
ar
X

iv
:2

30
5.

08
99

6v
1 

 [
m

at
h.

N
A

] 
 1

5 
M

ay
 2

02
3

APPROXIMATION OF THE MAXWELL EIGENVALUE

PROBLEM IN A LEAST-SQUARES SETTING

FLEURIANNE BERTRAND, DANIELE BOFFI, AND LUCIA GASTALDI

Abstract. We discuss the approximation of the eigensolutions associated
with the Maxwell eigenvalues problem in the framework of least-squares finite
elements. We write the Maxwell curl curl equation as a system of two first
order equation and design a novel least-squares formulation whose minimum
is attained at the solution of the system. The eigensolution are then approxi-
mated by considering the eigenmodes of the underlying solution operator. We
study the convergence of the finite element approximation and we show sev-
eral numerical tests confirming the good behavior of the method. It turns out
that nodal elements can be successfully employed for the approximation of our
problem also in presence of singular solutions.

1. Introduction

The finite element approximation of the eigenmodes associated with the Maxwell
system is a deeply studied and nowadays well understood topic. In particular, it is
universally recognized that the natural choice for the approximation of the eigen-
solutions associated with the curl curl operator, is to consider Nédélec (edge) finite
elements [21]. Approximations based on edge elements are optimally convergent,
do not present any spurious modes, and are robust in presence of singularities due
to the domain or to the presence of different materials. The interested reader is re-
ferred to the related literature; in particular to [12] for a discussion about Whitney
forms in connection with this problem, to [8, 9] for the first analysis of the spectral
correctness of edge elements, and to [17, 20, 7] for general surveys on this subject.

Formulations based on least-squares finite elements are widely used for the ap-
proximation of models involving partial differential equations [6]. Recent studies
are investigating the behavior of the spectrum of operators associated with least-
squares finite element formulations [5, 1]. These studies have their interest by
themselves, and in some cases they can contribute to the design of new schemes.

In this paper we begin the study of the eigenvalues associated with the Maxwell
system in the framework of least-squares finite elements. The interest of this re-
search is twofold: on one side we discuss how to introduce a first order formulation of
the Maxwell system in this framework, on the other side, we analyze rigorously the
approximation of the eigensolutions with various choices of finite element spaces in
two and three dimensions. Besides formulations based on edge elements, we believe
that a remarkable result of our investigation is that standard Lagrangian (nodal)
elements can be successfully used in two dimensions and, with some care, in three
dimensions. In two dimensions, the use of nodal elements is supported by a rig-
orous theory, valid when the solution satisfies appropriate regularity assumptions.
Our numerical investigations show that actually the approximation based on nodal

1

http://arxiv.org/abs/2305.08996v1


2 FLEURIANNE BERTRAND, DANIELE BOFFI, AND LUCIA GASTALDI

elements is performing well also in presence of strong singularities, such as those
arising from reentrant corners, cracks, and material discontinuities.

In three dimensions, the theory covers the case of edge elements, while the nodal
element approximation requires a more specific analysis, probably depending on
the structure of the mesh, which will be the object of future investigations.

Several numerical experiments complement the theoretical results, confirming
the theory and supplementing the theoretical investigations when they are not
available.

Section 2 describes the problem we are dealing with and introduced the first
order least-squares formulation. We continue then in Section 3 with the discussion
of the two dimensional case. Indeed, the two and three dimensional case, although
sharing some analogies, are intrinsically different: in two dimensions the problem is
equivalent to the Laplace eigenvalue problem with Neumann boundary conditions.
Section 4 is devoted to the numerical approximation of the two dimensional prob-
lem. Particular care is devoted to the definition of the solutions of our generalized
eigenvalue problem and to the description of possible degenerate situations. Several
two dimensional numerical results are presented in Section 5, confirming the good
behavior of nodal element approximations also in presence of strong singularities.
The last to sections deal with the three dimensional case: in Section 6 the theory
is developed, while in Section 7 some numerical results are presented.

2. Problem setting

Let Ω be a domain in R
3. We start by the case of a contractible domain Ω

where harmonic forms do not enter the characterization of our solutions. We are
interested in the following eigenvalue problem associated with Maxwell’s equation:
find λ ∈ R and a non-vanishing u such that

(1)





curl(µ−1 curl u) = λεu in Ω

div(εu) = 0 in Ω

u× n = 0 on ∂Ω,

where n is the outward normal unit vector to the boundary of the domain Ω,
and where µ and ε are the (possibly varying) magnetic permeability and electric
permittivity, respectively.

The source problem corresponding to (1) reads: given f with div(εf) = 0, find
u such that

(2)






curl(µ−1 curl u) = εf in Ω

div(εu) = 0 in Ω

u× n = 0 on ∂Ω.

A representation of (2) as a system of first order equations could be done, in
analogy to the usual procedure for the Laplace equation, as follows by introducing
the auxiliary variable σ = µ−1 curl u, so that we have





σ = µ−1 curl u in Ω

curlσ = εf in Ω

div(εu) = 0 in Ω

u× n = 0 on ∂Ω.
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Unfortunately, this system is not suitable to be approximated by a Least-Squares
finite element strategy on non-smooth domains when a minimization principle in
L2(Ω) is used. Indeed, the functional to be minimized would read

F(τ ,v) = ‖τ − µ−1 curl v‖20 + ‖ curl τ − εf‖20 + ‖ div(εv)‖20.

It is apparent that no reasonable choice of functional spaces can be made in this
situation. Already in the simpler case when ε ≡ 1, this would imply that the
variable v should have both divergence and curl bounded in L2(Ω). This is a well
known source of troubles for the finite element approximation when the domain has
non convex corners or edges [13, 16, 14], since in that case singular solutions u are
not in H1(Ω).

For this reason, we make use of the first order system introduced in [8]. Namely
we consider a vectorfield g such that curl g = εf , div(µg) = 0, (µg) · n = 0 on ∂Ω,
and look for the pair (u,p) satisfying

(3)





εu = curl p in Ω

µ−1 curl u = g in Ω

u× n = 0 on ∂Ω.

In general p is not unique, but there is only one p that satisfies the additional
conditions

(4)

{
div(µp) = 0 in Ω

(µp) · n = 0 on ∂Ω.

We assume ε and µ to be real scalar functions satisfying

(5) 0 < ε ≤ ε ≤ ε, 0 < µ ≤ µ ≤ µ

for almost every x in Ω and introduce the following spaces

H(curl) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}

H0(curl; Ω) = {v ∈ H(curl) : v × n = 0 on ∂Ω}

H0(div
0; Ω;µ) = {q ∈ L2(Ω) : div(µq) = 0 in Ω, (µq) · n = 0 on ∂Ω}.

Therefore, g ∈ H0(div
0; Ω;µ) and we look for a solution p ∈ H0(div

0; Ω;µ).

Proposition 1. Let us consider Problems (2) and (3) with





curl g = εf in Ω

div(µg) = 0 in Ω

(µg) · n = 0 on ∂Ω.

If u solves (2) then there exists p so that (u,p) solves (3). Conversely, if u

solves (3) then it is also a solution of (2).

Proof. If u solves (2), then from div(εu) = 0 we get that there exists p such that
εu = curl p. Such p is defined up to an additive gradient that can be chosen such
that (4) is satisfied. Then, from the first equation in (2), we have curl(µ−1 curl u−
g) = 0 which implies that µ−1 curl u − g = gradφ for some φ in H1(Ω). On the
other hand, from div(µg) = 0 it follows div(µgradφ) = 0 in Ω, and the boundary
conditions on u and g imply (µgradφ) · n = 0 on ∂Ω; hence φ is constant, from
which we conclude that µ−1 curl u− g = 0.



4 FLEURIANNE BERTRAND, DANIELE BOFFI, AND LUCIA GASTALDI

Conversely, taking the curl of the second equation in (3), we get that u solves (2).
The divergence free condition follows from εu = curl p.

