
PARALLEL MATRIX-FREE POLYNOMIAL PRECONDITIONERS
WITH APPLICATION TO FLOW SIMULATIONS

IN DISCRETE FRACTURE NETWORKS

L. BERGAMASCHI, M. FERRONATO, G. ISOTTON, C. JANNA AND A. MART́ıNEZ

Abstract. We develop a robust matrix-free, communication avoiding parallel, high-degree polynomial preconditioner
for the Conjugate Gradient method for large and sparse symmetric positive definite linear systems.We discuss the selection
of a scaling parameter aimed at avoiding unwanted clustering of eigenvalues of the preconditioned matrices at the extrema
of the spectrum. We use this preconditioned framework to solve a 3 × 3 block system arising in the simulation of fluid
flow in large-size discrete fractured networks. We apply our polynomial preconditioner to a suitable Schur complement
related with this system, which can not be explicitly computed because of its size and density. Numerical results confirm
the excellent properties of the proposed preconditioner up to very high polynomial degrees. The parallel implementation
achieves satisfactory scalability by taking advantage from the reduced number of scalar products and hence of global
communications.

Key words. polynomial preconditioner, Conjugate Gradient method, parallel computing, scalability

1. Introduction. Discretized PDEs and constrained as well as unconstrained optimization prob-
lems often require the repeated solution of large and sparse linear systems Ax = b, in which A is
symmetric positive definite (SPD). For practical scientific and engineering applications, the use of par-
allel computers is mandatory, due to the large size and resolution of the considered models. The size of
these systems can be of order 106 ÷ 109 and this calls for the use of iterative methods, equipped with
ad-hoc preconditioners as accelerators.

When the problem size grows up to several millions of unknowns, it is not possible to store the system
matrix nor the preconditioner on a single machine. Furthermore, it is necessary to take advantage of
several distributed resources to reduce simulation time and, ultimately, the time to market. Also, in
many cases the huge size of the matrices can prevent their complete storage. In these instances only
the application of the matrix to a vector is available as a routine (matrix -free regime). Differently from
direct factorization methods, iterative methods do not need the explicit knowledge of the coefficient
matrix, however they need to be suitably preconditioned to produce convergence in a reasonable CPU
time. The issue is the construction of a preconditioner P ≈ A−1 which also works in a matrix-free regime.
The most common (general-purpose) preconditioners, such as the incomplete Cholesky factorization or
most of approximate inverse preconditioners, rely on the knowledge of the coefficients of the matrix.
An exception is represented by the AINV preconditioner ([2]), whose construction is however inherently
sequential. In all cases factorization based methods are not easily parallelizable, the bottleneck being
the solution of triangular systems needed when these preconditioners are applied to a vector inside a
Krylov subspace based solver.

In this paper we are concerned with the effective development of polynomial preconditioners, i.e.
preconditioners that can be expressed as P ≡ pk(A). Polynomial preconditioners are almost ideal candi-
dates to be used as matrix-free parallel preconditioners, since, both in set-up and application, they rely
solely on operations, such as the sparse matrix by vector product (SpMV), that are generally provided
by highly efficient parallel linear algebra libraries such as PETSci [1], Hypre [16], etc. For instance,
the application of pk(A) requires k matrix-vector products, without needing the explicit knowledge of
the coefficients of matrix A. Moreover, their virtual construction requires only the computation of the
coefficients of the polynomials, with negligible computational cost, and the eigenvectors of the precondi-
tioned matrix are the same as those of A. This feature can help accelerating the effect of the polynomial
preconditioners by low-rank updates, which take advantage from the (approximate) knowledge of the
eigenvectors of PA.

The use of polynomial preconditioners for accelerating Krylov subspace methods is not new. We
quote for instance the initial works in [24, 30] and [33, 26] where polynomial preconditioners are used
to accelerate the Conjugate Gradient and the GMRES [32] methods, respectively. However, these ideas
have been recently resumed, mainly in the context of nonsymmetric linear systems, e.g. in [27, 28]
or in the acceleration of the Arnoldi method for eigenproblems [14]. An interesting contribution to

1

ar
X

iv
:2

20
8.

01
33

9v
1

 [
m

at
h.

N
A

]
 2

 A
ug

 2
02

2

this subject is [25] where Chebyshev-based polynomial preconditioners are applied in conjunction with
sparse approximate inverses.

In this paper, starting from the work in [6], we develop a modified Newton-Chebyshev polynomial
preconditioner for SPD systems, based on the choice of a parameter aimed at avoiding clustering of
eigenvalues around the extrema of the spectrum. A theoretical analysis drives the choice of this param-
eter. This matrix free preconditioner is employed in the solution of the discrete problem arising from
flow simulations in discrete fracture network (DFN) models. DFN models represent only the fractures
as intersecting planar polygons, neglecting the surrounding underground rock formation. The explicit
representation of the fractures and their properties in a fully 3D structure requires the prescription of
continuity constraints for the fluid flow along the linear intersections. The number of the fractures and
their different size, that can change of orders of magnitude, entail a complex and multi-scale geometry,
which is not trivial to address. The problem has been effectively reformulated as a PDE-constrained
optimization problem in [8, 9]. The formulation relies on the use of non-conforming discretizations of
the single fractures and on the minimization of a functional to couple intersecting planes, with no match
between the meshes of the fractures and the traces. The problem, often characterized by a huge size,
can be algebraically reduced to the solution of a sequence of SPD systems, whose matrix, however,
cannot be computed and stored explicitly. Nevertheless, the granular nature of the problem, which can
be inherently subdivided in several local problems on the fractures with a moderate exchange of data,
is particularly suitable for a massive parallel implementation.

In this work we will consider the Preconditioned Conjugate Gradient (PCG) method as iterative
solver, accelerated by the modified Newton-Chebyshev polynomial preconditioner. For the parallel
implementation, we rely on the Chronos library [19, 23], a linear algebra package specifically designed
for high performance computing. Chronos takes advantage of fine-grained parallelism through the use
of openMP directives allowing for the use of multiple threads on the same MPI rank. Thanks also to
the reduction of global communication required by the repeated scalar products in PCG, the parallel
implementation of polynomial preconditioning turns out to be highly efficient, as will be shown in the
numerical experiments.

The rest of the paper is organized as follows: in Section 2 we briefly review the Newton-Chebyshev
polynomial preconditioner and develop a strategy to avoid unpleasant clustering of eigenvalues around
the endpoints of the spectrum. In Section 3 we show how to use our polynomial preconditioner in
combination with other accelerators. In Section 4 we describe the test case arising from the DFN
application, as well as its algebraic formulation after finite element discretization and reduction to an
SPD linear system. In Section 5 we describe our parallel implementation, while Section 6 collect the
numerical results of the testing. Section 7 provides some concluding remarks.

2. Polynomial preconditioners. We briefly review two alternative formulations of the optimal
polynomial preconditioners for the Conjugate Gradient method for symmetric positive definite linear
systems, following the work in [6]. The connection between an accelerated Newton method for the
matrix equation X−1 = A and the Chebyshev polynomials has been first established in [29] to develop
a formula for matrix inversion.

