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Abstract. A mathematical analysis is established for the weak Galerkin finite element methods
for the Poisson equation with Dirichlet boundary value when the curved elements are involved on
the interior edges of the finite element partition or/and on the boundary of the whole domain in two
dimensions. The optimal orders of error estimates for the weak Galerkin approximations in both
the H1-norm and the L2-norm are established. Numerical results are reported to demonstrate the
performance of the weak Galerkin methods on general curved polygonal partitions.
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1. Introduction. We are concerned with the new developments of finite element
methods for solving the Poisson equation by using the weak Galerkin (WG) finite
element methods on the curved polygonal finite element partitions.

When the finite element methods are employed to solve the partial differential
equation (PDE) problems, one of the steps is to partition the whole domain describ-
ing the original body or structure into finite elements (e.g., triangles, rectangles, etc.).
The curved elements, a natural generalization of the polygonal elements, are applied
for solving boundary value problems in the two-dimensional domain with an arbi-
trary/curved boundary. Although the engineers who conceive the matrix of finite
element methods have used the curved finite elements for several decades, more re-
search work needs to be done from the theoretical/mathematical point of view with
regards to the error estimates of the numerical solution when the curved elements
are concerned on the curved boundary of the domain and/or on the interior edges
of the curved finite element partition. From the computational point of view, the
curved elements make it possible to construct the finite-dimensional space for trial
functions which is the subspace of the energy space of the boundary value problems
in arbitrary/curved domain in two dimensions.

It is well-known that the numerical solutions of PDE problems with the curved
boundaries by using the finite element methods may not be accurate [1, 2]. From a
geometrical point of view, it is simple to replace the curved boundary by a polygon.
The number of straight line segments can be increased until a desired geometrical
accuracy is obtained. However, the geometrical accuracy may not always indicate
the accuracy of the numerical approximation. Even if the piecewise polynomials of
a higher degree are applied in the numerical scheme, the same accuracy may not
be retained along the curved part of the original boundary as inside the domain or
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along the polygonal part of the boundary. This behavior is known as the “Babus̆ka
Paradox” in the literature [1, 2]. The numerical evidence was given in [41] where the
curved elements were proposed to be used along the curved part of the boundary.

The problem of accuracy of a finite element solution, near a curved boundary, has
been investigated for several decades and some successful methods have been proposed
to overcome it. The curved elements constructed in [41] were closely associated with
isoparametric elements, which were first introduced by Irons [10] and were well-known
in the technical literature [22]. The numerical results given in [41] were very promising
and suggested that using them could arrive at the same order of accuracy as in the
case when the original boundary is a polygon and the triangular elements are applied
[39, 4]. [42] proposed a finite element method which was applied for solving second
order elliptic boundary value problems in domains with an arbitrary boundary, and
the error bounds for a model problem were derived. Reader are referred to more
references [1, 2, 3, 9, 17, 21, 22, 39, 40, 41, 42, 43].

Weak Galerkin finite element method is a newly-developed numerical technique
for PDEs where the differential operators in the variational formulation are recon-
structed/approximated by using a framework that mimics the theory of distributions
for piecewise polynomials. The usual regularity of the approximating functions is com-
pensated by carefully-designed stabilizers. This WG method has been investigated for
solving numerous model PDEs; see a limited list of references and references therein
[12, 18, 19, 23, 37, 34, 31, 32, 33, 13, 14, 35, 36]. The research results indicate that
the WG method has shown its great potential as a powerful numerical tool/technique
in scientific computing. The fundamental difference between the WG methods and
other existing finite element methods is the use of weak derivatives and weak conti-
nuities in the design of numerical schemes based on conventional weak forms for the
underlying PDE problems. Due to its great structural flexibility, WG methods are
well suited to a wide class of PDEs by providing the needed stability and accuracy in
approximations. A recent development of WG, named “Primal-Dual Weak Galerkin
(PD-WG)” has been proposed for problems for which the usual numerical methods are
difficult to apply [15, 7, 25, 26, 38, 8, 27, 28, 24, 29, 30, 16, 5, 6]. The essential idea of
PD-WG is to interpret the numerical solutions as a constrained minimization of some
functionals with constraints that mimic the weak formulation of the PDEs by using
weak derivatives. The resulting Euler-Lagrange equation offers a symmetric scheme
involving both the primal variable and the dual variable (Lagrange multiplier).

In the WG framework, the weak functions for second order elliptic equations
possess the form of v = {v0, vb} with v = v0 representing the value of v in the interior
of each element and v = vb for the information of v on the boundary of the element.
Both v0 and vb are approximated by polynomials of suitably-chosen degrees in the
numerical approximation. To our best knowledge, all the existing results on WG
were developed for finite element partitions with flat/straight sides. As most of the
application problems involve physical domains with non-flat interfaces or boundaries,
there is a great need of study for the WG method on curved elements.

For simplicity, we shall demonstrate the WG method on curved elements by using
the Poisson equation with Dirichlet boundary condition. The model problem then
seeks an unknown function u ∈ H1(Ω) satisfying

−∆u = f, in Ω,(1.1)

u = g, on ∂Ω,(1.2)

where Ω is an open bounded domain in R2 with piecewise smooth and curved boundary
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∂Ω, and ∆ = ∇ · ∇ is the Laplacian operator with ∇u being the usual gradient
operator.

The weak formulation of the second order elliptic model problem is as follows:
Find u ∈ H1(Ω) satisfying u = g on ∂Ω, such that

(1.3) (∇u,∇v) = (f, v), ∀v ∈ V,

where V = {v ∈ H1(Ω), v = 0 on ∂Ω}.
In this paper, the curved edges are assumed to appear on the interior interfaces

of the partition and/or on the boundary of the whole domain in the analysis of the
H1-norm error estimate for the WG solution. For the simplicity of analysis, when it
comes to the L2-norm error estimate for the WG approximation, the curved edges
are assumed to appear only on the boundary of the whole domain while the interior
edges of the finite element partition are assumed to be straight line segments.

The paper is organized as follows. In Section 2, we shall review the definition of
the weak gradient operator and its discrete analogue. In Section 3, we describe some
properties for curved finite element partitions. In Section 4, we shall state a weak
Galerkin finite element scheme. Section 5 is devoted to a discussion of the solution
existence and uniqueness for the discrete system. In Section 6, an error equation is
derived. In Section 7, we present some technical estimates for the usual L2 projection
operators. In Section 8, we derive some optimal order error estimates for the WG
approximations in both H1 and L2 norms. Section 9 provides a new technique for
calculating the integrations on curved polygons. Finally in Section 10, we conduct
some numerical experiments for verifying the developed theories.

2. Weak Gradient and Discrete Weak Gradient. The gradient operator is
the differential operator used in the weak formulation (1.3) of the second order model
equation (1.1)-(1.2). This section will review the weak gradient operator as well as
its discrete version [35, 36].

Let T be a bounded domain with Lipschitz continuous boundary ∂T . By a weak
function on T we mean a function bundled with two or more components; each com-
ponent represents a specific aspect of the function. In the interest of the gradient
operator, we consider the weak function v = {v0, vb} with two components v0 ∈ L2(T )
and vb ∈ L2(∂T ). The first component v0 represents the value of v in the interior of
T , and the second one vb carries the value of v on the boundary ∂T . Note that vb in
general is not the trace of v0 on ∂T , though taking the trace of v0 on ∂T is a viable
option for vb. Denote by W (T ) the space of all weak functions on T ; i.e.,

W (T ) = {v = {v0, vb} : v0 ∈ L2(T ), vb ∈ L2(∂T )}.

