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Abstract

In this paper, we consider the discretization of the two-dimensional stationary Stokes
equation by Crouzeix-Raviart elements for the velocity of polynomial order £ > 1 on
conforming triangulations and discontinuous pressure approximations of order k—1. We
will bound the inf-sup constant from below independent of the mesh size and show that
it depends only logarithmically on k. Our assumptions on the mesh are very mild: for
odd k we require that the triangulations contain at least one inner vertex while for even
k we assume that the triangulations consist of more than a single triangle.
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1 Introduction

In this paper we consider the numerical discretization of the two-dimensional stationary Stokes
problem by Crouzeix-Raviart elements. They were introduced in the seminal paper [16] in
1973 by Crouzeix and Raviart with the goal to obtain a stable and economic discretization of
the Stokes equation. They can be considered as an non-conforming enrichment of conforming
finite elements of polynomial degree k for the velocity and discontinuous pressures of degree
k—1. It is well known that the conforming (k, k — 1) pair of finite elements can be unstable; for
two-dimensions the proof of the inf-sup stability of Crouzeix-Raviart discretizations of general
order k has been evolved over the last 50 years, the inf-sup stability for £ = 1 has been proved
in [16] and only recently the last open case k = 3, has been proved in [11]. We mention the
papers [21], [32], [15], [7], [27], [10] which contain essential milestones in this development.
There is a vast of literature on various further aspects of Crouzeix-Raviart elements; we omit
to present a comprehensive review here but refer to the overview article [9] instead.

Since higher order methods are becoming increasingly popular a natural question arises
how the inf-sup constant depends on the polynomial degree k. It is the goal of this paper to
investigate this dependency.
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The paper is organized as follows. In Section 1.1 we introduce the Stokes problem and the
Crouzeix-Raviart discretization of polynomial order k. We state our main theorem that the
discrete inf-sup constant can be estimated from below by ¢ (log (k + 1)), where the positive
constant ¢ depends only on the shape-regularity of the mesh and on the maximal outer angle
of the domain €2. The explicit value of v depends on the mesh topology. The simplest case is
that each triangle in triangulation contains at least one inner vertex and then ov = 1/2 holds.
We will give the value of « also for more general triangulations.

The proof is given in Section 2. The key ingredient is to show that for any discrete pressure
q, there exists a velocity field v, from the Crouzeix-Raviart space such that ¢ := ¢ — divy v,
belongs to the Scott- Vogelius pressure space [37, R.1, R.2], [32, R.1, R.2] (see (2.25)) and v,
depends continuously on ¢. These properties allow us to construct a conforming velocity field
v of order k with divv; = ¢. For this step, the construction in [32, Thm. 5.1], [27, Thm.
1] is modified such that the norm of the right-inverse does not deteriorate if a triangle vertex
is a “nearly-critical” point — a notion which will be introduced in Definition 2.11. This key
result is proved for odd polynomial degree in Section 2.2 and for even polynomial degree in
Section 2.3.

In the conclusions (Sec. 3) we summarize our main findings and compare our results with
existing results in the literature on some other pairs of finite elements for the Stokes equation.

In the appendices, we prove a technical result for a Gram matrix related to the bilinear
form (divr-,-) £2(9) applied to the Crouzeix-Raviart element and discontinuous pressure space
(see §A), an estimate of traces of non-conforming Crouzeix-Raviart basis functions (see §B),
give some explicit formulae for integrals related to orthogonal polynomials (see §C), and prove
a discrete Friedrichs inequality for Crouzeix-Raviart spaces (see §D).

1.1 The Stokes problem and its numerical discretization

Let © C R? denote a bounded polygonal Lipschitz domain with boundary 0f). For a vertex z
in 0f), we denote by «, the exterior angle between the two segments in 92 with joint z. The
minimal outer angle at the boundary vertices is given by

ag = min Qy, (1.1)
z is a vertex in 92

and satisfies 0 < aq < 27 since €2 is Lipschitz. We consider the Stokes equation

—Au —Vp =f inQ,
divu =0 inQ

with Dirichlet boundary conditions for the velocity and a usual normalization condition for
the pressure

u=0 ond) and /p:O.
Q

To formulate this equation in a variational form we first introduce the relevant function spaces.
Throughout the paper we restrict to vector spaces over the field of real numbers.

For s > 0,1 < p < oo, W*P (Q) denote the classical Sobolev spaces of functions with norm
[ lypen(y- As usual we write L? (Q2) instead of W () and H* (Q) for W*? (). For s > 0,
we denote by H{ () the closure of the space of infinitely smooth functions with compact
support in 2 with respect to the H® () norm. Its dual space is denoted by H~* (£2). For the
pressure p, the space L3 (Q) := {u € L*(Q) : [,u = 0} will be relevant.
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The scalar product and norm in L? () are denoted respectively by

12 .
(U, V) 2y = Jouv and  ufl 2y = (u,u)L/Q(Q) in L?(Q).

Vector-valued and 2 x 2 tensor-valued analogues of the function spaces are denoted by bold
and blackboard bold letters, e.g., H* (Q) = (H* (Q))* and H* = (H* (Q))***.
The L? (Q2) scalar product and norm for vector valued functions are given by

1/2
(u, V>L2(Q) = (u,v) and HuHLQ(Q) = (u, u)[,/Z(Q) )
Q

where (u,v) denotes the Euclidean scalar product in R®. In a similar fashion, we define for
G,H € L? (Q) the scalar product and norm by

(G H) 20 = /Q<G,H> and |Gl = (G )ikl

where (G, H) = Y’ =1 GijH;j. We also need fractional order Sobolev norms on boundary of
triangles and introduce the relevant notation; for details see, e.g., [29]. For a bounded Lipschitz
domain w C R? with boundary dw, let L? (8w) and H' (Ow) denote the usual Lebesgue and
Sobolev space on dw with norm ||+ 25, and ||| 1(5,- For 0 <'s <1 the fractional Sobolev
space on Jw of order s is denoted by H*® (0w) and equipped with the norm

) 1/2
Hs (0w)

v (x) — v (y)] v
v
Hs(aw) (/ /30.) ||1+25 deX) :

We introduce the bilinear form a : H' (2) x H! () — R by

2
[0l e awy = (V17200 + v
(

and seminorm

a(u,v):=(Vu,Vv)pq, (1.2)

where Vu and Vv denote the derivatives of u and v. The variational form of the Stokes
problem is given by: For given F € H™! (Q),

) ) a(u,v)+ (p,divv).y =F(v) Vv eH;(Q),

find (u,p) € Hy () x L () s.t. { (div, )20 () 0 Vg I2().
(1.3)
It is well-known (see, e.g., [22]) that (1.3) is well posed. Since we consider non-conforming
discretizations we restrict the space H™! (Q) for the right-hand side to a smaller space and
assume from now on for simplicity that F (v) = (f,V)yzq, for some f € L?(Q); for a more

general setting we refer to [35], [36].

In the following a discretization for problem (1.3) is introduced. Let T = {K; : 1 <i < n}
denote a triangulation of € consisting of closed triangles which are conforming: the intersec-
tion of two different triangles is either empty, a common edge, or a common point. We also

assume ) = dom 7, where
dom 7 := int ( U K) (1.4)

KeT
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and int (M) := M denotes the interior of a set M C RZ.
Piecewise versions of differential operators such as V and div are defined for functions u
and vector fields w which are sufficiently smooth in the interior of the triangles K C T by

o — V (u o) .
K K
The values on 0K are arbitrary since 0K has measure zero.

An important measure for the quality of a finite element triangulation is the shape-
regularity constant given by

(Vru)

K) and  (divy w)| ::div<w

o
K

h
= — 1.
R, )
with the local mesh width hg := diam K and pg denoting the diameter of the largest inscribed

ball in K. The global mesh width is hy := max{hy : K € T}.

Remark 1.1 [t is well known that the shape-reqularity implies that there exists some minimal
angle o7 > 0 depending only on vy such that every triangle angle in T is bounded from below
by ¢7. In turn, every triangle angle in T is bounded from above by m — 2¢.

The set of edges in 7T is denoted by € (7), while the subset of boundary edges is Egq (T) :=
{E€&(T): ECd(domT)}; the subset of inner edges is given by Eq (T) := € (T) \Eaa (T).
For each edge F € £ we fix a unit vector ng orthogonal to E with the convention that ng is
the outer normal vector for boundary edges E € Eyq.

The set of triangle vertices in 7 is denoted by V (T ), while the subset of inner vertices is
Vo(T) ={VeV(T):V&d(domT)} and Vo (T) :=V(T)\Va(T). For K € T, the set
of its vertices is denoted by V (K). For E € £ (T), we define the edge patch by

Te ={Ke€T:ECK} and wg:= UK.

KeTg
For z € V (T), the nodal patch is defined by
T, ={KeT:zc€ K} and wz::UK (1.6)
KeT,

with local mesh width h, := max{hy : K € T,}. For K € T, we set

Te ={K'€e T|KNK #0} and wy:= |]J K" (1.7)

K'eTk

For a subset M C R?, we denote by [M] its convex hull; in this way an edge E with
endpoints a, b can be written as £ = [a,b] = [b, a].

Let N = {1,2,...} and Ny := NU{0}. For m € N, we employ the usual multiindex
notation for g = (y;);", € Nj* and points x = (z;);-, € R™

m

el o=+, xP =T

J=1



Let P, denote the space of m-variate polynomials of maximal degree k, consisting of
functions of the form
D apxt

HeENG
|[HL|<k
for real coefficients ay,. Formally, we set P, _; := {0}. To indicate the domain explicitly in
notation we write sometimes P, (D) for D C R™ and skip the index m since it is then clear
from the argument D.
We introduce the following finite element spaces

Pe(T) = {q e L*(Q)
and (cf. (1.4)) Pro(T) :={q€Pe(T): [1n7a=0}.

Furthermore, let

Sk( ) k( )ﬂHl(domT),
and Sy (T):= Sk (T)NHj (domT).

The vector-valued versions are denoted by Sy (7) := Sk (T)* and Sy (T) := Sko (7). Fi-
nally, we define the Crouzeix-Raviart space by
CRy (T) = {v EP(T) | Vg ePr_1 (E) VE€E&E(T) / (V] pq = O} , (1.9a)
E
CRyo (T) := {v €CRi(T) |Vq Py (E) VE € Eyq(T) / vg = O} . (1.9b)
E

Here, [v]; denotes the jump of v € P, (7) across an edge E € Eq (T)

[u] 5 (x) == ll{‘I(l) (u(x+eng) —u(x—eng)).

and Pj_; (F) is the space of polynomials of maximal degree k — 1 with respect to the local
variable in E.

We have collected all ingredients for defining the Crouzeix-Raviart discretization for the
Stokes equation. For k € N, let the discrete velocity space and pressure space be defined by

CRy (T) := (CRio (7)) and My_1 (T) :=Pr_10(T).
Then, the discretization is given by: find (ucg, paisc) € CRyo (T) X Mg_y (T) such that

{ art (uCR7 V) - bT (Vapdisc) = (fy V)LZ(Q) Vv c CRk,O (T> )

1.10
br (ucw, q) — 0 Vg € My (T), (1.10)

where the bilinear forms ar : CRy 0 (7T) X CRypo (7T) = Rand by : CRyo (T) X My—1 (T) = R
are given by

ar (0, v) == (V7u, V)2 and by (v,q) == (divr v, q) 2 -

It is well known that problem (1.10) is well-posed if (i): the bilinear form a7 (-, -) is coercive
and (ii): by (-,-) satisfies the inf-sup condition.