�

In the spirit of Least-Squares formulation, this equivalence leads to the mini-
mization of the following functional

(6) F(v,q) = ‖ε1/2v − ε−1/2 curl q‖20 + ‖µ−1/2 curl v − µ1/2g‖20

in the energy space H0(curl; Ω)×H(curl), where we split ε and µ as the square of
their square roots in order to get a symmetric system when considering the gradient
of F .

As mentioned above, the uniqueness of p requires the additional conditions stated
in (4). This could be enforced by changing the energy space for the minimization
of (6) to H0(curl; Ω)× (H(curl)∩H0(div

0; Ω;µ)). Clearly, this would lead to the
same troubles described before related to the approximation of the space H(curl)∩
H0(div

0; Ω;µ). We postpone the discussion about this issue and we start our
investigations considering the two dimensional counterpart of (1).

3. Problem setting in two dimensions

Let Ω be a polygonal domain in R
2. The eigenvalue problem we are interested

in, seeks for λ ∈ R and a non-vanishing u such that

(7)






curl(µ−1 rotu) = λεu in Ω

div(εu) = 0 in Ω

u · t = 0 on ∂Ω,

where t is the counterclockwise tangent unit vector to the boundary of the domain
Ω. We recall the two dimensional definitions of the curl and rot operators:

rotv =
∂v2
∂x

−
∂v1
∂y

with v = (v1, v2)
⊤

and

curlϕ =

(
∂ϕ

∂y
,−

∂ϕ

∂x

)⊤

.

For completeness, we also recall the integration by parts formula that involves these
operators

∫

Ω

curl(µ−1 rotu) · v dx =

∫

Ω

µ−1 rotu rotv dx−

∫

∂Ω

µ−1 rotu v · t ds

which is valid whenever the involved integrals are finite.
The source problem corresponding to (7) reads: given f with div(εf) = 0, find

u such that

(8)





curl(µ−1 rotu) = εf in Ω

div(εu) = 0 in Ω

u · t = 0 on ∂Ω
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and the two dimensional version of the first order system (3) is: find u and p such
that

(9)





εu = curl p in Ω

µ−1 rotu = g in Ω

u · t = 0 on ∂Ω

with µg ∈ L2
0(Ω) such that curl g = εf , where L2

0(Ω) is the subspace of L2(Ω) of
zero mean valued functions. In this case the uniqueness of p is guaranteed by the
condition ∫

Ω

µp dx = 0.

The following proposition is the analogue of Proposition 1. We recall it here in
the two dimensional setting for the reader’s convenience.

Proposition 2. Let us consider problems (8) and (9) with εf = curl g and
∫
Ω
µg =

0. If u solves (8), then there exists p such that (u, p) is solution of (9). Conversely,
if (u, p) is solution of (9) then u solves (8).

Proof. If u solves (8), then from div(εu) = 0 we get that there exists p such that
εu = curl p. Since p is defined up to an additive constant, we choose it such that
the mean value of µp is zero on Ω. Then, from the first equation in (8), we have
curl(µ−1 rotu − g) = 0 which implies that µ−1 rotu− g is constant in Ω. On the
other hand, the boundary conditions on u imply that the average of rotu is zero;
hence the average of rotu−µg is zero, from which we conclude that rotu−µg = 0.

Conversely, taking the curl of the second equation in (9), we get that u solves (8).
The divergence free condition follows from εu = curl p.

�

It is well known that in two dimensions the Maxwell system we are considering,
is equivalent to a Neumann problem for the Laplace equation.

Proposition 3. The component p of the solution of (9) is the solution of the
following equation 





rot(ε−1 curl p) = µg in Ω

∂p

∂n
= 0 on ∂Ω.

Remark 1. A natural question, that will be essential for the analysis of the dis-
cretization, is the regularity of the solution of (9). Thanks to Proposition 3, we
can discuss first the regularity of p and then consider that εu = curl p. Clearly,
the regularity of p depends on the regularity of g, ε, and µ, and of the domain Ω.
In general, it is well known that if Ω is a polygon then there exists s ∈ (1/2, 1)
such that p ∈ H1+s(Ω) whenever µg ∈ L2

0(Ω). Since u = ε−1 curl p we have that
u ∈ Hs(Ω) and rotu = µg. Moreover the following a priori estimate hold true

‖u‖s + ‖p‖1+s ≤ C‖g‖0.

Even for smoother g, ε, and µ, there are domains where the regularity of p is
not higher. For instance, if Ω is the L-shaped domain, then s cannot be taken in
general larger than or equal to 2/3.
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For the analysis of the convergence of the eigenvalue problem, we are going to
consider g ∈ H1(Ω). For ε and µ smooth and nonsingular domains, we have in this
case p ∈ H3(Ω).

In the framework of Least-Squares finite elements, we are then led to the mini-
mization of the functional

(10) F(v, q) = ‖ε1/2v − ε−1/2 curl q‖20 + ‖µ−1/2 rotv − µ1/2g‖20

in the space V ×Q, where V and Q are defined as follows

V = H0(rot; Ω)

Q = {q ∈ H1(Ω) : µq ∈ L2
0(Ω)}

and are equipped by the norm induced by the following scalar products

(u,v)V = (εu,v) + (µ−1 rotu, rotv)

(p, q)Q = (ε−1 curl p, curl q).

From the assumptions (5) on ε and µ, and from the Poincaré inequality, the induced
norms ‖ · ‖V and ‖ · ‖Q are equivalent to the standard ones.

A variational formulation of (10) is given by: find u ∈ V and p ∈ Q such that

(11)

{
(εu,v) + (µ−1 rotu, rotv) − (v, curl p) = (g, rotv) ∀v ∈ V

− (u, curl q) + (ε−1 curl p, curl q) = 0 ∀q ∈ Q.

The next proposition states the ellipticity of the bilinear form associated with
the above problem.

Proposition 4. Let

a : (V ×Q)× (V ×Q) → R

be the bilinear form associated with the formulation (11), that is

a(u, p;v, q) = (µ−1 rotu, rotv) + (ε1/2u− ε−1/2 curl p, ε1/2v − ε−1/2 curl q).

Then there exists α > 0 such that

a(v, q;v, q) ≥ α
(
‖v‖2V + ‖q‖2Q

)
.

Proof. We start observing that

a(v, q;v, q) = ‖µ−1/2 rotv‖20 + ‖ε1/2v − ε−1/2 curl q‖20 ≥ ‖µ−1/2 rotv‖20.

For a positive β we have

a(v, q;v, q) = (µ−1 rotv, rotv) + (εv,v) − 2(v, curl q) + (ε−1 curl q, curl q)

+ 2β(v, curl q)− 2β(µ−1/2 rotv, µ1/2q)± β2(µq, q)

= ‖µ−1/2 rotv − βµ1/2q‖20 + (εv,v) − 2(1− β)(v, curl q)

+ (ε−1 curl q, curl q)− β2(µq, q)± (1− β)2(ε−1 curl q, curl q)

= ‖µ−1/2 rotv − βµ1/2q‖20 + ‖ε1/2v − (1 − β)ε−1/2 curl q‖20

− β2(µq, q) + (2β − β2)‖q‖2Q

≥ −β2‖µ−1/2q‖20 + (2β − β2)‖q‖2Q.
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Using the Poincaré inequality ‖q‖0 ≤ CP ‖ curl q‖0 and the bounds in (5) we get

a(v, q;v, q) ≥ (2β − β2(1 + µ−1εC2
P ))‖q‖

2
Q

which for β small enough gives

a(v, q;v, q) ≥ C1‖q‖
2
Q.

Finally, we estimate ‖ε1/2v‖0. We have

‖ε1/2v‖0 ≤ ‖ε1/2v − ε−1/2 curl q‖0 + ‖ε−1/2 curl q‖0

from which we obtain

‖ε1/2v‖20 ≤ 2
(
‖ε1/2v − ε−1/2 curl q‖20 + ‖q‖2Q

)

≤ 2(1 + 1/C1)a(v, q;v, q).

In conclusion, we have the ellipticity result with

α =
1

3
min

(
1, C1,

1

2(1 + 1/C1)

)
.

�

By using the Lax–Milgram lemma, we have existence and uniqueness of the
solution of (11).