For any v ∈W (T ), the weak gradient of v is defined as a bounded linear functional
∇wv on [H1(T )]2 so that its action on each q ∈ [H1(T )]2 is given by

(2.1) 〈∇wv,q〉T = −(v0,∇ · q)T + 〈vb,q · n〉∂T ,

where n is the outward normal direction on ∂T , (v0,∇ · q)T =
∫
T
v0(∇ · q)dT is the

inner product of v0 and ∇ · q in L2(T ), and 〈vb,q · n〉∂T is the inner product of vb
and q · n in L2(∂T ).

Denote by Pr(T ) the space of all polynomials on T with total degree no more
than r. A discrete weak gradient for v = {v0, vb}, denoted by ∇w,rv, is defined as an
approximation of ∇wv in the vector polynomial space [Pr(T )]2 satisfying

(2.2) (∇w,rv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T , ∀q ∈ [Pr(T )]2.
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Assume the first component v0 of v = {v0, vb} is sufficiently regular such that
v0 ∈ H1(T ). Applying the usual integration by parts to the first term on the right
hand side of (2.2), we arrive at

(2.3) (∇w,rv,q)T = (∇v0,q)T + 〈vb − v0,q · n〉∂T , ∀q ∈ [Pr(T )]2.

Remark 2.1. In practical computation/implementation, the integrals over T and
∂T must be computed by using some numerical integration formulas. We assume these
integrals are evaluated exactly.

3. Finite Elements with Curved Edges. A polygon with curved edges (PCE)
is a bounded connected polygonal region in R2 bounded by a finite number of curved
or straight edges. A curved polygonal partition of the domain Ω ⊂ R2, denoted by Th,
is defined as a family of PCEs, denoted by {Tj , j = 1, 2, . . . }, satisfying two properties:
(1)

⋃
j=1,2,... Tj = Ω; and (2) for any i, j(i 6= j), Ti ∩ Tj is either empty, or a common

edge, or the vertices of Ti and Tj . Each partition cell Tj ∈ Th(j = 1, 2, . . . ) is called a
curved element. A curved polygonal partition with a finite number of curved elements
is called a curved finite element partition of the domain Ω.

Let Th = {Tj}j=1,...,N be a curved finite element partition of the domain Ω.
Denote by hT the diameter of the element T , and h = maxT hT the meshsize of the
partition Th. Denote by |T | the area of the element T ∈ Th. Denote by Eh the set of
all edges in Th such that each edge e ∈ Eh is either on the boundary of Ω or shared
by two distinct elements. Denote by E0

h = Eh \ ∂Ω the set of all interior edges; i.e.,
for each edge e ∈ E0

h, there are two elements Tj and Ti (i 6= j) such that e ⊂ Tj ∩ Ti.
Denote by |e| or he the length of the edge e ∈ Eh. Assume that each element T ∈ Th
is a closed and simply connected polygon (see Fig. 3.1).

xe

Ae

B C

DE

F

A

n

Fig. 3.1. Depiction of a shape-regular polygonal element ABCDEFA.

The curved finite element partition Th is said to be shape regular if the conditions
(A1)-(A4) are satisfied [35, 18].

A1: For each element T ∈ Th, there exists a positive constant %v such that

%vh
2
T ≤ |T |.
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A2: For each element T ∈ Th, there exist positive constants κ and κ∗ such that

κhT ≤ he ≤ κ∗hT ,

for each edge e ⊂ ∂T .
A3: For each element T ∈ Th and each edge e ⊂ ∂T , there exists a “pyramid”

P (e, T,Ae) contained in T such that its curved base is identical with e, its
apex is Ae ∈ T , and its height is proportional to hT with a proportionality
constant σe bounded by a fixed positive number σ∗ from below. In other
words, the height of the “pyramid” is given by σehT such that σe ≥ σ∗ > 0.
The “pyramid” is also assumed to stand up above the curved base e in the

sense that the angle between the vector
−−−→
Aexe, for any xe ∈ e, and the outward

normal direction of e (i.e., the vector n in Fig. 3.1) is strictly acute by falling
into an interval [0, θ0] with θ0 <

π
2 .

A4: For each element T ∈ Th, there is a simplex S(T ) circumscribed in T that is
shape regular and the diameter of S(T ), denoted by hS(T ), is proportional to
the diameter of T ; i.e., hS(T ) ≤ γ∗hT with a constant γ∗ independent of T .
Furthermore, assume that each circumscribed simplex S(T ) intersects with
only a fixed and small number of such simplices for all other elements T ∈ Th.

For the curved finite element partition Th, we assume that each curved edge can be
straightened through a local mapping that is sufficiently smooth. More precisely, for
each curved edge e ⊂ ∂T, T ∈ Th, assume that there exists a parametric representation

(x, y) = (φ(ŝ), ψ(ŝ)), ŝ ∈ ê = [0, he],

where φ = φ(ŝ) ∈ Cn and ψ = ψ(ŝ) ∈ Cn for some n ≥ 1, and at least one of the
derivatives φ′(ŝ) and ψ′(ŝ) is different from zero for ŝ ∈ ê. Assume that the mapping
Fe := (φ, ψ) from ê to e is globally invertible on the “reference” edge ê, and both Fe
and its inverse mapping F̂e := F−1

e can be extended to the “pyramid” P (e, T,Ae) as

F and F̂ := F−1; see Fig. 3.2 for an illustration. We further assume that there exists
a constant C such that

(3.1)

∣∣∣∣dαFdŝα
∣∣∣∣ ≤ C,

for all |α| ≤ n.
Let e be a curved edge of the element T ∈ Th with a parametric representation

given by

x = Fe(ŝ), ŝ ∈ [0, he],

where x = (x, y) ∈ e and Fe(ŝ) = (φ(ŝ), ψ(ŝ)). With the mapping Fe and its inverse

F̂e := F−1
e , any function ŵ ∈ L2(ê) can be transformed into a function w ∈ L2(e) as

follows

(3.2) w(x) := ŵ(F̂e(x)), x ∈ e.

Likewise, any function w ∈ L2(e) can be transformed into a function in L2(ê) by

(3.3) ŵ(ŝ) := w(Fe(ŝ)), ŝ ∈ ê.

The relations (3.2) and (3.3) are written respectively as

w = ŵ ◦ F̂e, ŵ = w ◦ Fe.
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A B

Ae

x
x̂F̂

F

Fe

êe

Fig. 3.2. Depiction of locally smooth mappings Fe that straighten curved edges for curved
elements.

4. Weak Galerkin Finite Element Schemes. For any integer ` ≥ 0, denote
by P`(ê) the space of polynomials of degree ` on the straight reference edge ê. With

the mapping F̂e := F−1
e , the space of polynomials P`(ê) can be transformed into

Vb(e, `) = P`(ê) ◦ F̂e as follows:

Vb(e, `) = {φ = φ̂ ◦ F̂e : φ̂ ∈ P`(ê)}.

If the edge e is a straight line segment, the mapping Fe is required to be affine.
Consequently, its inverse mapping F̂e is also affine so that Vb(e, `) = P`(e) is the usual
space of polynomials of degree ` on e.

