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Abstract

In this paper, we consider the discretization of the two-dimensional stationary Stokes
equation by Crouzeix-Raviart elements for the velocity of polynomial order k ≥ 1 on
conforming triangulations and discontinuous pressure approximations of order k−1. We
will bound the inf-sup constant from below independent of the mesh size and show that
it depends only logarithmically on k. Our assumptions on the mesh are very mild: for
odd k we require that the triangulations contain at least one inner vertex while for even
k we assume that the triangulations consist of more than a single triangle.
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1 Introduction

In this paper we consider the numerical discretization of the two-dimensional stationary Stokes
problem by Crouzeix-Raviart elements. They were introduced in the seminal paper [16] in
1973 by Crouzeix and Raviart with the goal to obtain a stable and economic discretization of
the Stokes equation. They can be considered as an non-conforming enrichment of conforming
finite elements of polynomial degree k for the velocity and discontinuous pressures of degree
k−1. It is well known that the conforming (k, k − 1) pair of finite elements can be unstable; for
two-dimensions the proof of the inf-sup stability of Crouzeix-Raviart discretizations of general
order k has been evolved over the last 50 years, the inf-sup stability for k = 1 has been proved
in [16] and only recently the last open case k = 3, has been proved in [11]. We mention the
papers [21], [32], [15], [7], [27], [10] which contain essential milestones in this development.
There is a vast of literature on various further aspects of Crouzeix-Raviart elements; we omit
to present a comprehensive review here but refer to the overview article [9] instead.

Since higher order methods are becoming increasingly popular a natural question arises
how the inf-sup constant depends on the polynomial degree k. It is the goal of this paper to
investigate this dependency.
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Switzerland
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The paper is organized as follows. In Section 1.1 we introduce the Stokes problem and the
Crouzeix-Raviart discretization of polynomial order k. We state our main theorem that the
discrete inf-sup constant can be estimated from below by c (log (k + 1))−α, where the positive
constant c depends only on the shape-regularity of the mesh and on the maximal outer angle
of the domain Ω. The explicit value of α depends on the mesh topology. The simplest case is
that each triangle in triangulation contains at least one inner vertex and then α = 1/2 holds.
We will give the value of α also for more general triangulations.

The proof is given in Section 2. The key ingredient is to show that for any discrete pressure
q, there exists a velocity field vq from the Crouzeix-Raviart space such that q̃ := q − divT vq
belongs to the Scott-Vogelius pressure space [37, R.1, R.2], [32, R.1, R.2] (see (2.25)) and vq
depends continuously on q. These properties allow us to construct a conforming velocity field
ṽq̃ of order k with div ṽq̃ = q̃. For this step, the construction in [32, Thm. 5.1], [27, Thm.
1] is modified such that the norm of the right-inverse does not deteriorate if a triangle vertex
is a “nearly-critical” point – a notion which will be introduced in Definition 2.11. This key
result is proved for odd polynomial degree in Section 2.2 and for even polynomial degree in
Section 2.3.

In the conclusions (Sec. 3) we summarize our main findings and compare our results with
existing results in the literature on some other pairs of finite elements for the Stokes equation.

In the appendices, we prove a technical result for a Gram matrix related to the bilinear
form (divT ·, ·)L2(Ω) applied to the Crouzeix-Raviart element and discontinuous pressure space
(see §A), an estimate of traces of non-conforming Crouzeix-Raviart basis functions (see §B),
give some explicit formulae for integrals related to orthogonal polynomials (see §C), and prove
a discrete Friedrichs inequality for Crouzeix-Raviart spaces (see §D).

1.1 The Stokes problem and its numerical discretization

Let Ω ⊂ R2 denote a bounded polygonal Lipschitz domain with boundary ∂Ω. For a vertex z
in ∂Ω, we denote by αz the exterior angle between the two segments in ∂Ω with joint z. The
minimal outer angle at the boundary vertices is given by

αΩ := min
z is a vertex in ∂Ω

αz (1.1)

and satisfies 0 < αΩ < 2π since Ω is Lipschitz. We consider the Stokes equation

−∆u −∇p = f in Ω,
div u = 0 in Ω

with Dirichlet boundary conditions for the velocity and a usual normalization condition for
the pressure

u = 0 on ∂Ω and

∫
Ω

p = 0.

To formulate this equation in a variational form we first introduce the relevant function spaces.
Throughout the paper we restrict to vector spaces over the field of real numbers.

For s ≥ 0, 1 ≤ p ≤ ∞, W s,p (Ω) denote the classical Sobolev spaces of functions with norm
‖·‖W s,p(Ω). As usual we write Lp (Ω) instead of W 0,p (Ω) and Hs (Ω) for W s,2 (Ω). For s ≥ 0,
we denote by Hs

0 (Ω) the closure of the space of infinitely smooth functions with compact
support in Ω with respect to the Hs (Ω) norm. Its dual space is denoted by H−s (Ω). For the
pressure p, the space L2

0 (Ω) :=
{
u ∈ L2 (Ω) :

∫
Ω
u = 0

}
will be relevant.
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The scalar product and norm in L2 (Ω) are denoted respectively by

(u, v)L2(Ω) :=
∫

Ω
uv and ‖u‖L2(Ω) := (u, u)

1/2

L2(Ω) in L2 (Ω) .

Vector-valued and 2 × 2 tensor-valued analogues of the function spaces are denoted by bold
and blackboard bold letters, e.g., Hs (Ω) = (Hs (Ω))2 and Hs = (Hs (Ω))2×2.

The L2 (Ω) scalar product and norm for vector valued functions are given by

(u,v)L2(Ω) :=

∫
Ω

〈u,v〉 and ‖u‖L2(Ω) := (u,u)
1/2

L2(Ω) ,

where 〈u,v〉 denotes the Euclidean scalar product in R3. In a similar fashion, we define for
G,H ∈ L2 (Ω) the scalar product and norm by

(G,H)L2(Ω) :=

∫
Ω

〈G,H〉 and ‖G‖L2(Ω) := (G,G)
1/2

L2(Ω) ,

where 〈G,H〉 =
∑3

i,j=1Gi,jHi,j. We also need fractional order Sobolev norms on boundary of
triangles and introduce the relevant notation; for details see, e.g., [29]. For a bounded Lipschitz
domain ω ⊂ R2 with boundary ∂ω, let L2 (∂ω) and H1 (∂ω) denote the usual Lebesgue and
Sobolev space on ∂ω with norm ‖·‖L2(∂ω) and ‖·‖H1(∂ω). For 0 < s < 1 the fractional Sobolev
space on ∂ω of order s is denoted by Hs (∂ω) and equipped with the norm

‖v‖Hs(∂ω) :=
(
‖v‖2

L2(∂ω) + |v|2Hs(∂ω)

)1/2

and seminorm

|v|Hs(∂ω) :=

(∫
∂ω

∫
∂ω

|v (x)− v (y)|2

‖x− y‖1+2s dydx

)1/2

.

We introduce the bilinear form a : H1 (Ω)×H1 (Ω)→ R by

a (u,v) := (∇u,∇v)L2(Ω) , (1.2)

where ∇u and ∇v denote the derivatives of u and v. The variational form of the Stokes
problem is given by: For given F ∈ H−1 (Ω) ,

find (u, p) ∈ H1
0 (Ω)× L2

0 (Ω) s.t.

{
a (u,v) + (p, div v)L2(Ω) = F (v) ∀v ∈ H1

0 (Ω) ,

(div u, q)L2(Ω) = 0 ∀q ∈ L2
0 (Ω) .

(1.3)
It is well-known (see, e.g., [22]) that (1.3) is well posed. Since we consider non-conforming

discretizations we restrict the space H−1 (Ω) for the right-hand side to a smaller space and
assume from now on for simplicity that F (v) = (f ,v)L2(Ω) for some f ∈ L2 (Ω); for a more
general setting we refer to [35], [36].

In the following a discretization for problem (1.3) is introduced. Let T = {Ki : 1 ≤ i ≤ n}
denote a triangulation of Ω consisting of closed triangles which are conforming : the intersec-
tion of two different triangles is either empty, a common edge, or a common point. We also
assume Ω = dom T , where

dom T := int

(⋃
K∈T

K

)
(1.4)
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and int (M) :=
◦
M denotes the interior of a set M ⊂ R2.

Piecewise versions of differential operators such as ∇ and div are defined for functions u
and vector fields w which are sufficiently smooth in the interior of the triangles K ⊂ T by

(∇T u)| ◦
K

:= ∇
(
u| ◦
K

)
and (divT w)| ◦

K
:= div

(
w| ◦

K

)
.

The values on ∂K are arbitrary since ∂K has measure zero.
An important measure for the quality of a finite element triangulation is the shape-

regularity constant given by

γT := max
K∈T

hK
ρK

(1.5)

with the local mesh width hK := diamK and ρK denoting the diameter of the largest inscribed
ball in K. The global mesh width is hT := max {hK : K ∈ T }.

Remark 1.1 It is well known that the shape-regularity implies that there exists some minimal
angle φT > 0 depending only on γT such that every triangle angle in T is bounded from below
by φT . In turn, every triangle angle in T is bounded from above by π − 2φT .

The set of edges in T is denoted by E (T ), while the subset of boundary edges is E∂Ω (T ) :=
{E ∈ E (T ) : E ⊂ ∂ (dom T )}; the subset of inner edges is given by EΩ (T ) := E (T ) \E∂Ω (T ).
For each edge E ∈ E we fix a unit vector nE orthogonal to E with the convention that nE is
the outer normal vector for boundary edges E ∈ E∂Ω.

The set of triangle vertices in T is denoted by V (T ), while the subset of inner vertices is
VΩ (T ) := {V ∈ V (T ) : V /∈ ∂ (dom T )} and V∂Ω (T ) := V (T ) \VΩ (T ). For K ∈ T , the set
of its vertices is denoted by V (K). For E ∈ E (T ), we define the edge patch by

TE := {K ∈ T : E ⊂ K} and ωE :=
⋃
K∈TE

K.

For z ∈ V (T ), the nodal patch is defined by

Tz := {K ∈ T : z ∈ K} and ωz :=
⋃
K∈Tz

K (1.6)

with local mesh width hz := max {hK : K ∈ Tz}. For K ∈ T , we set

TK := {K ′ ∈ T | K ∩K ′ 6= ∅} and ωK :=
⋃

K′∈TK

K ′. (1.7)

For a subset M ⊂ R2, we denote by [M ] its convex hull; in this way an edge E with
endpoints a,b can be written as E = [a,b] = [b, a].

Let N = {1, 2, . . .} and N0 := N∪{0}. For m ∈ N, we employ the usual multiindex
notation for µ = (µi)

m
i=1 ∈ Nm

0 and points x = (xi)
m
i=1 ∈ Rm

|µ| := µ1 + . . .+ µm, xµ :=
m∏
j=1

x
µj
j .
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Let Pm,k denote the space of m-variate polynomials of maximal degree k, consisting of
functions of the form ∑

µ∈Nm
0

|µ|≤k

aµxµ

for real coefficients aµ. Formally, we set Pm,−1 := {0}. To indicate the domain explicitly in
notation we write sometimes Pk (D) for D ⊂ Rm and skip the index m since it is then clear
from the argument D.

We introduce the following finite element spaces

Pk (T ) :=

{
q ∈ L2 (Ω) | ∀K ∈ T : q| ◦

K
∈ Pk

(
◦
K

)}
,

and (cf. (1.4)) Pk,0 (T ) :=
{
q ∈ Pk (T ) :

∫
dom T q = 0

}
.

(1.8)

Furthermore, let
Sk (T ) := Pk (T ) ∩H1 (dom T ) ,

and Sk,0 (T ) := Sk (T ) ∩H1
0 (dom T ) .

The vector-valued versions are denoted by Sk (T ) := Sk (T )2 and Sk,0 (T ) := Sk,0 (T )2. Fi-
nally, we define the Crouzeix-Raviart space by

CRk (T ) :=

{
v ∈ Pk (T ) | ∀q ∈ Pk−1 (E) ∀E ∈ EΩ (T )

∫
E

[v]E q = 0

}
, (1.9a)

CRk,0 (T ) :=

{
v ∈ CRk (T ) | ∀q ∈ Pk−1 (E) ∀E ∈ E∂Ω (T )

∫
E

vq = 0

}
. (1.9b)

Here, [v]E denotes the jump of v ∈ Pk (T ) across an edge E ∈ EΩ (T )

[u]E (x) := lim
ε↘0

(u (x + εnE)− u (x− εnE)) .

and Pk−1 (E) is the space of polynomials of maximal degree k − 1 with respect to the local
variable in E.

We have collected all ingredients for defining the Crouzeix-Raviart discretization for the
Stokes equation. For k ∈ N, let the discrete velocity space and pressure space be defined by

CRk,0 (T ) := (CRk,0 (T ))2 and Mk−1 (T ) := Pk−1,0 (T ) .

Then, the discretization is given by: find (uCR, pdisc) ∈ CRk,0 (T )×Mk−1 (T ) such that{
aT (uCR,v)− bT (v, pdisc) = (f ,v)L2(Ω) ∀v ∈ CRk,0 (T ) ,

bT (uCR, q) = 0 ∀q ∈Mk−1 (T ) ,
(1.10)

where the bilinear forms aT : CRk,0 (T )×CRk,0 (T )→ R and bT : CRk,0 (T )×Mk−1 (T )→ R
are given by

aT (u,v) := (∇T u,∇T v)L2(Ω) and bT (v, q) := (divT v, q)L2(Ω) .

It is well known that problem (1.10) is well-posed if (i): the bilinear form aT (·, ·) is coercive
and (ii): bT (·, ·) satisfies the inf-sup condition.
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To verify the condition (i) we introduce, for a conforming triangulation T of the domain
Ω, the broken Sobolev space

H1 (T ) :=
{
u ∈ L2 (Ω) | ∀K ∈ T : u|K ∈ H

1 (K)
}

and define, for u ∈ H1 (T ), the broken H1–seminorm by

‖u‖H1(T ) := ‖∇T u‖L2(Ω) =

(∑
K∈T

‖∇u‖2
L2(K)

)1/2

.

In [16, Lem. 2]) it is proved that ‖·‖H1(T ) defines a norm in CRk,0 (T ) + H1
0 (Ω) which is

equivalent to the norm
(∑

K∈T ‖u‖
2
H1(K)

)1/2

with equivalence constants independent of the

polynomial degree and the mesh width (see Theorem D.1). This directly implies the coercivity
of aT (·, ·):

aT (u,u) ≥ ‖u‖2
H1(T ) ∀u ∈ CRk,0 (T ) .