To verify the condition (i) we introduce, for a conforming triangulation 7 of the domain
Q, the broken Sobolev space

H (T)={ue L’ (Q)|VK €T :ulgycH (K)}

and define, for u € H* (T), the broken H'-seminorm by

1/2
2
||U||H1(T) = ||VTU||L2(Q) - (Z ||VU||L2(K)) :

KeT
In [16, Lem. 2]) it is proved that ||-[|g: 7 defines a norm in CRyo (7) + Hj () which is

1/2
equivalent to the norm (Z KeT a7 ( K)> with equivalence constants independent of the

polynomial degree and the mesh width (see Theorem D.1). This directly implies the coercivity
of ar (-, ):
ar (w,u) > Juflg i Yu € CRyo (7).

Hence, well-posedness of (1.10) follows from the inf-sup condition for br (-, -).

Definition 1.2 Let T denote a conforming triangulation for Q. The pair CRyo (T) X
M1 (T) is inf-sup stable if there exists a constant cry such that

sup
PEMi—1(T)\{0} veCRy, o(T)\{0} ||V||H1(T) ||p||L2(Q)

> CT k> 0. (1.11)

We are now in the position to formulate our main theorem.

Theorem 1.3 Let Q C R? be a bounded polygonal Lipschitz domain and let T denote a
conforming triangulation of ) consisting of more than a single triangle. Let k € N. If k > 3

is odd we assume that T contains at least one inner vertex. Then, the inf-sup condition (1.11)
holds:

CT k > CT (log (/{Z + 1))—04 (112)

for a constant ¢ > 0 depending only on the shape-reqularity of the mesh and on the maximal
outer angle agq. In particular cy is independent of the mesh width h+ and the polynomial
degree k. The value of o > 0 is given by

1/2 if k 1is even,
a= or k > 3 is odd and all triangles in T have at least one inner verter,
(14+ L) /2 otherwise,

where L depends only on the mesh topology via the number of steps involved in the step-by-step
construction introduced in (2.13).

Proof. The estimate ¢y > 0 follows, for £ = 1 from [16], for £ = 2 from [12, Thm. 3.1],
for even k > 4 from [7], for odd k£ > 5 from [10], and for £ = 3 from [11]. We set

criow ;= min{erg 1 <k <3}.

Estimate (1.12) for some c7 := ¢l | > 0 for odd k > 5 is proved in Section 2.2, Lem. 2.22,
while the estimate for some c7 := ¢7§,, > 0 for even k > 4 is proved in Section 2.3. Both

6



constants c%iﬂlgh, c%Y?ﬁgh depend only on the shape-regularity of the mesh and aq. Hence,

e > min {7 ows Gighs S ngn |- M

We emphasize that the original definition in [16] allows for slightly more general finite
element spaces, more precisely, the spaces CRy (7T) can be enriched by locally supported
functions. From this point of view, the definition (1.9) describes a minimal Crouzeix-Raviart
space.

The possibility for enrichment has been used frequently in the literature to prove inf-sup
stability for the arising finite element spaces (see, e.g., [16], [26], [28]). In contrast, we will
prove the k-explicit estimate of the inf-sup constant for the Crouzeix-Raviart space CRy, (7).

2 Proof of Theorem 1.3

In this section, we will analyse the k-dependence of the inf-sup constant in the form (1.12),
first for odd polynomial degree £ > 5 and then for even degree k > 4.

2.1 Barycentric coordinates and basis functions for the velocity

In this section, we introduce basis functions for the finite element spaces in Section 1.1. We
begin with introducing some general notation.

Notation 2.1 For vectors a; € R", 1 < i < m, we write [a; |ay | ... | ay] for the n x m
matriz with column vectors a;. For v = (v1,vs)" € R? we set v+ := (va, —v1)" . Let e,; € R¥
be the i-th canonical unit vector in R¥.

For v € R", ||v]| is the Euclidean vector norm while the induced matriz norm is given for
B € R™" by |BJ| := sup {||Bx|| / |Ix]| : x € R"\ {0}}.

Vertices in a triangle are numbered counterclockwise. In a triangle K with vertices Ay,
Ay, Aj the angle at A; is called ;. If a triangle is numbered by an indez (e.g., K;), the angle
at Ay, is called o ;. For quantities in a triangle K as, e.g., angles o, 1 < 5 < 3, we use the
cyclic numbering convention asyq := a1 and a1 ‘= Qs.

For a d-dimensional measurable set D, we write |D| for its measure; for a discrete set, say
J, we denote by |J| its cardinality.

In the proofs, we consider frequently nodal patches T, for inner vertices z € Vo (T). The
number m denotes the number of triangles in T,. Various quantities in this patch such as, e.g.,
the triangles in T,, have an index which runs from 1 to m. Here, we use the cyclic numbering
convention K, = Ky and Ki_1 := K,, and apply this analogously for other quantities in
the nodal patch.

Let the closed reference triangle K be the triangle with vertices A; := (O,O)T7 A, =
(1, 0) Ay = (0, 1) The nodal points on the reference element of order & € Ny are given by

1
{%MueNgi |u|§k} k=1,

G

Nk =



For a triangle K C R?, we denote by yx : K — K an affine bijection. The mapped nodal
points of order k € Ny on K are given by

N (K) = {XK (z):z € ﬁk} .
Nodal points of order k on T are defined by

Ne(T) = [N (K), NG (T) =N (T) N9, and Nio (T) := Ny (T) N Q.

KeT

We introduce the Lagrange basis for the space Sy (7), which is indexed by the nodal points
z € N; (T) and characterized by

th € S (T) and Vz' € Nk (T) Bk@ (ZI) = (5z7z/, (21)
where 0, 5 is the Kronecker delta. A basis for the space Sk o (T) is given by By, z € Niqo (T).

Let K denote a triangle with vertices A;, 1 < ¢ < 3, and let Axa, € Py (K) be the
barycentric coordinate for the node A; defined by

Aia, (Aj) =6, 1<i,j<3. (2.2)

If the numbering of the vertices in K is fixed, we write A ; short for Ak a,. For the barycentric

coordinate on the reference element K for the vertex Aj we write /):j, 7 =1,2,3. Elementary
calculation yield (see, e.g., [10, Appendix A)

On AKA, = 2|K| x cosag st {0i,k} ={1,2,3}, 2%

where F; is the edge of K opposite to A;, n; the outward unit normal at Ej, and a, the angle
in K at Ag.

Definition 2.2 Let Lj denote the usual univariate Legendre polynomial of degree k (see [17,
Table 18.3.1]). Let k € N be even and K € T. Then, the non-conforming triangle bubble is
given by

3
1
| Li (1= 2\, K,
-] 3 (1m0 n0)
0 on Q\K.

For k odd and E € £ (T), the non-conforming edge bubble is given by
L (1—2X ) on K for K €T,

CR ._ k KAk Es

Bir = { 0 on QN\wg, (2:4)

where Ak g denotes the vertex in K opposite to E.

Different representations of the functions B.¥, Bfk exist in the literature, see [34], [5],
12, for p = 4,6.], [13] while the formula for By has been introduced in [7] and the one for

BER in [10].



Proposition 2.3 A basis for the space CRy (T) is given

1. for even k by
{Bk’z | VAS Nk,Q (T)} U {BE’% | K e T} ,

2. for odd k by
{th ’ Z < Nk’Q (T) \VQ (T)} U {BIS,% | E e &q (T)} .

The proof of this proposition and the following corollary can be found, e.g., in [34, Rem.
3], [13, Thm. 22], [10, Cor. 3.4].

Corollary 2.4 A basis for the space CRy (T) is given

1. for even k by

{Bkyzvz | VAS Nk7Q (T)} U {Bk,zwz | Z € N]@Q (T)}
(2.5)
U{Bkvk | K e TYU{BRwyk | KeT},

2. for odd k by

{Brzva | 2 € Nia (T) \Va (T)} U {BraWs | 2 € Nogo (T) \Va (T)}
(2.6)
U{BEvE | E €& (T} U{Bwp | E€ & (T)}.

Here, for any nodal point z, the linearly independent vectors v,, w, € R? can be chosen
arbitrarily. The same holds for any triangle K for the vectors vi,wr € R? in (2.5) and for
any E € Eq (T) for the vectors vg, wr € R? in (2.6).

Remark 2.5 The original definition of Crouzeiz-Raviart spaces by [16] is implicit and given
for conforming simplicial finite element meshes in R, d = 2,3. For their practical im-
plementation, a basis is needed and Corollary 2.4 provides a simple definition. A basis for
Crouzeiz-Raviart finite elements in R? is introduced in [20] for k = 2, a general construction

is given in [14], and a basis for a minimal Crouzeiz-Raviart spaces in general dimension d is
presented in [30].

2.2 The case of odd k£ > 5

In this section, we assume for the following

a) k>51isodd and

: . : . . 2.
b) T is a conforming triangulation and has at least one inner vertex. (2.7)

This section is structured as follows. In §2.2.1 we generalize the concept of critical points
(see [37], [32]) to n-critical points which turn out to be essential for estimates with constants
depending on the mesh only via the shape-regularity constant and ag. We split these n-critical
points into a set of “obtuse” n—critical points and “acute” n—critical points. In §2.2.2, we
provide the proof of Theorem 1.3 for a maximal partial triangulation that does not contain
acute n—critical points and satisfies (2.7). Finally, in §2.2.3 we present the argument to allow
for acute n—critical points.



Figure 1: Illustration of the four critical cases as in Remark 2.7. Left top: inner critical point,
right top: acute critical point, left bottom: flat critical point, right bottom: obtuse critical
point.

2.2.1 Geometric preliminaries

For the analysis of the inf-sup constant we start with the definition of critical points (see [37],
32]).

Definition 2.6 Let T denote a triangulation as in §1.1. Forz € V (T), let
E,:={FE €&(T):z is an endpoint of E}.

The point z € V (T) is a critical point for T if there exist two straight infinite lines Ly, Lo in
R? such that all edges E € &, satisfy E C Ly U Ly. The set of all critical points in T is Cr.

Remark 2.7 Geometric configurations where critical points occur are well studied in the lit-
erature (see, e.g., [32]). Any critical point z € Cr belongs to one of the following cases (see
Fig. 1):

1. z € Vo (T) and T, consists of four triangles and z is the intersections of the two diagonals
i the quadrilateral wy,.

2. 2 € Voo (T) and card &, = 2, i.e., both edges E € &, are boundary edges with joint z.

3. 2 € Vs (T) and cardE, = 3 and two edges E € &, are boundary edges which lie on a
straight boundary piece.

4.2 € Voo (T) and card&, = 4 and each of the two boundary edges is aligned with one
edge of E,NEq (T).

10



Definition 2.8 Let T denote a triangulation as in §1.1. Let z € V (T) and the nodal patch
T, as in (1.6). Let the triangles K,, 1 < £ < m, in T, be numbered counterclockwise and
denote the angle in K, at z by w,. Then,

max {[sin (w; + wa)|, [sin (we + w3)], .. ., |sin (W, + wi)|} ifz € Vo(T),
O (z) := ¢ max{|sin (wy + wa)|, [sin (w2 + ws)|, ..., |sin (Wm—1 +ww)|} fzelAm>1,
0 ifz el Am=1.