Let k ≥ 1 be a given integer. On each element T ∈ Th, we define a local finite
element space as

W (k, T ) = {v = {v0, vb} : v0 ∈ Pk(T ), vb|e ∈ Vb(e, k − 1), ∀e ⊂ ∂T}.

By patching all the local finite element spaces W (k, T ) together with a common value
vb on each interior edge in E0

h, we obtain a global finite element space, denoted by
Wh; i.e.,

(4.1) Wh = {v = {v0, vb} : v|T ∈W (k, T ), vb|∂Ti∩e = vb|∂Tj∩e, T ∈ Th, e ∈ E0
h},

where vb|∂Ts∩e is the value of vb on the edge e as seen from the element Ts, s = i, j.
Denoted by W 0

h a subspace of Wh with vanishing value on ∂Ω; i.e.,

(4.2) W 0
h = {v : v ∈Wh, vb = 0 on ∂Ω}.

For each element T ∈ Th, denote by Q0 the L2 projection from L2(T ) to Pk(T ).

Denote by Q̂b the weighted L2 projection from L2(ê) to Pk−1(ê) with the correspond-
ing Jacobian as the weight function. For each edge e, we define a projection operator
Qb : L2(e)→ Vb(e, k − 1) as follows

Qbw ◦ Fe := Q̂b(w ◦ Fe), w ∈ L2(e).

Note that for the straight edge e, the operator Qb is easily seen to be the standard L2

projection from L2(e) to Pk−1(e). Q0 and Qb collectively define a projection operator
onto the weak finite element space Wh, denoted by

Qh = {Q0, Qb}.

Denote by Qh the L2 projection from [L2(T )]2 onto [Pk−1(T )]2.
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For all v, w ∈Wh, we introduce two bilinear forms as follows:

s(v, w) = ρ
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

a(v, w) =
∑
T∈Th

(∇wv,∇ww)T + s(v, w),

where ρ is any positive number of unit size. For simplicity, we shall take ρ = 1
throughout the paper.

Weak Galerkin Algorithm 1. Find uh = {u0, ub} ∈Wh satisfying ub = Qbg
on ∂Ω, such that

(4.3) a(uh, v) = (f, v0), ∀v = {v0, vb} ∈W 0
h .

5. Existence and Uniqueness. The goal of this section is to examine the well-
posedness of the weak Galerkin finite element scheme (4.3). Note that the bilinear
form a(·, ·) is symmetric and non-negative in the space Wh ×Wh. Letting

(5.1) |||v|||2 = a(v, v),

we see that the functional ||| · ||| defines a semi-norm in Wh. Furthermore, the following
result holds true.

Lemma 5.1. The functional ||| · ||| given by (5.1) defines a norm in the subspace
W 0
h , provided that the meshsize h is sufficiently small.

Proof. It suffices to check the positivity property for ||| · |||. Assume that |||v||| = 0
for v ∈W 0

h . It follows that

(∇wv,∇wv) +
∑
T∈Th

h−1
T 〈Qbv0 − vb, Qbv0 − vb〉∂T = 0,

which implies that ∇wv = 0 on each element T and Qbv0 = vb on each ∂T . It follows
from ∇wv = 0 and (2.3) that for any q ∈ [Pk−1(T )]2,

0 = (∇wv,q)T

= (∇v0,q)T + 〈vb − v0,q · n〉∂T
= (∇v0,q)T + 〈Qbv0 − v0,q · n〉∂T ,

which leads to

(5.2) (∇v0, q)T = 〈v0 −Qbv0,q · n〉∂T .

On each straight edge e ⊂ ∂T , since Qb is the usual L2 projection onto the space
Pk−1(e) and q · n|e ∈ Pk−1(e), then

〈v0 −Qbv0,q · n〉e = 0.

If e ⊂ ∂T is a curved edge, then the above identity is generally not valid. However,
Lemma 7.1 can be used to show that there exists a constant C such that

(5.3) |〈v0 −Qbv0,q · n〉e| ≤ Che‖∇v0‖T ‖q‖T .



8

By combining (5.2) with (5.3) we obtain

|(∇v0,q)T | ≤ Che‖∇v0‖T ‖q‖T ,

for all q ∈ [Pk−1(T )]2. It follows that

‖∇v0‖T ≤ Che‖∇v0‖T ,

which shows that ∇v0 = 0 for sufficiently small meshsize h. Thus, v0 is a constant on
each T ∈ Th and hence Qbv0 is a constant on each ∂T . Using the fact that Qbv0 = vb
and vb = 0 on ∂Ω, we have v0 = 0 and vb = 0. This completes the proof of the lemma.

Theorem 5.2. Assume that the curved finite element partition Th is shape-regular
with sufficiently small meshsize h. The weak Galerkin finite element scheme (4.3) has
one and only one solution.

Proof. It suffices to prove the uniqueness. Assume that u
(1)
h and u

(2)
h are two

different solutions of (4.3), then εh = u
(1)
h − u

(2)
h would satisfy

a(εh, v) = 0, ∀v ∈W 0
h .

Note that εh ∈W 0
h . Letting v = εh in the above equation gives

|||εh|||2 = a(εh, εh) = 0.

It follows that εh ≡ 0, or equivalently, u
(1)
h ≡ u

(2)
h . This completes the proof of the

theorem.

6. Error Equation. We start this section by deriving a useful result for the
discrete weak gradient operator.

Lemma 6.1. Let Qh and Qh be the L2 projection operators defined in the previous
sections. On each element T ∈ Th, we have that for any φ ∈ H1(T ),

(6.1) (∇wQhφ, τ)T = (∇φ, τ)T + 〈Qbφ− φ, τ · n〉∂T , ∀τ ∈ [Pk−1(T )]2.

Note that 〈Qbφ− φ, τ · n〉∂T 6= 0 when there is at least one curved segment on ∂T .
Proof. Using (2.2), the integration by parts and the definitions of Qh and Qh, we

have for any τ ∈ [Pk−1(T )]2 that

(∇w(Qhφ), τ)T = −(Q0φ,∇ · τ)T + 〈Qbφ, τ · n〉∂T
= −(φ,∇ · τ)T + 〈φ, τ · n〉∂T + 〈Qbφ− φ, τ · n〉∂T
= (∇φ, τ)T + 〈Qbφ− φ, τ · n〉∂T ,

which implies the desired identity (6.1).
Lemma 6.2. For any w ∈ H1(Ω) ∩ H1+γ(Ω) with γ > 1

2 , and v ∈ Wh, the
following identity holds true∑

T∈Th

(∇wQhw,∇wv)T =
∑
T∈Th

(∇w,∇v0)T +
∑
T∈Th

〈∇w · n, vb − v0〉∂T

+ `1(w, v) + `2(w, v),

(6.2)
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where

`1(w, v) =
∑
T∈Th

〈(∇w −Qh∇w) · n, v0 − vb〉∂T ,

`2(w, v) =
∑
T∈Th

〈Qbw − w,∇wv · n〉∂T .

Proof. From (6.1) with φ = w and τ = ∇wv we obtain

(6.3) (∇wQhw,∇wv)T = (∇w,∇wv)T + 〈Qbw − w,∇wv · n〉∂T .

Using (∇w,∇wv)T = (Qh∇w,∇wv)T ,(6.3) can be rewritten as

(6.4) (∇wQhw,∇wv)T = (Qh∇w,∇wv)T + 〈Qbw − w,∇wv · n〉∂T .