2.1. Newton-based preconditioners. The Newton preconditioner can be obtained as a trivial
application of the Newton-Raphson method to the scalar equation

x−1 − a = 0, a 6= 0,

which reads

xj+1 = 2xj − ax2
j , j = 0, . . . , x0 fixed.

The matrix counterpart of this method applied to P−1 −A = 0 can be cast as

Pj+1 = 2Pj − PjAPj , j = 0, . . . , P0 fixed, (2.1)

which is a well-known iterative method for matrix inversion (also known as Hotelling’s method [22]).

2

The efficiency of such a Newton method can however be increased due to the following result, whose
elementary proof is in [6]:

Theorem 2.1. Let αj , βj be the smallest and the largest eigenvalues of PjA.
If 0 < αj < 1 < βj ≤ 2− αj then [αj+1, βj+1] ⊂ [2αj − α2

j , 1].
If βj = 2− αj then the reduction in the condition number from PjA to Pj+1A is near 4 provided that
αj is small:

κ(PjA)

κ(Pj+1A)
=

2− αj
αj

(2αj − α2
j) = (2− αj)2 ≈ 4.

Under these hypotheses each Newton step provides an average halving of the CG iterations (and hence
of the number of scalar products) as opposed to twice the application of both the coefficient matrix and
the initial preconditioner. This idea can be efficiently employed setting e.g. P0 = I to cheaply obtain a
polynomial preconditioner. Other choices of P0 will be shortly discussed in Section 3.

At the first Newton stage the preconditioner must be scaled by ζ0 =
2

α+ β
in order to satisfy the

hypotheses of Theorem 2.1. Hence the eigenvalues of P1A =
(
2ζ0I − ζ2

0A
)
A lie in [α1, β1], where β1 = 1

and α1 = (2−αζ0)αζ0, and the next scaling factor is ζ1 =
2

1 + α1
. Analogously, at a generic step j > 1,

αj = (2− αj−1ζj−1)αj−1ζj−1 and ζj =
2

αj + 1
. Finally, exploiting the relation αj−1ζj−1 = 2− ζj−1 we

can write

ζj =
2

1 + ζj−1(2− ζj−1)
=

2

1 + 2ζj−1 − ζ2
j−1

. (2.2)

Then the recurrence for the preconditioners is obtained from (2.1) by scaling Pj with ζj as

Pj+1 = 2ζjPj − ζ2
jPjAPj , j = 0, . . . , P0 = I. (2.3)

which can be slightly improved by setting P̂j = ζjPj , thus obtaining

P̂j+1 = ζj+1

(
2P̂j − P̂jAP̂j

)
, P̂0 = ζ0I

Application of the polynomial preconditioner to a vector r is described in step 4. of Algorithm 1.

2.2. Chebyshev preconditioners. A similar recurrence can be obtained by means of the shifted
and scaled Chebyshev polynomial preconditioners. More details can be found in [31, 11, 6]. After
setting

θ =
β + α

2
, δ =

β − α
2

, and σ =
θ

δ

Algorithm 1 Newton-based polynomial preconditioner of degree 2nlev−1

1: Approximate the extremal eigenvalues of A: α, β.
2: Set the number of Newton steps: nlev

3: Set ζ0 =
2

α+ β
, ζ1 =

2

1 + 2αζ0 − (αζ0)2
, ζi =

2

1 + 2ζi−1 − ζ2
i−1

, i = 2, nlev.

4: At each CG iteration apply Pnlev to the residual vector r through the following recursive procedure:

P0r = ζ0r

Pj+1r = ζj+1 (2Pjr − PjAPjr) , j = nlev− 1, . . . , 0

3

the optimal polynomial preconditioner satisfies the following recursion:

p−1(x) = 0

p0(x) =
1

θ

pk(x) = ρk

(
2σ
(

1− x

θ

)
pk−1(x)− ρk−1pk−2(x) +

2

δ

)
, k ≥ 1. (2.4)

with

ρk =
1

2σ − ρk−1
, k ≥ 1 and ρ0 =

1

σ
. (2.5)

The application of the Chebyshev preconditioner of degree m, Pm = pm(A) to a vector r, satisfies a
three term recurrence. In fact, defining sk = Pkr, k ≥ 0, using (2.4) and exploiting the definitions of
δ, σ and θ, we have

s0 =
1

θ
r.

s1 = ρ1

(
2σ

(
1− A

θ

)
p0(A) +

2

δ

)
r =

2ρ1

δ

(
2r − Ar

θ

)
sk = ρk

(
2σ

(
1− A

θ

)
pk−1(A)r − ρk−1pk−2(A)r +

2

δ
r

)
= ρk

(
2σ

(
1− A

θ

)
sk−1 − ρk−1sk−2 +

2

δ
r

)
= ρk

(
2σsk−1 − ρk−1sk−2 +

2

δ
(r −Ask−1)

)
, k > 1.

The practical implementation of Pmr is described in Algorithm 2.

Algorithm 2 Computation of the preconditioned residual r̂ = Pmr with Chebyshev preconditioner.

1: Compute ρk, k = 1, . . . ,mmax using (2.5)
2: xold = r/θ (if m = 0 exit with r̂ = xold)

3: x =
2ρ1

δ

(
2r − Ar

θ

)
(if m = 1 exit with r̂ = x)

4: for k = 2 : m do

5: z =
2

δ
(r −Ax)

6: r̂ = ρk (2σx− ρk−1xold + z)
7: xold = x; x = r̂
8: end for

2.3. Relation between Newton and Chebyshev polynomials. In [29, 6] a relation is es-
tablished between the two algorithms basically by writing a different recursion involving Chebyshev
polynomials taken from the relation

T2k(x) = 2T 2
k (x)− 1. (2.6)

The Newton-based polynomial preconditioner is then proved equal to the Chebyshev polynomial pre-
conditioner based on the recursion (2.6). Only, in the Newton case, polynomials in the sequence have
degrees k = 2j − 1, j = 0, . . ., while with the original Chebyshev algorithm every nonnegative integer
can be used as the degree of the polynomial.

4

2.4. Avoiding eigenvalue clustering. A drawback of the polynomial preconditioners is that
clustering may arise in the extremal parts of the eigenspectrum of the preconditioned matrix, thus
limiting the acceleration of the Conjugate Gradient method. In [6] a modification of the basic algorithms
is proposed in order to mitigate such an undesired occurrence. In this Section we analyze more deeply
the effect of this modification.

Let us first consider the first step of the original Newton approach. The spectral interval [α, β] of

A is first scaled by
2

α+ β
=

1

θ
obtaining [α̂, β̂] =

[
2α

α+ β
,

2β

α+ β

]
. Following the results of Theorem 2.1

with f(t) = 2t − t2, the spectral interval of P1A is [f(α̂), 1], with a reduction of the condition number
of about 4, as explained in Section 2.1. However, the extrema of the scaled spectral interval are both

mapped onto the left endpoint f(α̂) = f(β̂) =
4αβ

(α+ β)2
of P1A thus originating a cluster around the

smallest eigenvalue, which is in principle detrimental for the CG convergence.
To avoid this, in [6] a scaling parameter ξ is introduced in order to modify the definition of parameter

θ in the Chebyshev/Newton algorithms as

θ̄ =
β + α

2
(1 + ξ) . (2.7)

The parameter ξ should be small enough to apply just a slight modification of the native Cheby-

shev/Newton algorithm. Multiplying the original spectral interval [α, β] by θ̄−1 = ηθ−1 with η =
1

1 + ξ
,

we obtain

[α̂η, β̂η] ≡
[

2ηα

α+ β
,

2ηβ

α+ β

]
which will be now mapped by the function f(t) onto [α

(1)
η , β

(1)
η] := [f(α̂η), 1].