Corollary 1. Given g ∈ L2
0(Ω) there exists one and only one solution of (11)

which satisfies the a priori stability bound

‖u‖V + ‖p‖Q ≤ C‖g‖0.

We introduce the solution operator T : Q→ Q defined as follows: given g ∈ Q,

Tg = p,

where p ∈ Q is the second component of the solution of (11). The regularity stated
in Remark 1 implies that T is compact. The following proposition states that T is
self-adjoint.

Proposition 5. For all g1 and g2 in Q it holds

(Tg1, g2)Q = (g1, T g2)Q.

Proof. Let us denote by ui ∈ V the other component of the solution associated
with Tgi (i = 1, 2). Then, from the definition of T and of the scalar products in V

and Q, it follows

(Tg1, g2)Q = (ε−1 curl(Tg1), curl g2) = (u1, curl g2) = (rotu1, g2)

= (u2,u1)V − (u1, curl(Tg2))

= (u2,u1)V − (ε−1 curl(Tg1), curl(Tg2))

= (u1,u2)V − (ε−1 curl(Tg2), curl(Tg1))

= (u1,u2)V − (u2, curl(Tg1))

= (ε−1 curl(Tg2), curl g1) = (g1, T g2)Q.

�
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In analogy to what has been done in the case of the Laplace eigenvalue problem
in [5], it is then natural to consider the following variational formulation in order
to describe the solutions of the eigenvalue problem (7). Find λ ∈ R and p ∈ Q with
p 6= 0 such that for some u ∈ V it holds

(12)

{
(εu,v) + (µ−1 rotu, rotv)− (v, curl p) = λ(p, rotv) ∀v ∈ V

− (u, curl q) + (ε−1 curl p, curl q) = 0 ∀q ∈ Q.

In Problem (12) we look for real eigenvalues and use real functional spaces. This
is justified by the fact that the underlying operator is self-adjoint (see Proposi-
tion 5). Moreover, we have the following orthogonality properties.

Proposition 6. Let λi 6= λj be two eigenvalues of (12), and (pi,ui) and (pj ,uj)
the corresponding eigenfunctions. Then the following orthogonalities are satisfied

(pi, pj)Q = (ε−1 curl(pi), curl(pj)) = 0

(ui,uj)V = (εui,uj) + (µ−1 rot(ui), rot(uj)) = 0.

In case of multiple eigenvalues, the corresponding eigenfunctions can be chosen
so that the same orthogonalities are satisfied.

Proof. The result follows in a standard way by testing (12) with v = uj and q = pj
when u = ui, p = pi, and λ = λi. The same equation (12) with the roles of i and
j swapped, gives

(λi + 1)(pi, rotuj) = (λj + 1)(pj , rotui)

which gives the results, observing that

(pi, rotuj) = (ε−1 curl(pi), curl(pj)) = (pj , rotui).

When λi is different from λj this implies the first orthogonality. The second one
follows by inserting the first one into Equation (12).

�

Remark 2. From the above orthogonalities, it follows by standard arguments that
Q = span{pi, i = 1, . . . }. Moreover, from the second equation of (12) we have
that ui = ε−1 curl pi + gradφi. Substituting ui in the first equation and taking
v = grad φi gives (εgradφi,gradφi) = 0 which implies gradφi = 0. It follows
that the set of the ui’s generates the subspace of V containing the vectorfields v

with div(εv) = 0.

3.1. On the structure of the spectrum. Eigenvalue problems in the form of (12)
are not standard and, to the best of our knowledge, have been mainly used when
discussing the spectrum of operators arising from the Least-Squares finite element
method.

Problem (12) can be written as follows in terms of operators:

(13)

(
A B⊤

B C

)(
x

y

)
= λ

(
0 D

0 0

)(
x

y

)
.

The aim of this subsection is to collect some results about the structure of the
eigensolutions, discussing in particular the consequences of the possible degeneracy
of the right hand side of (13).

First of all, even if the problem does not seem symmetric, it originates from (7)
which is associated with a self-adjoint solution operator. Indeed, after observing
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that D = −B⊤, we can argue as in [5] to show that (13) is equivalent to the
symmetric problem

(
A 0

0 0

)(
x

y

)
= (λ+ 1)

(
0 −B⊤

−B −C

)(
x

y

)

and to the symmetric Schur complement formulations

Ax = (λ+ 1)B⊤C−1Bx

Cy = (λ+ 1)BA−1B⊤y.

We now proceed with some comments that are particularly important in view of
the numerical approximation, and of the three-dimensional extension.

Let us assume that (x, y)⊤ is such that the right hand side of (13) is vanishing.
Then, B⊤y = 0 which implies curl p = 0, that is p = 0 due to zero mean value
condition on p. This is not admissible, since Problem (12) seeks a non vanishing p.
On the other hand, the numerical approximation of (13) will have the analogous
form of a generalized algebraic eigenvalue problem involving matrices and vectors
that we denote with the same symbols. It happens that, if we follow the same
argument as before (see also Remark 2), we may have solutions that correspond
to a generic x and to y = 0. These solutions correspond to eigenvalues λ = ∞
that should be discarded in view of the condition p 6= 0. This should be taken into
account when the numerical results are performed.

It is also interesting to observe what happens if we relax the zero mean value
condition on the space Q. In such case there exists a non vanishing y such that
B⊤y = −Dy = 0. Such y corresponds to a curl-free p, that is p constant. If we
combine y ∈ ker(B⊤) = ker(D) with a vanishing x, we can see a singular behavior
of (13) that can be summarized by the equation

0 = λ0,

that is, λ cannot be determined. Notice, that this singular behavior doesn’t occur
if, for instance, the zero mean value condition is dropped in the case of the standard
Galerkin approximation of the Neumann Laplace eigenproblem: in such case the
original spectrum is modified by adding a vanishing eigenvalue that corresponds to
the constant eigenfunction.

4. Two dimensional finite element analysis

Let us consider finite dimensional subspaces V h ⊂ V and Qh ⊂ Q. The approx-
imation of (11) consists in finding uh ∈ V h and ph ∈ Qh such that

(14)

{
(εuh,v) + (µ−1 rotuh, rotv) − (v, curl ph) = (g, rotv) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) = 0 ∀q ∈ Qh

and, correspondingly, the discrete eigenvalue problem we are interested in, reads:
find λh ∈ R and ph ∈ Qh with ph 6= 0 such that for some uh ∈ V h it holds

(15)

{
(εuh,v) + (µ−1 rotuh, rotv) − (v, curl ph) = λh(ph, rotv) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) = 0 ∀q ∈ Qh.

We start our analysis of the discrete problem by discussing the convergence of
the solution of (14) towards the solution of (11). This is a standard result in the
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framework of finite element Least-Squares approximations that follows from the
coercivity of the system recalled in Proposition 4.

In the following theorem we recall the a priori error analysis that is a standard
consequence of Céa’s lemma.

Theorem 1. Given g ∈ Q, let (u, p) be the solution of (11) and (uh, ph) the
corresponding discrete solution of (14). Then the following estimate holds true

‖u− uh‖V + ‖p− ph‖Q ≤ C inf
(v,q)∈V h×Qh

(‖u− v‖V + ‖p− q‖Q)

In order to study the convergence of the eigensolutions of (15) towards those
of (12) a standard tool is the convergence in norm of the sequence of discrete
solution operators towards the continuous one. Indeed, in [11] it was shown that
for symmetric problems the convergence in norm is not only sufficient but also
necessary for the convergence of the eigensolutions.

Analogously to what we have done in the continuous case, let Th : Q→ Q be the
discrete solution operator which associated to g ∈ Q the component ph ∈ Qh ⊂ Q
of the solution of (14). A necessary and sufficient condition for the convergence of
our eigensolutions is the existence of ρ(h), tending to zero as h goes to zero, such
that

(16) ‖(T − Th)g‖Q ≤ ρ(h)‖g‖Q.

