ω) ∩Ψh. Then (13) reduces to∑
K∈Th

∫
K

∂(φcf )

∂t
zhdx+

∑
K∈Th

∫
K

(φD(u)∇cf − ucf )zdx =
∑
K∈Th

∫
K

(fIcI − fP cf − κ(1− φ)cf )z)dx.

So for all K ∈ Th, we can obtain
∂(φcf )

∂t
+∇ · (ucf ) = ∇ · (φD(u)∇cf ) + fIcI − fP cf − κ(1− φ)cf , in K.

Finally, let K1 and K2 to be two adjacent elements, and e = ∂K1 ∩ ∂K2. Take z ∈ C∞0 (K1 ∪ K2) and
extend it by zero over the rest of the domain. Integrating by parts in the second equation of (8), we can get

(
∂(φcf )

∂t
, z)K1∪K2 + (φD(u)∇cf − ucf ,∇z)K1∪K2 − 〈[(φD(u)∇cf − ucf ) · ne], z〉e

=(fIcI − fP cf − κ(1− φ)cf , z)K1∪K2 .
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On the other hand, (13) reduces to

(
∂(φcf )

∂t
, z)K1∪K2 + (φD(u)∇cf − ucf ,∇z)K1∪K2 = (fIcI − fP cf − κ(1− φ)cf , z)K1∪K2 .

Hence, we have
〈[(φD(u)∇cf − ucf ) · ne], z〉e = 0, ∀z ∈ C∞0 (K1 ∪K2).

Since this holds for all e, it implies that (φD(u)∇cf−ucf )·ne = 0 on ∂Ω and∇·(φD(u)∇cf−ucf ) ∈ L2(Ω),
hence we have

(14) ∂(φcf )

∂t
+∇ · (ucf − φD(u)∇cf ) = fIcI − fP cf − κ(1− φ)cf .

�

We can easily show that the discrete solution φh of φ satisfies the following boundedness.

Theorem 2.2 (The boundedness of porosity). For any time t ∈ (0, T ], the approximate porosity φh is bounded,
that is,

(15) φ0 ≤ φh ≤ 1− (1− φ0)e−ηt < 1,

(16) 0 ≤ ∂φh
∂t
≤ ακ

ρs
,

where η = ακ
ρs

and φ0 > 0.

Proof. First, we can rewrite (9) as the following integral form∫ φh

φ0

1

1− φh
dφ =

∫ t

0
ηc̄hdτ,

where η > 0. We deduce that

ln
1− φh
1− φ0

= −ηc̄ht.

Notice that
φh = 1− (1− φ0)e−ηc̄ht ≤ 1− (1− φ0)e−ηt.

It is easily seen that the approximate value of the porosity increases with t, and φh = φ0 at t = 0, so we can
get the estimate (15). The estimate (16) is reached by (15) and (9). �

For HMDG Algorithm, we have the following main convergence theorem.

Theorem 2.3. Under the assumptions (1.1) and (1.2), for t > 0, there is a priori error estimate as follows:

(17)


(a) ‖φ− φh‖Th + ‖u− uh‖Th + ‖cf − ch‖Th ≤ Ch

s(‖cf‖H1(0,T ;Hs(Th)) + ‖p‖L2(0,T ;Hs+1(Th))),

(b) ‖∇(ph −Πhp)‖Th + h−
1
2 ‖λh − p‖Th ≤ Ch

s(‖cf‖H1(0,T ;Hs(Th)) + ‖p‖L2(0,T ;Hs+1(Th))),

(c) ‖p− ph‖Th ≤ Ch
s(‖cf‖H1(0,T ;Hs(Th)) + ‖p‖L2(0,T ;Hs+1(Th))),

where when d = 2, 1 ≤ s ≤ k + 1; when d = 3, 3/2 ≤ s ≤ k + 1.

3. SOME IMPORTANT PROJECTIONS AND LEMMAS

In this section, we will give some important projection operators and approximate properties, which is used
to show the convergence theorem of our proposed method.

Firstly, we introduce the following norms with respect to the bilinear form Bu:

‖(ω, v, µ)‖|2B := ‖ω‖2Th + ‖∇v‖2Th +
1

he
|µ− v|2∂Th ,

and
‖(ω, v, µ)‖2B,∗ := ‖(ω, v, µ)‖2B + h|ω · ne|2∂Th .