Hence, well-posedness of (1.10) follows from the inf-sup condition for bT (·, ·).

Definition 1.2 Let T denote a conforming triangulation for Ω. The pair CRk,0 (T ) ×
Mk−1 (T ) is inf-sup stable if there exists a constant cT ,k such that

inf
p∈Mk−1(T )\{0}

sup
v∈CRk,0(T )\{0}

(p, divT v)L2(Ω)

‖v‖H1(T ) ‖p‖L2(Ω)

≥ cT ,k > 0. (1.11)

We are now in the position to formulate our main theorem.

Theorem 1.3 Let Ω ⊂ R2 be a bounded polygonal Lipschitz domain and let T denote a
conforming triangulation of Ω consisting of more than a single triangle. Let k ∈ N. If k ≥ 3
is odd we assume that T contains at least one inner vertex. Then, the inf-sup condition (1.11)
holds:

cT ,k ≥ cT (log (k + 1))−α (1.12)

for a constant cT > 0 depending only on the shape-regularity of the mesh and on the maximal
outer angle αΩ. In particular cT is independent of the mesh width hT and the polynomial
degree k. The value of α ≥ 0 is given by

α =

 1/2

{
if k is even,
or k ≥ 3 is odd and all triangles in T have at least one inner vertex,

(1 + L) /2 otherwise,

where L depends only on the mesh topology via the number of steps involved in the step-by-step
construction introduced in (2.13).

Proof. The estimate cT ,k > 0 follows, for k = 1 from [16], for k = 2 from [12, Thm. 3.1],
for even k ≥ 4 from [7], for odd k ≥ 5 from [10], and for k = 3 from [11]. We set

cT ,low := min {cT ,k : 1 ≤ k ≤ 3} .

Estimate (1.12) for some cT := codd
T ,high > 0 for odd k ≥ 5 is proved in Section 2.2, Lem. 2.22,

while the estimate for some cT := ceven
T ,high > 0 for even k ≥ 4 is proved in Section 2.3. Both
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constants codd
T ,high, ceven

T ,high depend only on the shape-regularity of the mesh and αΩ. Hence,

cT ≥ min
{
cT ,low, c

odd
T ,high, c

even
T ,high

}
.

We emphasize that the original definition in [16] allows for slightly more general finite
element spaces, more precisely, the spaces CRk (T ) can be enriched by locally supported
functions. From this point of view, the definition (1.9) describes a minimal Crouzeix-Raviart
space.

The possibility for enrichment has been used frequently in the literature to prove inf-sup
stability for the arising finite element spaces (see, e.g., [16], [26], [28]). In contrast, we will
prove the k-explicit estimate of the inf-sup constant for the Crouzeix-Raviart space CRk (T ).

2 Proof of Theorem 1.3

In this section, we will analyse the k-dependence of the inf-sup constant in the form (1.12),
first for odd polynomial degree k ≥ 5 and then for even degree k ≥ 4.

2.1 Barycentric coordinates and basis functions for the velocity

In this section, we introduce basis functions for the finite element spaces in Section 1.1. We
begin with introducing some general notation.

Notation 2.1 For vectors ai ∈ Rn, 1 ≤ i ≤ m, we write [a1 | a2 | . . . | am] for the n × m
matrix with column vectors ai. For v = (v1, v2)T ∈ R2 we set v⊥ := (v2,−v1)T . Let ek,i ∈ Rk

be the i-th canonical unit vector in Rk.
For v ∈ Rn, ‖v‖ is the Euclidean vector norm while the induced matrix norm is given for

B ∈ Rn×n by ‖B‖ := sup {‖Bx‖ / ‖x‖ : x ∈ Rn\ {0}}.
Vertices in a triangle are numbered counterclockwise. In a triangle K with vertices A1,

A2, A3 the angle at Ai is called αi. If a triangle is numbered by an index (e.g., K`), the angle
at A`,i is called α`,i. For quantities in a triangle K as, e.g., angles αj, 1 ≤ j ≤ 3, we use the
cyclic numbering convention α3+1 := α1 and α1−1 := α3.

For a d-dimensional measurable set D, we write |D| for its measure; for a discrete set, say
J , we denote by |J | its cardinality.

In the proofs, we consider frequently nodal patches Tz for inner vertices z ∈ VΩ (T ). The
number m denotes the number of triangles in Tz. Various quantities in this patch such as, e.g.,
the triangles in Tz, have an index which runs from 1 to m. Here, we use the cyclic numbering
convention Km+1 := K1 and K1−1 := Km and apply this analogously for other quantities in
the nodal patch.

Let the closed reference triangle K̂ be the triangle with vertices Â1 := (0, 0)T , Â2 :=
(1, 0)T , Â3 := (0, 1)T . The nodal points on the reference element of order k ∈ N0 are given by

N̂k :=



{
1

k
µ | µ ∈ N2

0 : |µ| ≤ k

}
k ≥ 1,

{(
1

3
,
1

3

)}
k = 0.
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For a triangle K ⊂ R2, we denote by χK : K̂ → K an affine bijection. The mapped nodal
points of order k ∈ N0 on K are given by

Nk (K) :=
{
χK (z) : z ∈ N̂k

}
.

Nodal points of order k on T are defined by

Nk (T ) :=
⋃
K∈T

Nk (K) , N k
∂Ω (T ) := Nk (T ) ∩ ∂Ω, and Nk,Ω (T ) := Nk (T ) ∩ Ω.

We introduce the Lagrange basis for the space Sk (T ), which is indexed by the nodal points
z ∈ Nk (T ) and characterized by

Bk,z ∈ Sk (T ) and ∀z′ ∈ Nk (T ) Bk,z (z′) = δz,z′ , (2.1)

where δz,z′ is the Kronecker delta. A basis for the space Sk,0 (T ) is given by Bk,z, z ∈ Nk,Ω (T ).

Let K denote a triangle with vertices Ai, 1 ≤ i ≤ 3, and let λK,Ai
∈ P1 (K) be the

barycentric coordinate for the node Ai defined by

λK,Ai
(Aj) = δi,j 1 ≤ i, j ≤ 3. (2.2)

If the numbering of the vertices in K is fixed, we write λK,i short for λK,Ai
. For the barycentric

coordinate on the reference element K̂ for the vertex Âj we write λ̂j, j = 1, 2, 3. Elementary
calculation yield (see, e.g., [10, Appendix A])

∂nk
λK,Ai

=
|Ei|

2 |K|
×
{
−1 i = k,
cosα` ` s.t. {`, i, k} = {1, 2, 3} , (2.3)

where Ei is the edge of K opposite to Ai, nk the outward unit normal at Ek, and α` the angle
in K at A`.

Definition 2.2 Let Lk denote the usual univariate Legendre polynomial of degree k (see [17,
Table 18.3.1]). Let k ∈ N be even and K ∈ T . Then, the non-conforming triangle bubble is
given by

BCR
k,K :=


1

2

(
−1 +

3∑
i=1

Lk (1− 2λK,i)

)
on K,

0 on Ω\K.

For k odd and E ∈ E (T ), the non-conforming edge bubble is given by

BCR
k,E :=

{
Lk
(
1− 2λK,AK,E

)
on K for K ∈ TE,

0 on Ω\ωE,
(2.4)

where AK,E denotes the vertex in K opposite to E.

Different representations of the functions BCR
k,E, BCR

k,K exist in the literature, see [34], [5],
[12, for p = 4, 6.], [13] while the formula for BCR

k,K has been introduced in [7] and the one for
BCR
k,E in [10].
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Proposition 2.3 A basis for the space CRk,0 (T ) is given

1. for even k by
{Bk,z | z ∈ Nk,Ω (T )} ∪

{
BCR
k,K | K ∈ T

}
,

2. for odd k by
{Bk,z | z ∈ Nk,Ω (T ) \VΩ (T )} ∪

{
BCR
k,E | E ∈ EΩ (T )

}
.

The proof of this proposition and the following corollary can be found, e.g., in [34, Rem.
3], [13, Thm. 22], [10, Cor. 3.4].

Corollary 2.4 A basis for the space CRk,0 (T ) is given

1. for even k by

{Bk,zvz | z ∈ Nk,Ω (T )} ∪ {Bk,zwz | z ∈ Nk,Ω (T )}

∪
{
BCR
k,KvK | K ∈ T

}
∪
{
BCR
k,KwK | K ∈ T

}
,

(2.5)

2. for odd k by

{Bk,zvz | z ∈ Nk,Ω (T ) \VΩ (T )} ∪ {Bk,zwz | z ∈ Nk,Ω (T ) \VΩ (T )}

∪
{
BCR
k,EvE | E ∈ EΩ (T )

}
∪
{
BCR
k,EwE | E ∈ EΩ (T )

}
.

(2.6)

Here, for any nodal point z, the linearly independent vectors vz,wz ∈ R2 can be chosen
arbitrarily. The same holds for any triangle K for the vectors vK ,wK ∈ R2 in (2.5) and for
any E ∈ EΩ (T ) for the vectors vE,wE ∈ R2 in (2.6).

Remark 2.5 The original definition of Crouzeix-Raviart spaces by [16] is implicit and given
for conforming simplicial finite element meshes in Rd, d = 2, 3. For their practical im-
plementation, a basis is needed and Corollary 2.4 provides a simple definition. A basis for
Crouzeix-Raviart finite elements in R3 is introduced in [20] for k = 2, a general construction
is given in [14], and a basis for a minimal Crouzeix-Raviart spaces in general dimension d is
presented in [30].

2.2 The case of odd k ≥ 5

In this section, we assume for the following

a) k ≥ 5 is odd and
b) T is a conforming triangulation and has at least one inner vertex.

(2.7)

This section is structured as follows. In §2.2.1 we generalize the concept of critical points
(see [37], [32]) to η-critical points which turn out to be essential for estimates with constants
depending on the mesh only via the shape-regularity constant and αΩ. We split these η-critical
points into a set of “obtuse” η−critical points and “acute” η−critical points. In §2.2.2, we
provide the proof of Theorem 1.3 for a maximal partial triangulation that does not contain
acute η−critical points and satisfies (2.7). Finally, in §2.2.3 we present the argument to allow
for acute η−critical points.
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Figure 1: Illustration of the four critical cases as in Remark 2.7. Left top: inner critical point,
right top: acute critical point, left bottom: flat critical point, right bottom: obtuse critical
point.

2.2.1 Geometric preliminaries

For the analysis of the inf-sup constant we start with the definition of critical points (see [37],
[32]).

Definition 2.6 Let T denote a triangulation as in §1.1. For z ∈ V (T ), let

Ez := {E ∈ E (T ) : z is an endpoint of E} .

The point z ∈ V (T ) is a critical point for T if there exist two straight infinite lines L1, L2 in
R2 such that all edges E ∈ Ez satisfy E ⊂ L1 ∪ L2. The set of all critical points in T is CT .

Remark 2.7 Geometric configurations where critical points occur are well studied in the lit-
erature (see, e.g., [32]). Any critical point z ∈ CT belongs to one of the following cases (see
Fig. 1):

1. z ∈ VΩ (T ) and Tz consists of four triangles and z is the intersections of the two diagonals
in the quadrilateral ωz.

2. z ∈ V∂Ω (T ) and card Ez = 2, i.e., both edges E ∈ Ez are boundary edges with joint z.

3. z ∈ V∂Ω (T ) and card Ez = 3 and two edges E ∈ Ez are boundary edges which lie on a
straight boundary piece.

4. z ∈ V∂Ω (T ) and card Ez = 4 and each of the two boundary edges is aligned with one
edge of Ez ∩ EΩ (T ).
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Definition 2.8 Let T denote a triangulation as in §1.1. Let z ∈ V (T ) and the nodal patch
Tz as in (1.6). Let the triangles K`, 1 ≤ ` ≤ m, in Tz be numbered counterclockwise and
denote the angle in K` at z by ω`. Then,

Θ (z) :=


max {|sin (ω1 + ω2)| , |sin (ω2 + ω3)| , . . . , |sin (ωm + ω1)|} if z ∈ VΩ (T ) ,
max {|sin (ω1 + ω2)| , |sin (ω2 + ω3)| , . . . , |sin (ωm−1 + ωm)|} if z ∈ Γ ∧m > 1,
0 if z ∈Γ ∧m = 1.

Remark 2.9 It is easy to see that z ∈ CT if and only if Θ (z) = 0.

Lemma 2.10 Let φT be as in Remark 1.1. Set

η0 := min

{
1

2
, c1,

3φT
π
, sinφT

}
with

c1 :=


min {sin 2φT , |sin (2π − 4φT )|} φT ≤ π/8,
sin 2φT π/8 < φT ≤ π/4,
1 φT > π/4.

Let 0 ≤ η < η0 be fixed. If, for z ∈ V (T ), it holds Θ (z) ≤ η, then, for any edge E = [z, z′] ∈
EΩ (T ) it holds

Θ (z′) ≥ η0.

Proof. Let z ∈ V (T ) and consider an edge E = [z, z′] ∈ EΩ (T ). Then, there are two
triangles K,K ′ ∈ T which are adjacent to E. The angle in K resp. K ′ at z is denoted by ω
resp. ω′.

1st case. Let ω + ω′ ≤ π/2 or ω + ω′ ≥ 3
2
π. Then, we conclude from Remark 1.1 that

2φT ≤ ω + ω′ ≤ π

2
or

3

2
π ≤ ω + ω′ ≤ 2π − 4φT .

For the left inequality to hold, the minimal angle must satisfy φT ≤ π/4 while for the right
inequality, it must hold φT ≤ π/8. For φT > π/4, the 1st case is empty. For φT ≤ π/4 we
get

Θ (z) ≥
{

min {sin 2φT , |sin (2π − 4φT )|} φT ≤ π/8
sin 2φT π/8 < φT ≤ π/4

}
≥ c1 ≥ η0.

Since η < η0 ≤ c1 this case cannot appear.
2nd case. Let π/2 < ω + ω′ < 3π/2. The condition |sin (ω + ω′)| ≤ η implies that

ω + ω′ = π + δ with

|δ| ≤ arcsin η
[17, 4.24.1]

= η

∞∑
`=0

η2` (2`)!

(`!)2 4` (2`+ 1)

η0≤1/2

≤ η
∞∑
`=0

2−2` (2`)!