Let us denote by κ =
1

f(α̂)
and κη =

1

f(α̂η)
the condition numbers of the preconditioned matrix

before and after the modification, respectively. We first prove that modification (2.7) provides a modest
increment of the condition number of the preconditioned matrix at step 1, assuming ξ sufficiently small.

Theorem 2.2. Let ξ = O(κ−1), then

κη
κ

= 1 + ξ +O(ξ2).

Proof. First we have that

1− η =
ξ

1 + ξ
= ξ +O(ξ2), and α̂η − α̂ = (η − 1)

2α

α+ β
= (η − 1)O(κ−1) = O(ξ2)

then

κη
κ

=
f(α̂η)

f(α̂)
=
f(α̂) + (α̂η − α̂)f ′(α̂)− 2(α̂η − α̂)2

f(α̂)

= 1 +

2α

α+ β
(η − 1)

(
2− 2

2α

α+ β

)
+O(ξ4)

4αβ

(α+ β)2

=

= 1 +
(α+ β)2

4αβ

2α

α+ β
(η − 1)

2(β − α)

α+ β
+O(ξ3) =

= 1 + (η − 1)
β − α
β

+O(ξ3)

= η +
1

κ
(1− η) +O(ξ3) = η +O(ξ2) = 1 + ξ +O(ξ2).

5

Though the condition number κη slightly increases with respect to κ, the favorable outcome is that now

f(α̂η) 6= f(β̂η) with a consequent separation of the smallest eigenvalues. Moreover, a number k ≥ 1
of the smallest eigenvalues are mapped onto as many of the smallest eigenvalues of the preconditioned
matrix. The next theorem states that the k (with k ≥ 1) smallest eigenvalues of the preconditioned
matrix are the map (through the function f) of exactly the k smallest eigenvalues of A. This also means
that the largest eigenvalues of A are no longer mapped onto the same smallest eigenvalues of P1A, as it
holds without modification.

Theorem 2.3. Let η be such that α̂η + 2(1− η) < 1. Denoting by

α̂η =λ
(0)
1 ≤ λ(0)

2 ≤ . . . ≤ λ(0)
n = β̂η, and

α̂(1)
η =λ

(1)
1 ≤ λ(1)

2 ≤ . . . ≤ λ(1)
n = β̂(1)

η

the eigenvalues of A and P1A, respectively, and k the integer satisfying λ
(0)
k ≤ α̂η + 2(1 − η) ≤ λ

(0)
k+1

then

λ
(1)
j = f(λ

(0)
j), j = 1, . . . , k.

Proof. Since f(t) = f(2− t), ∀t ∈ R we have

f(β̂η) = f(2− β̂η) = f

(
2
α+ (1− η)β

α+ β

)
= f(α̂η + 2(1− η)).

Taking into account that the function f is increasing in [α̂η, 1] and decreasing in [1, β̂η] we have

f(λ
(0)
1) ≤ . . . ≤ f(λ

(0)
k) ≤ f(α̂η + 2(1− η)) ≤ max

j≥k+1
f(λ

(0)
j),

and the thesis follows.
The situation is depicted in Figure 2.1 where the clustering (unclustering) of the extremal eigenvalues

is shown for ξ = 0 (ξ = 0.05). In this example we have λ
(0)
1 = 0.1, λ

(0)
2 = 0.14, λ

(0)
2 = 0.18. All these

three eigenvalues are less than α̂η + 2(1− η) ≈ 0.195 and therefore they are mapped onto the leftmost

part of the spectrum (blue asterisks, left panel). With ξ = 0 the eigenvalues λ
(0)
n−2 = 1.82, λ

(0)
n−1 = 1.86,

λ
(0)
n = 1.9 are mapped onto the same eigenvalues λ

(1)
1 , λ

(1)
2 , λ

(0)
3 , thus creating a cluster on the leftmost

part of the spectrum. By distinction, with ξ = 0.05 this is no longer true (blue asterisk, right panel).
Subsequent application of the Newton preconditioner will enhance this behavior: slight increase

of the condition number (compared to the optimal one) at each Newton application, together with a
progressive unclustering of the smallest eigenvalues. To experimentally show this behavior we consider
the solution of the following linear system Ax = b with a random right hand side and a diagonal matrix
A of size n = 105 such that

Aii = i, i = 1, . . . , 105, nlev = 6 (polynomial degree = 63), tol = 10−10.

We obtained the results summarized in Table 2.1 where we report the extremal eigenvalues of the
preconditioned matrices for different values of ξ. In addition to the condition number of P63A we
computed a partial condition number, related to the 10th smallest eigenvalue, κ10 = λmax

λ10
. significantly.

Obviously the smallest condition number is provided by the non modified algorithm (ξ = 0). If
ξ is too small, then no significant effect is observed (second row in the Table). If ξ is too large, the
unclustering of the eigenvalues does not pay for the large increasing of the condition number (ξ = 10−2

in the Table). The optimal scaling is aimed at separating the smallest eigenvalues and at the same time
reducing the partial condition number κ10 (see last column in Table 2.1) which is more informative
about PCG convergence, when a few outliers (roughly 10 in this test case) are present [21].

The choice of the parameter ξ is problem dependent. It is related to the degree of the polynomial,
to the condition number of the original problem and to the separation of the smallest eigenvalues (to
say nothing of the right-hand-side of the system).

6

Fig. 2.1: Eigenvalues of A, green squares on the x-axis, and of P1A, blue stars on the y-axis. Original
algorithm (left), modified algorithm with ξ = 0.05 (right).

Table 2.1: PCG iterations to solve the diagonal problem and a few of the smallest eigenvalue of the
preconditioned matrices with a polynomial preconditioner of degree k = 63, for different values of the
scaling factor ξ. The condition numbers and the partial condition numbers are also provided.

ξ PCG iters λ1 λ2 λ5 λ10 κ ≡ λmax

λ1

λmax

λ10

0 58 0.03987 0.03987 0.03987 0.03987 25.08 25.83
10−6 57 0.03984 0.04181 0.04181 0.04180 25.10 23.92
10−5 50 0.03961 0.05901 0.05901 0.05901 25.25 16.95
10−4 34 0.03742 0.07388 0.17768 0.21046 26.72 4.75
10−3 39 0.02511 0.04976 0.12096 0.23084 39.82 4.33
10−2 62 0.00898 0.01789 0.04419 0.08664 111.31 11.54

3. Polynomial acceleration of a given preconditioner. Let us now assume that a (first level)
preconditioner is available in factored form as

Pseed = WWT ,

where Pseed can be the square root of the inverse diagonal of A, the inverse of the Cholesky factor W =
L−1 or the triangular factor of an approximate inverse preconditioner. In such a case the polynomial
preconditioner can be applied to the symmetric matrix

Â = WTAW.