As in [11, 26], we can read the following stability and boundedness of the bilinear form Bu.
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Lemma 3.1 (Stability and Boundedness). Assume that φ and φh are fixed, for all (u, p, λ) ∈ Hk(Th) ×
L2(Th)× L2(∂Th) and (ωh, vh, µh) ∈ Πh × Λh × Σh, there holds

(18)

(a) |Bu((u, p, λ), (ωh, vh, µh))| ≤ K∗‖(u, p, λ)‖B,∗‖(ωh, vh, µh)‖B,

(b) sup
(ωh,vh,µh)∈Πh×Λh×Σh

Bu((uh, ph, λh), (ωh, vh, µh))

‖(ωh, vh, µh)‖B
≥ K∗‖(uh, ph, λh)‖B,

where K∗ and K∗ denote two positive constants independent of the mesh size h .

Introduce the local L2-projection operators Πh and Πe as follows:

(19)
(p−Πhp, vh)K = 0, ∀vh ∈ Pk(K),

〈λ−Πep, µh〉e = 0, ∀µh ∈ Pk(e),

where K ∈ Th, e ∈ E ih, p ∈ L2(K) and λ ∈ L2(e).

Lemma 3.2 ([29]). For the local L2-projection operators Πh and Πe, there exists the following approximate
property

(20)

‖p−Πhp‖K ≤ Chs‖p‖s,K , 0 ≤ s ≤ k + 1,

‖∇(p−Πhp)‖K ≤ Chs‖p‖s+1,K , 0 ≤ s ≤ k,

‖p−Πhp‖e + ‖p−Πep‖e ≤ Chs+
1
2 ‖p‖s+1,K , 0 ≤ s ≤ k.

The classical Raviart-Thomas projection operator as in [9] is also used

(21) (u−ΠRTu, ωh)K = 0, ∀ωh ∈ [Pk−1(K)]d,

and

(22) 〈(u−ΠRTu) · ne, µh〉e = 0, ∀µh ∈ Pk(e), e ∈ ∂K.
We can reach the error estimate as in [9]:

Lemma 3.3. For the Raviart-Thomas interpolation ΠRT , the following estimate hold

(23)
||∇ · (u−ΠRTu)||K ≤ Chs||∇ · u||s,K , 1 ≤ s ≤ k + 1,

||u−ΠRTu||K + h
1
2 ||u−ΠRTu|| ≤ Chs||u||s,K ,

1

2
≤ s ≤ k + 1.

Utlizing the above results element-wise, we can easily get the following error estimates.

Lemma 3.4. If a(φ) is bounded, there exists the following inequality

(24) ‖(u−ΠRTu, p−Πhp, λ−Πep)‖B,∗ ≤ Chs|p|s+1,Th ,
1

2
< s ≤ k.

Remark 3.1. From (24), the following estimate holds: for any 1/2 ≤ s ≤ k + 1,

(25) ‖u−ΠRTu‖K ≤ Chs‖p‖s,K .

For the concentration, we introduce another projection operator Πs as follows:

(26) Bc(cf −Πscf , zh) + δ(cf −Πscf , zh) = 0, ∀zh ∈ Ψh,

where δ should be some sufficient large constant.
As in [17], under the following inductive hypothesis

(27) ‖uh‖L∞ ≤ Cu,

where Cu is a positive constant, we can reach the following estimates:

(28)
‖cf −Πscf‖s,Th ≤ Ch

s‖cf‖s,Th , 0 ≤ s ≤ k + 1,

‖
∂(cf −Πscf )

∂t
‖s,Th ≤ Ch

s(|cf |s,Th + |
∂cf
∂t
|s,Th), 0 ≤ s ≤ k + 1.

The following trace inequalities will be also used to prove the convergence theorem (see Lemma 3.1 in [25]).

Lemma 3.5. For ∀v ∈ H1(K), the trace inequalities are shown below

(29)
‖v‖20,e ≤ C(h−1

e ‖v‖20,K + he‖v‖21,K),

‖∇v · ne‖20,e ≤ C(h−1
e ‖∇v‖20,K + he‖∇2v‖20,K).
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4. THE PROOF OF CONVERGENCE THEOREM

Now, we can complete the proof of our convergence theorem 2.3.