The most natural choice of finite element spaces is to consider Nédélec edge
elements for V h and standard Lagrange nodal elements for Qh, that is, for k ≥ 0,

(17)
V h = {v ∈ V : v|K ∈ Nk(K) ∀K ∈ Th}

Qh = {q ∈ Q : q|K ∈ Pk+1(K) ∀K ∈ Th},

where Pk(K) is the space of polynomials on K of degree not exceeding k and

Nk(K) = [Pk(K)]2 + Pk(K)[(x, y)]⊤.

Other possible choices would involve different order of approximation for the two
spaces.

From the standard approximation properties of these spaces, and assumption (5),
Theorem 1 gives

‖(T − Th)g‖Q = ‖p− ph‖Q ≤ C inf
(v,q)∈V h×Qh

(‖u− v‖V + ‖p− q‖Q) .

From Remark 1 we can take s > 1/2 and proceed as follows.

‖u− v‖2V = ‖ε1/2(u− v)‖20 + ‖µ−1/2 rot(u− v)‖20

≤ Cεh2s‖u‖2s + ‖µ−1/2 rot(u− v)‖20.

We assume that µ is piecewise regular and that the mesh is compatible in the sense
that µ is smooth in each element, so that rotu belongs to Hs(K) for each K ∈ Th.
Then the estimate reads

‖u− v‖2V ≤ Cεh2s‖u‖2s +
∑

K∈Th

‖µ−1/2 rot(u− v)‖20,K

≤ Cεh2s‖u‖2s + Cµ−1
∑

K∈Th

h2sK ‖ rotu‖2s,K

≤ Cεh2s‖u‖2s + C(ε, µ)h2s‖g‖Q.
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For the variable p standard approximation properties give

‖p− q‖Q ≤ Cε−1/2hs‖p‖1+s,

so that the final estimate reads

(18) ‖(T − Th)g‖Q ≤ Chs‖g‖Q.

Hence, we can conclude the convergence of the eigensolutions (and the absence
of spurious modes). In the next theorem we state this result, together with the
optimal rate of convergence of the eigenmodes.

Remark 3. The definition of the finite element spaces (17) considers a balanced
choice of the polynomial degrees (see also (18)). For the well posedness of the
discrete problem, however, there are no compatibility conditions between the spaces
and more general choices could be made.

Theorem 2. For k ≥ 0, let V h and Qh be as in the above definitions, and assume
that λ is an eigenvalue of (12) of multiplicity m with associated eigenspace E. Then
there exist exactly m eigenvalues λ1,h ≤ · · · ≤ λm,h converging to λ. Moreover, let
us denote by Eh the space spanned by eigenfunctions associated with the m discrete
eigenvalues. Then

|λ− λi,h| ≤ Cǫ(h)2 (i = 1, . . . ,m)

δ̂(E,Eh) ≤ Cǫ(h),

where

ǫ(h) = sup
p∈E

‖p‖1=1

‖(T − Th)p‖Q

and δ̂(A,B) denotes the gap between the subspaces A and B of Q.

Remark 4. The eigenspace E and the space Eh refer to the components p and
ph of the solutions of (12) and (15), respectively. However, the variables we are
interested in when discussing the eigenproblem associated with Maxwell’s equations,
are u and uh. On the other hand, problems (12) and (15) provide us also with the
other (unique) component of the solution which satisfies the following approximation
property. Let us denote by F the space spanned by u associated with λ in (12) and
by Fh the discrete space spanned by the corresponding {u1,h, . . . ,um,h} obtained
from (15). Then we have

δ̂rot(F, Fh) ≤ Cǫ(h),

where δ̂rot(A,B) denotes the gap between subspaces A and B of H0(rot; Ω).
We also observe that if E ⊂ Hr1+1 and F ⊂ Hr2(rot) then ǫ(h) = O(ht) with

t = min(k + 1, r1, r2).

One of the main messages that are conveyed when discussing Least-Squares finite
element methods, is that, thanks to the coercivity of the formulation, any choice of
finite element spaces is admissible, without the need of satisfying a compatibility
condition.

Several authors have tried to approximate the eigensolutions of the resonant cav-
ity by using standard nodal elements. With this in mind, we might think of choosing
as V h a space of Lagrange nodal elements in each component and as Qh a space
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of Lagrange nodal elements as well. For instance, an equal order approximation
would involve the following spaces:

V h = {v ∈ H1(Ω) ∩ V : v|K ∈ (Pk(K))2 ∀K ∈ Th}

Qh = {q ∈ Q : q|K ∈ Pk(K) ∀K ∈ Th}.

In this case, the analogous of (18) can be derived from Theorem 1 and the
approximation properties of the finite element spaces as follows

(19)

‖(T − Th)g‖Q = ‖p− ph‖Q ≤ C inf
(v,q)∈V h×Qh

(‖u− v‖V + ‖p− q‖Q)

≤ C

(
inf

v∈V h

‖u− v‖V + hs‖p‖1+s

)
.

The estimate of the first term in the right hand side of (19) is not as immediate
as in the case of edge elements. Indeed, in the case of nodal element, the best
approximation in H(rot; Ω) is not in general better than the best approximation
in H1(Ω). It follows that (19) gives

‖(T − Th)g‖Q ≤ Chs(‖u‖1+s + ‖p‖1+s).

On the other hand, since εu = curl p, we get

‖(T − Th)g‖Q ≤ Chs‖p‖2+s

and we can obtain the convergence in norm (16) if Problem (9) satisfies the a priori
bound

‖p‖2+s ≤ C‖g‖Q.

From Remark 1 we know that this regularity holds true only in very particular
circumstances. In particular, we can prove the optimal convergence of the eigenso-
lutions (and the absence of spurious modes) in the case of ε and µ constant, and
when Ω is a square. More general configurations are controversial from the theo-
retical point of view. On the other hand, our numerical simulations presented in
the next section show that the method is pretty robust also in presence of strongly
singular solutions.

5. Numerical examples in two dimensions

Analogously to what was observed in Section 3.1, the algebraic system associated
with the discrete eigenvalue problem has the form

(
A B⊤

B C

)(
x

y

)
= λ

(
0 D

0 0

)(
x

y

)
,

where the blocks of the matrices correspond to the pieces in (15) according to the
following mapping

A : (εuh,vh) + (µ−1 rotuh, rotvh)

B : − (uh, curl qh)

C : (ε−1 curl ph, curl qh)

D : (ph, rotvh).

It turns out that this is a degenerate generalized eigenvalue problem. It is out
of the scope of this paper to discuss the best strategy for its resolution. In our
FEniCS code [19, 18] we call the SLEPc solver [22]. Our options include the use
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Table 1. Edge elements on a uniform mesh of the square

Exact Computed (rate)

1.00000 1.01090 1.00273 (2.00) 1.00068 (2.00)
1.00000 1.01268 1.00316 (2.00) 1.00079 (2.00)
2.00000 2.04063 2.01017 (2.00) 2.00254 (2.00)
4.00000 4.11271 4.02792 (2.01) 4.00696 (2.00)
4.00000 4.11276 4.02793 (2.01) 4.00697 (2.00)
5.00000 5.14696 5.03683 (2.00) 5.00922 (2.00)
5.00000 5.23986 5.05920 (2.02) 5.01476 (2.00)
8.00000 8.49059 8.12382 (1.99) 8.03103 (2.00)
9.00000 9.49795 9.12178 (2.03) 9.03028 (2.01)
9.00000 9.51605 9.12582 (2.04) 9.03127 (2.01)
Mesh 1/16 1/32 1/64

of mumps [2] for dealing with the singular matrix on the right hand side and shift
and invert with shift equal to zero to compute the smallest eigenvalues.

A crucial comment, which will become essential for the three dimensional exten-
sion of our tests, refers to the gauge condition of the variables p and q. According
to the variational formulation (15), we should impose on p and q the zero mean
value condition after we multiply them by µ. This can be easily performed by
adding a Lagrange multiplier at the expense of increasing by one the dimension of

the system. The full variational formulation would read: find λh ∈ R and ph ∈ Q̃h,
with ph 6= 0, such that for some uh ∈ V h and φh ∈ R

(20)





(εuh,v) + (µ−1 rotuh, rotv)− (v, curl ph) = λh(ph, rotv) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) + (φh, µq) = 0 ∀q ∈ Q̃h

(µph, ψ) = 0 ∀ψ ∈ R,

where Q̃h is the same finite element space as in (15) without imposing the zero
mean value condition.