(`!)2 4` (2`+ 1)
=
πη

3
. (2.8)

Consequently the two angles α in K and α′ in K ′ at z′ satisfy

α + α′ = 2π − ω − ω′ − β − β′ = π − δ − β − β′ ≤ π +
πη

3
− 2φT

πη/3≤φT
≤ π − φT ,

where β (resp. β′) denotes the third angle in K (resp. K ′). Hence, in this case

Θ (z′) ≥ |sin (π − φT )| = sinφT ≥ η0.
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Definition 2.11 Let η0 be as in Lemma 2.10. For 0 ≤ η < η0, the set of η-critical points
CT (η) is given by

CT (η) := {z ∈ V (T ) | Θ (z) ≤ η} .

A point z ∈ CT (η) \CT (0) is called a nearly critical point. An η-critical point z ∈ CT (η) is
isolated if all edge [z, z′] ∈ E (T ) satisfy: z′ is not an η-critical point.

By perturbing the geometric configurations in Remark 2.7 we obtain the following subcases
(see Fig. 2).

Definition 2.12 Let η0 be as in Lemma 2.10 and 0 ≤ η < η0. If z ∈ V (T ) satisfies

1. z ∈ VΩ (T ) and card Tz = 4 and Θ (z) ≤ η. Then z is an inner η-critical point. Let

Cinner
T (η) := {z ∈ CT (η) : z is an inner η-critical point} .

2. z ∈ V∂Ω (T ) and card Ez = 2. Then z is an acute critical point. Let1

Cacute
T := {z ∈ CT : z is an acute critical point} .

3. z ∈ V∂Ω (T ) and card Ez = 3 and Θ (z) ≤ η. Then z is flat η-critical point. Let

Cflat
T (η) := {z ∈ CT (η) : z is a flat η-critical point} .

4. z ∈ V∂Ω (T ) and card Ez = 4 and Θ (z) ≤ η. Then z is a (locally) concave η-critical
point. Let

Cconcave
T (η) := {z ∈ CT (η) : z is a concave η-critical point} .

The acute critical points require some special treatment and we denote the union of the
others by

Cobtuse
T (η) := Cinner

T (η) ∪ Cflat
T (η) ∪ Cconcave

T (η) .

The following lemma states that for a possibly adjusted η0, still depending only on the
shape-regularity of the mesh and the maximal outer angle αΩ, the η-critical points belong to
one of the four categories described in Definition 2.12.

Lemma 2.13 Let T be a conforming triangulation such that D := dom T is a Lipschitz
domain.

Then, there exists some η′0 ∈ ]0, η0] depending only on the shape-regularity of the mesh and
the minimal outer angle αD such that for 0 ≤ η < η′0 any η-critical point belongs to one of the
four categories described in Definition 2.12.

Proof. Let z be an η-critical point. We set m := card Tz and choose a counterclockwise
numbering for the triangles in Tz, i.e., Ki, 1 ≤ i ≤ m. The shape-regularity of the mesh
implies that there is some mmax depending only on φT such that m ≤ mmax. Denote by ωi

1Note that the set of acute critical points is independent of η.
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Figure 2: Illustration of the four η-critical cases as in Remark 2.12. Left top: inner η−critical
point, right top: acute critical point, left bottom: flat η-critical point, right bottom: concave
η-critical point.

the angle in Ki at z. Let η′0 ∈ ]0, η0] which will be fixed later and assume 0 ≤ η < η′0. Since z
is an η-critical it holds

|sin (ωi + ωi+1)| ≤ η < η′0 ∀1 ≤ i ≤ m′ for m′ :=

{
m if z ∈ VΩ (T ) ,
m− 1 if z ∈ V∂Ω (T ) .

The shape-regularity implies φT ≤ ωi ≤ π − 2φT and, for δ = arcsin η′0, we get

ωi + ωi+1 ∈ [2φT , δ] ∪ [π − δ, π + δ] ∪ [2π − δ, 2π − 4φT ] for all 1 ≤ i ≤ m′. (2.9)

Since arcsin : [0, 1[→ R≥0 is monotonously increasing with arcsin 0 = 0 and limx→1 arcsinx =
+∞, we can select η′0 such 0 < δ < 2φT . In turn, the first and last interval in (2.9) are empty
and

ωi + ωi+1 =: π + δi for some δi with |δi| ≤ δ for all 1 ≤ i ≤ m′. (2.10)

Case 1: z ∈ VΩ (T ).
In this case we obtain

4π =
m∑
i=1

(ωi + ωi+1)
(2.10)
= mπ +

m∑
i=1

δi. (2.11)

By adjusting η′0 such that mmaxδ < π we conclude that m = 4 and
∑m

i=1 δi = 0. Hence, z is
an inner η-critical point according to Definition 2.12(1).

Case 2a: z ∈ V∂Ω (T ) and m ≤ 3.
These cases correspond to acute critical/flat η-critical/concave η-critical points according

to Definition 2.12(2-4).
Case 2b: z ∈ V∂Ω (T ) and m ≥ 4.
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Figure 3: Three types of obtuse η-critical points z ∈ Cobtuse
T (η) with associated inner edge

E (z), normal vector N (z) and opposite endpoint V (z) of E (z); left: inner η-critical point,
middle: flat η-critical point, right: concave η-critical point.

We argue as in Case 1 but take into account that the patch Tz is not “closed” since z is a
boundary point. Let α := 2π −

∑m
i=1 ωi be the “outer angle” of the domain at z. Then

ω1 + ωm + 2
m−1∑
i=2

ωi =
m−1∑
i=1

(ωi + ωi+1) = (m− 1) π +
m−1∑
i=1

δi.

By the definition of α, we obtain

(m− 1) π +
m−1∑
i=1

δi = 2π − α +
m−1∑
i=2

ωi = 2π − α +

bm−2
2 c∑
`=1

(ω2` + ω2`+1) +Q (m)ωm−1

= 2π − α +

⌊
m− 2

2

⌋
π +

bm−2
2 c∑
`=1

δ2` +Q (m)ωm−1,

where Q (m) = 0 if m is even and Q (m) = 1 if m is odd. By rearranging the terms we get

Q (m)ωm−1 + ∆m =

(
m− 3−

⌊
m− 2

2

⌋)
π + α for ∆m :=

bm−2
2 c∑
`=1

δ2` −
m−1∑
i=1

δi. (2.12)

We adjust η′0 such that δ = arcsin η′0 satisfies mmaxδ < α and, in turn, |∆m| ≤ mmaxδ < α.
Then, it is easy to verify that

|Q (m)ωm−1 + ∆m| < Q (m) π + α ≤
(
m− 3−

⌊
m− 2

2

⌋)
π + α

holds for all m ≥ 4. Hence, (2.12) cannot hold and there exists no η-critical boundary point
z for m ≥ 4.

Next, we collect the η−critical points in pairwise disjoint, edge-connected sets which we
will define in the following. We say two points y,y′ ∈ V (T ) are edge-connected if there is
an edge E ∈ E (T ) with endpoints y,y′. A subset V ′ ⊂ V (T ) is edge-connected if there is a
numbering of the points in V ′ = {yj : 1 ≤ j ≤ n} such that yj−1, yj are edge-connected for
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all 2 ≤ j ≤ n. A point z ∈ V (T ) is edge-connected to V ′ if z ∈ V ′ or there is y ∈V ′ such that
z, y are edge-connected.

From Lemma 2.10 we know that two edge-connected points z, z′ ∈ V (T ) can be both
critical only if the connecting edge E belongs to E∂Ω (T ); in this case it holds z, z′ ∈ V∂Ω (T ).
Next, we will group the points in CT (η) into subsets called fans.

From Lemma 2.10 it follows that the points in Cinner
T (η) are isolated (see Def. 2.11). All

other η-critical points lie on the boundary. Next, we define mappings E : Cobtuse
T (η)→ EΩ (T ),

N : Cobtuse
T (η) → S2, and V : Cobtuse

T (η) → V (T ) \CT (η). The construction is illustrated in
Figure 3.

For z ∈ Cobtuse
T (η), Definition 2.12 implies that |Ez| ≥ 3 and hence Ez ∩ EΩ (T ) 6= ∅. We

fix one edge E ∈ Ez ∩ EΩ (T ) and set E (z) := E. Note that the choice of E is unique for
z ∈ Cflat

T (η). For z ∈ Cinner
T (η) the choice is arbitrary. For z ∈ Cconcave

T (η), the set Ez ∩ EΩ (T )
consists of two edges, say E1, E2. We fix one of them and set E (z) := E2. Let z′ ∈ V (T ) be
such that E (z) = [z, z′]. Then V (z) := z′. Lemma 2.10 implies that z′ is not an η-critical
point. A unit vector N (z) orthogonal to E (z) is defined by the condition that z′ − z and
N (z) form a right-handed system.

Definition 2.14 We decompose Cobtuse
T (η) into disjoint fans CT ,` (η), ` ∈ J , such that the

following conditions are satisfies

1. Cobtuse
T (η) =

⋃
`∈J

CT ,` (η) ,

2. for any ` ∈ J , the set CT ,` (η) is edge-connected,

3. for any ` ∈ J , there is z` ∈ V (T ) \CT (η) such that for all z ∈ CT ,` (η) it holds V (z) = z`
and, vice versa:

4. any z′ ∈ Cobtuse
T (η) which is edge-connected to some CT ,` (η) and satisfies V (z′) = z`

belongs to CT ,` (η).

The following lemma will allow us to construct a right-inverse for the divergence operator
separately for each fan.

Lemma 2.15 Let η0 be as in in Lemma 2.10 and let 0 ≤ η < η0 be fixed.

a. Then, the mapping E : Cobtuse
T (η)→ EΩ (T ) is injective.

b. For ` ∈ J , let ω` :=
⋃

z∈CT ,`(η)

ωE(z). The domains ω` have pairwise disjoint interior.

Proof. Part a. The injectivity of the mapping E : Cobtuse
T (η) → EΩ (T ) follows from

Lemma 2.10: if z ∈ CT (η) and z′ ∈ V (T ) is such that E := [z, z′] ∈ EΩ (T ) then z′ /∈ CT (η).
Part b. The following construction is illustrated in Figure 4. For fixed ` ∈ J , we number

the points in CT ,` by z`,j, 1 ≤ j ≤ n`, such that z`,j−1 and z`,j are edge-connected for all
2 ≤ j ≤ n` and z`,1 and z`,n`

are the endpoints in the polygonal line through these points. Let
K`,j be the triangle with vertices z`,j−1, z`, z`,j, 2 ≤ j ≤ n` and let T` := {K`,j : 2 ≤ j ≤ n`}.
Note that this set is empty if |CT ,`| = 1. Let K`,1, K`,n`+1 ∈ T \T` be two different triangles
such that E`,1 := [z`,1, z`] ⊂ ∂K`,1 and E`,n`

:= [z`,n`
, z`] ⊂ ∂K`,n`+1. Let z`,0 be the third
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Figure 4: Nodal patch, illustrating edge-connected obtuse η-critical points of a fan CT ,` (η).
In this example, the left-most η-critical point is z`,n`

and of type “flat”, the right-most is z`,1
of type “concave” with E (z`,1) = [z`,1, z]. The extremal points z`,0 and z`,n`+1 do not belong
to CT ,` (η). The edge connecting z` with z`,j is denoted by E`,j.

vertex in K`,1 and observe that it does not belong to CT ,`. Since E`,1 is an inner edge and
z`,1 is an η-critical point, Lemma 2.10 implies that z` is not an η-critical point. Next, we
show that E`,0 := [z`,0, z`] does not belong to Eobtuse

T :=
{
E (z) : z ∈ Cobtuse

T (η)
}

; from this the
assertion follows. We assume E`,0 ∈ Eobtuse

T and derive a contradiction. Since z` /∈ Cobtuse
T (η),

this assumption implies that z`,0 ∈ Cobtuse
T (η). If V (z`,0) = z` then Definition 2.14(4) implies

that z`,0 ∈ CT ,` and this is a contradiction. If V (z`,0) 6= z`, then E`,0 /∈ Eobtuse
T .

Since the acute critical points need some special treatment we define a sequence of trian-
gulations Ti, 1 ≤ i ≤ L, with the properties

1.
T1 ⊂ T2 ⊂ . . . ⊂ TL = T , (2.13)

2. T1 is a maximal subset of T such that Cacute
T1 = ∅,

3. for j = 1, 2, . . . , L,

Tj = {K ∈ T | at least one edge of K belongs to E (Tj−1)} .

By this step-by-step procedure, triangles are attached to a previous triangulation Tj−1

which have an edge in common with the set of edges in Tj−1. The proof of Theorem 1.3
under assumption (2.7) then consists of first proving the inf-sup stability for T1 and then to
investigate the effect of attaching a triangle to an inf-sup stable triangulation. A sufficient
condition for L = 0 is that every triangle in T has an interior point.
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2.2.2 The case Cacute
T = ∅

In this section, we prove the inf-sup stability for the triangulation T1 in (2.13) where Cacute
T1 = ∅.

For simplicity we skip the index 1 and write T , CT (η), etc.
Next, we define some fundamental non-conforming Crouzeix-Raviart vector fields which

will be used to eliminate the critical pressures in the Stokes element (Sk,0 (T ) ,Pk−1,0 (T )).
Essential properties of the Crouzeix-Raviart function BCR

k,E are: it is a polynomial of degree
k on each K ⊂ TE and a Legendre polynomial on each edge E ′ ⊂ ∂ωE so that the jump
relations in (1.9b) are satisfied. Furthermore,

[
BCR
k,E

]
E

= 0 and suppBCR
k,E ⊂ ωE.

In the first step, we modify the function BCR
k,E by adding a conforming edge bubble in

Sk,0 (T ) such that the H1 (Ω) norm of the modified function has an improved behaviour with
respect to k.

Let E ∈ EΩ (T ) with endpoints V1, V2. Set tE = (V2 −V1) / ‖V2 −V1‖ and consider a
function wE ∈ Pk (T ) with suppwE = ωE and

wE|K |E′ = BCR
k,E

∣∣
K

∣∣∣
E′
∀K ∈ TE and E ′ ⊂ ∂K ∩ ∂ωE, (2.14a)

[wE]E = 0 and ∂tEwE (V1) = ∂tEwE (V2) = 0. (2.14b)

Then, wE also belongs to the space CRk,0 (T ) and

∇ (wE|K) (z) = ∇
(
BCR
k,E

∣∣
K

)
(z) ∀K ∈ T ∀z ∈ V (K) . (2.15)

The last relation can be derived from the following reasoning. For K ∈ T and z ∈ V (K),
set ty := (y − z) / ‖y − z‖ for all y ∈ V (K) \ {z}. Let c ∈ R2 be arbitrary. Clearly, c =∑

y∈V(K)\{z} αyty for some αy ∈ R. The conditions in (2.14) imply that for y ∈ V (K) \ {z}
it holds

∂ wE|K
∂ty

=
∂ BCR

k,E

∣∣
K

∂ty
.