Proof. We firstly give the bound of ‖ch− cf‖Th . Set ξc = ch−Πscf , ζc = cf −Πscf . Taking zh = ξc in (26),
we have ∑

K∈Th

∫
K

(∂φhξc)

∂t
ξcdx+

∑
K∈Th

∫
K
φhD(uh)∇ξc · ∇ξcdx

+
∑
K∈Th

∫
K
fpξc

2dx+ Jr0 (ξc, ξc)

=
∑
K∈Th

∫
K

(∂φhζc)

∂t
ξcdx+

∑
K∈Th

∫
K

(φD(u)− φhD(uh))∇cf · ∇ξcdx

+ 2
∑
e∈E0h

∫
e
{φhD(uh)∇ξc · ne}[ξc]ds+

∑
K∈Th

∫
K

(uh − u)cf∇ξcdx

+
∑
e∈Eih

∫
e
{(φhD(uh)− φD(u))∇cf ) · ne}[ξc]ds+

∑
K∈Th

∫
K
uξc∇ξcdx

+
∑
e∈Eih

∫
e
{(u− uh)cf · ne}[ξc]ds− 2

∑
e∈Eih

∫
e
{uhξc · ne}[ξc]ds

+
∑
K∈Th

∫
K

(fP − δ)ζcξcdx+
∑
K∈Th

∫
K
κ[(1− φ)cf − (1− φh)ch]ξcdx

+
∑
K∈Th

∫
K

∂(φ− φh)

∂t
cfξcdx+

∑
K∈Th

∫
K

∂cf
∂t

(φ− φh)ξcdx

=F1 + F2 + · · ·+ F12.

(30)

Now we estimate the terms on the right hand side of (30) one by one. Using (6) and Lemma 2.2, we can get
the following result

|F1|+ |F2|+ |F4|+ |F6|+ |F9|+ |F10|+ |F11|+ |F12|

≤C{‖ζc‖2Th + ‖ξc‖2Th + ‖∂ζc
∂t
‖2Th + ‖∂(φ− φh)

∂t
‖2Th + ‖φ− φh‖2Th + ‖u− uh‖2Th}+ ε‖∇ξc‖2Th .

For F3, using (29) we have

|F3| ≤εJγ0 (ξc, ξc) + C
∑
e∈Eih

γ−1he‖∇ξc‖2L2(e)

≤εJγ0 (ξc, ξc) + C1γ
−1‖∇ξc‖2Th .

Next, we estimate F5 with (6) and (29)

|F5| ≤ ‖∇cf‖L∞
∑
e∈Eih

‖D(u)−D(uh)‖L2(e)‖[ξc]‖L(e)

≤ εJγ0 (ξc, ξc) + C
∑
e∈Eih

γ−1he‖u− uh‖2L(e)

≤ εJγ0 (ξc, ξc) + Cγ−1‖u− uh‖2Th .

Using the same technique as above, we can reach

|F7| ≤ εJγ0 (ξc, ξc) + C
∑
e∈Eih

γ−1he‖u− uh‖2L(e)

≤ εJγ0 (ξc, ξc) + Cγ−1‖u− uh‖2Th ,
|F8| ≤ εJγ0 (ξc, ξc) + ‖ξc‖2Th ,
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where γ is large enough, ε is small enough and they satisfy

C1γ
−1 ≤ d∗m

4
, ε ≤ min(

1

4
,
d∗m
4

).

Next, we deal with the first term on the left hand side of (30). Since (∂φh∂t ξc, ξc)Th ≥ 0, we can get

(
∂(φhξc)

∂t
, ξc)Th ≥

1

2

∂

∂t
(φhξc, ξc)Th .

Substituting these estimates into (30), and then integrating it on t, we get

(31)
‖ξc‖2Th +

∫ t

0
‖∇ξc‖2Thdτ +

∫ t

0
Jγ0 (ξc, ξc)dτ

≤C
∫ t

0
(‖∂ζc
∂t
‖2Th + ‖ζc‖2Th + ‖∂(φ− φh)

∂t
‖2Th + ‖ξc‖2Th + ‖u− uh‖2Th + ‖φ− φh‖2Th)dτ.