If the first level preconditioner can be constructed and applied in a matrix free environment then the
whole preconditioner can still be applied in a matrix-free environment.

3.1. Low-rank acceleration. The polynomial preconditioner needs the approximation of the
two extremal eigenvalues, which are usually computed together with the corresponding eigenvectors.
In general, the availability of a number of the leftmost (approximate) eigenvectors can be exploited to
further improve the PCG convergence provided by the polynomial preconditioner.

Let us assume that v1, . . .vp,vp+1, . . . ,vn are the eigenvectors of A (or Â), and λ1 ≤ . . . ≤ λp ≤
λp+1 ≤ . . . ≤ λn the corresponding eigenvalues. Defining

V =
[
v1 v2 . . . vp

]
, Λ = diag(λ1, . . . , λp),

the polynomial preconditioner of degree m, P0 in this section, computed for A (Â) can be modified to
obtain a spectral preconditioner as [10, 4]

P = P0 + V (V TAV)−1V T .

7

Since vj , j = 1, . . . , p are also eigenvectors of P0A, the following properties are easily verified:

PAvj = P0Avj + vj = (1 + pm(λj))vj , j = 1, . . . , p (3.1)

PAvj = P0Avj + V (V TAV)−1

p∑
j=k

ṽTk vj ≈ pm(λj)vj , j = p+ 1, . . . (3.2)

Since Theorem 2.3 shows that, with the ξ-modification, the polynomial preconditioner matches the
smallest eigenvalue of A on the smallest eigenvalue of P0A, the latter are incremented by one, due to
(3.1), being shifted in the interior of the spectrum with a consequent reduction of the condition number.

3.2. Preliminary Numerical Results. In this section we present some results in a sequential
environment showing the acceleration provided by the polynomial preconditioner applied to a first
level preconditioner and modified with low-rank matrices. We consider the solution of a linear system
with matrix Cube 5317k (available at http://www.dmsa.unipd.it/~janna/Matrices/) arising from
the equilibrium of a concrete cube discretized by a regular unstructured tetrahedral grid with size
n = 5 317 443 and nonzeros nnz = 222 615 369.

Table 3.1: Results for the matrix Cube 5317k. The polynomial preconditioner has been modified with
ξ = 5× 10−4

Pseed = diagonal preconditioner Pseed = IC preconditioner
Polynomial + spectral Polynomial Polynomial + spectral Polynomial

deg iter CPU iter CPU iter CPU iter CPU
0 8597 4481.26 9553 4083.40 1359 1270.75 1853 1476.07
1 4380 4038.17 4865 4066.76 712 1283.02 961 1499.21
3 2210 3829.54 2434 4008.73 370 1219.82 497 1599.90
7 1111 3726.72 1226 4006.06 187 1208.19 251 1594.50

15 563 3716.18 620 4042.62 97 1240.66 126 1645.59
31 292 3823.50 320 4166.52 51 1294.72 64 1605.11

As the first level preconditioner we considered both the diagonal preconditioner and an incomplete
Cholesky factorization with fill-in. In both cases we computed the 10 leftmost eigenpairs to a low
accuracy (tol = 10−3 on the relative residual). We neglect this preprocessing time taking in mind the
case in which many linear systems have to be solved with the same coefficient matrix (this is the case
e.g. in linear transient problems).

The sequential results provided throughout the paper have been obtained with a Matlab code
running on an Intel Core(TM) i7-8550U CPU 1.80GHz. The results reported in Table 3.1 reveal that
the combination of polynomial preconditioner and low-rank acceleration can be advantageous.

Considering for example the case with Pseed = (diag(A))−1, the cost of the low-rank modification
can be significant when the degree of the polynomial preconditioner is low while the relative influence
of this task decreases when the degree grows, since in this case the predominant cost is that of the high
number of matrix-vector products.

4. Example of application: Discrete Fracture Network (DFN) flow model. As a relevant
example of application of the proposed approach, we consider the DFN flow model developed in [8].
The flow simulation in highly-fractured rock systems is computationally very demanding, because of
the complexity of the domain and the uncertainty characterizing the geometrical configuration. In
this context, DFN models are usually preferred when the fracture network has a dominant impact on
the fluid flow dynamics. They explicitly represent the fractures as intersecting planar polygons and
neglect the surrounding rock formation, prescribing continuity constraints for the fluid flow along the
fracture intersections, usually called traces. Here, we briefly recall the original approach for DFN models
introduced in [8] and focus on its discrete algebraic formulation.

8

http://www.dmsa.unipd.it/~janna/Matrices/

Let Ω be a connected three-dimensional fracture network consisting of the union of nf intersecting
planar polygons ωi, i = 1, . . . , nf , where ωi = ωi ∪ γi is the closure of the open planar domain ωi
with its linear boundary γi. The fluid flow through ωi is assumed to be laminar and governed by
the standard mass balance equation coupled with Darcy’s law, with appropriate essential and natural
boundary conditions on γi to guarantee the well-posedness of the formulation:

−∇ · (K∇h) = q, in ωi ∈ Ω, (4.1a)

h|γD
i

= hDi , on γDi , (4.1b)

K∇h · ~ni = gi, on γNi , (4.1c)

where γDi ∪γNi = γi, γ
D
i ∩γNi = ∅, and γDi 6= ∅. In equations (4.1), the scalar function h is the hydraulic

head, K is the fracture transmissibility tensor, which is assumed to be symmetric and uniformly positive
definite, ~ni is the outward normal to γNi , q is the known discharge within the fracture, and hDi and gi
are the given hydraulic head and flux prescribed along the fracture boundary, respectively. Since the
fracture network is connected, there is a flux exchange through the linear traces between the intersecting
polygons. Let σi,jk denote the intersection between ωi and ωj , which we assume to be represented by a

single close segment, with Σ the union of the ns traces, Σ = ∪ns

k=1σ
i,j
k . Indicating by hi the restriction

of h to ωi, the continuity of the hydraulic head and the conservation of fluxes across the traces requires
that:

hi|σi,j
k
− hj|σi,j

k
= 0, ∀ σi,jk ∈ Σ, (4.2a)

JK∇hi · ~nikKσi,j
k

+ JK∇hj · ~njkKσi,j
k

= 0, ∀ σi,jk ∈ Σ, (4.2b)

with ~nik the outer normal to the trace σi,jk lying on the fracture ωi and the symbol J·Kσi,j
k

denoting

the jump of the quantity within brackets through σi,jk . The DFN flow model consists of finding the
hydraulic head h : Ω→ R satisfying the governing PDEs (4.1) under the constraints (4.2).