Remark 2.9 [t is easy to see that z € Cy if and only if © (z) = 0.
Lemma 2.10 Let ¢ be as in Remark 1.1. Set

. { 1 3or . }
Mo := min c1, ——,Sin ¢
s

57
with
min {sin 2¢7, |sin (27 — 4¢7)|} ¢7 < /8,
c1 = { sin2¢r /8 < o7 < /4,
1 o7 > 7T/4.

Let 0 < mn <o be fizred. If, for z € V (T), it holds © (z) < n, then, for any edge E = [z,2/] €
Ea (T) it holds
O (z') > no.

Proof. Let z € V(7)) and consider an edge F = [z,2'] € £, (T). Then, there are two
triangles K, K’ € T which are adjacent to E. The angle in K resp. K’ at z is denoted by w
resp. w'.

1st case. Let w+w' < 7/2 or w+w' > %71’. Then, we conclude from Remark 1.1 that

3
2¢7—§w+w'§g or §7T§w+w'§27r—4¢7—.
For the left inequality to hold, the minimal angle must satisfy ¢+ < 7/4 while for the right
inequality, it must hold ¢7 < 7/8. For ¢ > /4, the 1st case is empty. For ¢ < 7/4 we
get
min {sin 2¢7, [sin (27 — 4¢7)|} o7 < 7/8
> > c1 > 1.
G(Z)_{ sin 2¢ /8 < o7 < m/4 =a="To

Since < ny < ¢; this case cannot appear.
2nd case. Let 7/2 < w+ w' < 37/2. The condition |sin (w + w’)| < 7 implies that
w4+ w =746 with

17, 4241] o= o (20)! 770§<1/2 N o (20)! ™
2 =—. (28
2 2 (0’4 (204+1) 3 (28)

|0] < arcsinn = 5 <
pre (N4 (20 +1)

=0
Consequently the two angles o in K and o/ in K’ at z’ satisfy

/ / / / ™ /3567
atd =2r—w—-—w-pF-F=1-0—-0-0 SF—F?—QQST < T—07,
where 3 (resp. (') denotes the third angle in K (resp. K’). Hence, in this case

O () = [sin (7 — ¢7)| = sin g7 > 1.
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Definition 2.11 Let 1y be as in Lemma 2.10. For 0 < n < 1, the set of n-critical points
Cr (n) is given by
Cr(n):={z2eV(T)|0(z) <nj.

A point z € Cy (n) \Cr (0) is called a nearly critical point. An n-critical point z € Cy (n) is
isolated if all edge [z,2'] € E(T) satisfy: z’ is not an n-critical point.

By perturbing the geometric configurations in Remark 2.7 we obtain the following subcases
(see Fig. 2).

Definition 2.12 Let 1y be as in Lemma 2.10 and 0 < n < no. Ifz € V(T) satisfies
1. z€ Vo (T) and card T, = 4 and © (z) <n. Then z is an inner n-critical point. Let

Ci71_mer (n) :={z € Cr (n) : z is an inner n-critical point} .

2. 7€ Voo (T) and card €, = 2. Then z is an acute critical point. Let'

Cxe .= {z € Cy : z is an acute critical point} .

3. 2 € Vo (T) and card &, = 3 and O (z) <. Then z is flat n-critical point. Let

C%“ (n) :={z € Cr(n):z is a flat n-critical point} .

4.2 € Voo (T) and cardE, = 4 and © (z) < n. Then z is a (locally) concave n-critical
point. Let

CF™ (n) :=={z € Cr (n) : z is a concave n-critical point} .

The acute critical points require some special treatment and we denote the union of the
others by .
C,c;_btuse <n> — C;l}ner <n> U Cg_at (77) U ngncave (,’7> )

The following lemma states that for a possibly adjusted 7y, still depending only on the
shape-regularity of the mesh and the maximal outer angle aq, the n-critical points belong to
one of the four categories described in Definition 2.12.

Lemma 2.13 Let T be a conforming triangulation such that D := dom7T is a Lipschitz
domain.

Then, there exists some nyy € |0,m0] depending only on the shape-regularity of the mesh and
the minimal outer angle aup such that for 0 < n < n any n-critical point belongs to one of the
four categories described in Definition 2.12.

Proof. Let z be an 7-critical point. We set m := card T, and choose a counterclockwise
numbering for the triangles in 7, i.e., K;, 1 < i < m. The shape-regularity of the mesh
implies that there is some M., depending only on ¢ such that m < my... Denote by w;

!Note that the set of acute critical points is independent of 7.
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Figure 2: Ilustration of the four n-critical cases as in Remark 2.12. Left top: inner n—critical
point, right top: acute critical point, left bottom: flat n-critical point, right bottom: concave
n-critical point.

the angle in K; at z. Let nf, € ]0,10] which will be fixed later and assume 0 <7 < ;. Since z
is an n-critical it holds

m if z€ Vo (T)

. , , < ! <i<m fi=
|sin (w; +wip)] <<y VI<i<m' form {m—l if z € Voo (T).

The shape-regularity implies ¢7 < w; < m — 2¢7 and, for § = arcsin 7], we get
Wi + wiy1 € [207,0]U[r — 0,7+ 0] U 27 — 6,27 —4¢y] forall 1 <i<m'. (2.9)

Since arcsin : [0, 1] — Rx( is monotonously increasing with arcsin 0 = 0 and lim,_,; arcsinz =
+00, we can select 1), such 0 < § < 2¢7. In turn, the first and last interval in (2.9) are empty
and

w; +wip =+ 0; for some §; with |§;| <6 for all 1 <i <m/. (2.10)

Case 1: z e Vo (T).
In this case we obtain

m

4 = Z (wl + wi—i—l) (ZéO) mm + Z 51 (211)
1=1

i=1

By adjusting 7 such that muyaxd < 7™ we conclude that m =4 and > 6; = 0. Hence, z is
an inner 7-critical point according to Definition 2.12(1).

Case 2a: z € Vo (T) and m < 3.

These cases correspond to acute critical/flat n-critical /concave n-critical points according
to Definition 2.12(2-4).

Case 2b: z € Vyo (T) and m > 4.

13



W(z

“N(@)\E@

W(z)

z

Figure 3: Three types of obtuse 7-critical points z € C5P™° (n) with associated inner edge
¢ (z), normal vector 91(z) and opposite endpoint U (z) of & (z); left: inner n-critical point,
middle: flat n-critical point, right: concave n-critical point.

We argue as in Case 1 but take into account that the patch 7, is not “closed” since z is a
boundary point. Let o := 27 — > | w; be the “outer angle” of the domain at z. Then

m—1 m—1 m—1
w1+wm+22wi = Z(wi—i-wiﬂ) = (m— 1)7T+ Z(SZ
i=2 i=1 i=1
By the definition of «, we obtain
m—1 m—1 LmTﬂJ
(m — 1)7r—|—25i :27r—0z—|—2wi =2Tr —a+ Z (wap + waps1) + Q (M) W1
i=1 i=2 =1

m — 2
:27r—oz~|—{ 5 J?T+ Z do¢ + Q (M) w1,

where @ (m) = 0 if m is even and @ (m) = 1 if m is odd. By rearranging the terms we get

LmT%J m—1
Q(Mm)wm_1 + A, = (m—3— LmT_QJ) T+a for A, = Z Oop — Z(SZ-. (2.12)
=1 i=1

We adjust nf, such that § = arcsinn] satisfies Mmuyaxd < @ and, in turn, |A,,| < Mpaxd < .
Then, it is easy to verify that

m— 2

|Q (M) w1+ Ap| <Q(m)7+a < (m—3— {TDWF(X

holds for all m > 4. Hence, (2.12) cannot hold and there exists no n-critical boundary point
z for m > 4.

|

Next, we collect the n—critical points in pairwise disjoint, edge-connected sets which we
will define in the following. We say two points y,y’ € V (T) are edge-connected if there is
an edge E € £ (T) with endpoints y,y’. A subset V' C V (T) is edge-connected if there is a
numbering of the points in V' = {y; : 1 < j < n} such that y,;_, y; are edge-connected for

14



all 2 < j <n. A point z €V (T) is edge-connected to V' if z € V' or there is y €)' such that
z, y are edge-connected.

From Lemma 2.10 we know that two edge-connected points z,z" € V (7) can be both
critical only if the connecting edge E belongs to s (T); in this case it holds z,2z" € Vaq (T).
Next, we will group the points in C7 (1) into subsets called fans.

From Lemma 2.10 it follows that the points in C**" () are isolated (see Def. 2.11). All
other n-critical points lie on the boundary. Next, we define mappings & : C**¢ () — Eq (T),
N : CP™e () — Sy, and Y : CPWe () — V(T)\Cr (n). The construction is illustrated in
Figure 3.

For z € C$P's (), Definition 2.12 implies that |€,| > 3 and hence &, N Eq (T) # 0. We
fix one edge £ € £, N&Eq(T) and set €(z) := E. Note that the choice of F is unique for
z € Cit (n). For z € Cit»*r () the choice is arbitrary. For z € C@¥ (n), the set &, N Eq (T)
consists of two edges, say E;, Fa. We fix one of them and set € (z) := Ey. Let 2 € V (T) be
such that €(z) = [z,2']. Then U (z) := z’. Lemma 2.10 implies that z’ is not an n-critical
point. A unit vector 91 (z) orthogonal to & (z) is defined by the condition that z' — z and
M (z) form a right-handed system.

Definition 2.14 We decompose CS*™° (n) into disjoint fans Cry(n), ¢ € J, such that the
following conditions are satisfies

1. () = | JCre (m),

2. for any € € J, the set Cr4(n) is edge-connected,

3. foranyl € J, there isz, € V (T)\Cr (n) such that for allz € Cy 4 (n) it holds U (z) = z,
and, vice versa:

4. any 7' € CSP™™° (1) which is edge-connected to some Cr,(n) and satisfies UV (z') = z
belongs to Cr4(n).

The following lemma will allow us to construct a right-inverse for the divergence operator
separately for each fan.

Lemma 2.15 Let 1y be as in in Lemma 2.10 and let 0 < n < ny be fized.
a. Then, the mapping € : C3™ (n) — Eq (T) is injective.

b. Forl e J, let wy := U We(z). The domains wy have pairwise disjoint interior.

z€Cr ()

Proof. Part a. The injectivity of the mapping € : C™ () — Eq (T) follows from
Lemma 2.10: if z € Cr (n) and 2z’ € V (T) is such that F := [z,2'] € Eq (T) then 2z’ ¢ Cr (n).