Now by applying (2.3) with q = Qh∇w to the first term on the right-hand side of
(6.4) we arrive at

(∇wQhw,∇wv)T

=(Qh∇w,∇v0)T + 〈Qh∇w · n, vb − v0〉∂T + 〈Qbw − w,∇wv · n〉∂T
=(∇w,∇v0)T + 〈Qh∇w · n, vb − v0〉∂T + 〈Qbw − w,∇wv · n〉∂T
=(∇w,∇v0)T + 〈∇w · n, vb − v0〉∂T + 〈(Qh∇w −∇w) · n, vb − v0〉∂T

+ 〈Qbw − w,∇wv · n〉∂T .

(6.5)

Summing (6.5) over all T ∈ Th gives rise to∑
T∈Th

(∇wQhw,∇wv)T =
∑
T∈Th

(∇w,∇v0)T +
∑
T∈Th

〈∇w · n, vb − v0〉∂T

+ `1(w, v) + `2(w, v),

which confirms the identity (6.2).

Let uh = {u0, ub} ∈Wh be the weak Galerkin finite element solution of (4.3) and
u be the exact solution of (1.1)-(1.2). By error function, denoted by eh, we mean the
difference of the L2 projection of the exact solution u and its weak Galerkin finite
element solution uh; i.e., eh = Qhu− uh = {e0, eb} with

e0 = Q0u− u0, eb = Qbu− ub.

We are ready to derive an error equation for the weak Galerkin finite element
scheme (4.3) which the error function eh will satisfy.

Theorem 6.3. Assume that the exact solution u of the model problem (1.1)-(1.2)
is sufficiently regular such that u ∈ H1(Ω) ∩ H1+γ(Ω), γ > 1

2 . Let eh be the error
function of the weak Galerkin finite element scheme (4.3). Then, for any v ∈ W 0

h

there holds

a(eh, v) = `1(u, v) + `2(u, v) + s(Qhu, v).(6.6)

Proof. By testing (1.1) with the first component v0 of v = {v0, vb} ∈W 0
h , we have

(6.7)
∑
T∈Th

(∇u,∇v0)T −
∑
T∈Th

〈∇u · n, v0 − vb〉∂T = (f, v0),
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where we have used the fact that
∑
T∈Th〈∇u ·n, vb〉∂T = 0 since vb = 0 on ∂Ω. Next,

from Lemma 6.2 we obtain∑
T∈Th

(∇wQhu,∇wv)T =
∑
T∈Th

(∇u,∇v0)T +
∑
T∈Th

〈∇u · n, vb − v0〉∂T

+ `1(u, v) + `2(u, v).

(6.8)

Combining (6.7) with (6.8) yields∑
T∈Th

(∇wQhu,∇wv)T = (f, v0) + `1(u, v) + `2(u, v).

Adding s(Qhu, v) to both sides of the above equation gives

(6.9) a(Qhu, v) = (f, v0) + `1(u, v) + `2(u, v) + s(Qhu, v).

Finally, subtracting (4.3) from (6.9) yields

a(eh, v) = `1(u, v) + `2(u, v) + s(Qhu, v), ∀v ∈W 0
h ,

which completes the proof of the lemma.

7. Some Technical Estimates. For any function ϕ ∈ H1(T ), we use the ideas
presented in [36] to obtain the following trace inequality

(7.1) ‖ϕ‖2e ≤ C
(
h−1
T ‖ϕ‖

2
T + hT ‖∇ϕ‖2T

)
.

If ϕ is a polynomial, using the inverse inequality, the trace inequality (7.1) becomes

(7.2) ‖ϕ‖2e ≤ Ch−1
T ‖ϕ‖

2
T .

In the weak finite element space Wh, we introduce the following discrete H1-
seminorm; i.e.,

(7.3) ‖v‖1,h =

(∑
T∈Th

‖∇v0‖2T + h−1
T ‖Qbv0 − vb‖2∂T

) 1
2

,∀v = {v0, vb} ∈Wh.

It is not hard to see that ‖ · ‖1,h indeed provides a norm for the subspace W 0
h which

consists of the weak finite element functions with vanishing boundary value.
Lemma 7.1. On each element T ∈ Th, for any φ ∈ H1(T ) and q ∈ [Pk−1(T )]2,

there exists a positive constant C, such that

(7.4) |〈φ−Qbφ,q · n〉e| ≤

{
Ch

1/2
e ‖φ−Qbφ‖∂T ‖q‖T , for k ≥ 1,

Ch
3/2
e ‖φ−Qbφ‖∂T (‖q‖T + ‖∇q‖T ), for k ≥ 2.

Moreover, taking φ = v0 ∈ Pk(T ), then for any k ≥ 1, there holds

(7.5) |〈v0 −Qbv0,q · n〉e| ≤ Che‖∇v0‖T ‖q‖T .

Proof. For each straight edge e ⊂ ∂T , we have

(7.6) 〈φ−Qbφ,q · n〉e = 0,
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since Qb is the usual L2 projection onto the space Pk−1(e) and q · n|e ∈ Pk−1(e). If
e ⊂ ∂T is a curved edge, then the identity (7.6) generally does not hold true. However,
by mapping to the reference edge ê, we have

〈φ−Qbφ,q · n〉e =

∫
ê

(φ̂− Q̂bφ̂)q̂ · n|Je|dê

=

∫
ê

(φ̂− Q̂bφ̂)(q̂ · n− χ)|Je|dê,

where Je is the Jacobian of the mapping, and χ ∈ Pk−1(ê) is any polynomial of degree
k − 1 on the reference edge ê. Thus, using the Cauchy-Schwarz inequality gives

(7.7) |〈φ−Qbφ,q · n〉e| ≤ Chke
(∫

ê

∣∣∣φ̂− Q̂bφ̂∣∣∣2 |Je|dê) 1
2

(∫
ê

∣∣∣∣dk(q̂ · n)

dŝk

∣∣∣∣2 |Je|dê
) 1

2

.

From the chain rule and the assumption (3.1) we have∣∣∣∣dk(q̂ · n)

dŝk

∣∣∣∣ ≤ k∑
|α|=0

Cα|∇αq| ≤
k−1∑
|α|=0

Cα|∇αq|,

where we have used the fact that ∇kq = 0 as q is a polynomial of degree k − 1. By
mapping back to the edge e we have

(7.8)

∫
ê

∣∣∣∣dk(q̂ · n)

dŝk

∣∣∣∣2 |Je|dê ≤ C k−1∑
|α|=0

‖∇αq‖2e ≤ Ch2−2k
e ‖q‖2e ≤ Ch1−2k

e ‖q‖2T ,

where we have used the trace inequality (7.2). Substituting (7.8) into (7.7) yields

|〈φ−Qbφ,q · n〉e| ≤ Ch
1
2
e ‖φ−Qbφ‖∂T ‖q‖T ,

which verifies the estimate (7.4) for k ≥ 1. In the case of k ≥ 2, the inequality (7.8)
can be replaced by∫

ê

∣∣∣∣dk(q̂ · n)

dŝk

∣∣∣∣2 |Je|dê ≤ Ch3−2k
e (‖q‖2T + ‖∇q‖2T ),

which, together with (7.7), verifies the second estimate in (7.4) for k ≥ 2.
Finally, (7.5) stems from (7.4) with the following inequality

‖v0 −Qbv0‖∂T ≤ Che‖∇v0‖∂T ≤ Ch
1
2
e ‖∇v0‖T ,

where we have used the trace inequality (7.2). This completes the proof of the lemma.