Clearly, problems (15) and (20) are equivalent.

Remark 5. Similarly to what we observed at the end of Section 3.1, if we solve

the unconstrained problem (15) with Qh replaced by Q̃h instead of (20), the only
difference is the introduction of an additional singular pencil corresponding to the
equation 0 = λ0 with uh = 0 and p constant.

The first test that we present is a sanity check on the square (0, π)2 and µ = ε =
1. It is well known that the eigenvalues are m2 + n2 for m,n ≥ 0 and m+ n > 0.
Table 1 confirms the optimal convergence of the edge element approximation. Since
the theoretical results clearly indicate that edge elements are optimally convergent,
we focus now on a deeper investigation when nodal elements are used.

In Tables 2 and 3 we perform the same test with nodal (continuous piecewise
linear) elements on a structured and nonstructured mesh, respectively. It turns out
that also in this case the convergence is optimal and there are no spurious modes.

From (19) it was clear that the regularity of the solution is essential in order
to prove theoretically the convergence of the method. It is then essential to verify
the approximation behavior in presence of singular solutions. We start with the
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Table 2. Nodal elements on a uniform mesh of the square

Exact Computed (rate)

1.00000 1.00961 1.00240 (2.00) 1.00060 (2.00)
1.00000 1.00963 1.00241 (2.00) 1.00060 (2.00)
2.00000 2.03841 2.00962 (2.00) 2.00241 (2.00)
4.00000 4.11637 4.02886 (2.01) 4.00721 (2.00)
4.00000 4.11642 4.02886 (2.01) 4.00721 (2.00)
5.00000 5.15263 5.03849 (1.99) 5.00966 (1.99)
5.00000 5.23639 5.05860 (2.01) 5.01464 (2.00)
8.00000 8.49203 8.12453 (1.98) 8.03125 (1.99)
9.00000 9.56410 9.13748 (2.04) 9.03424 (2.01)
9.00000 9.56410 9.13752 (2.04) 9.03425 (2.01)
Mesh 1/16 1/32 1/64

Table 3. Nodal elements on a nonuniform mesh of the square

Exact Computed (rate)

1.00000 1.00478 1.00118 (2.01) 1.00029 (2.01)
1.00000 1.00490 1.00120 (2.03) 1.00030 (2.02)
2.00000 2.01564 2.00385 (2.02) 2.00095 (2.01)
4.00000 4.05564 4.01362 (2.03) 4.00336 (2.02)
4.00000 4.05739 4.01389 (2.05) 4.00341 (2.03)
5.00000 5.08616 5.02078 (2.05) 5.00512 (2.02)
5.00000 5.08816 5.02096 (2.07) 5.00515 (2.03)
8.00000 8.21196 8.05101 (2.05) 8.01255 (2.02)
9.00000 9.26651 9.06385 (2.06) 9.01583 (2.01)
9.00000 9.27064 9.06476 (2.06) 9.01591 (2.02)
Mesh 1/16 1/32 1/64

Table 4. Nodal elements on a uniform mesh of the L-shaped domain

Exact Computed (rate)

1.47562 1.60421 1.52532 (1.37) 1.49509 (1.35)
3.53403 3.56787 3.54233 (2.03) 3.53609 (2.01)
9.86960 10.07466 9.92010 (2.02) 9.88218 (2.01)
9.86960 10.07466 9.92010 (2.02) 9.88218 (2.01)

11.38948 11.70401 11.46698 (2.02) 11.40879 (2.00)
Mesh 1/16 1/32 1/64

L-shaped domain obtained by the removing the upper right square (0, 1)2 from the
square (−1, 1)2, where we consider the reference solution presented in [15]. Tables 4
and 5 show that also in this case the nodal element approximation of our problem
performs optimally and that no spurious modes are present. It can be appreciated
that singular solutions present the expected lower rate of convergence.

We continue our investigations by considering more and more challenging prob-
lems. The next one is the so called slit domain, that is the square (−1, 1)2 from
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Table 5. Nodal elements on a nonuniform mesh of the L-shaped domain

Exact Computed (rate)

1.47562 1.61215 1.53721 (1.15) 1.51774 (0.55) 1.49583 (1.06) 1.48561 (1.02)
3.53403 3.55865 3.54038 (1.96) 3.53568 (1.95) 3.53440 (2.18) 3.53414 (1.76)
9.86960 9.99824 9.90032 (2.07) 9.87722 (2.01) 9.87151 (2.00) 9.87008 (2.01)
9.86960 10.00032 9.90054 (2.08) 9.87739 (1.99) 9.87152 (2.03) 9.87008 (2.01)

11.38948 11.56604 11.43105 (2.09) 11.39996 (1.99) 11.39204 (2.03) 11.39012 (1.99)
Mesh 1/16 1/32 1/64 1/128 1/256

Table 6. Nodal elements on a uniform mesh of the slit domain

Exact Computed (rate)

1.03407 1.36608 1.19389 (1.05) 1.11254 (1.03)
2.46740 2.48205 2.47105 (2.01) 2.46831 (2.00)
4.04693 4.09184 4.05806 (2.01) 4.04970 (2.00)
9.86960 10.07466 9.92010 (2.02) 9.88218 (2.01)
9.86960 10.07466 9.92010 (2.02) 9.88218 (2.01)

10.84485 11.11915 10.91246 (2.02) 10.86170 (2.00)
12.26490 12.72449 12.43232 (1.46) 12.36074 (0.80)
12.33701 12.96253 12.51124 (1.84) 12.36438 (2.67)
19.73921 20.82226 20.00356 (2.03) 19.80490 (2.01)
21.24411 22.81415 21.74694 (1.64) 21.43012 (1.43)

Mesh 1/16 1/32 1/64

which we remove the segment (0, 1) × {0}. This is the so called cracked domain
in [15] that we use as a reference solution. Also in this case, nodal elements behave
optimally, in agreement with the regularity of the solution, see Table 6.

In order to make the solution even more singular, we consider the same slit do-
main with mixed boundary conditions, that is we modify the boundary conditions
in the definition of the spaces V and Q as follows: functions in V have zero tan-
gential component along the exterior boundary, while functions in Q are vanishing
on the slit.

Since we do not have a reference solution in this case, we compare our results
with the eigenvalues computed with a standard Galerkin approximation of the
Laplace eigenvalue problem with mixed boundary conditions (Dirichlet on the slit
and Neumann on the rest of the boundary). Table 7 shows that also in this case
our solution is convergent and that no spurious modes are present.

Finally, we challenge our code with the computation of the problem with different
materials, that is jumping coefficients ε and µ. In this case, we compare with the
standard curl curl formulation discretized by edge elements. We take a uniform
mesh compatible with the jump of the material. The test cases consider the square
(0, π)2 containing a different material in the bottom-left square (0, π/2)2. Table 8
shows the comparison of the results when ε is equal to 100 on the different material
and 1 otherwise, with µ = 1 everywhere, while Table 9 deals with the case when
ε = 0 everywhere and µ = 1/100 on the different material and 1 otherwise. Also in
this case our method performs quite well.
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Table 7. Nodal elements on a uniform mesh of the slit domain
with mixed boundary conditions

Rank Computed with standard Galerkin

1 1.27238 1.14957 1.09097
2 2.48205 2.47105 2.46831
3 4.09155 4.05803 4.04970
4 5.00737 4.95283 4.93930
5 11.11902 10.91244 10.86170
6 12.72449 12.43232 12.35737
7 12.93065 12.49669 12.36074
8 22.78151 21.73189 21.42284
9 23.23963 22.45620 22.26849
10 25.15087 24.18459 23.95261

Rank Computed with Least-Squares

1 1.09561 1.06413 1.04894
2 2.47402 2.46905 2.46781
3 4.07072 4.05292 4.04843
4 4.97718 4.94538 4.93744
5 10.99818 10.88309 10.85441
6 12.56704 12.39424 12.33447
7 12.71164 12.43105 12.35130
8 22.25050 21.59440 21.38219
9 22.75004 22.34091 22.24009
10 24.57890 24.05065 23.91967