Part b. The following construction is illustrated in Figure 4. For fixed ¢ € J, we number
the points in Crp by z¢;, 1 < j < ny, such that z,;_; and z,; are edge-connected for all
2 < j <mnyand zg; and z,, are the endpoints in the polygonal line through these points. Let
Ky ; be the triangle with vertices zp;_1, 2, 24, 2 < j < ng and let Ty := {K,; : 2 < j < ng}.
Note that this set is empty if |C74| = 1. Let Ky, Kppn,+1 € T\Te be two different triangles
such that Epq := [2¢1,2¢ C 0Ky1 and Ey,,, := [24n,,20 C OKyn,+1. Let zgo be the third

15



Figure 4: Nodal patch, illustrating edge-connected obtuse 7-critical points of a fan Cr, (n).
In this example, the left-most 7n-critical point is z,,, and of type “flat”, the right-most is z,
of type “concave” with € (z,1) = [2z¢1,2]. The extremal points zyo and z,,+; do not belong
to Cr ¢ (n). The edge connecting z, with z,; is denoted by Ej ;.

vertex in Ky, and observe that it does not belong to Cy,. Since E;; is an inner edge and
Zg, 1s an 7-critical point, Lemma 2.10 implies that z, is not an 7-critical point. Next, we
show that Eyg = [z, 2z¢] does not belong to £ .= { & (z) : z € C$*'"° () }; from this the
assertion follows. We assume Eyo € E9™° and derive a contradiction. Since z, ¢ C5P™" (1),
this assumption implies that z,o € C$™° (n). If U (z¢0) = z¢ then Definition 2.14(4) implies
that z,o € Cr, and this is a contradiction. If U (z,) # z,, then Eyo ¢ Sf}btuse. ]

Since the acute critical points need some special treatment we define a sequence of trian-
gulations 7;, 1 < i < L, with the properties

1.
TWCThcCc...cT,=T, (2.13)

2. 71 is a maximal subset of 7 such that C5"*¢ = (),
3. forj=1,2,... L,

T; = {K € T | at least one edge of K belongs to £ (T;_1)} .

By this step-by-step procedure, triangles are attached to a previous triangulation 7;_;
which have an edge in common with the set of edges in 7;_;. The proof of Theorem 1.3
under assumption (2.7) then consists of first proving the inf-sup stability for 7; and then to
investigate the effect of attaching a triangle to an inf-sup stable triangulation. A sufficient
condition for L = 0 is that every triangle in 7 has an interior point.
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2.2.2 The case C¥"° =)

In this section, we prove the inf-sup stability for the triangulation 77 in (2.13) where C%f“te = 0.
For simplicity we skip the index 1 and write 7, Cr (1), etc.

Next, we define some fundamental non-conforming Crouzeix-Raviart vector fields which
will be used to eliminate the critical pressures in the Stokes element (Sgo (7),Pr—1,0 (7))

Essential properties of the Crouzeix-Raviart function B,S% are: it is a polynomial of degree
k on each K C Tg and a Legendre polynomial on each edge E' C (9wE so that the jump
relations in (1.9b) are satisfied. Furthermore, [B,S%] = 0 and supp B} £ Cwp.

In the first step, we modify the function B,g% by adding a conforming edge bubble in
Sko (T) such that the H' (2) norm of the modified function has an improved behaviour with
respect to k.

Let E € & (T) with endpoints Vi, Va. Set tg = (Vo — V;) /||Va — V|| and consider a
function wg € Py, (T) with suppwr = wg and

wilg|p = B K‘ VK € Ty and E' € 0K N dwp, (2.14a)
wgly, =0 and Oy,wg (Vi) = 0ywe (Va) = 0. (2.14Db)

Then, wg also belongs to the space CRy (7) and
V(wrl) (2) = V (B, ) () YK €T VaeV(K). (2.15)

The last relation can be derived from the following reasoning. For K € T and z € V (K),
set ty == (y —2z)/|ly —z| for all y € V(K)\{z}. Let ¢ € R? be arbitrary. Clearly, ¢ =

D yev(in(z) Qyty for some ay € R. The conditions in (2.14) imply that for y € V (K)\ {z}

it holds CR
d wE|K _ 9 Bk ‘
oty oty
Hence,
0w
(V (wglg),c) (z) = ay af'K (z) (2.16)
EV(K)\{z} Y
0 B%|
_ ay— 25 (2) = (V ((BE) | ) <) (@)
YEV(K)\{z} Y

Since ¢ was arbitrary, (2.15) follows.

Lemma 2.16 Let k > 5 be odd and for E € Eq(T), let BE be as in (2.4). Then, there
exists a function B € CRyo (T) with

7. supp B,g% = wg,

ii. for all K € T, for allz € V (K):

v (5% )@ =v(BE],) @), (2.17)
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iti. for all K € Tg, for all ' C 0K N Owg:

_ nCR ACR|
E/_Bk’E‘K‘E/ and [Bk,E}E—O,

w. forall K €T
/ divy (ng&nE) —0. (2.18)
K

v. The piecewise gradient is bounded:

“VTB’S%)) < CVlog(k+1). (2.19)

L2(Q)

Proof. We employ the reference triangle as in [6] in order to apply the polynomial
extension theorem therein. Let K be the equilateral triangle with vertices A; := (—1, O)T,
A, = (1,O)T, A; = (0, \/§)T and let Ej denote the edge in K opposite to Aj, 1< <3

Let E € & (T) with endpoints Vi, Vy, and let K € Tg. Choose an affine pullback
ok : K — K such that ¢ (E3> = E. We employ the function 1;,:5 € Py, ([-1,1]) given by

L (142)(1 —x)z

Uy (@) = P (@) and 4 (2) =~y (o)

with the Jacobi polynomials pie? (see, e.g., [17, §18.3]) and the normalisation factor ¢ :=
(—1)’“71 (g) These functions have been analysed in the proof of Lemma A.1 in [3, denoted by

~ ~ / ~ /
F}] and we recall relevant properties. It holds i (1) = (1&,3) (+1) = (1#,":) (=1) =0 and
~ / ~ !
<wk’> (—1) = <w,j) (+1) =1 (cf. [17, §18.3]). Their norms can be estimated by

< Ck~ L.

4]
L2([=1,1])

<COk® and H(@ugﬁ)

LA([-11])

We set . .
o () = L1 () — Ly (1) (2) — Limy (1) 9 (2) - (2.20)
Clearly, it holds
fr(£1) =1, & (+1)=0.

By using Lemma C.1, we get
18wl L2y < CF Y20 @kl ey < Ck.

From [6, Thm. 7.4] we conclude that there is wg € Py <[~( > with

Wp|g, = Bﬁ%\K °PK

o j:1,2 and 'LZJE|E3:@]€
Ej

which satisfies
H@DEHHl([() <C HwE”Hl/Q(al?)
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for a constant C' independent of k. Lemma B.2 implies the following estimate of the H'/?

norm of wg:

HwEHH1 < Cy/log (k +1). (2.22)

By using the affine lifting ¢ to the trlangle K we define the function wg by

wpl = g o ¢y if K € Tg,
Elk == 0 otherwise.

In turn, we get

This function is continuous across E (with value ¢y o gb;{l! ) and, on B’ C dwg, it is a lifted
Legendre polynomial. This implies property (iii) for wg. The function wg vanishes outside
wg so that (i) holds. Since the construction implies that the derivative of wg in the direction
of E, evaluated at the endpoints Vi, Vy of E,| is zero, we may apply the reasoning in (2.16)
to obtain property (ii) for wg.

From (2.22) we obtain by the transformation rule for integrals and the chain rule for
differentiation

IVwe|pax <C’HwEHH1 <C\/10g (k+1) VK € Tg.

Next, we modify wg such that property (iv) holds without affecting the other properties. Let
g € Sipo (T) with supp ¥p = wg and

Vel = axXiy, Ay, With  ag = < /K anEwE)/( /K Onp (A;VIA;VQD VK € Tg.

) (2.23)
The modified function B finally is defined by

By = we — . (2.24)

Since divy (B,S EnE)‘ = Ony, (B % K) property (iv) follows by construction. The gradient
K

Vg vanishes in the vertices of K so that (On,%g)(z) = 0 for all z € V(K) and (ii) is
inherited from wg. Properties (i), (iii) are obvious. Next, we verify (v). Let V3 denote the
vertex in K opposite to E. We first compute

2
/ Ong ()\3(7V1 )\%,VQ) = ZzanEAK,Vj/ AKVIAK VARV, = / A5 VI AK YV, ZQanE)\KV
K e K

7=1

1 2.3) |E|

- 156HE)\KV3| | %7

[ Gupe| < 117 1wy, < €112 Vg G D),
K
In this way, |ax| < Cy/log (k + 1) and an inverse inequality for quartic polynomials gives us

IVeBllLe ) < Chic 1¥ell 2y < Chid V1og (k + 1) L] 2x) < Cv/log (k + 1)

Hence, property (iv) follows. m
Next we recall a result which goes back to Vogelius [37] and Scott-Vogelius [32], see also
27, Proof of Thm. 1].

19



Definition 2.17 Let 19 be as in Lemma 2.10. For 0 < n < 1o, the subspace MY | (T) of
the pressure space My_1 (T) is given by

My (T) = {a € M1 (T) | V2 € Cr (n) : A (q) = 0}, (2.25)

where, forz € Cy(n), the functional Ay, (q) is as follows: fix the counterclockwise numbering
Ky, 1 <0< m, of the triangles in the patch T, by the condition K; N Ky = €(z) and set

Ara () = 3 (-1 ali) ) (2.26)
=1

Note that M&}Ll (T) is the pressure space introduced by Vogelius [37] and Scott-Vogelius
[32] and the following inclusions hold: for 0 < n < <

Msl\’;g,l (T) C MS,};A (T) C Mgy, (T) = Q"

with the pressure space Qlfl_l in [27, p. 517].
For the Scott-Vogelius pressure space M()S,Xq (T), the existence of a continuous right-inverse
of the divergence operator into Sg o (7) was proved in [37] and [32].

Proposition 2.18 (Scott-Vogelius) For any p € MOS,X—l (T) there exists some v € Sg.0 (T)
such that
divv = q and ||V||H1(Q) <C ||q||L2(Q) ’

for a constant which only depends on the shape-regularity of the mesh, the polynomial degree
k, and on ©_1  where

Omin := min O (z). (2.27)
2eV(T)\Cr

In particular, the constant C' is independent of h.

In Lemma 2.20, we will show that, by subtracting the divergence of a suitable Crouzeix-
Raviart velocity from a given pressure in My_; (7T), the resulting modified pressure belongs to
the reduced pressure space Mi\k/_l (7). As a preliminary, we need a bound of the functional
A7, in (2.26) which is explicit with respect to the local mesh size and polynomial degree.

Lemma 2.19 There exists a constant C' which only depends on the shape-regularity of the

mesh such that 12

| A7z (0)] < C ||QHL2(w) Vg € Pr_1 (T)
for any k € N.

Proof. Let z € V (T) and K € 7,. The affine pullback to the reference triangle is denoted
by xk : K = K. For q € P (K), let §:= qo xx and 2 := X% (z). Then

e@i=p@l < L = (M) K g (229

A summation over all K € 7, leads to

k+2 _ k+2\,_
ara @) < (M52 S ey < (5 7V el

/=1
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where C' only depends on the shape-regularity of the mesh. m

The following lemma shows that the non-conforming Crouzeix-Raviart elements allow us
to modify a general pressure ¢ € Py_1 (7 ) in such a way that the result belongs to Mi\k/,l (T)
provided C5"® = ().

Lemma 2.20 Let assumption (2.7) be satisfied and C3***® = (). There exists a constant n, > 0
which only depends on the shape-regularity of the mesh and aq (see (1.1)) such that for any
fized 0 < n <my and any q € Py_1(T), there exists some v, € CRy o (T) such that

/ divv,=0 VK €T, (2.29)
K
q—divyvge MY (T) (2.30)

and
197 V4llaey < /1o (& + 1) llgll ey - (2.31)

The constant Ccr depends only on the shape-reqularity of the mesh and aq.