Hence,

〈∇ (wE|K) , c〉 (z) =
∑

y∈V(K)\{z}

αy
∂ wE|K
∂ty

(z) (2.16)

=
∑

y∈V(K)\{z}

αy

∂ BCR
k,E

∣∣
K

∂ty
(z) =

〈
∇
((
BCR
k,E

)∣∣
K

)
, c
〉

(z) .

Since c was arbitrary, (2.15) follows.

Lemma 2.16 Let k ≥ 5 be odd and for E ∈ EΩ (T ), let BCR
k,E be as in (2.4). Then, there

exists a function B̃CR
k,E ∈ CRk,0 (T ) with

i. supp B̃CR
k,E = ωE,

ii. for all K ∈ T , for all z ∈ V (K):

∇
(
B̃CR
k,E

∣∣∣
K

)
(z) = ∇

(
BCR
k,E

∣∣
K

)
(z) , (2.17)
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iii. for all K ∈ TE, for all E ′ ⊂ ∂K ∩ ∂ωE:

B̃CR
k,E

∣∣∣
K

∣∣∣
E′

= BCR
k,E

∣∣
K

∣∣∣
E′

and
[
B̃CR
k,E

]
E

= 0,

iv. for all K ∈ T ∫
K

divT

(
B̃CR
k,EnE

)
= 0. (2.18)

v. The piecewise gradient is bounded:∥∥∥∇T B̃CR
k,E

∥∥∥
L2(Ω)

≤ C
√

log (k + 1). (2.19)

Proof. We employ the reference triangle as in [6] in order to apply the polynomial
extension theorem therein. Let K̃ be the equilateral triangle with vertices Ã1 := (−1, 0)T ,

Ã2 := (1, 0)T , Ã3 :=
(
0,
√

3
)T

and let Ẽj denote the edge in K̃ opposite to Ãj, 1 ≤ j ≤ 3.
Let E ∈ EΩ (T ) with endpoints V1, V2, and let K ∈ TE. Choose an affine pullback

φK : K̃ → K such that φK

(
Ẽ3

)
= E. We employ the function ψ̃±k ∈ Pk ([−1, 1]) given by

ψ̃−k (x) := c−1
k

(1 + x) (1− x)2

4
P

(3,3)
k−3 (x) and ψ̃+

k (x) := −ψ̃−k (−x)

with the Jacobi polynomials P
(α,β)
n (see, e.g., [17, §18.3]) and the normalisation factor ck :=

(−1)k−1 (k
3

)
. These functions have been analysed in the proof of Lemma A.1 in [3, denoted by

Fk] and we recall relevant properties. It holds ψ̃±k (±1) =
(
ψ̃−k

)′
(+1) =

(
ψ̃+
k

)′
(−1) = 0 and(

ψ̃−k

)′
(−1) =

(
ψ̃+
k

)′
(+1) = 1 (cf. [17, §18.3]). Their norms can be estimated by

∥∥∥ψ̃±k ∥∥∥
L2([−1,1])

≤ Ck−3 and

∥∥∥∥(ψ̃±k )′∥∥∥∥
L2([−1,1])

≤ Ck−1.

We set
ϕ̃k (x) = Lk−1 (x)− L′k−1 (−1) ψ̃−k (x)− L′k−1 (1) ψ̃+

k (x) . (2.20)

Clearly, it holds
ϕ̃k (±1) = 1, ϕ̃′k (±1) = 0.

By using Lemma C.1, we get

‖ϕ̃k‖L2([−1,1]) ≤ Ck−1/2, ‖ϕ̃k‖H1([−1,1]) ≤ Ck.

From [6, Thm. 7.4] we conclude that there is w̃E ∈ Pk
(
K̃
)

with

w̃E|Ẽj
= BCR

k,E

∣∣
K
◦ φK

∣∣∣
Ẽj

, j = 1, 2 and w̃E|Ẽ3
= ϕ̃k

which satisfies
‖w̃E‖H1(K̃) ≤ C ‖w̃E‖H1/2(∂K̃)
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for a constant C independent of k. Lemma B.2 implies the following estimate of the H1/2

norm of w̃E:
‖w̃E‖H1/2(∂K̃) ≤ C

√
log (k + 1). (2.21)

In turn, we get
‖w̃E‖H1(K̃) ≤ C

√
log (k + 1). (2.22)

By using the affine lifting φK to the triangle K we define the function wE by

wE|K :=

{
w̃E ◦ φ−1

K if K ∈ TE,
0 otherwise.

This function is continuous across E (with value ϕ̃k ◦ φ−1
K

∣∣
E

) and, on E ′ ⊂ ∂ωE, it is a lifted
Legendre polynomial. This implies property (iii) for wE. The function wE vanishes outside
ωE so that (i) holds. Since the construction implies that the derivative of wE in the direction
of E, evaluated at the endpoints V1, V2 of E, is zero, we may apply the reasoning in (2.16)
to obtain property (ii) for wE.

From (2.22) we obtain by the transformation rule for integrals and the chain rule for
differentiation

‖∇wE‖L2(K) ≤ C ‖w̃E‖H1(K̃) ≤ C
√

log (k + 1) ∀K ∈ TE.

Next, we modify wE such that property (iv) holds without affecting the other properties. Let
ψE ∈ S4,0 (T ) with suppψE = ωE and

ψE|K := αKλ
2
K,V1

λ2
K,V2

with αK :=

(∫
K

∂nE
wE

)
/

(∫
K

∂nE

(
λ2
K,V1

λ2
K,V2

))
∀K ∈ TE.

(2.23)
The modified function B̃CR

k,E finally is defined by

B̃CR
k,E = wE − ψE. (2.24)

Since divT

(
B̃CR
k,EnE

)∣∣∣
K

= ∂nE

(
B̃ CR

k,E

∣∣
K

)
property (iv) follows by construction. The gradient

∇T ψE vanishes in the vertices of K so that (∂nE
ψE) (z) = 0 for all z ∈ V (K) and (ii) is

inherited from wE. Properties (i), (iii) are obvious. Next, we verify (v). Let V3 denote the
vertex in K opposite to E. We first compute∫
K

∂nE

(
λ2
K,V1

λ2
K,V2

)
=

2∑
j=1

2∂nE
λK,Vj

∫
K

λK,V1λK,V2λK,V3−j
=

∫
K

λ2
K,V1

λK,V2

2∑
j=1

2∂nE
λK,Vj

= − 1

15
∂nE

λK,V3 |K|
(2.3)
=
|E|
30
,∣∣∣∣∫

K

∂nE
wE

∣∣∣∣ ≤ |K|1/2 ‖∇wE‖L2(K) ≤ C |K|1/2
√

log (k + 1).

In this way, |αK | ≤ C
√

log (k + 1) and an inverse inequality for quartic polynomials gives us

‖∇ψE‖L2(K) ≤ Ch−1
K ‖ψE‖L2(K) ≤ Ch−1

K

√
log (k + 1) ‖1‖L2(K) ≤ C

√
log (k + 1).

Hence, property (iv) follows.
Next we recall a result which goes back to Vogelius [37] and Scott-Vogelius [32], see also

[27, Proof of Thm. 1].
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Definition 2.17 Let η0 be as in Lemma 2.10. For 0 ≤ η < η0, the subspace MSV
η,k−1 (T ) of

the pressure space Mk−1 (T ) is given by

MSV
η,k−1 (T ) := {q ∈Mk−1 (T ) | ∀z ∈ CT (η) : AT ,z (q) = 0} , (2.25)

where, for z ∈ CT (η), the functional AT ,z (q) is as follows: fix the counterclockwise numbering
K`, 1 ≤ ` ≤ m, of the triangles in the patch Tz by the condition K1 ∩K2 = E (z) and set

AT ,z (q) =
m∑
`=1

(−1)`
(
q|K`

)
(z) . (2.26)

Note that MSV
0,k−1 (T ) is the pressure space introduced by Vogelius [37] and Scott-Vogelius

[32] and the following inclusions hold: for 0 ≤ η ≤ η′ ≤ η0

MSV
η′,k−1 (T ) ⊂MSV

η,k−1 (T ) ⊂MSV
0,k−1 (T ) = Qk−1

h

with the pressure space Qk−1
h in [27, p. 517].

For the Scott-Vogelius pressure spaceMSV
0,k−1 (T ), the existence of a continuous right-inverse

of the divergence operator into Sk,0 (T ) was proved in [37] and [32].

Proposition 2.18 (Scott-Vogelius) For any p ∈MSV
0,k−1 (T ) there exists some v ∈ Sk,0 (T )

such that
div v = q and ‖v‖H1(Ω) ≤ C ‖q‖L2(Ω) ,

for a constant which only depends on the shape-regularity of the mesh, the polynomial degree
k, and on Θ−1

min, where
Θmin := min

z∈V(T )\CT
Θ (z) . (2.27)

In particular, the constant C is independent of h.

In Lemma 2.20, we will show that, by subtracting the divergence of a suitable Crouzeix-
Raviart velocity from a given pressure in Mk−1 (T ), the resulting modified pressure belongs to
the reduced pressure space MSV

η,k−1 (T ). As a preliminary, we need a bound of the functional
AT ,z in (2.26) which is explicit with respect to the local mesh size and polynomial degree.

Lemma 2.19 There exists a constant C which only depends on the shape-regularity of the
mesh such that

|AT ,z (q)| ≤ C
k2

hz
‖q‖L2(ωz) ∀q ∈ Pk−1 (T )

for any k ∈ N.

Proof. Let z ∈ V (T ) and K ∈ Tz. The affine pullback to the reference triangle is denoted

by χK : K̂ → K. For q ∈ Pk (K), let q̂ := q ◦ χK and ẑ := χ−1
K (z). Then

|q (z)| = |q̂ (ẑ)|
[38], [2, Lem. 6.1]

≤ (k + 1) (k + 2)√
2

‖q̂‖L2(K̂) =

(
k + 2

2

)
|K|−1/2 ‖q‖L2(K) . (2.28)

A summation over all K ∈ Tz leads to

|AT ,z (q)| ≤
(
k + 2

2

) m∑
`=1

|K`|−1/2 ‖q‖L2(K`)
≤ C

(
k + 2

2

)
h−1
z ‖q‖L2(ωz) ,
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where C only depends on the shape-regularity of the mesh.
The following lemma shows that the non-conforming Crouzeix-Raviart elements allow us

to modify a general pressure q ∈ Pk−1,0 (T ) in such a way that the result belongs to MSV
η,k−1 (T )

provided Cacute
T = ∅.

Lemma 2.20 Let assumption (2.7) be satisfied and Cacute
T = ∅. There exists a constant η2 > 0

which only depends on the shape-regularity of the mesh and αΩ (see (1.1)) such that for any
fixed 0 ≤ η < η2 and any q ∈ Pk−1,0 (T ), there exists some vq ∈ CRk,0 (T ) such that∫

K

div vq = 0 ∀K ∈ T , (2.29)

q − divT vq ∈MSV
η,k−1 (T ) (2.30)

and
‖∇T vq‖L2(Ω) ≤ CCR

√
log (k + 1) ‖q‖L2(Ω) . (2.31)

The constant CCR depends only on the shape-regularity of the mesh and αΩ.

Proof. Let q ∈ Pk−1,0 (T ). Let the fans CT ,` (η), ` ∈ J , be as in Definition 2.14. For each
fan CT ,` (η) we employ an ansatz

v` :=
∑

z∈CT ,`(η)

α`,zB̃
CR
k,E(z)N (z) (2.32)

for B̃CR
k,E(z) as in (2.24), where the coefficients α`,z ∈ R are defined next. The global function

vq is then given by

vq =
N∑
`=1

v`.

Property (2.29) follows from this ansatz by using Lemma 2.16. Next, we define the coefficients
α`,z in (2.32) such that (2.30) holds and prove the norm estimates for vq. Our construction of
the fans implies that open interiors of the supports of v` are pairwise disjoint (see Lem. 2.15);
as a consequence the definition of (α`,z)z∈CT (η) and the estimate of ∇T vq can be performed
for each fan separately.

For z ∈ CT ,` (η), let E := E (z), nE := N (z). Let K−z , K+
z , denote the triangles in TE with

the convention that nE points into K+
z . The vertex in K±z opposite to E is denoted by A±.

We use

div
(
B̃CR
k,EnE

∣∣∣
K

)
(y)

(2.17)
= div

(
BCR
k,EnE

∣∣
K

)
(y) ∀y ∈ V (K)

and compute the divergence of BCR
k,EnE

div
(
BCR
k,EnE

∣∣
K

)
=

{
∓ |E||K|L

′
k (1− 2λK,A±) on K = K±z , i = 1, 2,

0 otherwise.
(2.33)

Well-known properties of Legendre polynomials applied to (2.33) imply that for any vertex y
of K and odd polynomial degree k

div
(
B̃CR
k,EnE

∣∣∣
K

)
(y) = ∓

(
k + 1

2

)
×

{
|E|
|K| ∀y ∈ V (K) , if K = K±z
0 otherwise.

(2.34)
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Figure 5: Local numbering convention of the angles in K`,j and K`,j+1. The angle in K`,j at
z` is denoted by α`,j,1, at z`,j by α`,j,2, at z`,j−1 by α`,j,3 and in K`,j+1 accordingly.

Hence the condition AT ,y (q − divT v`) = 0 for all y ∈ CT ,` (η) is equivalent to the system of
linear equation

M`α` = r` (2.35)

with

M` :=
(
AT ,y

(
divT

(
BCR
k,E(z)N (z)

)))
y∈CT ,`(η)
z∈CT ,`(η)

, α` := (α`,z)z∈CT ,`(η) , r` := (AT ,y (q))y∈CT ,`(η) .

(2.36)
The matrix M` is explicitly given by

M` := −
(
k + 1

2

)


|E`,1|
|K`,1| +

|E`,1|
|K`,2|

|E`,2|
|K`,2| 0 . . . 0

|E`,1|
|K`,2|

|E`,2|
|K`,2| +

|E`,2|
|K`,3|

. . . . . .
...

0
. . . . . . 0

...
. . . |E`,n`|

|K`,n` |
0 . . . 0

|E`,n`−1|
|K`,n` |

|E`,n` |
|K`,n` |

+
|E`,n` |
|K`,n`+1|


.