The numerical solution to the strong form (4.1)-(4.2) is re-formulated in [8] as a PDE-constrained
optimization problem in weak form. Let us introduce an appropriate measurable function space H for
the representation of h, such as, for instance:

H =
{
η ∈ H1(ωi) : η|γD

i
= hDi ,∀i = 1, . . . , nf

}
, (4.3)

with H0 the corresponding counterpart with homogeneous conditions along γi. We use a mixed formu-
lation where the jump JK∇hi · ~nikKσi,j

k
, living along every trace σi,jk for all i and j, is described by the

unknown function ui : σi,jk → R belonging to the proper measurable function space Ui, which is defined
according to the selection of H. For example, for the choice (4.3), Ui can be selected as a subspace of
L2(σi,jk), with the global space U including all Ui. The set of constraints (4.2) can be prescribed by
minimizing the functional ψ(h, u) : H× U → R:

ψ(h, u) =
1

2

∑
σi,j
k ∈Σ

(
‖hi − hj‖2H + ‖ui + uj + α(hi + hj)‖2U

)
, (4.4)

where α ∈ R is a regularization parameter. The minimization of ψ(h, u) under the conditions provided
by equations (4.1) is enforced by using Lagrange multipliers. The weak form of (4.1) reads:

(∇η,K∇h)ωi
− (η, u)σi,j

k
= − (η, q)ωi

+ (η, gi)γN
i
, ∀ η ∈ H0, i = 1, . . . , nf . (4.5)

Denoting by p ∈ P the Lagrange multipliers living in the appropriate space P, the DFN flow solution
is obtained by finding (h, u, p) ∈ H × U × P that minimizes:

Ψ(h, u, p) = ψ(h, u) + p
∑
i

[ai(η, h)− ci(η, u)− qi(η)] , ∀ η ∈ H0, (4.6)

with ai(η, h) = (∇η,K∇h), ci = (η, u)σi,j
k

, and qi = −(η, q)ωi + (η, gi)γN
i

.

9

4.1. Discrete formulation. The minimization of Ψ(h, u, p) in (4.6) is carried out approximately
by replacing the function spaces H, U and P with their discrete counterparts Hh, Uh and Ph with
finite size nh, nu, and np, respectively. A relevant advantage of this formulation is that independent
computational grids can be introduced for each fracture following the standard finite element method,
with no need of enforcing the mesh conformity along the traces.

The discrete counterpart of (4.6), Ψ(hh, uh, ph), with (hh, uh, ph) ∈ Hh,Uh,Ph, is obtained by
writing the three variables as linear combinations of the respective basis functions. Denoting with

h =
[
h1, . . . , hnh

]T
, u =

[
u1, . . . , unu

]T
and p =

[
p1, . . . , pnp

]T
the vectors collecting the components

of these linear combination we obtain the final expression of the discrete function to be minimized:

Ψ(h,u,p) =
[
h u

]T [Gh −αB
−αBT Gu

] [
h
u

]
+ pT (Ah− Cu− q) .

The first order optimality conditions yield the following algebraic problem:

Ghh− αBu +Ap = 0, (4.7a)

−αBTh +Guu− CTp = 0, (4.7b)

Ah− Cu = q, (4.7c)

where α is usually on the order of 1, h ∈ Rnh

is the discrete hydraulic head on fractures, u ∈ Rnu

is

the discrete flux on the traces, and p ∈ Rnp

are the discrete Lagrange multipliers. The vector q ∈ Rnh

includes the boundary conditions and the forcing terms. Usually, np = nh, while according to the
problem nu can be either larger or smaller than nh. The matrices in (4.7) are as follows:

• Gh ∈ Rnh×nh

and Gu ∈ Rnu×nu

are symmetric positive semi-definite (SPSD), usually rank-
deficient. The matrix Gh is fracture-local, in the sense that it has a block-diagonal structure
with the block size depending on each fracture dimension, while Gu has a global nature and
operates on degrees of freedom related to different fractures;

• B,C ∈ Rnh×nu

are rectangular coupling blocks, whose entries are given by inner products
between the basis functions of Hh and Uh. The matrix C is fracture-local, with rectangular
blocks whose size depends on the dimension of each fracture and the related traces, while
B = C+E has a global nature accounted for the contribution of matrix E that has zero entries
in the positions corresponding to the nonzero entries of the rectangular blocks of matrix C;

• A ∈ Rnh×nh

is symmetric positive definite (SPD) and fracture-local, i.e., with a block diagonal
structure. Each diagonal block arises from the discretization of the ∇ · (K∇) operator over a
fracture, hence inherits the usual structure of a 2-D discrete Laplacian.

Equations 4.7 can be written in a compact form as: Gh −αB A
−αBT Gu −CT
A −C 0

 h
u
p

 =

 0
0
q

 =⇒ K0x = f0, (4.8)

where K0 is a symmetric saddle-point matrix with a rank-deficient leading block. Solution to such
problems arise in several applications and is the object of a significant number of works. For a review
on methods and ideas, see for instance [3]. With an SPD leading block, as it often arises in Navier-Stokes
equations, mixed finite element formulations of flow in porous media, poroelasticity, etc., an optimal
preconditioner exists based on the approximation of the matrix Schur complement [13]. However, if
the leading block is singular the problem is generally more difficult and the only available result is for
the case of maximal rank deficiency [15]. A potentially effective preconditioner for the system (4.8)
has been recently proposed in [20] where an appropriate permutation and inexact block factorization
of K0 is obtained following the ideas developed in [17] and [18]. The algorithm robustness, however, is
problem-dependent and the overall solver may suffer from scalability issues.

10

4.2. Algebraic solver and preconditioning strategy. We develop here a preconditioning
framework exploiting the nice properties of matrix A, that is SPD, block diagonal, and such that
its inverse can be applied exactly to a vector at a relatively low cost, and the polynomial acceleration.
First, an appropriate permutation of K0 is used:

K =

 A 0 −C
Gh A −αB

−αBT −CT Gu

 , x =

hp
u

 , f =

q0
0

 , (4.9)

so as to avoid a singular leading block. Though the permuted matrix is no longer symmetric, the 2× 2
principal submatrix has a block diagonal structure and, hence it is cheaply invertible. In a more compact
form, the permuted system Kx = f can be written as[

M −Z
−WT Gu

] [
x1

u

]
=

[
f1

0

]
(4.10)

with

M =

[
A 0
Gh A

]
, Z =

[
C
αB

]
, W =

[
αB
C

]
, x1 =

[
h
p

]
, f1 =

[
q
0

]
.

Block Gaussian elimination reduces the system (4.10) to:[
M −Z
0 Gu −WTM−1Z

] [
x1

u

]
=

[
f1

WTM−1f1

]
with M−1 =

[
A−1 0

−A−1GhA−1 A−1

]
whose main computational burden is in the solution of

Su(α)u = r, Su(α) = Gu −WTM−1Z, r = WTM−1f1. (4.11)

Direct computation easily shows that matrix Su is symmetric:

Su(α) = Gu −WTM−1Z = Gu − αBTA−1C − αCTA−1B + CTA−1GhA
−1C.

It is also positive definite under realistic conditions. In fact, matrix Su(α) can always be made SPD
by wisely selecting α > 0 since Su(0) is SPD as the sum of the SPSD matrix Gu and the SPD matrix
CTA−1GhA

−1C. We assume that this assumption is verified and denote simply by Su the Schur
complement in (4.11). Therefore, the PCG solver can be employed.