Proof. Let ¢ € Py_10 (7). Let the fans Cr, (1), £ € J, be as in Definition 2.14. For each
fan Cr . (n) we employ an ansatz

> B M(2) (2.32)

z2€CT (1)

for Bkc}é‘(z) as in (2.24), where the coefficients ay, € R are defined next. The global function
v, is then given by

Property (2.29) follows from this ansatz by using Lemma 2.16. Next, we define the coefficients
g, in (2.32) such that (2.30) holds and prove the norm estimates for v,. Our construction of
the fans implies that open interiors of the supports of v, are pairwise disjoint (see Lem. 2.15);
as a consequence the definition of (ae’z)ZECT(n) and the estimate of Vv, can be performed
for each fan separately.

Forz € Cry(n), let E := €(z), ng :=N(z). Let K, K, denote the triangles in 75 with
the convention that ng points into K. The vertex in K opposite to E is denoted by A*.

We use
(2.17)

div (BIS%HE)K> (y)

and compute the divergence of Bk FE

|El 77 (1 _ e N
div (BIS%HE|K> :{ Frgle (1 —2Aga+) on K=K7, i=12, (2.33)

div (B,S%HE}K> (y) VyeV(K)

0 otherwise.

Well-known properties of Legendre polynomials applied to (2.33) imply that for any vertex y
of K and odd polynomial degree k

1E| : _ ot
k+1)x{ Vy € V(K), if K =K (2.34)

div (BkEnE‘I) (y) :¢( 5 K]

0 otherwise.
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Figure 5: Local numbering convention of the angles in K, ; and Ky ;.i. The angle in K, ; at
z¢ is denoted by a1, at z¢; by oy j9, at zp ;1 by ay 3 and in Ky ;1 accordingly.

Hence the condition Ay (¢ — divyvy) = 0 for all y € Cr (1) is equivalent to the system of

linear equation

MgOég =TIy (235)
with
M, = (ATQ’ (divT (BISF@{(Z)O,t (Z))))yegT,z((ﬁ)) o O = (O‘E,Z)zecT,e(n) v L= (AT’Y (Q))YGCT,Z(W) )
zeCr (N
(2.36)
The matrix My is explicitly given by
[ |Ee,1| |Ee,1| |E2,2| i
|Ke,1 T |Ke,2| |Ke,2| 0 0
Ez,1| ‘E/z,z + ‘Ez,2|
E | Kl Kool [Kes
M, = —< 5 > 0 0
|Efﬁ"z|
o]
E¢n,—1 E¢n Eon
0 0 — - -
R |K47"e’ ’K‘Zvne| ’Kﬂv"ul‘ i
We use (cf. Fig. 5)
|Begl _ 2sin(agjn+agge) o0 Byl 28 (g + aggens)
|Kg7j| |Eg7j| sin 04&3‘71 sin a47j72 |Kg7j+1| |Eg7j| sin a47j+171 sin Oég7j+173
(cf. [10, formula before (3.29)]) and obtain
M, =D, (Tg + Ag) (237)
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with Dy = —k (k + 1) diag [|Ery| ™' : 1 < j < ny] and

Sin(az,1,1+ae,2,1) 1 0 0
Sinag,Ll sin Qyp 21 sin Qyp 21
1 Sin(ae,2,1+a/z,3,1)
sinay 21 sinay 2.1 sin g 3,1
: 1
sinag,ne,l
0 0 1 Sin(al,nz,1+a2,n£+1,l)
L e sinagyne’l sina&ne’l sinozg,nﬁ_l,l ]

sin (av,j2 + Quji1,3)
SIN Qv j o SIN Ol 41,3

Ay = diag

1 <7< ng.

In Lemma A.1, we will prove that the matrix Ty, + A, is invertible and the inverse is
bounded by a constant independent of hy and k. Hence,

~ hz
< (C———— . 2.

Let Tp :={Ky;:1<j<mny;+1} and D, := dom (7;). We estimate the function v, in (2.32)
by

1/2
2
) -
IVrvelizpy < | D loeal HVTB’S’&Z)m(Z) L2(Dy)
z€CT 0(n)
_zer(?fra,;((:n) ‘ Tk () (Z) L2(Dy) HaéH
(2.19) log (k+ 1)
< w5 ||Te]| -
(k+1)

The constant C' only depends on the shape-regularity of the mesh. We use Lemma 2.19 and

conclude that
HVTVEH]LQ(DZ) < C(\/ lOg (k + 1) ||Q||L2(D4) :

Since the interiors of the supports D, have pairwise empty intersection the estimate
IV7Vgllizi) < CV1og (k +1) [lall r2q)
follows. m

Definition 2.21 Let assumption (2.7) be satisfied and ny > 0 as in Lemma 2.20. Fix n €
[0,m9]. For q € Py (T), the linear map TR : Py_y o (T) — CRyo (T) is given by

Mg =) Y aaBlé, M)

LeT ze€Cr 4(n)

with ay as in (2.85).
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For the proof of the following lemma we recall the definitions of some linear maps from
the literature which are related to the right inverse of the divergence operator acting on some
polynomial spaces.

Bernardi and Raugel introduced in [8, Lem. IL.4] a linear mapping 3% : M, (T) —
Sa0 (7)) with the property: for any ¢ € M1 (T), the function I1®Rq € Sy (T) satisfies

/K q= /K div (II"%q) VK eT (2.40)

and
HHBRQHHl(Q) < Cr ||Q||L2(Q) (2.41)

for a constant Cgg which is independent of the mesh width and the polynomial degree.
Next we consider some right inverse of the divergence operator on the space

s (e (K5t )}

Let
SY(T)={ueSy(T)|VK eT: ul,=0}.

There exists a linear operator IIY : MY | (T) — S (T) such that for all ¢ € M} | (T)
q =divIIVyg,
HHVqHHl(Q) <Cy Hq“L2(Q) ) (2.42)

where the constant Cvy is independent of the mesh width and the polynomial degree. Note
that in the original paper [37, Lem. 2.5] by M. Vogelius, the right-hand side in the estimate
(2.42) contains an additional factor k°V for some positive Sy (independent of the mesh width).
In [3, Thm. 3.4], the operator in [37, Lem. 2.5] is modified and the estimate in the form (2.42)
is proved for the modified operator.

Finally, we reconsider the linear operator 119 : MZY | (T) — Sy (T) introduced by
Guzmén and Scott in [27, Proof of Lem. 6 and Lem. 7] with the property that, for any
q € M3 (T), it holds

(I —divII®®) g e M) | (T), (2.43a)

VI 2 < Cask” (Gruin + ) all g for k=2 (2.43b)
We emphasize that in [27, Lemma 7] the constant ©_L (cf. (2.27)) instead of (O + 1)~
appears in (2.43b) so that the estimate of ||VHGSqHL2(Q) for ¢ € MgY_, (T) deteriorates in
cases where the z is a nearly critical point, i.e., very close to the geometric situations described
in Remark 2.7. The proof of [27, Lemma 7] is split into an estimate related to points z with
A7, (q) =0 (cf. (2.26)) and an estimate for the remaining points z with A7, (¢) # 0. Only
in this second part, the constant ©! is involved. The result has been improved in [24, Lem.
4.5] and it was shown that there is an operator I, ;1 : MPY | (T) = Sy (T) such that the
properties in (2.43) hold for x = 0: for any ¢ € M>)_, (T) it holds

(I —divILs1)ge€ MY, (T),
IV s1dll 20y < Cr (Oumin +7) ™" llall2(gy -
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From Lemma 2.20, we conclude that ¢ — divy (IIf%q) € MJY_, (T) and the second part
of the proof in [27, Lemma 7] is applied only to points with

min O (z) > max{n, Onin} .
z€V(T)\Cr(n) ( )_ {77 }

Hence, (2.43b) follows for n depending only on the shape-regularity of the mesh.

Lemma 2.22 Let assumption (2.7) be satisfied and let C5"* = (. There exists a constant
ne > 0 which only depends on the shape-reqularity of the mesh and aq as in (1.1) such that
for any firted 0 < n < ny and any q € Py_10(T), there ezists some w, € CRy (T) such that

q = divrw,

and
IWollgr oy < Cv/1og (k+ 1) (Omin + 1) gl 12 -

The constant C' only depends on the shape-regularity of the mesh and agq but is independent
of the mesh width and the polynomial degree k.

Proof. For the construction of w, we follow and modify the lines of proof in [27, Thm.
1] by a) involving the operator ISR and b) employing the concept of n-critical points.

For given q € Py_1 (T), we employ the operators II%, TI®® I, , 4, IIV in the definition
of the function w,

wy =Ty 4+ Ty + Ty + Ty, (2.44)
T, := 1",
T, = ;" (I — divII®®) g,
T := 51 (I — divy IFY) (1 — divII®F) g,
Ty =11V (I — divIL ;1) (L — divy IFR) (1 — divIT®?) .
By construction we have
divyr w, = q.

The first two summands in (2.44) satisfy

(2.41)

HTl”Hl(Q) < CBRHQHH(Q)’ (2.45)
(2.31) BR

ITsliry < Conv/log (4 1) (lallzqey + 1101 0 (2.46)
(2.45)

< CervVlog(k+1) (1+ Crr) [l 2(q) -
For the third term in (2.44) we get
VT3l 20y < Cr (Ormin + ) |1 = div TIER) (1 = divITPR) q||L2(Q)
< Cr (Omin+1)" <H (1 — divIT™) qHL2(Q) + |[|divy ™ (1 — div IT°F) qHL2(Q)> :
(2.47)
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The combination with (2.41), (2.31) leads to

log (k+1)

[VTs120) < CCx (14 Cpr) (1 + Ccr) TGt lallz2 () -

(2.48)

For the fourth term we get in a similar way

(2.42)
IVl < Ov ([[(7 = divr IER) (1= divI™®) | ) + ldiv Toll 2 )

< Cv <||ql|L2(Q) + ||diV T1||L2(Q) + ||diV7' T2||L2(Q) + ||diV T3HL2(Q))

(2.45), (2.46), (2.48)
<

Cy (1+ Cpr) (2+ Cor) Viog (k + 1) (1 + CCr (Ouin + 1)) llall 120y -
(2.49)

The combination of (2.45), (2.46), (2.48), (2.49) with (2.44) leads to the assertion. m
acute

Lemma 2.22 implies that for conforming triangulations 7 which satisfy (2.7) and C3*"*¢ = (),
there exists a bounded linear operator

Hg{vk : ]P)k—l,O (T) — CRk,() (T)

such that divy oHiij’k is the identity on Py (7) and

HHiTnfquHl(T) < Cin/10g (k + 1) [lqll 20

for a constant Cj,, which only depends on the shape-regularity of the mesh and agq (cf. (1.1)).

2.2.3 The case C¥"*(n) # 0

In this section, we remove the condition C3*"** = ) and construct a bounded right-inverse of
the piecewise divergence operator for odd £ > 5 and conforming triangulations which contain
at least one inner point. The construction is based on the step-by-step procedure (cf. (2.13))
from the triangulation 77 to 7. Inductively, we assume that there is a triangulation 7; along
a bounded right-inverse T : Py_1 0 (7;) = CRyp (7;) of the piecewise divergence operator.
A single extension step is analysed by the following lemma.