Lemma 7.2. For any v = {v0, vb} ∈Wh, there holds

h−1
T ‖v0 − vb‖2∂T ≤ C(‖∇v0‖2T + h−1

T ‖Qbv0 − vb‖2∂T ),(7.9)

‖∇v0‖2T ≤ C
(
‖∇wv‖2T + h−1

T ‖Qbv0 − vb‖2∂T
)
,(7.10)

‖∇wv‖2T ≤ C
(
‖∇v0‖2T + h−1

T ‖Qbv0 − vb‖2∂T
)
,(7.11)
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provided the meshsize h is sufficiently small, where C is a positive constant. Conse-
quently, the discrete H1-norm ‖ · ‖1,h is equivalent to the triple-bar norm ||| · ||| in the
sense that there exist positive constants α1 and α2 such that

(7.12) α1|||v||| ≤ ‖v‖1,h ≤ α2|||v|||.

Proof. Note that on each edge e ⊂ ∂T one has

(7.13) ‖v0 −Qbv0‖2e =

∫
ê

|v̂0 − Q̂bv̂0|2|Je|dê ≤ Che‖∇v0‖2T .

It follows from the triangle inequality that

‖v0 − vb‖2∂T ≤ 2‖v0 −Qbv0‖2∂T + 2‖Qbv0 − vb‖2∂T
≤ ChT ‖∇v0‖2T + 2‖Qbv0 − vb‖2∂T ,

where we used (7.13). This implies the inequality (7.9).
For any v = {v0, vb} ∈Wh, it follows from (2.3) that

(∇wv,q)T = (∇v0,q)T + 〈vb − v0,q · n〉∂T
= (∇v0,q)T + 〈vb −Qbv0,q · n〉∂T + 〈Qbv0 − v0,q · n〉∂T ,

(7.14)

for all q ∈ [Pk−1(T )]2. Thus, from the Cauchy-Schwarz inequality, the trace inequality
(7.2), and the estimate (7.5), we obtain from (7.14) that

|(∇v0,q)T | ≤ ‖∇wv‖T ‖q‖T + ‖Qbv0 − vb‖∂T ‖q‖∂T + ChT ‖∇v0‖T ‖q‖T
≤ ‖∇wv‖T ‖q‖T + Ch

− 1
2

T ‖Qbv0 − vb‖∂T ‖q‖T + ChT ‖∇v0‖T ‖q‖T ,

which leads to

‖∇v0‖T ≤ C(‖∇wv‖T + h
− 1

2

T ‖Qbv0 − vb‖∂T + hT ‖∇v0‖T ).

This gives rise to the estimate (7.10) for sufficiently small hT . The estimate (7.11)
can be derived in a similar, but simpler fashion. (7.12) can be obtained easily using
(7.9)-(7.11).

The following two Lemmas contain some useful estimates for the local L2 projec-
tion operators.

Lemma 7.3. For any w ∈ Hm+1(T ), m ∈ [0, k], there holds

(7.15) ‖∇w −Qh∇w‖T + ‖∇(w −Q0w)‖T + h−1
T ‖w −Q0w‖T ≤ ChmT ‖w‖m+1,T .

Lemma 7.4. There holds

(7.16) ‖Q0w − w‖∂T ≤ Ch
m+ 1

2

T ‖w‖m+1,T ,∀w ∈ Hm+1(T ),m ∈ [0, k],

(7.17) ‖Qbw − w‖∂T ≤ Ch
m− 1

2

T ‖w‖m,T ,∀w ∈ Hm(T ),m ∈ [1, k].
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Proof. From the trace inequality (7.1) and the estimate (7.15) we have

‖Q0w − w‖∂T ≤ C(h−1
T ‖Q0w − w‖2T + hT ‖∇(Q0w − w)‖2T )1/2

≤ Chm+ 1
2

T ‖w‖m+1,T ,

which verifies (7.16).
Next, for any edge e ⊂ ∂T , using the mapping x = Fe(ŝ) we arrive at

‖Qbw − w‖2e =

∫
e

(Qbw − w)2de =

∫
ê

|(Qbw − w) ◦ Fe|2|Je|dŝ,

where Je is the Jacobian of the mapping. Note that

ŵ = w ◦ Fe, Q̂bŵ = (Qbw) ◦ Fe,

where Q̂b is the |Je|-weighted L2(ê) projection onto the polynomial space of degree
`k = k − 1 on ê. Thus, for m ∈ [1, k] we have

(7.18) ‖Qbw − w‖2e =

∫
ê

(Q̂bŵ − ŵ)2|Je|dŝ ≤ Ch2m−1‖ŵ‖2
m,T̂

,

where T̂ is the image of the pyramid ê as its base. By mapping back to the element
T , we obtain the desired estimate (7.17).

Lemma 7.5. Assume that the curved finite element partition Th is shape regular.
For any w ∈ Hk+1(Ω) and v = {v0, vb} ∈Wh, we have

|s(Qhw, v)| ≤ Chk‖w‖k+1|||v|||,(7.19)

|`1(w, v)| ≤ Chk‖w‖k+1|||v|||,(7.20)

|`2(w, v)| ≤ Chk‖w‖k|||v|||.(7.21)

Proof. To derive (7.19), we use the definition of s(·, ·), the Cauchy-Schwarz in-
equality, and the estimate (7.16) with m = k to obtain

|s(Qhw, v)| =

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Qb(Q0w)−Qbw, Qbv0 − vb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

h−1
T 〈Qb(Q0w − w), Qbv0 − vb〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

h−1
T ‖Q0w − w‖2∂T

) 1
2
(∑
T∈Th

h−1
T ‖Qbv0 − vb‖2∂T

) 1
2

≤ Chk‖w‖k+1|||v|||.

As to (7.20), from the Cauchy-Schwarz inequality, the trace inequality (7.1), and



14

the estimate (7.15) we have

|`1(w, v)| =

∣∣∣∣∣ ∑
T∈Th

〈(∇w −Qh∇w) · n, v0 − vb〉∂T

∣∣∣∣∣
≤

(∑
T∈Th

hT ‖∇w −Qh∇w‖2∂T

) 1
2
(∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

) 1
2

≤Chk‖w‖k+1

(∑
T∈Th

h−1
T ‖v0 − vb‖2∂T

) 1
2

.

(7.22)

Note that (7.9) and (7.10) implies∑
T∈Th

h−1
T ‖v0 − vb‖2∂T ≤ C|||v|||

2
.

Substituting the above into (7.22) yields the estimate (7.20).
To establish (7.21), we use the estimate (7.4) and Cauchy-Schwarz inequality to

obtain

|`2(w, v)| ≤
∑
T∈Th

|〈Qbw − w,∇wv · n〉∂T |

≤ C
∑
T∈Th

h
1
2

T ‖Qbw − w‖∂T ‖∇wv‖T

≤ Ch 1
2

(∑
T∈Th

‖Qbw − w‖2∂T

) 1
2
(∑
T∈Th

‖∇wv‖2T

) 1
2

.

Now using (7.17) with m = k we have the following estimate

|`2(w, v)| ≤ Chk‖w‖k|||v|||.