Explicit computation of Su is not affordable for realistic problems, while the matrix-free application
of Su to a vector can be implemented with no need of matrix-matrix multiplications. Before starting
the PCG iteration, the exact Cholesky factorization of A is computed, i.e., the lower triangular matrix
LA such that A = LAL

T
A. Note that the Cholesky factor LA preserves the block diagonal structure

of A and each diagonal block arises from a 2-D discretization, hence this task is not overly expensive.
Then, the application of Su to a vector r can be implemented as described in Algorithm 3, whose
arithmetic complexity amounts to 6 triangular solves plus 7 matrix-vector products involving block
matrices B,C,Gh and Gu. Once system (4.11) is solved, the unknowns h and p in (4.9) can be readily
recovered by

h = (LAL
T
A)−1 (q + Cu) , p = (LAL

T
A)−1

(
Bu−Ghh

)
.

The fact that the coefficient matrix Su is not explicitly available calls for a matrix-free preconditioner,
namely the Newton-Chebyshev polynomial preconditioner described in Section 3.

11

Algorithm 3 Computation of y = Sur

1: v = Cr;
2: z = Br;
3: Solve LAu = v;
4: Solve LTAt = u;
5: Solve LAu = z;
6: Solve LTAw = u;
7: z = Gur −BT t− CTw;
8: v = Ght;
9: Solve LAu = v;

10: Solve LTAw = u;
11: y = z + CTw.

4.3. Preconditioner implementation details. Following the discussion in Section 3, we used
as the seed preconditioner the diagonal of Su. Note that DS = diag(Su) can be computed without
forming Su through the steps described in Algorithm 4, where with zi, ti we denote the i-th column of
matrices Z and T , respectively.

Algorithm 4 Computation of DS = diag(Su)

1: Z =
(
LAL

T
A

)−1
C

2: T = GhZ − 2B
3: for i = 1 : m do
4: (DS)i = (Gu)ii + zTi ti
5: end for

The most time-consuming task in Algorithm 4 is represented by the computation of Z which requires
sparse matrix inversions. However, it must be observed that these operations involve block matrices
and hence do not produce a dramatic increase of the fill-in.

The polynomial preconditioner will be therefore applied to the symmetrically scaled system

Ŝuû = r̂, with Ŝu =
√
D−1
S Su

√
D−1
S , û =

√
DSu, r̂ =

√
D−1
S r

5. Parallel Implementation. An efficient parallel implementation of the application of the Schur
complement Su and the explicit computation of its diagonal DS is fundamental for handling large-size
problems arising from realistic industrial applications.

The proposed algorithm is implemented relying on the Chronos software package, a collection of
linear algebra algorithms designed for high performance computers [19]. Chronos is entirely written in
C++ using the potential of object-oriented programming (OOP) to easen its use from other software.
The Message Passing Interface (MPI) is used for communications among processes while OpenMP
directives enhance the fine-grained parallelism through multithreaded execution. Chronos is free for
research purposes and its license can be requested at the library website [19].

The high level of abstraction introduced in Chronos by the OOP allows for the use of the same
distributed matrix object to store and use all the sparse matrices composing the block system K in
eq. (4.9). In particular, Chronos adopts a Distributed Sparse Matrix (DSMat) storage scheme, where
the matrix is sliced into nprocs horizontal stripes of consecutive rows, where nprocs is the number
of MPI ranks involved in the computation. Each stripe is in turn subdivided into blocks stored in
Compressed Sparse Row (CSR) format. This block-nested storage scheme, along with nonblocking
send/receive messages, enhances the overlap between communications and computations hiding data-
transfer latency and reducing wall-time.

12

For the particular application of DFN, the stripes are chosen taking into account the block-diagonal
structure of the matrices A, C, and Gh. Each MPI rank stores a finite number of consecutive blocks
and no block is split between different ranks. This subdivision then guides the partitioning of the other
matrices B and Gu. A sketch of the DSMat storage scheme for the various blocks of the matrix K is
shown in Figure 5.1.

Fig. 5.1: Chronos DSMat storage schemes for A, C and Gh (left) and B and Gu (center) matrices
partitioned into 4 MPI ranks. On the right, a corresponding distributed vector in Chronos. The portions
of matrices and vector stored by MPI rank 1 are highlighted with different colors.

Both the multiplication by Su and the set-up of DS require the application of A−1. To this aim,
the exact Cholesky factor of A is computed by factorizing in parallel all its diagonal blocks: since the
number of blocks is very high, within each MPI rank, several OpenMP threads are used to factor a
chunk of blocks. The sequential routine cholmod factorize, provided by the SuiteSparse library [12], is
used to factorize the single CSR blocks.

The Su application shown in Algorithm 3 requires Sparse Matrix-by-Vector product (SpMV) calls
that are provided by Chronos. At its inner level, SpMV is specifically designed according to the type of
matrix. In particular, 10 SpMV products are executed with block-diagonal matrices, 6 of which through
forward and backward substitutions performed block-by-block using cholmod solve2 from SuiteSparse.
These products do not require any communication between the MPI ranks, and on each rank the
operations are executed by multiple OpenMP threads. The remaining three SpMV products, involving
B and Gu, require preliminary MPI data transfer: each stripe must receive the components of the
distributed vector r that correspond to the column indices of the extra diagonal CSR blocks. To hide
the latency, these communications are overlapped to the application of diagonal CSR block with the
portion of r owned by the rank, highlighted respectively in green and light blue in Figure 5.1.

The computation of DS is performed in matrix-free setting following Algorithm 4. Once again, the
diagonal block structure allows for a highly parallel implementation that does not require communica-
tions among MPI ranks. In particular, each group of consecutive entries of DS , corresponding to the
rows of a CT block, can be computed in parallel using several OpenMP threads.

6. Numerical Results on the DFN problem. The relevant sizes and nonzeros of the test
matrices are reported in Table 6.1.

We notice that in the first case nu � nh implying that the intermediate matrix Z has more nonzeros
than the final Schur complement Su, due to its large row size. For this problem it is more convenient
to form explicitly Su and work with the full Schur complement matrix. In the other cases computing
the whole Schur complement is not worth due to its size and nonzero number, so the computation of
diag(Su) and the applications of Ŝu to a vector are implemented as described in Algorithms 3 and 4.
The (very high) nonzero number of Su for test case #2 is reported only to reiterate that this matrix
must not be formed explicitly.

13

Table 6.1: Size and nonzeros of the relevant matrices for each test case.

Test case nu np ≡ nh nnz(K) nnz(Z) nnz(Su) # fractures
#1 56375 886693 13 797084 301 879683 62 139981 395
#2 312518 221144 10 854803 59 966125 325 144680 1425

#3 (Frac16) 1 428334 502152 31 802122 – – 15102
#4 (Frac32) 2 777378 994907 44 646710 – – 29370

6.1. Results on test case #1. To roughly estimate the extremal eigenvalues we used the CG-
based method called Deflation-Accelerated Conjugate Gradient, DACG [5, 7] with low accuracy, namely
using a tolerance on the relative residual toleig = 10−3. The DACG method is aimed at computing
the leftmost eigenpair of an SPD pencil (A,B) but can be also employed to assess the (reciprocal of
the) largest eigenvalues of A when the input matrices are (I, A). The DACG algorithm required 39 non
preconditioned iterations for the smallest and 45 iterations for the largest eigenvalue and 6.5 seconds
overall.