Lemma 2.23 Let T denote a conforming triangulation for the domain € := domT and let
T' C T be a subset such that every triangle K € T\T' has one edge, say E, which belongs to
E(T"). We assume that T' has at least one inner vertexr and set ' := dom 7. Assume that
there exists a bounded linear operator H179}’k tPr_10 (T") = CRyo (T") with divy oHi7rl)”k =1d
on Py_10(T") and ‘
T2 4l oy < O lallzzqery

Then, there exists a linear operator I, : Pr_10(T) = CRypo (T) with divy oIl = Id on
]Pk:—l,O (T) and

1075ty < Cr e with Cri= Gylog (k +1)Cr

for a constant C's which depends only on the shape-regularity of the mesh and on aq.
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Y. Y

Figure 6: The black triangles form the triangulation 7. Left: One triangle K is attached to
T having a common side E with K’ € 7" and Touw (K’) = {K}. Right: Two triangles K,
Ky ¢ T are attached to a triangle K’ € T" and Tow (K') = { K1, K>}

Proof. Let g € P;_10 (7). We set vq := [1BRq where the operator IR is as in (2.40) and
satisfies

||V0||H1(Q) < Cpr ||Q||L2(Q) :

Hence, ¢, := ¢ — div vy belongs to Py o (7) and has trianglewise integral mean zero.

The following construction is illustrated in Figure 6. Let K’ € 7' be such that there exists
a non-empty subset Tou (K') C T\7T' having the property that any K € Toy (K') shares an
edge with K'. We have |Tou (K')| < 2; indeed, if |Tout (K')| = 3, then all three edges of K’
are boundary edges which implies 77 = { K’} and violates the condition that 7’ must contain
an inner vertex.

For K € Tou (K'), let z denote the vertex in K opposite to E and set wp = K U K'. The
endpoints of E are denoted by y1, yo. We employ the ansatz (cf. (2.24))

vy = ozB,S%nE (2.50)

with the convention that ng is the unit vector orthogonal to £ and directed into K’. By
construction it holds vi € CRy o (7) and supp vi C wg. We determine « in (2.50) such that
div (v1]g) (z) = ¢1 (z) and employ (2.34) to get

(= k+1\ |E|
CR
div (Bk,EnE> (z)‘ = ( 5 > Tk

Hence |a| = |q (z) H—Zf“/(k;l) and we conclude as in the proof of Lemma 2.20 that
IVTVillia (o) < Corviog (k+1) [lgal o -
We set

g2 == q1 — divy vy so that ¢; = divy vy + ¢
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and note that
921122y < (1 + Con/log (k= 1) ) llar ) - 2.51)

The construction implies g2 € P10 (7)), g2 has trianglewise integral mean zero, and ¢» (z) = 0.
Next, we employ the vector field defined in [24, Lem. 4.9] which is a modification of the
cubic vector field defined in [27, (3.5)] but allows for better k-explicit estimates. We recall
the relevant lemma from [24] for the existence of such vector fields and collect important
properties.

Lemma 2.24 ([24, Lem. 4.9]) Let T be a conforming triangulation of Q and let k > 3.
Let E € £(T) with endpoints y1, y2. Then there exist vector fields vi;, j € {1,2}, with the
following properties

ve,; €Sk (T), supp ve,; C Wg,
deiVVEVjZO VKgT, j€{1,2}

1 f KeT(E)Av=y; .
0 otherwise, VKT, WweV(K), Vje{l2}

—
&
<
<
=
=
=
SN—"
—~
=
I
—N

HVVE’J'HLQ(UJE) < ChEk_2.
(2.52)
We employ this vector field to the edge F = K N K’, set
2
Vai= > (ol () Vg
j=1
and define
g3 = qo — divvy  so that ¢ = div vy + gs. (2.53)

The function g5 € Py_1(7) has trianglewise integral mean zero and g¢s|, vanishes in all
vertices of K. The norm ||Vv2||L2(K,UK) can be estimated in the same way as the function T}y

in (2.48); however the factor (O + 1)~ does not appear as in (2.48) since the last estimate
in (2.52) does not depend on these quantities. In this way, we get

HVTV2||]L2(“,E) < ||QQ||L2(K) (2.54)
(2.51

)
< ¢ (14 Conv/Iog (4 1) (2:55)

Hence, from [3, Thm. 3.4] we deduce that there exists v3 € Sy (7) with suppvs = K
such that divvsy = ¢3 on K and

. (2.53), (2.54
P IVslliegey T IVVslliay SCvIlaslleg = Cv (1 +C) llaellpag,

(2.51)
< v (140 (14 Con/log (65 D) o

In this way we have constructed the function vg € CRy (7) by

VK = Vi +Va+ V3
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such that divvg = ¢ on K, suppvx C wg and

3
IV rvillag = V7Vl < D IVvella
=1

< Cov/log (k + 1) [lq1 | 25y < Cav/log (K + 1) (HQHL2(K) + HVVOHIL?(K)> ;

where C5 only depends on the shape-regularity of the mesh and aq through the constants Cy,
Cer, C1. Let v, = v+ > ke VK and note that by construction

divyv,=¢q on Q\
and

HvTqu]L?(Q) < HVVOH]LQ(Q) + Z HVTVKHL2(Q)

KeT\T'
< [ VVollizey +2C 3 Vg B+ 1) (llallaey + IV Vollagrr
KeT\T'

< Cylog (k+1) llqll 12 -

Finally, the linear map IIP, : Py_10 (7) — CRyo (T) is defined by

i7r3j,kq =Vg+ ?}’k ((q —div Vq)’g/)

and satisfies div oI, = Id on Py (7) and

97873y < O/ T8 B 1

for some C3 which only depends on the shape-regularity of the mesh and ag. =
By iterating this argument we can prove Theorem 1.3 for the case (2.7).

Theorem 2.25 Let T be a conforming triangulation which contains at least one interior
vertex. Let k > 5 be odd and let L € Ny the number of steps in the construction (2.13). Then,
the inf-sup constant for the corresponding Crouzeix-Raviart discretization satisfies

ek > o (log (k + 1))~/

for some constant c which depends only on the shape-regularity of the mesh and cq. If every
triangle in T has an interior vertex, then L = 0.

2.3 The case of even &

This case is slightly simpler that the case of odd k since the non-conforming Crouzeix-Raviart
functions for even k have smaller support (i.e., one triangle) compared to two triangles (which
share an edge) for odd k.

In this section, we assume

a) k>4 is even and

b) T is a conforming triangulation and contains more than a single triangle. (2.56)
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Remark 2.26 It is easy to verify that |T| > 1 implies that there exists a mapping K : Cr (n)
— T with R(z) € T, and not all vertices of K(z) are n-critical.

For an 7n-critical point z € Cr (n), let n, := |7T,| and fix a counterclockwise numbering of
the triangles in
T.={K?:1<j<n,} (2.57)

such that K% and K%, share an edge for all 1 < j <n, —1. With this notation at hand, the
functional Ay, is given by

Nz

Arsq =3 (1) dlyer (2) Vg € Pyyo(T).

Jj=1

Lemma 2.27 Let assumption (2.56) be satisfied. There exists a constant ny > 0 which only
depends on the shape-regularity of the mesh and aq such that for any fired 0 < n < ny and
any q € Pr_10(T), there exists some v, € CRyo (T) such that

/ divv, =0 VK €T, (2.58)
K
q —divyr vy € MY (T) (2.59)

and
Vol < Corvlog (k+1) [lgll r2q) - (2.60)

The constant Ccr depends only on the shape-regularity of the mesh and aq.

Proof. For a triangle K € T, we set Cx (1) := {z € V(K)NCr(n)} and C¥™e (n) :=
{z €Cx(n): K=R(z)}. Their cardinalities are denoted by ng := |Cx ()| and nitive =
|Cactive (1))]. Note that 0 < n3¢™® < ng < 2 (cf. Rem. 2.26). We number the vertices V; in
K with the convention {V;: 1< j <ng} = Cx(n) and {V;:1 < j < pidtive} = Cactive ().
The angle in K at V; is denoted by «;. Let E; be the edge in K opposite to V; and let n;

denote the outward unit normal vector at Fj.
In a similar way as for the construction of B,g% in Lemma 2.16 (and employing Lemma

B.1 instead of Lemma B.2 for (2.21)) there exists a function BEE} € CRyp (T) with

1. supp Bkc% =K,

2. forall K € T, forallz e V(K)
v (B&| ) ) =V (Bk],) @), (2.61)

3. forall K € T
(2.62)

4. for all K € T and any c € R?

/K divy (B,gfl;;c) ~0. (2.63)



5. The piecewise gradient is bounded by

PCR
|36

< Cy/log(k+1 2.64
ey, < OVl (1), (2:64)

For j = 1,2, we define

C .
kK { 0 in Q\K, (2.65)
J

i.e., we fix v := n; and wg = ny in (2.5). The divergence of wgi evaluated at a vertex

Vg, s =1,2, is given by

3 CRJ
div ( s

3
K) v,) %2 div (B,gl;nj\K) (Vo) = = Ly (1= 27 (V,)) O Axci
=1

@3) (k+ 1Y\ |FEs —1 j=s
=k(k+1) 00 ks = .,
(k4 1) On; A < 2 >|K| % cosaz j # s.

Let ¢ € Py_10 (7). We choose dk := (51(]) , by the conditions for s = 1,2

| A . (q lfV c Cactlve ;
Arv, (dwT (Z 5K]¢CRJ>> :{ 0 @ othermise () (2.66)

7=1

For s = 1,2, let £, be defined by K,”* = K (cf. (2.57)). Then,

Atv, (leT (Z 5K]¢CRJ>) ZéK] (dw el

= MK(SK
o k41 B B
st [(EE - Ey — |E4| cos ag
Mg = (-1) ( ) K { — | Ey| cos as | Es| ] '

We define rg = (TK,S)izl by

[ Arv(e) V. e,
Kis - 0 otherwise

so that d is the solution of
MKéK =TIgk.

Observe that

| E| — |E1| cos ag

det
{ — | Es| cos a | Es|

1 = |Ey| | By sin® a3 = 2| K|sin az

and sinag > sin ¢y > 0 due to the shape-regularity of the mesh. For the coefficient dx we
get explicitly

i =

)t
(—=1) [ | Es | |E1| cos as . (2.67)

(k+1)ksinag | |F2|cosas | B |
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with an estimate

hi Lem. 2.19 ¢ Mactive
10kl < Cm el < Cllallpag, HCE™ () #0,
where C' only depends on the shape-regularity of the mesh. Note that this is the analogue for
even k to (2.39). If Ci¥'ve (n) = 0, it holds dx = 0.
We define the global function

2
Vo= > Y Ok (2.68)
KeT  j=1
Cie £
From (2.63) we conclude that v, satisfies (2.58).
Next, we verify (2.59). Let y € Cr (1) and recall the notation and convention as in (2.57).
Let K] = R(y). Then (2.59) follows from

2
AT,y (diV’T Vq) = (—1)Z (le VQ‘KZ) (y> = (_1)5 div Z 5K%J¢g,l;(’§' (y>
=1

Y
KZ

= AT,y (Q) :

The estimate

[vuis.. ., <cvisGE+T)

for a constant C' which only depends on the shape-regularity of the mesh and aq follows
directly from (2.64) and the final estimate (2.60) is derived by repeating the arguments as in
the proof of Lemma 2.20. m

This lemma allows us to extend Definition 2.21 to the case of even k by defining the
coefficients dx by (2.67) and the functions @DSP}( by (2.65) and set (cf. (2.68)) I{Rq := v,.
Since ([ — HSR) q € MS,X—l (T) we may apply the further steps in the proof of Lemma 2.22
to obtain the inf-sup stability for even k.

L2(K

Theorem 2.28 Let T be a conforming triangulation satisfies (2.56). Then, the inf-sup con-
stant for the corresponding Crouzeiz-Raviart discretization satisfies

crr > or (log (k + 1))_1/2

for some constant ¢ which depends only on the shape-reqularity of the mesh and ag.