We use (cf. Fig. 5)

|E`,j|
|K`,j|

=
2 sin (α`,j,1 + α`,j,2)

|E`,j| sinα`,j,1 sinα`,j,2
and

|E`,j|
|K`,j+1|

=
2 sin (α`,j+1,1 + α`,j+1,3)

|E`,j| sinα`,j+1,1 sinα`,j+1,3

(cf. [10, formula before (3.29)]) and obtain

M` = D` (T` + ∆`) (2.37)
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with D` = −k (k + 1) diag
[
|E`,j|−1 : 1 ≤ j ≤ n`

]
and

T` :=



sin(α`,1,1+α`,2,1)
sinα`,1,1 sinα`,2,1

1
sinα`,2,1

0 . . . 0

1
sinα`,2,1

sin(α`,2,1+α`,3,1)
sinα`,2,1 sinα`,3,1

. . . . . .
...

0
. . . . . . 0

...
. . . 1

sinα`,n`,1

0 . . . 0 1
sinα`,n`,1

sin(α`,n`,1
+α`,n`+1,1)

sinα`,n`,1
sinα`,n`+1,1


, (2.38)

∆` := diag

[
sin (α`,j,2 + α`,j+1,3)

sinα`,j,2 sinα`,j+1,3

: 1 ≤ j ≤ n`

]
.

In Lemma A.1, we will prove that the matrix T` + ∆` is invertible and the inverse is
bounded by a constant independent of hT and k. Hence,

‖α`‖ ≤ C̃
hz`

k (k + 1)
‖r`‖ . (2.39)

Let T` := {K`,j : 1 ≤ j ≤ n` + 1} and D` := dom (T`). We estimate the function v` in (2.32)
by

‖∇T v`‖L2(D`)
≤

 ∑
z∈CT ,`(η)

|α`,z|2
∥∥∥∇T B̃CR

k,E(z)N (z)
∥∥∥2

L2(D`)

1/2

≤ max
z∈CT ,`(η)

∥∥∥∇T B̃CR
k,E(z)N (z)

∥∥∥
L2(D`)

‖α`‖

(2.19)

≤ Chz`

√
log (k + 1)

(k + 1)2 ‖r`‖ .

The constant C only depends on the shape-regularity of the mesh. We use Lemma 2.19 and
conclude that

‖∇T v`‖L2(D`)
≤ C

√
log (k + 1) ‖q‖L2(D`)

.

Since the interiors of the supports D` have pairwise empty intersection the estimate

‖∇T vq‖L2(Ω) ≤ C
√

log (k + 1) ‖q‖L2(Ω)

follows.

Definition 2.21 Let assumption (2.7) be satisfied and η2 > 0 as in Lemma 2.20. Fix η ∈
[0, η2[. For q ∈ Pk,0 (T ), the linear map ΠCR

k : Pk−1,0 (T )→ CRk,0 (T ) is given by

ΠCR
k q :=

∑
`∈J

∑
z∈CT ,`(η)

α`,zB̃
CR
k,E(z)N (z)

with α` as in (2.35).
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For the proof of the following lemma we recall the definitions of some linear maps from
the literature which are related to the right inverse of the divergence operator acting on some
polynomial spaces.

Bernardi and Raugel introduced in [8, Lem. II.4] a linear mapping ΠBR : Mk−1 (T ) →
S2,0 (T ) with the property: for any q ∈Mk−1 (T ), the function ΠBRq ∈ S2,0 (T ) satisfies∫

K

q =

∫
K

div
(
ΠBRq

)
∀K ∈ T (2.40)

and ∥∥ΠBRq
∥∥
H1(Ω)

≤ CBR ‖q‖L2(Ω) (2.41)

for a constant CBR which is independent of the mesh width and the polynomial degree.
Next we consider some right inverse of the divergence operator on the space

MV
k−1 (T ) :=

{
q ∈Mk−1 (T ) |

( ∫
K
q = 0 ∀K ∈ T

q|K (y) = 0 ∀y ∈ V (K)

)}
.

Let
SV
k (T ) := {u ∈ Sk (T ) | ∀K ∈ T : u|∂K = 0} .

There exists a linear operator ΠV : MV
k−1 (T )→ SV

k (T ) such that for all q ∈MV
k−1 (T )

q = div ΠVq,∥∥ΠVq
∥∥
H1(Ω)

≤ CV ‖q‖L2(Ω) , (2.42)

where the constant CV is independent of the mesh width and the polynomial degree. Note
that in the original paper [37, Lem. 2.5] by M. Vogelius, the right-hand side in the estimate
(2.42) contains an additional factor kβV for some positive βV (independent of the mesh width).
In [3, Thm. 3.4], the operator in [37, Lem. 2.5] is modified and the estimate in the form (2.42)
is proved for the modified operator.

Finally, we reconsider the linear operator ΠGS : MSV
η,k−1 (T ) → S4,0 (T ) introduced by

Guzmán and Scott in [27, Proof of Lem. 6 and Lem. 7] with the property that, for any
q ∈MSV

η,k−1 (T ), it holds(
I − div ΠGS

)
q ∈MV

k−1 (T ) , (2.43a)∥∥∇ΠGSq
∥∥
L2(Ω)

≤ CGSk
κ (θmin + η)−1 ‖q‖L2(Ω) for κ = 2. (2.43b)

We emphasize that in [27, Lemma 7] the constant Θ−1
min (cf. (2.27)) instead of (Θmin + η)−1

appears in (2.43b) so that the estimate of
∥∥∇ΠGSq

∥∥
L2(Ω)

for q ∈ MSV
0,k−1 (T ) deteriorates in

cases where the z is a nearly critical point, i.e., very close to the geometric situations described
in Remark 2.7. The proof of [27, Lemma 7] is split into an estimate related to points z with
AT ,z (q) = 0 (cf. (2.26)) and an estimate for the remaining points z with AT ,z (q) 6= 0. Only
in this second part, the constant Θ−1

min is involved. The result has been improved in [24, Lem.
4.5] and it was shown that there is an operator Πη,k−1 : MSV

η,k−1 (T ) → Sk,0 (T ) such that the
properties in (2.43) hold for κ = 0: for any q ∈MSV

η,k−1 (T ) it holds

(I − div Πη,k−1) q ∈MV
k−1 (T ) ,

‖∇Πη,k−1q‖L2(Ω) ≤ Cπ (Θmin + η)−1 ‖q‖L2(Ω) .
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From Lemma 2.20, we conclude that q − divT
(
ΠCR
k q
)
∈ MSV

η,k−1 (T ) and the second part
of the proof in [27, Lemma 7] is applied only to points with

min
z∈V(T )\CT (η)

Θ (z) ≥ max {η,Θmin} .

Hence, (2.43b) follows for η depending only on the shape-regularity of the mesh.

Lemma 2.22 Let assumption (2.7) be satisfied and let Cacute
T = ∅. There exists a constant

η2 > 0 which only depends on the shape-regularity of the mesh and αΩ as in (1.1) such that
for any fixed 0 ≤ η < η2 and any q ∈ Pk−1,0 (T ), there exists some wq ∈ CRk,0 (T ) such that

q = divT wq

and
‖wq‖H1(T ) ≤ C

√
log (k + 1) (Θmin + η)−1 ‖q‖L2(Ω) .

The constant C only depends on the shape-regularity of the mesh and αΩ but is independent
of the mesh width and the polynomial degree k.

Proof. For the construction of wq we follow and modify the lines of proof in [27, Thm.
1] by a) involving the operator ΠCR

k and b) employing the concept of η-critical points.
For given q ∈ Pk−1,0 (T ), we employ the operators ΠCR

k , ΠBR, Πη,k−1, ΠV in the definition
of the function wq

wq = T1 + T2 + T3 + T4, (2.44)

T1 := ΠBRq,

T2 := ΠCR
k

(
I − div ΠBR

)
q,

T3 := Πη,k−1

(
I − divT ΠCR

k

) (
I − div ΠBR

)
q,

T4 := ΠV (I − div Πη,k−1)
(
I − divT ΠCR

k

) (
I − div ΠBR

)
q.

By construction we have
divT wq = q.

The first two summands in (2.44) satisfy

‖T1‖H1(Ω)

(2.41)

≤ CBR ‖q‖L2(Ω) , (2.45)

‖T2‖H1(T )

(2.31)

≤ CCR

√
log (k + 1)

(
‖q‖L2(Ω) +

∥∥ΠBRq
∥∥
H1(Ω)

)
(2.46)

(2.45)

≤ CCR

√
log (k + 1) (1 + CBR) ‖q‖L2(Ω) .

For the third term in (2.44) we get

‖∇T3‖L2(Ω) ≤ Cπ (Θmin + η)−1
∥∥(I − divT ΠCR

k

) (
I − div ΠBR

)
q
∥∥
L2(Ω)

≤ Cπ (Θmin + η)−1
(∥∥(I − div ΠBR

)
q
∥∥
L2(Ω)

+
∥∥divT ΠCR

k

(
I − div ΠBR

)
q
∥∥
L2(Ω)

)
.

(2.47)
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The combination with (2.41), (2.31) leads to

‖∇T3‖L2(Ω) ≤ CCπ (1 + CBR) (1 + CCR)

√
log (k + 1)

Θmin + η
‖q‖L2(Ω) . (2.48)

For the fourth term we get in a similar way

‖∇T4‖L2(Ω)

(2.42)

≤ CV

(∥∥(I − divT ΠCR
k

) (
I − div ΠBR

)
q
∥∥
L2(Ω)

+ ‖div T3‖L2(Ω)

)
≤ CV

(
‖q‖L2(Ω) + ‖div T1‖L2(Ω) + ‖divT T2‖L2(Ω) + ‖div T3‖L2(Ω)

)
(2.45), (2.46), (2.48)

≤ CV (1 + CBR) (2 + CCR)
√

log (k + 1)
(
1 + CCπ (Θmin + η)−1) ‖q‖L2(Ω) .

(2.49)

The combination of (2.45), (2.46), (2.48), (2.49) with (2.44) leads to the assertion.
Lemma 2.22 implies that for conforming triangulations T which satisfy (2.7) and Cacute

T = ∅,
there exists a bounded linear operator

Πinv
T ,k : Pk−1,0 (T )→ CRk,0 (T )

such that divT ◦Πinv
T ,k is the identity on Pk−1,0 (T ) and∥∥Πinv

T ,kq
∥∥
H1(T )

≤ Cinv

√
log (k + 1) ‖q‖L2(Ω)

for a constant Cinv which only depends on the shape-regularity of the mesh and αΩ (cf. (1.1)).

2.2.3 The case Cacute
T (η) 6= ∅

In this section, we remove the condition Cacute
T = ∅ and construct a bounded right-inverse of

the piecewise divergence operator for odd k ≥ 5 and conforming triangulations which contain
at least one inner point. The construction is based on the step-by-step procedure (cf. (2.13))
from the triangulation T1 to T . Inductively, we assume that there is a triangulation Tj along
a bounded right-inverse Πinv

j,k : Pk−1,0 (Tj) → CRk,0 (Tj) of the piecewise divergence operator.
A single extension step is analysed by the following lemma.

Lemma 2.23 Let T denote a conforming triangulation for the domain Ω := dom T and let
T ′ ⊂ T be a subset such that every triangle K ∈ T \T ′ has one edge, say E, which belongs to
E (T ′). We assume that T ′ has at least one inner vertex and set Ω′ := dom T ′. Assume that
there exists a bounded linear operator Πinv

T ′,k : Pk−1,0 (T ′)→ CRk,0 (T ′) with divT ′ ◦Πinv
T ′,k = Id

on Pk−1,0 (T ′) and ∥∥Πinv
T ′,kq

∥∥
H1(Ω′)

≤ CT ′ ‖q‖L2(Ω′) .

Then, there exists a linear operator Πinv
T ,k : Pk−1,0 (T ) → CRk,0 (T ) with divT ◦Πinv

T ,k = Id on
Pk−1,0 (T ) and ∥∥Πinv

T ,kq
∥∥
H1(Ω)

≤ CT ‖q‖L2(Ω) with CT := C3

√
log (k + 1)CT ′

for a constant C3 which depends only on the shape-regularity of the mesh and on αΩ.
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Figure 6: The black triangles form the triangulation T ′. Left: One triangle K is attached to
T ′ having a common side E with K ′ ∈ T ′ and Tout (K ′) = {K}. Right: Two triangles K1,
K2 /∈ T ′ are attached to a triangle K ′ ∈ T ′ and Tout (K ′) = {K1, K2}.

Proof. Let q ∈ Pk−1,0 (T ). We set v0 := ΠBRq where the operator ΠBR is as in (2.40) and
satisfies

‖v0‖H1(Ω) ≤ CBR ‖q‖L2(Ω) .

Hence, q1 := q − div v0 belongs to Pk−1,0 (T ) and has trianglewise integral mean zero.
The following construction is illustrated in Figure 6. Let K ′ ∈ T ′ be such that there exists

a non-empty subset Tout (K ′) ⊂ T \T ′ having the property that any K ∈ Tout (K ′) shares an
edge with K ′. We have |Tout (K ′)| ≤ 2; indeed, if |Tout (K ′)| = 3, then all three edges of K ′

are boundary edges which implies T ′ = {K ′} and violates the condition that T ′ must contain
an inner vertex.

For K ∈ Tout (K ′), let z denote the vertex in K opposite to E and set ωE = K ∪K ′. The
endpoints of E are denoted by y1, y2. We employ the ansatz (cf. (2.24))

v1 := αB̃CR
k,EnE (2.50)

with the convention that nE is the unit vector orthogonal to E and directed into K ′. By
construction it holds v1 ∈ CRk,0 (T ) and supp v1 ⊂ ωE. We determine α in (2.50) such that
div (v1|K) (z) = q1 (z) and employ (2.34) to get∣∣∣div

(
B̃CR
k,EnE

)
(z)
∣∣∣ =

(
k + 1

2

)
|E|
|K|

.

Hence |α| = |q1 (z)| |K||E|/
(
k+1

2

)
and we conclude as in the proof of Lemma 2.20 that

‖∇T v1‖L2(ωE) ≤ CCR

√
log (k + 1) ‖q1‖L2(K) .

We set
q2 := q1 − divT v1 so that q1 = divT v1 + q2
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and note that
‖q2‖L2(K) ≤

(
1 + CCR

√
log (k + 1)

)
‖q1‖L2(K) . (2.51)

The construction implies q2 ∈ Pk−1,0 (T ), q2 has trianglewise integral mean zero, and q2 (z) = 0.
Next, we employ the vector field defined in [24, Lem. 4.9] which is a modification of the
cubic vector field defined in [27, (3.5)] but allows for better k-explicit estimates. We recall
the relevant lemma from [24] for the existence of such vector fields and collect important
properties.