Rank Difference (rate)

1 0.17677 0.08544 (1.05) 0.04203 (1.02)
2 0.00803 0.00199 (2.01) 0.00050 (2.00)
3 0.02084 0.00511 (2.03) 0.00127 (2.01)
4 0.03019 0.00746 (2.02) 0.00186 (2.00)
5 0.12084 0.02935 (2.04) 0.00728 (2.01)
6 0.15745 0.03808 (2.05) 0.02289 (0.73)
7 0.21901 0.06564 (1.74) 0.00944 (2.80)
8 0.53101 0.13749 (1.95) 0.04065 (1.76)
9 0.48960 0.11529 (2.09) 0.02840 (2.02)
10 0.57197 0.13394 (2.09) 0.03294 (2.02)

Mesh 1/16 1/32 1/64

We conclude this section by showing some more numerical results which are
not completely covered by the theory. Namely we consider the situation when the
jump in the coefficient is not aligned with the mesh. In order to do so, we consider
the same geometry as in the previous examples reported in Tables 8 and 9 with a
nonuniform mesh of the domain Ω. It turns out that in this case the background
mesh is not fitted with the material discontinuities. The results are pretty much
convincing also in this case, as it can be seen from Table 10 in the case of jumping
ε and in Table 11 when µ jumps.
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Table 8. Comparison of curl curl formulation (edge elements)
and our formulation (nodal elements) on a uniform and fitted mesh
of the square with jumping ε

Rank Computed with standard Galerkin

1 0.01294 0.01295 0.01295
2 0.01425 0.01425 0.01425
3 0.02579 0.02579 0.02579
4 0.04612 0.04613 0.04613
5 0.05126 0.05128 0.05129
6 0.09252 0.09261 0.09264
7 0.09407 0.09412 0.09413
8 0.09971 0.09973 0.09973
9 0.10740 0.10744 0.10746
10 0.11554 0.11556 0.11557

Rank Computed with Least-Squares

1 0.01483 0.01444 0.01391
2 0.01602 0.01464 0.01433
3 0.02677 0.02616 0.02596
4 0.04732 0.04645 0.04622
5 0.05505 0.05286 0.05205
6 0.09655 0.09458 0.09359
7 0.09726 0.09480 0.09433
8 0.10286 0.10054 0.09995
9 0.11148 0.10893 0.10808
10 0.12236 0.11778 0.11642

Rank Difference (rate)

1 0.00189 0.00149 (0.34) 0.00096 (0.64)
2 0.00177 0.00039 (2.19) 0.00007 (2.46)
3 0.00098 0.00037 (1.40) 0.00016 (1.18)
4 0.00120 0.00031 (1.93) 0.00009 (1.87)
5 0.00379 0.00158 (1.26) 0.00075 (1.07)
6 0.00403 0.00197 (1.04) 0.00094 (1.06)
7 0.00319 0.00068 (2.24) 0.00020 (1.77)
8 0.00315 0.00082 (1.94) 0.00022 (1.90)
9 0.00408 0.00149 (1.45) 0.00062 (1.27)
10 0.00682 0.00222 (1.62) 0.00085 (1.39)

Mesh 1/64 1/128 1/256

6. The three dimensional case

We start by writing a possible version of the three dimensional variational prob-
lem associated with (6) in the case when the uniqueness of p is enforced by (4). Let

V = H0(curl; Ω) and Q0 = H(curl) ∩ H0(div
0; Ω;µ). The continuous problem

reads: given g ∈ H0(div
0; Ω;µ), find (u,p) ∈ V ×Q0 such that

(21)

{
(εu,v) + (µ−1 curl u, curl v)− (v, curl p) = (g, curl v) ∀v ∈ V

− (u, curl q) + (ε−1 curl p, curl q) = 0 ∀q ∈ Q0.
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Table 9. Comparison of curl curl formulation (edge elements)
and our formulation (nodal elements) on a uniform and fitted mesh
of the square with jumping µ

Rank Computed with standard Galerkin

1 4.44469 4.44455 4.44451
2 5.32703 5.32940 5.33000
3 11.85091 11.85115 11.85121
4 16.81898 16.83221 16.83553
5 17.54526 17.56033 17.56410
6 24.83957 24.82828 24.82545
7 25.87595 25.90293 25.90970
8 36.72957 36.78732 36.80175
9 37.55359 37.62456 37.64233

10 39.98800 39.97241 39.96839
Rank Computed with Least-Squares

1 4.49865 4.47280 4.45740
2 5.43938 5.37976 5.35001
3 12.19870 12.03015 11.93174
4 17.01187 16.90259 16.86498
5 17.73776 17.62300 17.58675
6 25.38670 25.04539 24.91860
7 26.46349 26.16889 26.03923
8 37.38132 36.96354 36.85391
9 38.25990 37.81014 37.69398

10 41.12399 40.40199 40.15998
Rank Difference (rate)

1 0.05397 0.02826 (0.93) 0.01288 (1.13)
2 0.11235 0.05035 (1.16) 0.02001 (1.33)
3 0.34779 0.17900 (0.96) 0.08053 (1.15)
4 0.19290 0.07038 (1.45) 0.02946 (1.26)
5 0.19249 0.06267 (1.62) 0.02265 (1.47)
6 0.54712 0.21712 (1.33) 0.09315 (1.22)
7 0.58754 0.26595 (1.14) 0.12953 (1.04)
8 0.65176 0.17622 (1.89) 0.05216 (1.76)
9 0.70631 0.18558 (1.93) 0.05164 (1.85)

10 1.13599 0.42958 (1.40) 0.19159 (1.16)
Mesh 1/64 1/128 1/256

The next proposition states the ellipticity of the bilinear form associated with
the above problem. We observe in particular that the norm of Q0 is the same as
the H(curl) norm since the space contains divergence free vectorfields.

Proposition 7. Let

a :
(
V ×Q0

)
×
(
V ×Q0

)
→ R

be the bilinear form associated with the formulation (21), that is

a(u,p;v,q) = (µ−1 curl u, curl v) + (ε1/2u− ε−1/2 curl p, ε1/2v − ε−1/2 curl q).
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Table 10. Comparison of curl curl formulation (edge elements)
and our formulation (nodal elements) on a nonuniform and unfitted
mesh of the square with jumping ε

Rank Computed with standard Galerkin

1 0.01306 0.01299 0.01298
2 0.01450 0.01437 0.01431
3 0.02607 0.02592 0.02585
4 0.04625 0.04619 0.04616
5 0.05163 0.05141 0.05138
6 0.09324 0.09286 0.09282
7 0.09584 0.09496 0.09455
8 0.10070 0.10018 0.09993
9 0.10921 0.10818 0.10786
10 0.11742 0.11644 0.11603

Rank Computed with Least-Squares

1 0.01566 0.01457 0.01407
2 0.01876 0.01632 0.01528
3 0.02909 0.02729 0.02653
4 0.04754 0.04666 0.04635
5 0.05450 0.05285 0.05226
6 0.09631 0.09445 0.09377
7 0.09978 0.09701 0.09569
8 0.10723 0.10225 0.10066
9 0.11593 0.11089 0.10925
10 0.12434 0.11951 0.11753

Rank Difference (rate)

1 0.00259 0.00158 (0.71) 0.00108 (0.54)
2 0.00426 0.00195 (1.13) 0.00097 (1.00)
3 0.00302 0.00137 (1.14) 0.00068 (1.02)
4 0.00130 0.00047 (1.47) 0.00019 (1.27)
5 0.00288 0.00144 (1.00) 0.00088 (0.71)
6 0.00307 0.00159 (0.95) 0.00095 (0.74)
7 0.00394 0.00205 (0.94) 0.00114 (0.84)
8 0.00652 0.00207 (1.65) 0.00073 (1.50)
9 0.00672 0.00271 (1.31) 0.00139 (0.96)
10 0.00691 0.00307 (1.17) 0.00150 (1.03)

Mesh 1/64 1/128 1/256

Then there exists α > 0 such that

a(v,q;v,q) ≥ α
(
‖v‖2curl + ‖q‖2curl

)
.