3 Conclusion

In this paper, we have derived lower bounds for the inf-sup constant for Crouzeix-Raviart
elements for the Stokes equation which are explicit with respect to the polynomial degree k
and are independent of the mesh size.

1. The inf-sup constant can be bounded from below by c¢r, > ¢r (log (k + 1))71/2 if

(a) for odd k > 3,
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i. 7 has at least one interior point and
ii. for k > 5, T has no acute critical point,

(b) for even k > 4, T contains more than one triangle,

2. If for odd k, condition 1.a.ii. is not satisfied but a step-by-step construction (2.13) for
some L > 1 is possible, then, ¢, > cr (log (k + 1)) D72,

Finally, we compare these findings with some other stable pairs of Stokes elements on trian-
gulations in the literature. The element (Si (7),Px_20 (7)) has a discrete inf-sup constant
which can be estimated from below by Ck™2 (see [31], [33]). The discrete inf-sup constant
for the Scott-Vogelius element (Sko (7)), M§)_; (T)) for k > 4 can be estimated from below
by ¢Omink™™ for some integer m sufficiently large (see [32], [37]). The pressure-wired Stokes
element (Sy (7), MY, (7)) in ?? (again for k > 4) is a mesh-robust generalization of the
Scott-Vogelius element with a lower bound of the inf-sup constant of the form ¢ (O, + 7).
In [3], a conforming stable pair (X (7)), Mg_1 (T)) of Stokes elements on triangulations is
introduced and it is proved that the discrete inf-sup constant can be estimated from below by
c/ (:)min for a constant ¢ independent of A and k and émin = MiNgey,, T\, © (z). However,
the implementation requires finite elements for the velocity with C! continuity at the triangle
vertices and pressures which are continuous in the triangle vertices.

Acknowledgement 3.1 Thanks are due to Benedikt Grdfile, HU Berlin, for fruitful discus-
sions on Lemma 2.13.

I am grateful to my colleagues from TU Vienna, Profs. Joachim Schoéberl and Markus
Melenk. Joachim showed by numerical experiments that the lower bound of the inf-sup constant
in the first arziv version of the paper, namely k=Y*, might be too pessimistic and “it should
be at least k=197 and Markus raised the suspicion that the interpolation argument might be
too pessimistic for Legendre polynomials.

A The inverse of the matrix T,+ A, in (2.37)

Lemma A.1 There exists no > 0 which only depends on the shape-reqularity of the mesh and
agq such that for any 0 < n < ny the matriz Ty + Ay in (2.87) is invertible and there exists a
constant C' depending only on the shape-regqularity of the mesh and agq such that (cf. Notation
2.1)

H(Tz + Ag)iln <C.

Note that the matrix T, in (2.38) is the same as the matrix T, o which has been analysed
in [10, (3.36)]. In particular, the formula

. ng+1
ng+1

sin Qi1
]:1 W

det Tg =

was proved.
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Next we show that the sum Z?Ql ay ;1 is bounded away from 0 and 7. The bound

jﬂl ay i1 > 7 follows from Remark 1.1. Since z,;, 1 < 5 < ny are n—critical points the

sum of both angles adjacent to Fy; at z,; satisfy

sin (avj2 + Qg j13) <.

We write agjo + o jr13 = 7+ ;. From the proof of Lemma 2.10, in particular from the
estimate (2.8) we conclude that |9;] < con.

Since all points z,; are edge-connected to the same point z,, the number n, is bounded
from above by a constant n,,,, which only depends on the shape-regularity of the mesh. Hence,

ng+1 ng+1 ne
Y =Y (T —auge—ags) = (et 1) T — a1z — dumerr2 — Y (g2 + Qejis)
j=1 j=1 j=1

e

g
=me+1)7T— 13— Qngr12 — E (T +0;) =T — 13 — Qungr1 — E 0
=1 j=1

S ™ — 2307— + NmaxC21].
By adjusting the constant 7y in Lemma 2.10 to 7, := min {7y, 7/ (nmaxc2)} it follows that

ng+1

Z Qpji ST — Q7.
j=1

By using the trivial estimate 0 < sincay;; < 1, we may conclude that

: ng+1
sin <Zj:1 Oée,j,1>

det T@ = g1

> sin 7 > 0. (A.1)
=1 SN Qg 4.1
Note that the entries in the matrix T, (cf. 2.38) satisfy

1

sin? o

‘(Te)y a| <

)

and hence the Frobenius norm ||T/|| can be estimated by

3 3
ITy||p < —o— < lmax
sin” o7~ sin” o7

It is well known that ||T,|| < ||T¢||z and hence the bound on ||T|| follows.
We combine (A.1), (A.2), and ny < nyax to obtain by Cramer’s rule that there exists a
constant C' which only depends on the shape-regularity such that

‘(T;l)w <C.

By the same arguments as before we conclude that HT;1|| < C for a constant C which only
depends on the shape-regularity of the mesh.
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Next we estimate ||Ag||. Since Ay is diagonal it suffices to estimate the diagonal entries

sin (7 + dy) sin 0,

SIn Qv j o SIN Ol 41,3

C21)
~ sin? o7

sin (a2 + j41,3)
SIN Qv j o SIN Ol 41,3

SIN Qv j o SIN Ol 413

We write T, + A, =T, (I + T[lAg) and obtain

1T A < | T AN < C

sin? o7

Next, we adjust the upper bound 7; by setting 7y := min {771, Tﬂ} to obtain ||T 1Ag|| <
1/2 with implies the invertibility of T, + A, with bound

(T, + Ay~ < 2C.

B Estimate of the H'/? norm of traces of non-conforming
Crouzeix-Raviart functions

In this appendix, we prove the norm estimate (2.64) for B{R and (2.19) for B{%. We first
introduce some norms and semi-norms on the unit interval [ := [—1, 1] in a formal way:

/
t) 2 2 1/2
‘U|H1/2(I) = // s—t det) , ||U||H1/2(1) = (HUHL2(1)+’U\H1/2(1)) )
1/2
Hu(s)]?
|u|H(10/’2([) = . 1+s ds ) ||u||H(10/72([) = ”UHH1/2(1)+|U| 1/2
Hu)l )"
iy = [ ) lollgy = (ol + ol )
1/2
[ul iy 2= |l gy + Ll , el a2y o= (Nullzpragy + lulzye
(- H(1) H (D) Hog*(D) HY/2(I) n

Lemma B.1 Let k > 4 be even and K € T. Let Bg%’a be defined by (2.62). Then there
ok
exists an absolute constant C' depending only on the shape reqularity of T such that

HBCR C\/log (k + 1).

k’KHﬂl/z(aK)

Proof. We first prove the estimate for the reference element K. By construction (see

(2.62)) the function BCPX coincides with BIS% on OK. Let the vertices of K be numbered

counterclockwise and denoted by z;, 1 < i < 3. The edge opposite to z; is Ei = [Zis1,2i 1]
(with cyclic numbering convention z3,1 := z; and z;_; := z3). We choose the pullbacks to
[_17 1] by

¢i (S) = /Z\i—l-l + s (/Z\i—l - /Z\i—o—l) 1= ]., 2, 3 (B2)

35



and observe BIS% _o¢; = Li. From [25] (see also [4, p 1870]) we deduce that the H'/2 <5)l/€>
) E;

norm is equivalent to
3 1/2
2 2
ol 2(o) = (Z ( ol B sary + \dilﬂgg%n)) , (B.3)
=1 ’
where for v € H/? <8[A(>:

v = vl 0 gy,  di(s) = vii1(s) —vig1 (=) (B.4)

In our application (and even k) we have v;_1(s) = Ly (s) = Ly (—s) = vip1(—s) so that

d; = 0. We use || Lg|| (1 \/2/ (2k + 1) to get

6 1/2
Meallsory < (gr +31Enn ) (B.5)

This integral can be evaluated analytically for v = Lj, (see Lem. C.2) and we obtain

k 1/2
1
| Lt g1z = 2 (Z Z) <\/Clog(k+1) Vk=12,... (B.6)

(=1

for a generic constant C' > 0. This leads to the final estimate on the reference element:

- (B.5), (B.6) 1 oo (1 1/2
<
‘B < C<2k+1+og( +1))

CR
kK

<c||Bx|

11/2(0R) 1/2(0R)

< Cy/log (k+1).

For a triangle K € T, let ¢ : K — K be an affine pullback and set BIS% = BEI}( o¢k. Then,
the transformation rule for integrals yields

1/2
B oy = (1K sy + BER,
H kK HY/2(9K) ( kK L2(9K) + Kl 205
2 1/2
—c(n HBCR’ ‘ CR : B.7
(K 2(o) | kK g2 (oR) (B.7)

where C' only depends on the shape regularity of the mesh. The leads to the claim. m
The case of odd k > 5 is considered in the following lemma.

Lemma B.2 Let k > 5 be odd. For E € Eq(T), let the function BE% be as in the proof of
Lemma 2.16. Then there exists a generic constant C depending only on the shape reqularity
of T such that for any K € Tg, it holds

HB,S%’ < Cy/log (k+1).

HY2(0K) —
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Proof. Let E € & (T) and K € Tg. Similarly as in (B.7) we have

|32

< ~CP:)
HY2(0K) — ¢ HB’fE

11/2(oR)

with BCFﬁ = BEFE{ o ¢ and affine pullback ¢x : K — K. Number the vertices in K counter-

clockw1se z;, 1 < i < 3, such that z3 is opp081te to £ = ¢ (E). The edge in 0K opposite
to z; is denoted by E and this implies E = E3 The edgewise pullbacks ¢; are defined as in
(B.2). We employ the equivalence of the H'/2 <0K) norm with ]H-\HHUQ(MA{) (see (B.3)) and

obtain
3 1/2
5CR 2 2
B8] 1) <€ (Z (1l + \dirﬂgﬁ(n»
with )
BIS% _ o ¢; and  d;(s) :=v;_1(8) — i1 (—5).

Note that

v1(s) =L (—s), wva(s)=Lg(s), wv3=Lg1—ws (B.8)

with g == L}, (=1) 4y — Ly, (1) ¥} and 4 as in (2.20). The antisymmetry of the Legendre
polynomial for odd k implies d3 = 0 and

HCR
|2

1/2
/2 (oR) <C<HLkHHm o+ k1l + 1@sl 52 +Z|d \Huz )> . (B.9)

=1

The estimates HL]-HiIl/Q(I) < Clog(k+1) for j € {k—1,k} follow from (B.6). For the last
term, we employ

(B.4), (B.8)
’dl|H(10/’2([) S ‘Lk +Lk71‘H1/2 =+ ’w3|H1/2(I)

(B

1)
< |Lk+ Ly— 1|H1/2 + |ZD3|H362(I)‘

The last term can be estimated by taking into account |L} (£1)| = (k'gl) (obtained, e.g., by
evaluating and differentiating [17, 18.5.8 for the choice @« = f = 0 and 18.5.10 for the choice

A=1/2] at £1):
[3, (1<45)] o
Hy*(n) T

For the third term in (B.9), we simply employ [|ws]| /2y < ||2I)3HH1/2(1) so that
00

< (vlog k?-l—l +|Lk+Lk 1|H1/2 )

The last integral can be evaluated analytically: By using the recurrence relation (cf. [17,
18.9.1))

@l a2 < C (K + 1) (HM

7+
o 19

|52

Hl/2 aK

2k —1 _k—l
k

Lk,Q (.ZC)



we obtain

A et )L () = T (L @) 4 L (). (B10)

Ly () + L1 (x) =

This and the orthogonality properties of the Legendre polynomials lead to

(261 1) Ly (2) — B2 (L, Ly 2
Iy 3:|Lk+Lk—1|iIl/2(1):/ (7 @ +1) Ly (2) il( k-1 (%) + Ly (2))) dx
(0, -1 X
2% —1\* [! 4(k—1 E—1\2
:(T) /1(x+1)L§1(x)dx— L )+( - )Ikl. (B.11)

The integral in (B.11) will be evaluated in (C.1). We obtain

<2k/~;1>2/1 (@ +1) Ly (z) dz = %

-1

and the explicit recursion formula

2 k—1\"
[k:ﬁ‘i‘ (T) I

e [ ) @7, _ [ vt

1 r+1 4 rz+1

with starting value

It is easy to verify that I, = 2/k solves the recursion and hence,

2/k.