Lemma 2.24 ([24, Lem. 4.9]) Let T be a conforming triangulation of Ω and let k ≥ 3.
Let E ∈ E (T ) with endpoints y1, y2. Then there exist vector fields vE,j, j ∈ {1, 2}, with the
following properties

vE,j ∈ Sk (T ) , supp vE,j ⊂ ωE,∫
K

div vE,j = 0 ∀K ∈ T , j ∈ {1, 2}(
div vE,j|K

)
(v) =

{
1 if K ∈ T (E) ∧ v = vj
0 otherwise,

∀K ∈ T , ∀v ∈ V (K) , ∀j ∈ {1, 2}

‖∇vE,j‖L2(ωE) ≤ ChEk
−2.

(2.52)

We employ this vector field to the edge E = K ∩K ′, set

v2 :=
2∑
j=1

q2|K (yj) vE,j

and define
q3 := q2 − div v2 so that q2 = div v2 + q3. (2.53)

The function q3 ∈ Pk−1,0 (T ) has trianglewise integral mean zero and q3|K vanishes in all
vertices of K. The norm ‖∇v2‖L2(K′∪K) can be estimated in the same way as the function T3

in (2.48); however the factor (Θmin + η)−1 does not appear as in (2.48) since the last estimate
in (2.52) does not depend on these quantities. In this way, we get

‖∇T v2‖L2(ωE) ≤ C1 ‖q2‖L2(K) (2.54)

(2.51)

≤ C1

(
1 + CCR

√
log (k + 1)

)
‖q1‖L2(K) . (2.55)

Hence, from [3, Thm. 3.4] we deduce that there exists v3 ∈ Sk,0 (T ) with supp v3 = K
such that div v3 = q3 on K and

h−1
K ‖v3‖L2(K) + ‖∇v3‖L2(K) ≤CV ‖q3‖L2(K)

(2.53), (2.54)

≤ CV (1 + C1) ‖q2‖L2(K)

(2.51)

≤ CV (1 + C1)
(

1 + CCR

√
log (k + 1)

)
‖q1‖L2(K) .

In this way we have constructed the function vK ∈ CRk,0 (T ) by

vK = v1 + v2 + v3
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such that div vK = q1 on K, supp vK ⊂ ωE and

‖∇T vK‖L2(Ω) = ‖∇T vK‖L2(ωE) ≤
3∑
`=1

‖∇T v`‖L2(Ω)

≤ C2

√
log (k + 1) ‖q1‖L2(K) ≤ C2

√
log (k + 1)

(
‖q‖L2(K) + ‖∇v0‖L2(K)

)
,

where C2 only depends on the shape-regularity of the mesh and αΩ through the constants CV,
CCR, C1. Let vq := v0 +

∑
K∈T \T ′ vK and note that by construction

divT vq = q on Ω\Ω′

and

‖∇T vq‖L2(Ω) ≤ ‖∇v0‖L2(Ω) +
∑

K∈T \T ′
‖∇T vK‖L2(Ω)

≤ ‖∇v0‖L2(Ω) + 2C2

∑
K∈T \T ′

√
log (k + 1)

(
‖q‖L2(K) + ‖∇v0‖L2(K)

)
≤ C

√
log (k + 1) ‖q‖L2(Ω) .

Finally, the linear map Πinv
T ,k : Pk−1,0 (T )→ CRk,0 (T ) is defined by

Πinv
T ,kq = vq + Πinv

T ′,k
(

(q − div vq)|Ω′
)

and satisfies div ◦Πinv
T ,k = Id on Pk−1,0 (T ) and∥∥∇TΠinv

T ,kq
∥∥
L2(Ω)

≤ C3

√
log (k + 1)CT ′ ‖q‖L2(Ω)

for some C3 which only depends on the shape-regularity of the mesh and αΩ.
By iterating this argument we can prove Theorem 1.3 for the case (2.7).

Theorem 2.25 Let T be a conforming triangulation which contains at least one interior
vertex. Let k ≥ 5 be odd and let L ∈ N0 the number of steps in the construction (2.13). Then,
the inf-sup constant for the corresponding Crouzeix-Raviart discretization satisfies

cT ,k ≥ cT (log (k + 1))−(L+1)/2

for some constant cT which depends only on the shape-regularity of the mesh and αΩ. If every
triangle in T has an interior vertex, then L = 0.

2.3 The case of even k

This case is slightly simpler that the case of odd k since the non-conforming Crouzeix-Raviart
functions for even k have smaller support (i.e., one triangle) compared to two triangles (which
share an edge) for odd k.

In this section, we assume

a) k ≥ 4 is even and
b) T is a conforming triangulation and contains more than a single triangle.

(2.56)
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Remark 2.26 It is easy to verify that |T | > 1 implies that there exists a mapping K : CT (η)
→ T with K (z) ∈ Tz and not all vertices of K (z) are η-critical.

For an η-critical point z ∈ CT (η), let nz := |Tz| and fix a counterclockwise numbering of
the triangles in

Tz =
{
Kz
j : 1 ≤ j ≤ nz

}
(2.57)

such that Kz
j and Kz

j+1 share an edge for all 1 ≤ j ≤ nz − 1. With this notation at hand, the
functional AT ,z is given by

AT ,zq :=
nz∑
j=1

(−1)j q|Kz
j

(z) ∀q ∈ Pk−1,0 (T ) .

Lemma 2.27 Let assumption (2.56) be satisfied. There exists a constant η2 > 0 which only
depends on the shape-regularity of the mesh and αΩ such that for any fixed 0 ≤ η < η2 and
any q ∈ Pk−1,0 (T ), there exists some vq ∈ CRk,0 (T ) such that∫

K

div vq = 0 ∀K ∈ T , (2.58)

q − divT vq ∈MSV
η,k−1 (T ) (2.59)

and
‖vq‖H1(T ) ≤ CCR

√
log (k + 1) ‖q‖L2(Ω) . (2.60)

The constant CCR depends only on the shape-regularity of the mesh and αΩ.

Proof. For a triangle K ∈ T , we set CK (η) := {z ∈ V (K) ∩ CT (η)} and Cactive
K (η) :=

{z ∈ CK (η) : K = K (z)}. Their cardinalities are denoted by nK := |CK (η)| and nactive
K :=∣∣Cactive

K (η)
∣∣. Note that 0 ≤ nactive

K ≤ nK ≤ 2 (cf. Rem. 2.26). We number the vertices Vj in
K with the convention {Vj : 1 ≤ j ≤ nK} = CK (η) and

{
Vj : 1 ≤ j ≤ nactive

K

}
= Cactive

K (η).
The angle in K at Vj is denoted by αj. Let Ej be the edge in K opposite to Vj and let nj
denote the outward unit normal vector at Ej.

In a similar way as for the construction of B̃CR
k,E in Lemma 2.16 (and employing Lemma

B.1 instead of Lemma B.2 for (2.21)) there exists a function B̃CR
k,K ∈ CRk,0 (T ) with

1. supp B̃CR
k,K = K,

2. for all K ∈ T , for all z ∈ V (K)

∇
(
B̃CR
k,K

∣∣∣
K

)
(z) = ∇

(
BCR
k,K

∣∣
K

)
(z) , (2.61)

3. for all K ∈ T
B̃CR
k,K

∣∣∣
K

∣∣∣
∂K

= BCR
k,K

∣∣
K

∣∣∣
∂K
, (2.62)

4. for all K ∈ T and any c ∈ R2 ∫
K

divT

(
B̃CR
k,Kc

)
= 0. (2.63)
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5. The piecewise gradient is bounded by∥∥∥B̃CR
k,K

∥∥∥
H1(T )

≤ C
√

log (k + 1). (2.64)

For j = 1, 2, we define

ψCR,j
k,K :=

{
B̃CR
k,Knj in K,

0 in Ω\K, (2.65)

i.e., we fix vK := n1 and wK = n2 in (2.5). The divergence of ψCR,j
k,K evaluated at a vertex

Vs, s = 1, 2, is given by

div
(
ψCR,j
k,K

∣∣∣
K

)
(Vs)

(2.61)
= div

(
BCR
k,Knj

∣∣
K

)
(Vs) = −

3∑
i=1

L′k (1− 2λK,i (Vs)) ∂nj
λK,i

= k (k + 1) ∂nj
λK,s

(2.3)
=

(
k + 1

2

)
|Es|
|K|
×
{
−1 j = s,
cosα3 j 6= s.

Let q ∈ Pk−1,0 (T ). We choose δK := (δK,j)
2
j=1 by the conditions for s = 1, 2

AT ,Vs

(
divT

(
2∑
j=1

δK,jψ
CR,j
k,K

))
!

=

{
AT ,Vs (q) if Vs ∈ Cactive

K (η) ,
0 otherwise.

(2.66)

For s = 1, 2, let `s be defined by KVs
`s

= K (cf. (2.57)). Then,

AT ,Vs

(
divT

(
2∑
j=1

δK,jψ
CR,j
k,K

))
= (−1)`s

2∑
j=1

δK,j

(
div ψCR,j

k,K

∣∣∣
K

)
(Vs)

= MKδK

for

MK = (−1)`s+1

(
k + 1

2

)
|K|−1

[
|E1| − |E1| cosα3

− |E2| cosα3 |E2|

]
.

We define rK = (rK,s)
2
s=1 by

rK,s :=

{
AT ,Vs (q) if Vs ∈ Cactive

K (η) ,
0 otherwise

so that δK is the solution of
MKδK = rK .

Observe that

det

[
|E1| − |E1| cosα3

− |E2| cosα3 |E2|

]
= |E1| |E2| sin2 α3 = 2 |K| sinα3

and sinα3 ≥ sinφT > 0 due to the shape-regularity of the mesh. For the coefficient δK we
get explicitly

δK =
(−1)`s+1

(k + 1) k sinα3

[
|E2| |E1| cosα3

|E2| cosα3 |E1|

]
rK (2.67)
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with an estimate

‖δK‖ ≤ C
hK

k (k + 1)
‖rK‖

Lem. 2.19

≤ C ‖q‖L2(ωK) if Cactive
K (η) 6= ∅,

where C only depends on the shape-regularity of the mesh. Note that this is the analogue for
even k to (2.39). If Cactive

K (η) = ∅, it holds δK = 0.
We define the global function

vq :=
∑
K∈T

Cactive
K (η)6=∅

2∑
j=1

δK,jψ
CR,j
k,K . (2.68)

From (2.63) we conclude that vq satisfies (2.58).
Next, we verify (2.59). Let y ∈ CT (η) and recall the notation and convention as in (2.57).

Let Ky
` = K (y). Then (2.59) follows from

AT ,y (divT vq) = (−1)`
(

div vq|Ky
`

)
(y) = (−1)`

div
2∑
j=1

δKy
` ,j
ψCR,j

k,Ky
`

∣∣∣∣∣
Ky

`

 (y)

= AT ,y (q) .

The estimate ∥∥∥∇ψCR,j
k,K

∥∥∥
L2(K)

≤ C
√

log (k + 1)

for a constant C which only depends on the shape-regularity of the mesh and αΩ follows
directly from (2.64) and the final estimate (2.60) is derived by repeating the arguments as in
the proof of Lemma 2.20.

This lemma allows us to extend Definition 2.21 to the case of even k by defining the
coefficients δK by (2.67) and the functions ψCR

k,K by (2.65) and set (cf. (2.68)) ΠCR
k q := vq.

Since
(
I − ΠCR

k

)
q ∈ MSV

η,k−1 (T ) we may apply the further steps in the proof of Lemma 2.22
to obtain the inf-sup stability for even k.

Theorem 2.28 Let T be a conforming triangulation satisfies (2.56). Then, the inf-sup con-
stant for the corresponding Crouzeix-Raviart discretization satisfies

cT ,k ≥ cT (log (k + 1))−1/2

for some constant cT which depends only on the shape-regularity of the mesh and αΩ.

3 Conclusion

In this paper, we have derived lower bounds for the inf-sup constant for Crouzeix-Raviart
elements for the Stokes equation which are explicit with respect to the polynomial degree k
and are independent of the mesh size.

1. The inf-sup constant can be bounded from below by cT ,k ≥ cT (log (k + 1))−1/2 if

(a) for odd k ≥ 3,
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i. T has at least one interior point and

ii. for k ≥ 5, T has no acute critical point,

(b) for even k ≥ 4, T contains more than one triangle,

2. If for odd k, condition 1.a.ii. is not satisfied but a step-by-step construction (2.13) for

some L ≥ 1 is possible, then, cT ,k ≥ cT (log (k + 1))−(L+1)/2.

Finally, we compare these findings with some other stable pairs of Stokes elements on trian-
gulations in the literature. The element (Sk,0 (T ) ,Pk−2,0 (T )) has a discrete inf-sup constant
which can be estimated from below by Ck−3 (see [31], [33]). The discrete inf-sup constant
for the Scott-Vogelius element

(
Sk,0 (T ) ,MSV

0,k−1 (T )
)

for k ≥ 4 can be estimated from below
by cΘmink

−m for some integer m sufficiently large (see [32], [37]). The pressure-wired Stokes
element

(
Sk,0 (T ) ,MSV

η,k−1 (T )
)

in ?? (again for k ≥ 4) is a mesh-robust generalization of the
Scott-Vogelius element with a lower bound of the inf-sup constant of the form c (Θmin + η).
In [3], a conforming stable pair (Xk (T ) ,Mk−1 (T )) of Stokes elements on triangulations is
introduced and it is proved that the discrete inf-sup constant can be estimated from below by
c/Θ̃min for a constant c independent of h and k and Θ̃min := minz∈V∂Ω(T )\CT Θ (z). However,
the implementation requires finite elements for the velocity with C1 continuity at the triangle
vertices and pressures which are continuous in the triangle vertices.

Acknowledgement 3.1 Thanks are due to Benedikt Gräßle, HU Berlin, for fruitful discus-
sions on Lemma 2.13.

I am grateful to my colleagues from TU Vienna, Profs. Joachim Schöberl and Markus
Melenk. Joachim showed by numerical experiments that the lower bound of the inf-sup constant
in the first arxiv version of the paper, namely k−1/4, might be too pessimistic and “it should
be at least k−1/6” and Markus raised the suspicion that the interpolation argument might be
too pessimistic for Legendre polynomials.

A The inverse of the matrix T` + ∆` in (2.37)

Lemma A.1 There exists η2 > 0 which only depends on the shape-regularity of the mesh and
αΩ such that for any 0 ≤ η < η2 the matrix T` + ∆` in (2.37) is invertible and there exists a
constant C depending only on the shape-regularity of the mesh and αΩ such that (cf. Notation
2.1) ∥∥(T` + ∆`)

−1
∥∥ ≤ C.