From the above estimate, we need to estimate the bound of u − uh. Using the definations of projection
operators and Bu, we have

(32) Bu((ΠRTu− u,Πhp− p,Πep− p), (ωh, vh, µh)) = (a(φh)(ΠRTu− u), ωh)Th .

According to the boundedness and stability of the bilinear form Bu, we have the estimate

K∗‖(ΠRTu− uh,Πhp− ph,Πep− λh)‖B

≤ sup
(ωh,vh,µh)

Bu((ΠRTu− uh,Πhp− ph,Πep− λh), (ωh, vh, µh))

‖(ωh, vh, µh)‖B
≤C(‖cf − ch‖Th + ‖ΠRTu− u‖Th + ‖φ− φh‖Th).

Hence we get

(33) ‖(ΠRTu− uh,Πhp− ph,Πep− λh)‖B ≤ C{‖cf − ch‖Th + ‖ΠRTu− u‖Th + ‖φ− φh‖Th}.

Using (33), we get the estimate

(34)

‖(u− uh,Πhp− ph,Πep− λh)‖B
≤‖(ΠRTu− uh,Πhp− ph,Πep− λh)‖B + ‖(u−ΠRTu,Πhp− ph,Πep− λh)‖B
≤C{‖cf − ch‖Th + ‖ΠRTu− u‖Th + ‖φ− φh‖Th}.

Next, we estimate the boundedness of ‖φ− φh‖Th . From (9), we can get that

(35)
∂(φ− φh)

∂t
≤ ακ

ρs
[(1− φh)|cf − ch|+ (φh − φ)cf ].

So we can get that

(36) ‖∂(φ− φh)

∂t
‖2Th ≤ C(‖φ− φh‖2Th + ‖cf − ch‖2Th).

Multiplying (35) by φ− φh and integrating it over Ω, we will reach that

1

2

∂

∂t
‖φ− φh‖2Th ≤ C(‖φ− φh‖2Th + ‖cf − ch‖2Th).

So we obtain that

(37) ‖φ− φh‖2Th ≤ C
∫ t

0
(‖ξc‖2Th + ‖ζc‖2Th)dτ.

Substituting the above estimate into (31), and using (28), (34) and Gronwall’s inequality, we can get the fol-
lowing estimate

‖cf − ch‖2Th + ‖φ− φh‖2Th + ‖u− uh‖2Th

≤C
∫ t

0
(‖ζc‖2Th + ‖∂ζc

∂t
‖2Th + ‖u−ΠRTu‖2Th)dτ

≤Chs(‖cf‖2H1(0,T ;Hs(Th)) + ‖p‖2L2(0,T ;Hs+1(Th))).

Combined the above estimate with (34), we get the second inequality of (17).



10 JIANSONG ZHANG, YUN YU, JIANG ZHU, YUE YU AND RONG QIN

It is easily seen that our estimates are derived under the induction hypothesis (27). Now, we check it. Note
that

‖uh‖L∞ ≤ ‖uh −ΠRTu‖L∞ + ‖ΠRTu− u‖L∞ + ‖u‖L∞

≤ Chs−
d
2 + ‖u‖L∞ ≤ Cu.

Thus, the hypothesis (27) holds.
Using the similar technique as in [30], we know that

‖Πhp− ph‖Th ≤ C(1 + ‖u‖L∞)‖ch − cf‖Th .

Using Lemma 3.2 and (17)(a) , we get (17)(c). �

5. NUMERICAL EXAMPLES

In this section, we will test the efficiency of our proposed method by some numerical examples. We firstly
use HMFE method for the linear elliptic problem, and then we consider SIPDG method for the convection-
diffusion equation. Next, we confirm the convergence rate of our combined method for the coupled problem.
Finally, we apply the combined method to a “real” incompressible wormhole problem.

5.1. Convergence test of HMFE method. Here we will test the accuracy of the HMFE scheme. the HMFE
method is considered for solving the elliptic problem with RT0 − P0, RT1 − P1 and RT2 − P2 elements.
The exact solution is taken by p = sinπx sinπy in [0, 1] × [0, 1] and u = −∇p, respectively. For different
mesh size h = 1/8, 1/16, 1/32, 1/64, a convergence study is presented. The L2-norm errors and convergence
accuracies are shown in Tables 5.1-5.3. As seen in these tables, the optimal convergence rates for pressure and
velocity are evaluated.