From this, the assertion follows. m

C Analytic evaluation of some integrals involving Leg-
endre polynomials

In the proof of Lemma 2.20 some integrals over Legendre polynomials appear and we present
here their explicit evaluation.

Lemma C.1 For k >0, it holds

/_1Lz<t):/_l (t+1) 2 (t) dt — %QH (1)
and . .
/(L;(t)fdt:/ (1) (L, (8)2dt =k (k+1). (C.2)
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Proof. The relation f L2 (t)dt =2/ (2k + 1) follows from [23, 7.221(1)].
For k = 0, these relatlons follows from Ly (t) = 1. Let & > 1. The recurrence relation in
(17, 18.9.1, Table 18.9.1] imply

k+1
— L L L ) .
1 k1 () + k(t)+2k+1 k-1 (1) (C.3)

Substituting (¢t + 1) Ly, (t) under the integral in (C.1) by this and taking into account the
orthogonality relations of the Legendre polynomials leads to

1 1
2
t+ 1) L2 (t) dt = L2 (1) dt = .
/1(+)k() /1 k() 1

(t+1) Ly (t) =

For the second integral (C.2) we employ integration by parts:

1 1
/ (t+1) (L (1)) dt = (¢ +1) L (t) Ly (t)ll_r/ gi (t) L () dt - for g (1) == (¢ +1) L, (1))
1 —1
(C4)
Since g € P,_1 the orthogonality properties of Legendre polynomials imply that the integral
in the right-hand side of (C.4) is zero. By using Lj, (£1) = (£1)* (cf. [17, Table 18.6.1]) and
L, (£1) = (£1)"" (731 (ct. [17, combine 18.9.15 with Table 18.6.1]) we get

/1 (t+1) (L, (1) dt = 2L}, (1) Ly (1) = k (k+ 1) .

1

Finally

| wwra-nono, - [ L (6) L ().

1
The last integral is zero due the orthogonality of the Legendre polynomials. The endpoint
values of Lj, and L) lead to the assertion. m

In the final part of this section, we will compute the value of |Lj| s2(py explicitly. We set

. /_ 1 / L’“ 1+2<s )’ dydz.

Ik (S) = ‘Lk

Lemma C.2 [t holds

Proof. We write
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with

/4
0 (0) = o (L ) = La @)
¢ . B
-y (0) (5 et - zeon) L (L)~ L) B
— 14 d" 4t
- ; (r) (dyr (L (y) — Ly (33))> = (Ly (y) — Ly (z)) .
-1
B <E) L (@) L (@) = (L) (@) = 2Li (@) Y ()
Hence,
I (s) == I (s) = I} ()
with

_ ‘”)Zd d
Z €| 1+25 y £,

Ly (2) L] (2) (y — o)’
I (s) = 220 /1/ J[7E dydz.

We perform the integration with respect to y explicitly and get

ZE'/ L2 x)wes () de,

LY (s) 2Z€|/ L(E) () wys () da

with
(_1)6 (1 + :L_)€72s + (1 _ l_)ﬁfZS

0 —2s ‘
From now on we restrict to the case s = 1/2. Since wy; /ng) is a polynomial of maximal
degree k — 1 the second integral vanishes: I}! (1/2) = 0. We apply recursively integration by
parts and use the orthogonality of the Legendre polynomials to obtain

wes (x) ==

2% 2k—¢ _1ym gme2 1

I, (1/2) = IL (1/2) = ZZ m+£ T T T (£2)™ (1),

We interchange the ordering of the summation, introduce the new variable t = ¢+ m — 2, and
obtain

2k—2 2k—m (_1)m om+2 1 93 (m+1)
WUD=2. 2 gm0 O
_2k—2 ()™ 2™ 2%—2 1
“X Sy @O ey
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By using a telescoping sum argument, it is easy to verify that the inner sum equals

o (t+2)(t+1) t+1 t+2) m+1 2k

Hence,
1
1(1/2) = LI (1/2) — 21 (1/2), (©5)
for
%2
(=)™ 2™ o m)
L1 (1/2) = - T (L) (1),
2k—2 m+1
—1)™" gm (m+1)
LY (1/2) = ( L 1).
For I} and k > 1 we get
2%k—1 m
D2
) =3 2 e
m=1
2 LAPPNC S (=D)T2T )
=—12(1) - 2] (L) (W + > — ()™ (). (C.6)
! — !
We use the endpoint formula L,(Cm) (£1) =0 for m > k and for m € {0,1,...,k} :
5. 4. k+m 1 (k+m)!
L0 (1) 1 BPE 2 ki g 1) = (x1)M* .
This leads to L (1) = 1 and the Leibniz rule for differentiation yields
92k (28) 22t 2ok _ 22 (2} 2
()™ )= LY ML) = S~ L
o )™ W;(g) O - 253 (8 )
2% ok 2R\ 2% (2k)! (2K)12 (2k)1
KN\ K NE@RN) T (2k) (k) 2% (k)12 (k)1
The last sum in (C.6) is the Taylor expansion of L? about z = 1, evaluated at z = —1, i.e.,
2k m
D)™™
> E2 1y ) = (1) (1) = 1.
m=0 )
Hence,
2k)12
a2 = -5 )
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[IV

For the quantity ;¥ we obtain by similar arguments

2k—1

g2 =3 E e )
2k—1 1 2k
-G W0 - [ = Z (D)™ (1) (s — 1" ds
LERE ) - 1)
2k (k)M /_1 s—1 ds.

The combination of this with (C.5), (C.7) leads to
VL2(s)—1 VLp(s)—1
I, (1/2) = 2/ %ds = 2/ Lels) =1 (Li (s) + 1) ds.
-1 -1

5 — s—1
Since % is a polynomial of maximal degree k — 1 the orthogonality of L leads to
" Ly(s)—1
I, (1/2) :2/ Lels) =1, (C.8)
-1 s—1
We employ the recursion formula in [17, Table 18.9.1] for k£ > 2
2k —1 E—1
Ly (s) = sLy_q1(s) — Li_5(s)
k k
so that
V2l (sLyq (s) — 1) — B2 (Ly—a (s) — 1
]k(1/2):2/ (sl ()71 = 7 i (8) 2 1)
-1 s—1
2k —1_ [* Ly (s)—1 k—1
= 2 Ly ——— | ds — I (1/2
2 [ (e B e B ap)
2k —1 k—1
= I 1 (1/2) — Ir—2(1/2). (C.9)
From (C.8) and Ly (s) =1, Ly (s) = s, Ly (s) = (3s* — 1) /2 we get
Iy(1/2) =0,
I (1/2) = f1 L) g5 = 4, (C.10)

L(1)2) =2 [ 20 gs = 6.

1

Now, it is easy to verify that [, = 4 Zif:l 7 satisfies the recursion (C.9) and the initial value
conditions (C.10). m

D Norm equivalence for Crouzeix-Raviart spaces

1/2
It is well known that for V := HJ (Q) + CRyo (7T), the norms (HVTuHiQ(Q) + HuHiz(Q))

and [|Vrul| 2 () are equivalent. In this section, we state estimates for the constants in these
equivalencies — the proof is a repetition of the well-known arguments for the case k =1 (see,
e.g., [19, Lem. 36.6]).
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Theorem D.1 There exists a constant C' > 0 depending only on the shape-regularity of the
mesh and the domain  such that

1/2
2

lili iy < (I97lag0) + lulae) < Cllling, VueV.

In particular C' is independent of the polynomial degree k > 1 and the mesh size hr.

Proof. We prove this result only under the regularity assumption that the Poisson prob-
lem:

find ¢ € Hy () st. (Vo, Vo)iagy = (fiV) 2 Vv E H} (Q)

is H? regular. For less regularity we refer to [19, Lem. 36.6]. For u € V, we have

(u U)LQ Q
lull oy = sup i (D.1)
veL2(2)\{0} ||U||L2

For v € L? (), there exists some w € H! () such that divw = v and Wl ) < Callvllze g
for a constant C which only depends on €2. Hence,

(1,00 = (0. W) 0y = = (T70,9) sy + 3 [ (o
KeT

where ng is the unit normal vector pointing to the exterior of K. Next, we rewrite the sum
over the triangle boundaries as a sum over the edges. For E € &g (T) we fix the direction of
a unit vector ng which is orthogonal to E and for E € Eyq (T) let ng denote the unit vector,
orthogonal to E, pointing to the exterior of 2. Then

(U’U>L2(Q) = (U,diV W)L2(Q) (V'Tu W L2(Q Z / W, nE E+ Z / w, nE

Ee&q(T) E€&sa(T)

Let Kg € Tg be fixed and let qg € (Py (KE))2 be the function with constant value ﬁ fE w
The orthogonality conditions of the Crouzeix-Raviart elements across edges (see (1.9b)) imply

(va)w(g): (VTqug Z /W ag,Np) gt Z /W dg,ng) u

Eec&q Ecsn
(D.2)
< [IVrullpeo) Wllee )
+ > Msllpom lw —aslem + D Tl 1w — sl
Ec&a(T) Ec&sq(T)

We employ first a weighted trace inequality (see, e.g., [18, Lem. 12.15]) and then a Poincaré-
Steklov estimate (see, e.g., [19, (12.17) for p = 2 and s = 1.]) to get for hg := |F|

—1/2 1/2 1/2
P = apllgaegy + A IV (8 = a6) ey ) < ORI ITW a0,

(D.3)

Iw = asllgae < € (i

where C' only depends on the shape-regularity of the mesh.
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Next we estimate the jump of u across E. For E € &, (T), we define ug € Py (Tg) as the
function with constant value ‘—}3' [ ulye on K € T and observe [ug], = 0. Hence,

el gy = Ml = gl gl gy < D 1w = u) el gy
KeTg
-1/2 1/2 1/2
< > (A = sl ey + 2 IVullee) <€ D0 2 IVl
KeTg KeTg

for a constant C' which only depends on the shape-regularity of the mesh. For E € Esq (T) the

estimate [|ul| oz < hl/ 2 |Vl 2 for K € Tg follows in a similar fashion. The combination

of (D.2) with (D.3) and the two trace estimates for u leads to

(W V) 2y < IVTUllp2@) W2 @) + € Z IV7ull 2w VW2
Ee&(T)

<C ||VTU||L2(Q) ||W||H1(Q) < CCq ||VTU||L2(Q) ||CJ||L2(Q)

Using this estimate in (D.1) finishes the proof. m
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