Note that the matrix T` in (2.38) is the same as the matrix Tn,α which has been analysed
in [10, (3.36)]. In particular, the formula

det T` =
sin
(∑n`+1

j=1 α`,j,1

)
∏n`+1

j=1
sinα`,j,1

was proved.
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Next we show that the sum
∑n`+1

j=1 α`,j,1 is bounded away from 0 and π. The bound∑n`+1
j=1 α`,j,1 ≥ ϕT follows from Remark 1.1. Since z`,j, 1 ≤ j ≤ n` are η−critical points the

sum of both angles adjacent to E`,j at z`,j satisfy

sin (α`,j,2 + α`,j+1,3) ≤ η.

We write α`,j,2 + α`,j+1,3 =: π + δj. From the proof of Lemma 2.10, in particular from the
estimate (2.8) we conclude that |δj| ≤ c2η.

Since all points z`,j are edge-connected to the same point z`, the number n` is bounded
from above by a constant nmax which only depends on the shape-regularity of the mesh. Hence,

n`+1∑
j=1

α`,j,1 =

n`+1∑
j=1

(π − α`,j,2 − α`,j,3) = (n` + 1) π − α`,1,3 − α`,n`+1,2 −
n∑̀
j=1

(α`,j,2 + α`,j+1,3)

= (n` + 1) π − α`,1,3 − α`,n`+1,2 −
n∑̀
j=1

(π + δj) = π − α`,1,3 − α`,n`+1,2 −
n∑̀
j=1

δj

≤ π − 2ϕT + nmaxc2η.

By adjusting the constant η0 in Lemma 2.10 to η1 := min {η0, ϕT / (nmaxc2)} it follows that

n`+1∑
j=1

α`,j,1 ≤ π − ϕT .

By using the trivial estimate 0 < sinα`,j,1 ≤ 1, we may conclude that

det T` =
sin
(∑n`+1

j=1 α`,j,1

)
∏n`+1

j=1
sinα`,j,1

≥ sinϕT > 0. (A.1)

Note that the entries in the matrix T` (cf. 2.38) satisfy∣∣∣(T`)y,z

∣∣∣ ≤ 1

sin2 ϕT
(A.2)

and hence the Frobenius norm ‖T`‖F can be estimated by

‖T`‖F ≤
3n`

sin2 ϕT
≤ 3nmax

sin2 ϕT
.

It is well known that ‖T`‖ ≤ ‖T`‖F and hence the bound on ‖T`‖ follows.
We combine (A.1), (A.2), and n` ≤ nmax to obtain by Cramer’s rule that there exists a

constant C which only depends on the shape-regularity such that∣∣∣(T−1
`

)
y,z

∣∣∣ ≤ C.

By the same arguments as before we conclude that
∥∥T−1

`

∥∥ ≤ C̃ for a constant C̃ which only
depends on the shape-regularity of the mesh.
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Next we estimate ‖∆`‖. Since ∆` is diagonal it suffices to estimate the diagonal entries∣∣∣∣sin (α`,j,2 + α`,j+1,3)

sinα`,j,2 sinα`,j+1,3

∣∣∣∣ =

∣∣∣∣ sin (π + δ`)

sinα`,j,2 sinα`,j+1,3

∣∣∣∣ =

∣∣∣∣ sin δ`
sinα`,j,2 sinα`,j+1,3

∣∣∣∣ ≤ c2η

sin2 ϕT
.

We write T` + ∆` = T`

(
I + T−1

` ∆`

)
and obtain∥∥T−1

` ∆`

∥∥ ≤ ∥∥T−1
`

∥∥ ‖∆`‖ ≤ C̃
c2η

sin2 ϕT
.

Next, we adjust the upper bound η1 by setting η2 := min
{
η1,

sin2 ϕT
2C̃c2

}
to obtain

∥∥T−1
` ∆`

∥∥ ≤
1/2 with implies the invertibility of T` + ∆` with bound∥∥(T` + ∆`)

−1
∥∥ ≤ 2C̃.

B Estimate of the H1/2 norm of traces of non-conforming

Crouzeix-Raviart functions

In this appendix, we prove the norm estimate (2.64) for B̃CR
k,K and (2.19) for B̃CR

k,E. We first
introduce some norms and semi-norms on the unit interval I := [−1, 1] in a formal way:

|u|H1/2(I) :=

(∫ 1

−1

∫ 1

−1

∣∣∣∣u (s)− u (t)

s− t

∣∣∣∣2 dsdt
)1/2

, ‖u‖H1/2(I) :=
(
‖u‖2

L2(I) + |u|2H1/2(I)

)1/2

,

|u|
H

1/2
(0,

(I)
:=

(∫ 1

−1

|u (s)|2

1 + s
ds

)1/2

, ‖u‖
H

1/2
(0,

(I)
:=

(
‖u‖2

H1/2(I) + |u|2
H

1/2
(0,

(I)

)1/2

,

|u|
H

1/2
,0)

(I)
:=

(∫ 1

−1

|u (s)|2

1− s
ds

)1/2

, ‖u‖
H

1/2
,0)

(I)
:=

(
‖u‖2

H1/2(I) + |u|2
H

1/2
,0)

(I)

)1/2

,

|u|
H

1/2
00 (I)

:=

(
|u|2

H
1/2
(0,

(I)
+ |u|2

H
1/2
,0)

(I)

)1/2

, ‖u‖
H

1/2
00 (I)

:=
(
‖u‖2

H1/2(I) + |u|2
H

1/2
00 (I)

)1/2

.

(B.1)

Lemma B.1 Let k ≥ 4 be even and K ∈ T . Let B̃CR
k,K

∣∣∣
∂K

be defined by (2.62). Then there

exists an absolute constant C depending only on the shape regularity of T such that∥∥∥B̃CR
k,K

∥∥∥
H1/2(∂K)

≤ C
√

log (k + 1).

Proof. We first prove the estimate for the reference element K̂. By construction (see

(2.62)) the function B̃CR
k,K̂

coincides with BCR
k,K̂

on ∂K̂. Let the vertices of K̂ be numbered

counterclockwise and denoted by ẑi, 1 ≤ i ≤ 3. The edge opposite to ẑi is Êi = [ẑi+1, ẑi−1]
(with cyclic numbering convention z3+1 := z1 and z1−1 := z3). We choose the pullbacks to
[−1, 1] by

φi (s) := ẑi+1 + s (ẑi−1 − ẑi+1) i = 1, 2, 3 (B.2)
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and observe B̃CR
k,K̂

∣∣∣
Êi

◦φi = Lk. From [25] (see also [4, p 1870]) we deduce that the H1/2
(
∂K̂
)

norm is equivalent to

|||v|||H1/2(∂K̂) :=

(
3∑
i=1

(
‖vi‖2

H1/2(I) + |di|2H1/2
(0,

(I)

))1/2

, (B.3)

where for v ∈ H1/2
(
∂K̂
)

:

vi := v|Ei
◦ φi, di (s) := vi−1 (s)− vi+1 (−s) . (B.4)

In our application (and even k) we have vi−1 (s) = Lk (s) = Lk (−s) = vi+1 (−s) so that
di = 0. We use ‖Lk‖L2(I) =

√
2/ (2k + 1) to get

|||Lk|||H1/2(∂K̂) ≤
(

6

2k + 1
+ 3 |Lk|2H1/2(I)

)1/2

. (B.5)

This integral can be evaluated analytically for v = Lk (see Lem. C.2) and we obtain

|Lk|H1/2(I) = 2

(
k∑
`=1

1

`

)1/2

≤
√
C log (k + 1) ∀k = 1, 2, . . . (B.6)

for a generic constant C > 0. This leads to the final estimate on the reference element:∥∥∥B̃CR
k,K̂

∥∥∥
H1/2(∂K̂)

≤ C
∣∣∣∣∣∣∣∣∣B̃CR

k,K̂

∣∣∣∣∣∣∣∣∣
H1/2(∂K̂)

(B.5), (B.6)

≤ C

(
1

2k + 1
+ log (k + 1)

)1/2

≤ C
√

log (k + 1).

For a triangle K ∈ T , let φK : K̂ → K be an affine pullback and set B̃CR
k,K̂

= B̃CR
k,K ◦φK . Then,

the transformation rule for integrals yields∥∥∥B̃CR
k,K

∥∥∥
H1/2(∂K)

=

(∥∥∥B̃CR
k,K

∥∥∥2

L2(∂K)
+
∣∣∣B̃CR

k,K

∣∣∣2
H1/2(∂K)

)1/2

= C

(
hK

∥∥∥B̃CR
k,K̂

∥∥∥2

L2(∂K̂)
+
∣∣∣B̃CR

k,K̂

∣∣∣2
H1/2(∂K̂)

)1/2

, (B.7)

where C only depends on the shape regularity of the mesh. The leads to the claim.
The case of odd k ≥ 5 is considered in the following lemma.

Lemma B.2 Let k ≥ 5 be odd. For E ∈ EΩ (T ), let the function B̃CR
k,E be as in the proof of

Lemma 2.16. Then there exists a generic constant C depending only on the shape regularity
of T such that for any K ∈ TE, it holds∥∥∥B̃CR

k,E

∥∥∥
H1/2(∂K)

≤ C
√

log (k + 1).
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Proof. Let E ∈ EΩ (T ) and K ∈ TE. Similarly as in (B.7) we have∥∥∥B̃CR
k,E

∥∥∥
H1/2(∂K)

≤ C
∥∥∥B̃CR

k,Ê

∥∥∥
H1/2(∂K̂)

with B̃CR
k,Ê

= B̃CR
k,E ◦ φK and affine pullback φK : K̂ → K. Number the vertices in K̂ counter-

clockwise ẑi, 1 ≤ i ≤ 3, such that ẑ3 is opposite to Ê := φ−1
K (E). The edge in ∂K̂ opposite

to ẑi is denoted by Êi and this implies Ê = Ê3. The edgewise pullbacks φi are defined as in

(B.2). We employ the equivalence of the H1/2
(
∂K̂
)

norm with |||·|||H1/2(∂K̂) (see (B.3)) and

obtain ∥∥∥B̃CR
k,Ê

∥∥∥
H1/2(∂K̂)

≤ C

(
3∑
i=1

(
‖vi‖2

H1/2(I) + |di|2H1/2
(0,

(I)

))1/2

with
vi := B̃CR

k,Ê

∣∣∣
Êi

◦ φi and di (s) := vi−1 (s)− vi+1 (−s) .

Note that
v1 (s) = Lk (−s) , v2 (s) = Lk (s) , v3 = Lk−1 − w̃3 (B.8)

with w̃3 := L′k−1 (−1) ψ̃−k −L′k−1 (1) ψ̃+
k and ψ̃±k as in (2.20). The antisymmetry of the Legendre

polynomial for odd k implies d3 = 0 and

∥∥∥B̃CR
k,Ê

∥∥∥
H1/2(∂K̂)

≤ C

(
‖Lk‖2

H1/2(I) + ‖Lk−1‖2
H1/2(I) + ‖w̃3‖2

H1/2(I) +
2∑
i=1

|di|2H1/2
(0,

(I)

)1/2

. (B.9)

The estimates ‖Lj‖2
H1/2(I) ≤ C log (k + 1) for j ∈ {k − 1, k} follow from (B.6). For the last

term, we employ

|di|H1/2
(0,

(I)

(B.4), (B.8)

≤ |Lk + Lk−1|H1/2
(0,

(I)
+ |w̃3|H1/2

(0,
(I)

(B.1)

≤ |Lk + Lk−1|H1/2
(0,

(I)
+ |w̃3|H1/2

00 (I)
.

The last term can be estimated by taking into account |L′k (±1)| =
(
k+1

2

)
(obtained, e.g., by

evaluating and differentiating [17, 18.5.8 for the choice α = β = 0 and 18.5.10 for the choice
λ = 1/2.] at ±1):

‖w̃3‖H1/2
00 (I)

≤ C (k + 1)2

(∥∥∥ψ̃−k ∥∥∥
H

1/2
00 (I)

+
∥∥∥ψ̃+

k

∥∥∥
H

1/2
00 (I)

)
[3, (A.5)]

≤ C.

For the third term in (B.9), we simply employ ‖w̃3‖H1/2(I) ≤ ‖w̃3‖H1/2
00 (I)

so that

∥∥∥B̃CR
k,Ê

∥∥∥
H1/2(∂K̂)

≤ C

(√
log (k + 1) + |Lk + Lk−1|H1/2

(0,
(I)

)
.

The last integral can be evaluated analytically: By using the recurrence relation (cf. [17,
18.9.1])

Lk (x) =
2k − 1

k
xLk−1 (x)− k − 1

k
Lk−2 (x)
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we obtain

Lk (x) + Lk−1 (x) =
2k − 1

k
(x+ 1)Lk−1 (x)− k − 1

k
(Lk−1 (x) + Lk−2 (x)) . (B.10)

This and the orthogonality properties of the Legendre polynomials lead to

Ik := |Lk + Lk−1|2H1/2
(0,

(I)
=

∫ 1

−1

(
2k−1
k

(x+ 1)Lk−1 (x)− k−1
k

(Lk−1 (x) + Lk−2 (x))
)2

x+ 1
dx

=

(
2k − 1

k

)2 ∫ 1

−1

(x+ 1)L2
k−1 (x) dx− 4 (k − 1)

k2
+

(
k − 1

k

)2

Ik−1. (B.11)

The integral in (B.11) will be evaluated in (C.1). We obtain(
2k − 1

k

)2 ∫ 1

−1

(x+ 1)L2
k−1 (x) dx =

2 (2k − 1)

k2

and the explicit recursion formula

Ik =
2

k2
+

(
k − 1

k

)2

Ik−1

with starting value

I1 =

∫ 1

−1

(L1 (x) + L0 (x))2

x+ 1
dx =

∫ 1

−1

(1 + x)2

x+ 1
dx = 2.

It is easy to verify that Ik = 2/k solves the recursion and hence,

|Lk + Lk−1|H1/2
(0,

(I)
=
√

2/k.

From this, the assertion follows.

C Analytic evaluation of some integrals involving Leg-

endre polynomials

In the proof of Lemma 2.20 some integrals over Legendre polynomials appear and we present
here their explicit evaluation.

Lemma C.1 For k ≥ 0, it holds∫ 1

−1

L2
k (t) =

∫ 1

−1

(t+ 1)L2
k (t) dt =

2

2k + 1
(C.1)

and ∫ 1

−1

(L′k (t))
2
dt =

∫ 1

−1

(t+ 1) (L′k (t))
2
dt = k (k + 1) . (C.2)
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Proof. The relation
∫ 1

−1
L2
k (t) dt = 2/ (2k + 1) follows from [23, 7.221(1)].