TABLE 5.1. Numerical results for p and u with RT0− P0.

h ‖p− ph‖L2 rates ‖u− uh‖L2 rates
1/8 7.1830e-02 * 2.4473e-02 *
1/16 3.5977e-02 0.9975 1.2508e-02 0.9684
1/32 1.7992e-02 0.9997 6.2691e-03 0.9965
1/64 8.9969e-03 0.9985 3.1335e-04 1.0005

TABLE 5.2. Numerical results for p and u with RT1− P1.

h ‖p− ph‖L2 rates ‖u− uh‖L2 rates
1/8 2.7875e-02 * 1.1113e-02 *
1/16 7.1654e-03 1.9599 2.8341e-03 1.9713
1/32 1.8225e-03 1.9752 7.1763e-04 1.9816
1/64 4.6070e-04 1.9840 1.8099e-04 1.9874

TABLE 5.3. Numerical results for p and u with RT2− P2.

h ‖p− ph‖L2 rates ‖u− uh‖L2 rates
1/8 4.4473e-04 * 2.5267e-02 *
1/16 5.8189e-05 2.9341 2.9358e-03 3.1054
1/32 7.3831e-06 2.9785 3.3422e-04 3.1349
1/64 9.2786e-07 2.9922 3.9131e-05 3.0944
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5.2. Convergence test of SIPDG method. Here we first test the convergent accuracy of the SIPDG method
for convection-diffusion equation

∂cf
∂t

+∇ · (ucf −D∇cf ) = f

with homogeneous and nonhomogeneous boundary value conditions. For this purpose, we take the two different
exact solutions respectively as

cf = e−t sinπx sinπy, and cf = e−y
2−x−t, (x, y) ∈ [0, 1]× [0, 1].

The velocity function u = [−y, x] and the diffusion coefficient D = 1.0. The initial-boundary conditions
and the right hand side term can be computed by the exact solutions. For the practical computation, the first-
order Euler backward difference scheme in time is used and L2-projection of the initial condition is also used.
Setting T = 1.0 and time size ∆t = 1e − 3, for different mesh size, we give some numerical results with
P1 discontinuous finite element space in Table 5.4. These numerical results show that SIPDG method has the
optimal convergence rates in L2-norm for both homogeneous and nonhomogeneous boundary conditions.

TABLE 5.4. Numerical results with P1 element for homogeneous and nonhomogeneous
boundary cases.

h homogenous nonhomogenous
L2 error rates L2 error rates

1/8 1.1599e-00 * 2.2602e-02 *
1/16 3.0175e-01 1.9425 5.8884e-03 1.9405
1/32 7.6512e-02 1.9796 1.5668e-03 1.9100
1/ 64 1.9192e-02 1.9952 4.1542e-04 1.9152

In addition, we also consider our method for the porosity and the concentration. Initial-boundary conditions
can be given by the exact solutions

(38)
cf (x, y, t) =

2ε2

2ε2 + 4Dt
exp{−(x cos 4t+ y sin 4t+ 0.2)2 + (−x sin 4t+ y cos 4t)2

2ε2 + 4Dt
},

φ(x, y, t) = 0.5 + 0.4 sin(x+ t) sin(y + t), in Ω = [0, 1]× [0, 1].

The other parameters are taken as:

(39) cI = kc = ks = a0 =
α

ρs
= 1, D = 0.1, ε = 0.1.

Here we still use the first-order backward Euler scheme in time, and take time step ∆t = 1e − 3. The
computational results at T = 1.0 are shown as in Tables 5.5 and 5.6 with the uniform triangular meshes
h = 1/8, 1/16, 1/32, 1/64, 1/128. From these tables, we can get the optimal convergence rates in L2-norm
with P1 and P2 discontinuous elements.