This completes the proof of the lemma.

8. Error Estimates. With the help of the error equation (6.6) and the technical
estimates presented in the previous section, we are ready to present some optimal order
error estimates for the weak Galerkin finite element solution in discrete H1-norm and
L2-norm.

Theorem 8.1. Let uh ∈ Wh be the weak Galerkin finite element solution of the
problem (1.1)-(1.2) arising from (4.3). Assume the exact solution u ∈ Hk+1(Ω) and
meshsize h is sufficiently small. Then, there exists a constant C such that

(8.1) |||uh −Qhu||| ≤ Chk‖u‖k+1.

Proof. By letting v = eh in (6.6), we have

|||eh|||2 = `1(u, eh) + `2(u, eh) + s(Qhu, eh).

It then follows from the estimates (7.19)-(7.21) that

|||eh|||2 ≤ Chk‖u‖k+1|||eh|||,
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which implies (8.1). This completes the proof of the theorem.

Using the norm equivalence (7.12) and the error estimate (8.1) we immediately
obtain

(8.2) ‖uh −Qhu‖1,h ≤ Chk‖u‖k+1.

Furthermore, with the straightforward extension of ‖ · ‖1,h to general weak functions
we arrive at

(8.3) ‖uh − u‖1,h ≤ Chk‖u‖k+1.

Now we turn to deriving an optimal order error estimate for the weak Galerkin
finite element approximation in the L2 norm by following the usual duality argument.
To this end, consider the dual problem which seeks Φ ∈ H1

0 (Ω) satisfying

−∆Φ = e0 in Ω.(8.4)

Recall that e0 = Q0u − u0 is the first component of the error function eh. Assume
that the dual problem (8.4) has H2-regularity in the sense that there exists a constant
C such that

(8.5) ‖Φ‖2 ≤ C‖e0‖0.

Throughout the following estimates, we assume that all the interior edges of
the curved finite element partition Th are straight line segments. In other words,
the curved edges only appear on the boundary of the domain. This assumption is
practically feasible and computationally preferable. In addition, we shall consider
only the finite element solution of order k ≥ 2, as no need is necessary for curved
elements of lowest order k = 1.

Theorem 8.2. Let uh ∈ Wh be the weak Galerkin finite element solution of
the problem (1.1)-(1.2) arising from (4.3) with order k ≥ 2. Assume that the exact
solution of (1.1)-(1.2) is sufficiently regular such that u ∈ Hk+1(Ω) and the meshsize
h is sufficiently small. Then there exists a constant C such that

(8.6) ‖u− uh‖ ≤ Chk+1‖u‖k+1.

Proof. By testing (8.4) against e0 we obtain

‖e0‖2 = −(∆Φ, e0)

=
∑
T∈Th

(∇Φ, ∇e0)T −
∑
T∈Th

〈∇Φ · n, e0 − eb〉∂T ,(8.7)

where we have used the fact that eb = 0 on ∂Ω. Next, by setting w = Φ and v = eh
in (6.2) we arrive at∑

T∈Th

(∇wQhΦ,∇weh)T =
∑
T∈Th

(∇Φ,∇e0)T +
∑
T∈Th

〈∇Φ · n, eb − e0〉∂T

+ `1(Φ, eh) + `2(Φ, eh).

(8.8)

Substituting (8.8) into (8.7) gives

‖e0‖2 = (∇weh, ∇wQhΦ)− `1(Φ, eh)− `2(Φ, eh).(8.9)
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Now using the error equation (6.6) we have

(∇weh, ∇wQhΦ) = `1(u,QhΦ) + `2(u,QhΦ)

+s(Qhu, QhΦ)− s(eh, QhΦ).(8.10)

Combining (8.9) with (8.10) yields

‖e0‖2 =`1(u,QhΦ) + `2(u,QhΦ) + s(Qhu, QhΦ)

− s(eh, QhΦ)− `1(Φ, eh)− `2(Φ, eh)

=

6∑
j=1

Ij ,

(8.11)

where Ij are defined accordingly. The rest of the proof shall deal with the terms
Ij(j = 1, · · · , 6) one by one.

Step 1: Note that all the interior edges are straight line segments on which Qb is
the usual L2 projection onto Pk−1(e). Thus, we have

〈(∇u−Qh∇u) · n, Φ−QbΦ〉∂T∩E0h = 〈∇u · n, Φ−QbΦ〉∂T∩E0h ,

which, together with the fact that Φ = 0 and QbΦ = 0 on the boundary ∂Ω, leads to∑
T∈Th

〈(∇u−Qh∇u) · n, Φ−QbΦ〉∂T =
∑
T∈Th

〈∇u · n, Φ−QbΦ〉∂T = 0.

It follows from Cauchy-Schwarz inequality that

|I1| =|`1(u,QhΦ)|

=

∣∣∣∣∣ ∑
T∈Th

〈(∇u−Qh∇u) · n, Q0Φ−QbΦ〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

〈(∇u−Qh∇u) · n, Q0Φ− Φ〉∂T

∣∣∣∣∣
≤
( ∑
T∈Th

‖∇u−Qh∇u‖2∂T
) 1

2
( ∑
T∈Th

‖Q0Φ− Φ‖2∂T
) 1

2

≤Chk+1‖u‖k+1‖Φ‖2,

(8.12)

where we have used the trace inequality (7.1) and the estimates (7.15) in the last line.

Step 2: To bound I2 = `2(u,QhΦ), we use the second estimate in (7.4) to obtain

|`2(u,QhΦ)|

=

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, (∇wQhΦ) · n〉∂T

∣∣∣∣∣
≤Ch3/2

∑
T∈Th

‖u−Qbu‖∂T (‖∇wQhΦ‖1,T + ‖∇wQhΦ‖T )

≤Chk+1‖u‖k
{(∑

T∈Th

‖∇wQhΦ‖21,T

) 1
2

+

(∑
T∈Th

‖∇wQhΦ‖2T

) 1
2 }
,

(8.13)
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where we have employed Cauchy-Schwarz inequality and the estimate (7.17) with
m = k in the last inequality. By assumption, all the interior edges are straight
line segments. Using this and the fact that Φ|∂Ω = 0 and QbΦ|∂Ω = 0 we can
see that the boundary integral on the right-hand side of (6.1) vanishes, and hence
∇wQhΦ = Qh∇Φ. It follows that(∑

T∈Th

‖∇wQhΦ‖21,T

) 1
2

=

(∑
T∈Th

‖Qh∇Φ‖21,T

) 1
2

≤ C‖Φ‖2.

Similarly, (∑
T∈Th

‖∇wQhΦ‖2T

) 1
2

=

(∑
T∈Th

‖Qh∇Φ‖2T

) 1
2

≤ C‖Φ‖2.

Substituting the above two estimates into (8.13) yields

(8.14) |`2(u,QhΦ)| ≤ Chk+1‖u‖k‖Φ‖2.

Step 3: As to the third term I3, we use Cauchy-Schwarz inequality, the L2-
boundedness of Qb and the estimate (7.16) to obtain

|s(Qhu, QhΦ)| ≤
∑
T∈Th

h−1
T |〈QbQ0u−Qbu, QbQ0Φ−QbΦ〉∂T |

≤

(∑
T∈Th

h−2
T ‖Q0u− u‖2∂T

) 1
2
(∑
T∈Th

‖Q0Φ− Φ‖2∂T

) 1
2

≤Chk+1‖u‖k+1‖Φ‖2.