For k = 0, these relations follows from L0 (t) = 1. Let k ≥ 1. The recurrence relation in
[17, 18.9.1, Table 18.9.1] imply

(t+ 1)Lk (t) =
k + 1

2k + 1
Lk+1 (t) + Lk (t) +

k

2k + 1
Lk−1 (t) . (C.3)

Substituting (t+ 1)Lk (t) under the integral in (C.1) by this and taking into account the
orthogonality relations of the Legendre polynomials leads to∫ 1

−1

(t+ 1)L2
k (t) dt =

∫ 1

−1

L2
k (t) dt =

2

2k + 1
.

For the second integral (C.2) we employ integration by parts:∫ 1

−1

(t+ 1) (L′k (t))
2
dt = (t+ 1)L′k (t)Lk (t)|1−1−

∫ 1

−1

gk (t)Lk (t) dt for g (t) := ((t+ 1)L′k (t))
′
.

(C.4)
Since g ∈ Pk−1 the orthogonality properties of Legendre polynomials imply that the integral
in the right-hand side of (C.4) is zero. By using Lk (±1) = (±1)k (cf. [17, Table 18.6.1]) and
L′k (±1) = (±1)k+1 (k+1

2

)
(cf. [17, combine 18.9.15 with Table 18.6.1]) we get∫ 1

−1

(t+ 1) (L′k (t))
2
dt = 2L′k (1)Lk (1) = k (k + 1) .

Finally ∫ 1

−1

(L′k (t))
2
dt = L′k (t)Lk (t)|1t=−1 −

∫ 1

−1

L′′k (t)Lk (t) dt.

The last integral is zero due the orthogonality of the Legendre polynomials. The endpoint
values of Lk and L′k lead to the assertion.

In the final part of this section, we will compute the value of |Lk|H1/2(I) explicitly. We set

Ik (s) := |Lk|2Hs(I) =

∫ 1

−1

∫ 1

−1

(Lk (x)− Lk (y))2

|x− y|1+2s dydx.

Lemma C.2 It holds

Ik (1/2) = 4
k∑
`=1

1

`
.

Proof. We write

(Lk (y)− Lk (x))2 =
2k∑
`=2

κ` (x)

`!
(y − x)`
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with

κ` (x) :=
d`

dy`
(
(Lk (y)− Lk (x))2)∣∣∣∣

y←x

=
∑̀
r=0

(
`

r

) (
dr

dyr
(Lk (y)− Lk (x))

)
d`−r

dy`−r
(Lk (y)− Lk (x))

∣∣∣∣
y←x

=
`−1∑
r=1

(
`

r

) (
dr

dyr
(Lk (y)− Lk (x))

)
d`−r

dy`−r
(Lk (y)− Lk (x))

∣∣∣∣
y←x

=
`−1∑
r=1

(
`

r

)
L

(r)
k (x)L

(`−r)
k (x) =

(
L2
k

)(`)
(x)− 2Lk (x)L

(`)
k (x) .

Hence,
Ik (s) := I I

k (s)− I II
k (s)

with

I I
k (s) =

2k∑
`=2

1

`!

∫ 1

−1

∫ 1

−1

(L2
k)

(`)
(x) (y − x)`

|x− y|1+2s dydx,

I II
k (s) = 2

2k∑
`=2

1

`!

∫ 1

−1

∫ 1

−1

Lk (x)L
(`)
k (x) (y − x)`

|x− y|1+2s dydx.

We perform the integration with respect to y explicitly and get

I I
k (s) =

2k∑
`=2

1

`!

∫ 1

−1

(
L2
k

)(`)
(x)w`,s (x) dx,

I II
k (s) = 2

2k∑
`=2

1

`!

∫ 1

−1

Lk (x)L
(`)
k (x)w`,s (x) dx

with

w`,s (x) :=
(−1)` (1 + x)`−2s + (1− x)`−2s

`− 2s
.

From now on we restrict to the case s = 1/2. Since w`,1/2L
(`)
k is a polynomial of maximal

degree k − 1 the second integral vanishes: I II
k (1/2) = 0. We apply recursively integration by

parts and use the orthogonality of the Legendre polynomials to obtain

Ik (1/2) = I I
k (1/2) =

2k∑
`=2

2k−∑̀
m=0

(−1)m 2m+2

(m+ `) (m+ `− 1)

1

(m+ 1)!

(
L2
k

)(m+1)
(1) .

We interchange the ordering of the summation, introduce the new variable t = `+m− 2, and
obtain

Ik (1/2) =
2k−2∑
m=0

2k−m∑
`=2

(−1)m 2m+2

(m+ `) (m+ `− 1)

1

(m+ 1)!

(
L2
k

)(m+1)
(1)

=
2k−2∑
m=0

(−1)m 2m+2

(m+ 1)!

(
L2
k

)(m+1)
(1)

2k−2∑
t=m

1

(t+ 2) (t+ 1)
.
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By using a telescoping sum argument, it is easy to verify that the inner sum equals

2k−2∑
t=m

1

(t+ 2) (t+ 1)
=

2k−2∑
t=m

(
1

t+ 1
− 1

t+ 2

)
=

1

m+ 1
− 1

2k
.

Hence,

Ik (1/2) =
1

k
I III
k (1/2)− 2I IV

k (1/2) , (C.5)

for

I III
k (1/2) := −

2k−2∑
m=0

(−1)m 2m+1

(m+ 1)!

(
L2
k

)(m+1)
(1) ,

I IV
k (1/2) :=

2k−2∑
m=0

(−1)m+1 2m+1

(m+ 1)! (m+ 1)

(
L2
k

)(m+1)
(1) .

For I III
k and k ≥ 1 we get

I III
k (1/2) =

2k−1∑
m=1

(−1)m 2m

m!

(
L2
k

)(m)
(1)

= −L2
k (1)− 22k

(2k)!

(
L2
k

)(2k)
(1) +

2k∑
m=0

(−1)m 2m

m!

(
L2
k

)(m)
(1) . (C.6)

We use the endpoint formula L
(m)
k (±1) = 0 for m > k and for m ∈ {0, 1, . . . , k} :

L
(m)
k (±1)

[1, 22.5.37, 22.4.2]
= (±1)k+m (2m− 1)!!

(
k +m

k −m

)
= (±1)k+m 1

(2m)!!

(k +m)!

(k −m)!
.

This leads to L2
k (1) = 1 and the Leibniz rule for differentiation yields

22k

(2k)!

(
L2
k

)(2k)
(1) =

22k

(2k)!

2k∑
`=0

(
2k

`

)
L

(`)
k (1)L

(2k−`)
k (1) =

22k

(2k)!

(
2k

k

)(
L

(k)
k (1)

)2

=
22k

(2k)!

(
2k

k

)(
(2k)!

(2k)!!

)2

=
22k

(2k)!

(2k)!

(k!)2

(2k)!2

22k (k)!2
=

(2k)!2

(k)!4
.

The last sum in (C.6) is the Taylor expansion of L2
k about x = 1, evaluated at x = −1, i.e.,

2k∑
m=0

(−1)m 2m

m!

(
L2
k

)(m)
(1) =

(
L2
k

)
(−1) = 1.

Hence,

I III
k (1/2) = −(2k)!2

(k)!4
. (C.7)
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For the quantity I IV
k we obtain by similar arguments

I IV
k (1/2) =

2k−1∑
m=1

(−1)m 2m

m!m

(
L2
k

)(m)
(1)

= − 22k−1

(2k)!k

(
L2
k

)(2k)
(1)−

∫ 1

−1

1

s− 1

2k∑
m=1

1

m!

(
L2
k

)(m)
(1) (s− 1)m ds

= − 1

2k

(2k)!2

(k)!4
−
∫ 1

−1

L2
k (s)− L2

k (1)

s− 1
ds.

The combination of this with (C.5), (C.7) leads to

Ik (1/2) = 2

∫ 1

−1

L2
k (s)− 1

s− 1
ds = 2

∫ 1

−1

Lk (s)− 1

s− 1
(Lk (s) + 1) ds.

Since Lk(s)−1
s−1

is a polynomial of maximal degree k − 1 the orthogonality of Lk leads to

Ik (1/2) = 2

∫ 1

−1

Lk (s)− 1

s− 1
ds. (C.8)

We employ the recursion formula in [17, Table 18.9.1] for k ≥ 2

Lk (s) =
2k − 1

k
sLk−1 (s)− k − 1

k
Lk−2 (s)

so that

Ik (1/2) = 2

∫ 1

−1

2k−1
k

(sLk−1 (s)− 1)− k−1
k

(Lk−2 (s)− 1)

s− 1
ds

=
2k − 1

k
2

∫ 1

−1

(
Lk−1 (s) +

Lk−1 (s)− 1

s− 1

)
ds− k − 1

k
Ik−2 (1/2)

=
2k − 1

k
Ik−1 (1/2)− k − 1

k
Ik−2 (1/2) . (C.9)

From (C.8) and L0 (s) = 1, L1 (s) = s, L2 (s) = (3s2 − 1) /2 we get

I0 (1/2) = 0,

I1 (1/2) = 2
∫ 1

−1
L1(s)−1
s−1

ds = 4,

I2 (1/2) = 2
∫ 1

−1
L2(s)−1
s−1

ds = 6.

(C.10)

Now, it is easy to verify that Ik = 4
∑k

`=1
1
`

satisfies the recursion (C.9) and the initial value
conditions (C.10).

D Norm equivalence for Crouzeix-Raviart spaces

It is well known that for V := H1
0 (Ω) + CRk,0 (T ), the norms

(
‖∇T u‖2

L2(Ω) + ‖u‖2
L2(Ω)

)1/2

and ‖∇T u‖L2(Ω) are equivalent. In this section, we state estimates for the constants in these
equivalencies – the proof is a repetition of the well-known arguments for the case k = 1 (see,
e.g., [19, Lem. 36.6]).
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Theorem D.1 There exists a constant C > 0 depending only on the shape-regularity of the
mesh and the domain Ω such that

‖u‖H1(T ) ≤
(
‖∇T u‖2

L2(Ω) + ‖u‖2
L2(Ω)

)1/2

≤ C ‖u‖H1(T ) ∀u ∈ V.

In particular C is independent of the polynomial degree k ≥ 1 and the mesh size hT .

Proof. We prove this result only under the regularity assumption that the Poisson prob-
lem:

find φ ∈ H1
0 (Ω) s.t. (∇φ,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1

0 (Ω)

is H2 regular. For less regularity we refer to [19, Lem. 36.6]. For u ∈ V , we have

‖u‖L2(Ω) = sup
v∈L2(Ω)\{0}

(u, v)L2(Ω)

‖v‖L2(Ω)

. (D.1)

For v ∈ L2 (Ω), there exists some w ∈ H1 (Ω) such that div w = v and ‖w‖H1(Ω) ≤ CΩ ‖v‖L2(Ω)

for a constant CΩ which only depends on Ω. Hence,

(u, v)L2(Ω) = (u, div w)L2(Ω) = − (∇T u,w)L2(Ω) +
∑
K∈T

∫
∂K

〈w,nK〉u,

where nK is the unit normal vector pointing to the exterior of K. Next, we rewrite the sum
over the triangle boundaries as a sum over the edges. For E ∈ EΩ (T ) we fix the direction of
a unit vector nE which is orthogonal to E and for E ∈ E∂Ω (T ) let nE denote the unit vector,
orthogonal to E, pointing to the exterior of Ω. Then

(u, v)L2(Ω) = (u, div w)L2(Ω) = − (∇T u,w)L2(Ω)−
∑

E∈EΩ(T )

∫
E

〈w,nE〉 [u]E+
∑

E∈E∂Ω(T )

∫
E

〈w,nE〉u.

Let KE ∈ TE be fixed and let qE ∈ (P0 (KE))2 be the function with constant value 1
|E|

∫
E

w.

The orthogonality conditions of the Crouzeix-Raviart elements across edges (see (1.9b)) imply

(u, v)L2(Ω) = − (∇T u,w)L2(Ω) −
∑

E∈EΩ(T )

∫
E

〈w − qE,nE〉 [u]E +
∑

E∈E∂Ω(T )

∫
E

〈w − qE,nE〉u

(D.2)

≤ ‖∇T u‖L2(Ω) ‖w‖L2(Ω)

+
∑

E∈EΩ(T )

‖[u]E‖L2(E) ‖w − qE‖L2(E) +
∑

E∈E∂Ω(T )

‖u‖L2(E) ‖w − qE‖L2(E) .

We employ first a weighted trace inequality (see, e.g., [18, Lem. 12.15]) and then a Poincaré-
Steklov estimate (see, e.g., [19, (12.17) for p = 2 and s = 1.]) to get for hE := |E|

‖w − qE‖L2(E) ≤ C
(
h
−1/2
E ‖w − qE‖L2(KE) + h

1/2
E ‖∇ (w − qE)‖L2(KE)

)
≤ Ch

1/2
KE
‖∇w‖L2(KE) ,

(D.3)
where C only depends on the shape-regularity of the mesh.
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Next we estimate the jump of u across E. For E ∈ EΩ (T ), we define uE ∈ P0 (TE) as the
function with constant value 1

|E|

∫
E
u|K on K ∈ TE and observe [uE]E = 0. Hence,

‖[u]E‖L2(E) = ‖[u− uE]E‖L2(E) ≤
∑
K∈TE

‖(u− uE)|K‖L2(E)

≤
∑
K∈TE

(
h
−1/2
E ‖u− uE‖L2(K) + h

1/2
E ‖∇u‖L2(K)

)
≤ C

∑
K∈TE

h
1/2
K ‖∇u‖L2(K) ,

for a constant C which only depends on the shape-regularity of the mesh. For E ∈ E∂Ω (T ) the

estimate ‖u‖L2(E) ≤ h
1/2
K ‖∇u‖L2(K) for K ∈ TE follows in a similar fashion. The combination

of (D.2) with (D.3) and the two trace estimates for u leads to

(u, v)L2(Ω) ≤ ‖∇T u‖L2(Ω) ‖w‖L2(Ω) + C
∑

E∈E(T )

‖∇T u‖L2(ωE) ‖∇w‖L2(ωE)

≤ C ‖∇T u‖L2(Ω) ‖w‖H1(Ω) ≤ CCΩ ‖∇T u‖L2(Ω) ‖q‖L2(Ω) .

Using this estimate in (D.1) finishes the proof.
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