Table 6.2: Iterations and CPU time to solve Ŝû = r̂ with the polynomial preconditioner for various
degrees and ξ = 10−3 (left) and for different ξ-values with m = 31 and rank-one update (right).

m iter MVP ddot CPU iter MVP ddot CPU
0 1322 1322 3966 105.59 1235 1235 4900 99.21
1 670 1340 2010 100.95 625 1250 2500 89.77
3 350 1400 1050 104.75 327 1308 1308 94.20
7 177 1416 531 105.66 166 1328 664 95.02

15 90 1440 270 108.09 85 1360 340 97.62
31 48 1536 144 114.61 45 1440 180 103.17
63 28 1792 84 133.49 27 1728 108 123.69

no update rank-one update

ξ iter
0 63

10−4 51
10−3 45

3× 10−3 49
5× 10−3 53

10−2 61

Fig. 6.1: PCG Convergence profiles for the DFN test case #1 and different values of the polynomial
degree. Polynomial preconditioner with rank-one acceleration.

The results in terms of number of iterations and CPU time are provided in Table 6.2 for increasing
polynomial degree m = 2j − 1, j = 0, . . . , 6. On the left we show the results of the polynomial pre-
conditioner alone, on the right with a rank-one acceleration, namely using only the leftmost eigenpair,
already computed for the polynomial preconditioner setting.

14

The optimal scaling factor is found to be ξ = 10−3 which is in accordance with the theoretical
findings as κ(Su) ≈ 1.6 × 104. The effect of the polynomial preconditioner is to drastically reduce the
scalar products, by slightly increasing the number of matrix-vector products. The low-rank correction,
even using one vector only, seems to be convenient, since the additional scalar product per iteration is
compensated by a significant reduction of the matrix vector products. The convergence profile of the
PCG solver with different polynomial preconditioners is shown in Figure 6.1, where the steepest profiles
corresponding to larger degrees can be appreciated.

6.2. Results on test case #2. We use this test case to assess the parallel efficiency of our
implementation of polynomial preconditioning. We run the tests on the Marconi100 supercomputer
which is installed at CINECA, the Italian supercomputing center. Marconi100 consists of 980 computing
nodes each one equipped with 2 x 16 cores IBM Power9 AC922 processors at 2.6 GHz. For completeness,
we add that each node can also take advantage of 4 NVIDIA V100 GPU accelerators, but we do not
use GPUs in these work. The sparsity pattern of the whole 3× 3 block matrix K is provided in Figure
6.2a. Comparing this sparsity pattern with the block structure of K in equation (4.9) we can observe
that the nonzeros of the coupling matrices B and Gu are spread over the entire block while A, C and
Gh display a block diagonal structure. This is better shown in Figure 6.2b, 6.2c where a zoom of matrix
A and its exact Cholesky factorization LA is provided.

Fig. 6.2: Sparsity patterns of the whole matrix and subblocks.

(a) Sparsity pattern of the 3×3 block
matrix

(b) Zoom of the leading submatrix of
A with size n0 = 1000

(c) Zoom of the leading submatrix of
LA with size n0 = 1000

Due to the large size of this problem, we solve it on 4 Marconi100 nodes and involving all the
available cores for a total of 128 cores. First, we experimentally determine the optimal value of ξ by
varying it from 0.001 to 0.01 and keeping fixed the polynomial degree to m = 127. Table 6.3 provides
the number of iterations to converge and solution time for PCG along with the minimum and maximum
eigenvalues of the diagonally scaled matrix that are needed to set-up the polynomial.

The choice of the polynomial degree has been made similarly by keeping ξ = 0.007 and varying m,
again on 128 cores of Marconi100. Table 6.4, providing the number of iterations to converge and solution
time for PCG, shows that the number of iterations always decreases with the degree of the polynomial,
as expected, while the time to solution initially decreases but reaches a minimum for m = 127.

Finally, we provide a strong scalability test to demonstrate how polynomial preconditioning is
amenable to parallelization. Using the optimal values of ξ and m found above, that is 0.007 and 127,
respectively, we solve the test case #2 by using 4 Marconi100 nodes and a number of cores per node
varying from 1 up to the maximum possible, 32.

From Table 6.5, it is possible to note how the number of PCG iterates remains constant, as expected,
while the solution times decreases with the increase of the number of cores. To better understand how
effective polynomial preconditioning is in parallel, we also report the parallel efficiency which is defined

15

Table 6.3: Number of iterations to converge and solution time for PCG preconditioned with a polynomial
of degree m = 127 and 128 Marconi100 cores by varying ξ from 0.001 to 0.01. The minimum and
maximum eigenvalues of the diagonally scaled matrix are 1.56× 10−5 and 2.06, respectively.

ξ PCG iters Solv. time [s]
0.001 113 60.393
0.002 107 56.562
0.003 94 50.182
0.004 83 44.074
0.005 108 57.266
0.006 97 51.527
0.007 76 40.509
0.008 78 41.758
0.009 80 42.779
0.010 83 43.959

Table 6.4: Number of iterations to converge and solution time for PCG preconditioned with a polynomials
of varying degrees and 128 Marconi100 cores for ξ = 0.007.

m PCG iters Solv. time [s]
3 2940 48.633
7 1509 50.024

15 670 44.493
31 378 49.962
63 195 51.636

127 76 40.509
255 46 49.445

Table 6.5: Number of iterations to converge, solution time and parallel efficiency for PCG preconditioned
with a polynomials with a varying number of cores.

of cores PCG iters Solv. time [s] η [%]
4 76 552.0 100.00
8 76 304.0 90.80

16 76 175.3 78.75
32 76 108.0 63.91
64 76 63.8 54.05

128 76 46.8 36.84

as the ratio between real and ideal speed-up:

η(nprocs) =
nprocs

4

Tnprocs
T4

(6.1)

where nprocs denotes the number of cores used in the run and Tnprocs the corresponding execution
time. Note that, although with 128 cores, the number of unknowns binded to each core is only 2,441,
we still have a reasonable efficiency which is very unlikely to reach with more complex preconditioning
as approximate inverses, ILU or AMG.

6.3. Results on the largest test cases. This section presents the numerical results on the two
largest test cases with a number of fractures of about 16,000 and 32,000, named Frac16 and Frac32,

16

respectively. As done for the other test cases, we first determine the optimal value of ξ by varying it
from 10−4 to 5 × 10−3 with a fixed polynomial degree m = 127. Table 6.6 provides the number of
iterations for the convergence of the PCG: the optimal value found is 10−4, but there are no significant
differences in the range of 10−4 − 10−3. Moreover, the trend appears to be similar as the number of
fractures increases.

Table 6.6: Number of iterations for the convergence of the PCG preconditioned with a polynomial of
degree m = 127 by varying ξ from 10−4 to 5× 10−3.

Test case m ξ PCG iters Test case m ξ PCG iters
127 5× 10−3 132 127 5× 10−3 156

Frac16 127 1× 10−3 104 Frac32 127 1× 10−3 121
127 3× 10−4 105 127 3× 10−4 112
127 1× 10−4 103 127 1× 10−4 107

Regarding the parallel implementation, the two cases Frac16 and Frac32 were solved with degree m
= 127 and ξ = 0.001 by increasing the number of cores up to 32. The results are provided in Table 6.7
and show excellent strong scalability, with an efficiency of about 70% with 32 cores where the number
of unknowns binded to each core is only 15,000 and 30,000 for Frac16 and Frac32, respectively.