(8.15)

Step 4: For the term |I4| = |s(eh, QhΦ)|, from the estimate (7.19) (with k = 1 and
w = Φ) we obtain

|s(eh, QhΦ)| ≤ Ch|||eh|||‖Φ‖2.(8.16)

As to the term |I5| = |`1(Φ, eh)|, it follows from (7.20) with w = Φ and k = 1 that

|`1(Φ, eh)| ≤ Ch|||eh|||‖Φ‖2.(8.17)

Finally, for the term |I6| = |`2(Φ, eh)|, we use the estimate (7.21) with w = Φ and
k = 1 to get

|`2(Φ, eh)| ≤ Ch|||eh|||‖Φ‖2.(8.18)

Substituting the estimates (8.12) and (8.14)-(8.18) into (8.11) yields

‖e0‖2 ≤ C(hk+1‖u‖k+1 + h|||eh|||)‖Φ‖2,

which, combined with the regularity assumption (8.5) and the error estimate (8.1),
gives the optimal order error estimate (8.6).
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For any weak finite element function v = {v0, vb} ∈ Wh, we define the following
semi-norm

‖vb‖Eh =

(∑
T∈Th

hT ‖vb‖2∂T

) 1
2

.

By combining the L2 error estimate (8.6) with the H1 error estimate (8.1), one can
derive the following L2 error estimate for the WG approximation on the boundary of
each element. Details of the proof are left to interested readers as an exercise.

Theorem 8.3. Let uh ∈Wh be the solution of the weak Galerkin Algorithm (4.3)
with finite elements of order k ≥ 2. Assume that the exact solution u of (1.1)-(1.2)
is sufficiently regular such that u ∈ Hk+1(Ω). Assume that curved edges in the finite
element partition can only appear on the boundary of the domain. There exists a
constant C such that

‖Qbu− ub‖Eh ≤ Chk+1‖u‖k+1.

9. Numerical Integration on a Curved Polygon. Let T be a curved element.
For simplicity of implementation, assume that the boundary ∂T of the curved element
T consists of one curved edge e1 and the rest edges ei(i = 2, . . . , NE) being straight
edges. For any given function F (x, y) defined on the curved element T , it follows from
the Taylor expansion that

F (x, y) =F (xT , yT ) + ∂xF (xT , yT ) · (x− xT ) + ∂yF (xT , yT ) · (y − yT )

+ · · ·+

(
(x− xT )∂x + (y − yT )∂y

)k
F (xT , yT )

k!
+O(hk+1),

where (xT , yT ) is a given point on the curved element T . Thus, one arrives at∫
T

F (x, y)dT = F (xT , yT )

∫
T

1dT

+ ∂xF (xT , yT )

∫
T

(x− xT )dT + ∂yF (xT , yT )

∫
T

(y − yT )dT

+ · · ·+

∫
T

(
(x− xT )∂x + (y − yT )∂y

)k
F (xT , yT )dT

k!
+O(hk+1).

(9.1)

The number of terms you shall expand for the right hand side of (9.1) depends on the
desired approximation accuracy.

For simplicity, we shall consider the first three terms on the right hand of (9.1)
to calculate the approximation of the integral

∫
T
F (x, y)dT with the approximation

error O(h2). As to the first integral
∫
T

1dT , there exists a vector-valued function
f1(x, y) such that ∇ · f1(x, y) = 1. Then, it follows from the divergence theorem that∫

T

1dT =

∫
T

∇ · f1(x, y)dT =

∫
∂T

f1(x, y) · nds

=

∫
e1

f1(x, y) · n1ds+

NE∑
i=2

∫
ei

f1(x, y) · nids,
(9.2)
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where ni represents the unit outward normal direction to edge ei for i = 1, . . . , NE .
Similarly, there exist two functions f2(x, y) and f3(x, y) such that ∇ · f2(x, y) =

x− xT and ∇ · f3(x, y) = y − yT . Thus, we arrive at

∫
T

(x− xT )dT =

∫
e1

f2(x, y) · n1ds+

NE∑
i=2

∫
ei

f2(x, y) · nids,(9.3)

(9.4)

∫
T

(y − yT )dT =

∫
e1

f3(x, y) · n1ds+

NE∑
i=2

∫
ei

f3(x, y) · nids.

Recall that the parametric presentation for ei is given by (x, y) = (φ(ŝ), ψ(ŝ)).
For any given point (x, y) ∈ ei, there exists a vector βββ starting from the given point to
a point in the interior of the element T . Then one arrives at the unit outward normal
direction to ei given by

ni =
α(d(ψ(dŝ))

dŝ ;−d(φ(dŝ))
dŝ )√

(d(ψ(dŝ))
dŝ )2 + (d(φ(dŝ))

dŝ )2

where the coefficient α is set by

α =

{
1, if (d(ψ(dŝ))

dŝ ;−d(φ(dŝ))
dŝ ) · βββ < 0,

−1, otherwise.

Recall that the mapping F̂e maps a curved edge e to a straight edge ê. Then, for
any vb, wb ∈ Vb(e, k − 1), we have∫

e

vbwbds =

∫
e

v̂bŵb ◦ F̂ede

=

∫
ê

v̂bŵb · |Je|dŝ

=

∫
ê

v̂bŵb
√

(φ′(ŝ))2 + (ψ′(ŝ))2dŝ,

(9.5)

which can be computed by using numerical integration with desired precision.
Substituting (9.2)-(9.4) into (9.1) gives rise to an approximation for the integral∫

T
F (x, y)dT with the approximation error O(h2), which will be further calculated by

(9.5) and numerical integration with required precision.

10. Numerical Experiments. This section shall illustrate several numerical
experiments to demonstrate the accuracy and efficiency of the curved elements in WG
methods. For simplicity of implementation, we consider two types of WG element.
One is called a curved WG element where one edge is curved and the rest edges
are straight; the other is called a straight WG element where all edges are straight.
The curved WG element with degree k and the discrete weak gradient discretized by
[Pk−1(T )]2 is denoted by Pk(T ) − Vb(∂T, k − 1) − [Pk−1(T )]2 element. Analogously,
the straight WG element with degree k is denoted by Pk(T )−Pk−1(∂T )− [Pk−1(T )]2

element.



20

Test case 1 (curved quadrilateral domain) We consider a curved quadrilat-
eral domain given by

Ω = {{x, y} : 0 ≤ x ≤ 1, g1(x) ≤ y ≤ g2(x)},

where g1(x) = 1
20 sin(πx) and g2(x) = 1 + 1

20 sin(3πx). The exact solution is u =
x(x− 1)(y − g1(x))(y − g2(x)) shown in Figure 10.3 (a). The finite element partition
on the curved domain Ω is constructed such that the mesh node (xΩ, yΩ) is given by
[20]

(xΩ, yΩ) =

{
(xs, ys + g1(xs)(1− 2ys)), if ys ≤ 1

2 ,

(xs, 1− ys + g2(xs)(2ys − 1), otherwise,

where (xs, ys) is the mesh point obtained by uniformly dividing the unit square domain
[0, 1]2 into n × n sub-squares. The numerical tests are implemented on the curved
uniform meshes and the straight uniform meshes respectively. The curved uniform
meshes and straight uniform meshes are obtained by connecting the mesh nodes on the
curved boundary edges y = g1(x) and y = g2(x) where 0 ≤ x ≤ 1 by curved segments
and straight segments, respectively, while the interior mesh nodes are both connected
by straight edges. The first level of straight uniform meshes is shown in Figure 10.1
(Left). The second level of the straight uniform meshes is refined by connecting the
midpoints of the quadrilateral elements on the first level ending up with dividing each
quadrilateral element on the first level into 4 sub quadrilateral elements as shown in
Figure 10.1 (Right). Similarly, the first two levels of curved uniform meshes are shown
in Figure 10.2.