TABLE 5.5. Numerical results with P1 element for cf and φ.

h ‖cf − ch‖L2 rates ‖φ− φh‖L2 rates
1/8 7.0710e-02 * 8.2931e-02 *
1/16 1.7289e-02 2.0320 2.4605e-02 1.7529
1/32 4.2388e-03 2.0281 6.7051e-03 1.8756
1/64 1.0472e-03 2.0171 1.7132e-03 1.9686
1/128 2.6026e-04 2.0085 4.3005e-04 1.9941

TABLE 5.6. Numerical results with P2 element for cf and φ.

h ‖cf − ch‖L2 rates ‖φ− φh‖L2 rates
1/8 5.2783e-03 * 2.7432e-02 *
1/16 6.3176e-04 3.0626 4.0521e-03 2.7591
1/32 7.5796e-05 3.0592 5.3296e-04 2.9266
1/64 9.1162e-06 3.6314 6.7731e-05 2.9761
1/128 1.0039e-06 3.1828 8.0221e-06 3.0429
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5.3. Convergence test of the combined method. In this experiment, we will show the convergence of our
combined method. Here the analytic solution in Ω = [0, 1]× [0, 1] is given as in [2]

p(x, y, t) = t cosπx cosπy,

cf (x, y, t) = tx2(1− x)2y2(1− y)2,

φ(x, y, t) = 1− e−
1
80
t2x2(1−x)2y2(1−y)2ex+y+1−(x+y+1).

The parameters are taken as

D = 10−2I, k0 = 1, a0 = 0.5, ρs = 10, α = 1, kc = ks = 1, µ = fI = 1,

where I is an identity matrix. And choosing T = 1.0 and time step ∆t = h2, we give some numerical results
with RT1 − P1 element and P1 discontinuous element in Tables 5.7 and 5.8. We can easily find that our
combined method is of second-order accuracy in L2-norm, which is coincided with our theoretical analysis.

TABLE 5.7. Numerical results for cf and φ with P1 element.

h ‖cf − ch‖L2 rates ‖φ− φh‖L2 rates
1/8 1.1109e-03 * 2.4572e-02 *
1/16 2.9657e-04 1.9053 6.8963e-03 1.8331
1/32 7.6954e-05 1.9463 1.7291e-03 1.9958
1/64 1.9001e-05 2.0181 4.2112e-04 2.0377
1/128 4.4123e-06 2.1065 1.0021e-04 2.0712

TABLE 5.8. Numerical results for u and p with RT1− P1 element.

h ‖u− uh‖L2 rates ‖p− ph‖L2 rates
1/8 2.4932e-03 * 6.2173e-03 *
1/16 6.2776e-04 1.9897 1.7321e-03 1.8438
1/32 1.7290e-04 1.8603 3.9021e-04 2.1502
1/64 4.2003e-05 2.0414 9.7001e-05 2.0082
1/128 1.0010e-05 2.0691 2.5231e-05 1.9428

5.4. Simulation for a “real” incompressible wormhole propagation. In this experiment, a 0.2-meter com-
putational domain is considered, and the first-order Euler backward time discretization is used. We set a singular
area on the middle of the left boundary with space size to be 0.01-meter and time size to be 1e − 4 to observe
the phenomenon of wormhole propagation. The initial values and the parameters in the porous medium are
taken as in Table 5.9. Initial concentration of acid and initial porosity of rock in this domain are set to be c0 = 0
and φ0 = 0.2, respectively. The top and bottom boundaries of the domain are impermeable.
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TABLE 5.9. The properties of acid flow and porous medium.

Properties Value
the viscosity of fluid (µ) 1Pa · s
the injection flow rate (fI) 4.5
the production flow rate (fP ) 2.5
the dispersion tensor (D) 0.01
the local mass-transfer coefficient (kc) 1m/s
the density of the rock (ρs) 2000kg/m2

the dissolving constant of the acid (α) 0.1kg/mole
the kinetic constant for reaction (ks) 10m/s
the initial interfacial area available for reaction (a0) 0.2m−1

The numerical results of the concentration and porosity at different time are shown in Figures 5.1 and 5.2.
From these figures, we can observe cf , φ ∈ [0, 1] and the phenomenon of wormhole propagation, which shows
the effectiveness of the combined method.

(a) φ at T = 10 (b) φ at T = 20 (c) φ at T = 30

FIGURE 5.1. Porosity of rock at the different time steps.

(a) cf at T = 10 (b) cf at T = 20 (c) cf at T = 30

FIGURE 5.2. Concentration of acid at the different time steps.
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