Table 6.7: Number of iterations for the convergence, solution time and parallel efficiency of the PCG
preconditioned with polynomials of degree m = 127 with a varying number of cores.

Test case # of cores PCG iters Solv. time [s] η[%]
2 105 1678.6 100.0
4 104 866.6 96.8

Frac16 8 104 459.6 91.3
16 103 249.7 84.0
32 103 157.5 66.7
4 107 1750.2 100.0

Frac32 8 107 924.4 94.7
16 106 501.6 87.2
32 108 300.5 72.8

7. Conclusions. A high-degree polynomial preconditioner has been developed with the aim of
reducing the number of scalar products in the Conjugate Gradient iteration. We have shown that the
suitable choice of a scaling parameter can speed-up the PCG convergence by avoiding clustering of
eigenvalues around the endpoints of the spectral interval. We have given theoretical criteria to select an
appropriate value for this parameter. The proposed preconditioning approach reveals particularly useful
when the coefficient matrix is not explicitly available, as in the case of the Schur complement matrix
obtained in the solution of a 3× 3 block linear system arising in fluid flow simulations on fractured
network models. This preconditioner is well suited to parallelization since it reduces considerably the
number of scalar product, thus minimizing the collective global communications among processors.
Results on the Marconi100 supercomputer show satisfactory scalability results on realistic Discrete
Fracture Networks test cases with thousands of fractures.

REFERENCES

[1] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Ei-
jkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T.
Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web
page. https://www.mcs.anl.gov/petsc, 2021.

17

https://www.mcs.anl.gov/petsc

[2] M. Benzi, J. K. Cullum, and M. Tůma, Robust approximate inverse preconditioning for the conjugate gradient
method, SIAM J. Sci. Comput., 22 (2000), pp. 1318–1332.

[3] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005),
pp. 1–137.

[4] L. Bergamaschi, A survey of low-rank updates of preconditioners for sequences of symmetric linear systems, Algo-
rithms, 34 (2) (2020).

[5] L. Bergamaschi, G. Gambolati, and G. Pini, Asymptotic convergence of conjugate gradient methods for the
partial symmetric eigenproblem, Numer. Linear Algebra Appl., 4 (1997), pp. 69–84.

[6] L. Bergamaschi and A. Martinez, Parallel Newton–Chebyshev polynomial preconditioners for the conjugate gra-
dient method, Computational and Mathematical Methods, 6 (2021), e1153.

[7] L. Bergamaschi and M. Putti, Numerical comparison of iterative eigensolvers for large sparse symmetric matrices,
Comp. Methods App. Mech. Engrg., 191 (2002), pp. 5233–5247.

[8] S. Berrone, S. Pieraccini, and S. Scialò, A PDE-constrained optimization formulation for discrete fracture
network flows, SIAM Journal on Scientific Computing, 35 (2013), pp. B487–B510.

[9] S. Berrone, S. Scialò, and F. Vicini, Parallel meshing, discretization and computation of flow in massive Discrete
Fracture Networks, SIAM Journal on Scientific Computing, 41 (2019), pp. C317–C338.

[10] B. Carpentieri, I. S. Duff, and L. Giraud, A class of spectral two-level preconditioners, SIAM J. Sci. Comput.,
25 (2003), pp. 749–765 (electronic).

[11] K. Chen, Matrix preconditioning techniques and applications, vol. 19 of Cambridge Monographs on Applied and
Computational Mathematics, Cambridge University Press, Cambridge, 2005.

[12] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate, ACM Trans. Math. Softw., 35 (2008).

[13] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers: with applications in
incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press,
New York, 2014. 2nd ed.

[14] M. Embree, J. A. Loe, and R. Morgan, Polynomial preconditioned Arnoldi with stability control, SIAM Journal
on Scientific Computing, 43 (2021), pp. A1–A25.

[15] R. Estrin and C. Greif, On nonsingular saddle-point systems with a maximally rank deficient leading block, SIAM
Journal on Matrix Analysis and Applications, 36 (2015), pp. 367–384.

[16] R. D. Falgout and U. M. Yang, Hypre: A library of high performance preconditioners, in Proceedings of the
International Conference on Computational Science-Part III, ICCS ’02, Berlin, Heidelberg, 2002, Springer-
Verlag, pp. 632–641.

[17] M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, and H. A. Tchelepi, A general preconditioning
framework for coupled multi-physics problems with application to contact- and poro-mechanics, J. Comput.
Phys., 398 (2019).

[18] A. Franceschini, N. Castelletto, and M. Ferronato, Approximate inverse-based block preconditioners in poroe-
lasticity, Computational Geosciences, 25 (2021), pp. 701–714.

[19] M. Frigo, G. Isotton, and C. Janna, Chronos web page. https://www.m3eweb.it/chronos, 2021.
[20] L. Gazzola, M. Ferronato, S. Berrone, S. Pieraccini, and S. Scialò, Numerical investigation on a block

preconditioning strategy to improve the computational efficiency of DFN models, in Book of Extended Abstracts
of the 6th ECCOMAS Young Investigators Conference, 2021.

[21] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.
[22] H. Hotelling, Some new methods in matrix calculation, Ann. Math. Statist., 14 (1943), pp. 1–34.
[23] G. Isotton, M. Frigo, N. Spiezia, and C. Janna, Chronos: a general purpose classical AMG solver for high

performance computing, SIAM J. Sci. Comput., 43 (2021), pp. C335–C357.
[24] O. G. Johnson, C. A. Micchelli, and G. Paul, Polynomial preconditioners for conjugate gradient calculations,

SIAM J. Numer. Anal., 20 (1983), pp. 362–376.
[25] I. E. Kaporin, Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning

the conjugate gradient method, Computational Mathematics and Mathematical Physics, 52 (2012), pp. 169 –
193.

[26] Q. Liu, R. B. Morgan, and W. Wilcox, Polynomial preconditioned GMRES and GMRES-DR, SIAM Journal on
Scientific Computing, 37 (2015), pp. S407–S428.

[27] J. A. Loe and R. B. Morgan, New polynomial preconditioned GMRES, arXiv: 1911.07065, math.NA, (2019).
[28] J. A. Loe, H. K. Thornquist, and E. G. Boman, Polynomial preconditioned GMRES in Trilinos: Practical

considerations for High-Performance Computing, in Proceedings of the 2020 SIAM Conference on Parallel
Processing for Scientific Computing (PP), 2020, pp. 35–45.

[29] V. Pan and R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications,
SIAM Journal on Scientific and Statistical Computing, 12 (1991), pp. 1109–1130.

[30] Y. Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM Journal on Scientific
and Statistical Computing, 6 (1985), pp. 865–881.

[31] Y. Saad, Iterative Methods for Sparse Linear Systems. Second edition, SIAM, Philadelphia, PA, 2003.
[32] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear

systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856–869.
[33] M. B. van Gijzen, A polynomial preconditioner for the GMRES algorithm, Journal of Computational and Applied

Mathematics, 59 (1995), pp. 91 – 107.

18

https://www.m3eweb.it/chronos