Fig. 10.1. Level 1 (Left) and level 2 (Right) of straight uniform meshes in test case 1.

We have observed from Table 10.1 that the optimal order of convergence for
the numerical approximation on both the curved uniform meshes and the straight
uniform meshes when the lowest order WG element k = 1 is employed, which is
consist with what the theory predicts; in addition, the convergence order of the WG
numerical approximation in various norms on the curved uniform meshes is better
than that on the straight uniform meshes for the higher order WG elements k = 2
and k = 3 respectively. The WG numerical solution u0 on the curved uniform meshes
for k = 1, 2, 3 are illustrated in Figure 10.3.

Test case 2 (circular domain) Here is the configuration of the test: the exact
solution is u = −(x2 +y2−1); the domain is an unit circle Ω = {{x, y} : x2 +y2 ≤ 1};
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Fig. 10.2. Level 1 (Left) and level 2 (Right) of curved uniform meshes in test case 1.

Fig. 10.3. (a) the exact solution u, (b) WG solution for k = 1, (c) WG solution for k = 2, (d)
WG solution for k = 3.

the curved WG element P2(T )−Vb(∂T, 1)− [P1(T )]2 is used; and the curved uniform
meshes on levels 1 & 2 are shown in Figure 10.4. The exact solution u and WG
solution u0 are plotted in Figure 10.5. As we can see from Table 10.2, the error of the
WG appriximation in various norms on curved uniform meshes achieves an optimal
order of convergence, which consists with our theory.

Test case 3 (circular disk) The configuration of the test is as follows: the
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Table 10.1
Test case 1: Numerical errors and corresponding convergence rates.

1/h |||eh||| Rate ‖e0‖ Rate ‖eb‖Eh Rate ‖∇e0‖ Rate
P1(T )− Vb(∂T, 0)− [P0(T )]2 element on the curved uniform meshes

8 5.08e-02 - 3.06e-03 - 3.25e-03 - 1.85e-02 -
16 2.82e-02 0.85 7.94e-04 1.94 9.15e-04 1.83 5.86e-03 1.66
32 1.47e-02 0.94 2.02e-04 1.98 2.38e-04 1.94 2.10e-03 1.48
64 7.52e-03 0.97 5.07e-05 1.99 6.02e-05 1.98 8.55e-04 1.30
128 3.79e-03 0.99 1.27e-05 2.00 1.51e-05 2.00 3.85e-04 1.15

P1(T )− P0(∂T )− [P0(T )]2 element on the straight uniform meshes
8 5.08e-02 - 3.04e-03 - 3.22e-03 - 1.87e-02 -
16 2.85e-02 0.84 8.02e-04 1.92 9.27e-04 1.79 5.99e-03 1.64
32 1.50e-02 0.93 2.05e-04 1.97 2.43e-04 1.93 2.14e-03 1.49
64 7.64e-03 0.97 5.15e-05 1.99 6.17e-05 1.98 8.62e-04 1.31
128 3.86e-03 0.99 1.29e-05 2.00 1.55e-05 1.99 3.87e-04 1.16

P2(T )− Vb(∂T, 1)− [P1(T )]2 element on the curved uniform meshes
8 1.24e-02 - 3.43e-04 - 1.01e-03 - 9.41e-03 -
16 3.24e-03 1.94 4.16e-05 3.04 1.43e-04 2.82 2.30e-03 2.04
32 8.37e-04 1.96 5.19e-06 3.00 1.90e-05 2.92 5.75e-04 2.00
64 2.12e-04 1.98 6.51e-07 3.00 2.44e-06 2.96 1.44e-04 2.00
128 5.35e-05 1.99 8.15e-08 3.00 3.08e-07 2.98 3.61e-05 2.00

P2(T )− P1(∂T )− [P1(T )]2 element on the straight uniform meshes
8 1.22e-02 - 3.73e-04 - 1.04e-03 - 8.88e-03 -
16 3.42e-03 1.83 6.25e-05 2.58 1.66e-04 2.65 2.16e-03 2.04
32 1.10e-03 1.64 1.32e-05 2.24 3.00e-05 2.47 5.38e-04 2.00
64 4.38e-04 1.33 3.13e-06 2.08 6.51e-06 2.21 1.35e-04 2.00
128 2.03e-04 1.11 7.70e-07 2.02 1.56e-06 2.06 3.37e-05 2.00

P3(T )− Vb(∂T, 2)− [P2(T )]2 element on the curved uniform meshes
4 1.05e-02 - 7.18e-04 - 3.93e-04 - 1.04e-02 -
8 1.76e-03 2.57 7.19e-05 3.32 5.98e-05 2.71 1.70e-03 2.61
16 2.29e-04 2.94 4.67e-06 3.94 4.38e-06 3.77 2.18e-04 2.96
32 2.93e-05 2.97 3.02e-07 3.95 2.99e-07 3.87 2.77e-05 2.98
64 3.74e-06 2.97 2.03e-08 3.89 2.12e-08 3.82 3.49e-06 2.99

P3(T )− P2(∂T )− [P2(T )]2 element on the straight uniform meshes
4 1.03e-02 - 7.63e-04 - 5.50e-04 - 1.00e-02 -
8 3.12e-03 1.72 1.98e-04 1.95 2.01e-04 1.45 2.67e-03 1.91
16 1.15e-03 1.44 5.05e-05 1.97 5.63e-05 1.83 7.12e-04 1.91
32 5.17e-04 1.15 1.26e-05 2.01 1.49e-05 1.92 2.01e-04 1.83
64 2.52e-04 1.04 3.11e-06 2.01 3.83e-06 1.96 5.97e-05 1.75

domain is a circular disk defined by Ω = {{x, y} : 0.16 ≤ x2 + y2 ≤ 1}; the exact
solution is given by u = −(x2 + y2 − 1)(x2 + y2 − 0.16); the curved WG element
P2(T ) − Vb(∂T, 1) − [P1(T )]2 is used; and the curved uniform meshes on levels 1 &
2 are shown in Figure 10.6. The plots of the exact solution u and WG numerical
approximation u0 are demonstrated in Figure 10.7. We have observed from Table
10.3 that the error of WG solution in different norms on the curved uniform meshes
achieves an optimal order of convergence. All numerical results are greatly consist
with the theory established in this paper.



23

Fig. 10.4. Level 1 (Left) and level 2 (Right) of curved uniform meshes in test case 2.

Fig. 10.5. P2(T ) − Vb(∂T, 1) − [P1(T )]2 element on the curved uniform meshes; Left: exact
solution; Right: WG solution.

Fig. 10.6. Level 1 (Left) and level 2 (Right) of curved uniform meshes in test case 3.
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[40] M. Zlámal, A finite element procedure of the second order of accuracy, Numer. Math., vol.

14, pp. 394-402, 1970.
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