Proof. The proof is obtaining by extending the two dimensional proof of Proposi-
tion 4. The only critical point is the estimate of ‖q‖0 in terms of ‖ curl q‖0 which
can be performed thanks to the following Friedrichs inequality (see, for instance [3,
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Table 11. Comparison of curl curl formulation (edge elements)
and our formulation (nodal elements) on a nonuniform and unfitted
mesh of the square with jumping µ

Rank Computed with standard Galerkin

1 4.33537 4.39753 4.41930
2 5.19513 5.26094 5.29734
3 11.57250 11.73322 11.78452
4 16.44114 16.64371 16.73990
5 17.10908 17.34339 17.46013
6 24.25033 24.57767 24.68472
7 25.25419 25.63192 25.76661
8 35.92482 36.36569 36.59130
9 36.70768 37.20499 37.42931
10 38.93117 39.50523 39.73828

Rank Computed with Least-Squares

1 4.34099 4.39904 4.41972
2 5.20261 5.26322 5.29785
3 11.60469 11.74193 11.78668
4 16.49871 16.65967 16.74373
5 17.17074 17.35981 17.46425
6 24.37575 24.60994 24.69306
7 25.38645 25.66805 25.77518
8 36.18030 36.43259 36.60809
9 36.97634 37.27509 37.44661
10 39.23970 39.58511 39.75854

Rank Difference (rate)

1 0.00562 0.00151 (1.90) 0.00041 (1.87)
2 0.00749 0.00228 (1.71) 0.00051 (2.15)
3 0.03219 0.00872 (1.88) 0.00217 (2.01)
4 0.05757 0.01596 (1.85) 0.00383 (2.06)
5 0.06166 0.01643 (1.91) 0.00412 (1.99)
6 0.12542 0.03227 (1.96) 0.00834 (1.95)
7 0.13227 0.03613 (1.87) 0.00856 (2.08)
8 0.25548 0.06690 (1.93) 0.01679 (1.99)
9 0.26866 0.07009 (1.94) 0.01730 (2.02)
10 0.30854 0.07987 (1.95) 0.02026 (1.98)

Mesh 1/64 1/128 1/256

Cor. 3.16]): there exists a constant CF such that

‖q‖0 ≤ CF ‖ curl q‖0 ∀q ∈ Q0.

�

From the ellipticity we deduce from Lax–Milgram lemma that problem (21)
admits a unique solution with the stability estimate

‖u‖curl + ‖p‖curl ≤ C‖g‖0.
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As already observed, dealing with the approximation of Q0 is not easy, so that
we propose the following formulation which imposes the divergence free condition
with an additional Lagrange multiplier φ ∈ H1(Ω) ∩ L2

0(Ω).
Let V = H0(curl; Ω), Q = H(curl), and W = H1(Ω) ∩ L2

0(Ω). We consider

the following problem: given g ∈ H0(div
0; Ω;µ), find (u,p, φ) ∈ V ×Q×W such

that

(22)






(εu,v) + (µ−1 curl u, curl v)− (v, curl p) = (g, curl v) ∀v ∈ V

− (u, curl q) + (ε−1 curl p, curl q) + (µq,grad φ) = 0 ∀q ∈ Q

(µp,gradψ) = 0 ∀ψ ∈W.

The following proposition states the equivalence of Problems (22) and (21).

Proposition 8. Let (u,p) be a solution of (21), then (u,p, φ) solves (22) with
φ = 0. Conversely, if (u,p, φ) solves (22), then p is in Q0 and (u,p) is a solution
of (21).

Proof. If (u,p) is a solution of (21) and φ = 0, then clearly the first two equations
of (22) are satisfied. Moreover, if p belongs to Q0 then it also satisfies the third
equation.

Vice versa, the third equation of (22) implies that p belongs to Q0. Indeed, by
integration by parts we formally have

(µp,gradψ) = −(div(µp), ψ) + 〈(µp) · n, ψ〉∂Ω.

Taking ψ in D(Ω) we obtain that µp is in H(div; Ω) and div(µp) = 0 in Ω. Then,
a generic ψ ∈ W gives the result on the boundary that the trace of (µp) · n is
vanishing.

It remains to show that φ is equal to zero so that the second equation of (22) cor-
responds to the second equation of (21). Taking q = gradφ we have ‖µ1/2 gradφ‖0 =
0, that is grad φ = 0, so that φ = 0 because it is in L2

0(Ω).
�

For completeness, we give a direct proof of the existence and uniqueness of the
solution of (22).

Proposition 9. Let g be in H0(div
0; Ω;µ), then there exists a unique solution

(u,p, φ) ∈ V ×Q×W of Problem (22) that satisfies φ = 0 and

‖u‖curl + ‖p‖curl ≤ C‖g‖0.

Proof. By extending to V × Q the bilinear form a defined in the statement of
Proposition 7, we can rewrite Problem (22) as: find (u,p, φ) ∈ V × Q ×W such
that {

a(u,p;v,q) + (µq,grad φ) = (g, curl v) ∀(v,q) ∈ V ×Q

(µp,gradψ) = 0 ∀ψ ∈ W.

This is a typical saddle point problem for which we show the ellipticity in the kernel
and the inf-sup condition.

The kernel is defined as

K = {(v,q) ∈ V ×Q : (µq,gradψ) = 0 ∀ψ ∈ W},
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that is, K = V ×Q0 (see the proof of Proposition 8). Hence, the ellipticity in the
kernel follows from the ellipticity result proved in Proposition 7.

The inf-sup condition

inf
ψ∈W

sup
q∈Q

(µq,gradψ)

‖q‖curl‖ψ‖1
≥ β0

follows in a standard way by observing that, given ψ ∈ W , q = gradψ belongs to
Q and

(µq,gradψ)

‖q‖curl
≥ β0‖ψ‖1,

where β0 depends on the Poincaré constant CP .
Hence, the existence and stability follows from the standard results of mixed

problems (see [10], for instance) and φ is zero as observed in the proof of Proposi-
tion 8.

�

Let us introduce a general finite element discretization of Problem (22) by con-
sidering finite dimensional subspaces V h ⊂ V , Qh ⊂ Q and Wh ⊂ W . Then the
discrete counterpart of (22) reads: given g ∈ H0(div

0; Ω;µ), find (uh,ph, φh) ∈
V h ×Qh ×Wh such that

(23)





(εuh,v) + (µ−1 curl uh, curl v)− (v, curl ph) = (g, curl v) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) + (µq,grad φh) = 0 ∀q ∈ Qh

(µph,gradψ) = 0 ∀ψ ∈Wh.

The analysis of existence and uniqueness of the solution of this problem can be
performed following the same lines of the proof of Proposition 9. The crucial point
is to show the ellipticity of the bilinear form a on the discrete kernel. This is not
true for any choice of discrete spaces, therefore we consider Nédélec edge elements
for both V h and Qh and standard Lagrange nodal elements for Wh. For K ∈ Th
and k ≥ 0, let Nk(K) be the following space:

Nk(K) = [Pk(K)]3 + Pk(K)[(x, y, z)]⊤,

then we introduce the following discrete spaces

(24)

V h = {v ∈ V : v|K ∈ Nk(K) ∀K ∈ Th}

Qh = {q ∈ Q : q|K ∈ Nk(K) ∀K ∈ Th}

Wh = {ψ ∈ W : ψ|K ∈ Pk(K) ∀K ∈ Th}.

With this choice for the finite element spaces we can show the following proposition:

Proposition 10. Let g be in H0(div
0; Ω;µ), then there exists a unique solution

(uh,ph, φh) ∈ V h ×Qh ×Wh of Problem (23) that satisfies φh = 0 and

‖uh‖curl + ‖ph‖curl ≤ C‖g‖0.

Moreover the following error estimates holds true:

‖u− uh‖curl + ‖p− ph‖curl ≤ C inf
(v,q)∈V h×Q

h

(‖u− v‖curl + ‖p− q‖curl) .
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Proof. Using the bilinear form a defined in Proposition 7 we can write Problem (23)
as a saddle point problem as follows: find (uh,ph, φh) ∈ V h ×Qh ×Wh such that

(25)

{
a(uh,ph;v,q) + (µq,gradφh) = (g, curl v) ∀(v,q) ∈ V h ×Qh

(µph,gradψ) = 0 ∀ψ ∈Wh.

The discrete kernel is given by

Kh = {(vh,qh) ∈ V h ×Qh : (µqh,gradψ) = 0 ∀ψ ∈Wh}.

Then the discrete ellipticity in the kernel holds true thanks to the fact that for
functions qh ∈ Qh such that (µqh,gradψ) = 0 ∀ψ ∈ Wh the following Friedrichs

inequality holds true (see [4, Prop. 4.6]) for a suitable constant C̃F not depending
on h

‖qh‖0 ≤ C̃F ‖ curl qh‖0.

Recalling that gradWh ⊂ Qh, we have also that the discrete infsup condition

inf
ψ∈Wh

sup
q∈Q

h

(µq,gradψ)

‖q‖curl‖ψ‖1
≥ β1

with β1 > 0 depending on the Poincaré constant but not on h. Indeed, given
ψ ∈ Wh it is enough to take q = gradψ ∈ V h. Moreover, we observe that taking
(v,q) = (0,gradφh) in the first equation in (25) we get (µgradφh,gradφh = 0
which implies that φh = 0 since it has zero mean value.

Hence by the theory on the approximation of saddle point problems, (see, e.g.,
[10]), we obtain existence, uniqueness and stability of the solution of (25) together
with the error estimate.

�

We can then write the eigenvalue problems associated with (21) and (23) and
the corresponding continuous and discrete solution operators.

We recall that V = H0(curl; Ω), Q = H(curl), and W = H1(Ω) ∩ L2
0(Ω). The

continuous eigenvalue problem reads: find λ ∈ R such that for a non-vanishing
p ∈ Q there exists (u, φ) ∈ V ×W such that

(26)





(εu,v) + (µ−1 curl u, curl v)− (v, curl p) = λ(p, curl v) ∀v ∈ V

− (u, curl q) + (ε−1 curl p, curl q) + (µq,grad φ) = 0 ∀q ∈ Q

(µp,gradψ) = 0 ∀ψ ∈ W.

The corresponding solution operator T : Q → Q is defined as Tg = p where p

is the second component of the solution to (22).
With the finite element spaces defined in (24), the discrete version of (26) reads:

find λh ∈ R such that for a non-vanishing ph ∈ Qh there exists (uh, φh) ∈ V h×Wh

such that
(27)





(εuh,v) + (µ−1 curl uh, curl v) − (v, curl ph) = λh(ph, curl v) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) + (µq,grad φh) = 0 ∀q ∈ Qh

(µph,gradψ) = 0 ∀ψ ∈Wh

and the corresponding solution operator Th : Q → Qh ⊂ Q is defined as Thg = ph,
where ph is the second component of the solution to (23).
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Table 12. Edge elements on a uniform mesh of the cube

Exact Computed (rate)

2.00000 2.12293 2.03055 (2.01) 2.00762 (2.00)
2.00000 2.12749 2.03140 (2.02) 2.00782 (2.01)
2.00000 2.12749 2.03140 (2.02) 2.00782 (2.01)
3.00000 3.25478 3.06315 (2.01) 3.01576 (2.00)
3.00000 3.25478 3.06315 (2.01) 3.01576 (2.00)
5.00000 5.50030 5.12147 (2.04) 5.03016 (2.01)
5.00000 5.50930 5.12395 (2.04) 5.03079 (2.01)
5.00000 5.50930 5.12395 (2.04) 5.03079 (2.01)
5.00000 5.71701 5.17116 (2.07) 5.04231 (2.02)
5.00000 5.71701 5.17116 (2.07) 5.04231 (2.02)
Mesh 1/8 1/16 1/32

From the a priori estimates proved in Proposition 10, we then obtain the con-
vergence of the discrete eigenmodes to the continuous one along the lines of the
classical Babuška–Osborn theory.

Theorem 3. For k ≥ 0, let V h, Qh, and Wh as defined in (24); assume that λ is
an eigenvalue of (26) of multiplicity m with associated eigenspace E. Then there
exist exactly m eigenvalues λ1,h ≤ · · · ≤ λm,h of (27) converging to λ. Moreover, let
us denote by Eh the space spanned by eigenfunctions associated with the m discrete
eigenvalues. Then

|λ− λi,h| ≤ Cǫ(h)2 (i = 1, . . . ,m)

δ̂(E,Eh) ≤ Cǫ(h),

where
ǫ(h) = sup

p∈E
‖p‖1=1

‖(T − Th)p‖Q

and δ̂(A,B) denotes the gap between the subspaces A and B of Q.

7. Numerical examples in three dimensions

We conclude this paper with some three dimensional numerical results. We
limit ourselves to the results on the cube (0, π)3 where the exact results are known
analytically.

Table 12 shows the results of the computation performed with formulation (27)
and confirms the good behavior of the scheme.

Finally, we show some promising results related to the nodal approximation of
our problem. Indeed, we are considering the following two field formulation: find
λh ∈ R such that for a non-vanishing ph ∈ Qh there exists uh ∈ V h such that

{
(εuh,v) + (µ−1 curl uh, curl v)− (v, curl ph) = λh(ph, curl v) ∀v ∈ V h

− (uh, curl q) + (ε−1 curl ph, curl q) = 0 ∀q ∈ Qh,

where the spaces V h and Qh are both consisting of continiuous piecewise linear
elements in each component. No theory is available in this case and in general the
obtained results can be wrong; in particular no gauge condition is imposed on p so
that there is no uniqueness in the case of the source problem. Nevertheless, in the
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Table 13. Nodal elements on a uniform mesh of the cube

Exact Computed (rate)

2.00000 2.12841 2.03172 (2.02) 2.00792 (2.00)
2.00000 2.12841 2.03172 (2.02) 2.00792 (2.00)
2.00000 2.13005 2.03210 (2.02) 2.00801 (2.00)
3.00000 3.27704 3.06924 (2.00) 3.01734 (2.00)
3.00000 3.27704 3.06924 (2.00) 3.01734 (2.00)
5.00000 5.56075 5.13631 (2.04) 5.03393 (2.01)
5.00000 5.56516 5.13703 (2.04) 5.03411 (2.01)
5.00000 5.56516 5.13703 (2.04) 5.03411 (2.01)
5.00000 5.85266 5.20337 (2.07) 5.05035 (2.01)
5.00000 5.86162 5.20337 (2.08) 5.05035 (2.01)
Mesh 1/8 1/16 1/32

Table 14. Nodal elements on a nonuniform mesh of the cube

Exact Computed (rate)

2.00000 2.39482 2.10329 (1.93) 2.02523 (2.03)
2.00000 2.41541 2.10486 (1.99) 2.02538 (2.05)
2.00000 2.42126 2.10563 (2.00) 2.02546 (2.05)
3.00000 3.99333 3.22212 (2.16) 3.05435 (2.03)
3.00000 4.00258 3.22486 (2.16) 3.05464 (2.04)
5.00000 7.58994 5.61356 (2.08) 5.14744 (2.06)
5.00000 7.64984 5.62135 (2.09) 5.14764 (2.07)
5.00000 7.75720 5.62405 (2.14) 5.14818 (2.07)
5.00000 7.80063 5.63059 (2.15) 5.14861 (2.09)
5.00000 7.86660 5.63186 (2.18) 5.14964 (2.08)
Mesh 1/8 1/16 1/32

case of the cube we obtain the nice and optimal results reported in Table 13 in the
case of a uniform mesh and in Table 14 when a nonuniform mesh is considered.
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Università degli Studi di Pavia, Italy

Email address: daniele.boffi@kaust.edu.sa

URL: https://cemse.kaust.edu.sa/people/person/daniele-boffi
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