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Abstract

It is well known that via the augmented Lagrangian method, one can solve Stokes’ system by

solving the nearly incompressible linear elasticity equation. In this paper, we show that the con-

verse holds, and approximate the inverse of the linear elasticity operator with a convex linear

combination of parameter-free operators. In such a way, we construct a uniform preconditioner

for linear elasticity for all values of the Lamé parameter λ ∈ [0,∞). Numerical results con-

firm that by using inf-sup stable finite-element spaces for the solution of Stokes’ equations, the

proposed preconditioner is robust in λ.
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1. Introduction

The main focus of this work is on developing and analyzing an effective preconditioning

operator for the primal formulation of linear elasticity, particularly in the incompressible limit.

For a body force, f̃, acting on an isotropic elastic material, we model the displacement of the

deformable media, u, via the governing equation,

div
(
2µε(u) + λ̃tr(ε(u))I

)
= f̃. (1.1)

Here, µ, λ̃ are Lamé parameters, tr is the trace operation for tensors, I is the identity tensor, and

the strain tensor, ε(u), is given by

ε(u) =
1

2

(
∇u + (∇u)⊤

)
.

In terms of Poisson ratio, ν, and Young’s modulus, E, the Lamé constants are expressed as

µ =
E

2 + 2ν
, λ̃ =

Eν

(1 + ν)(1 − 2ν)
, 0 ≤ ν < 1

2
.

The linearly elastic material becomes nearly incompressible when ν→ 1
2

−
and λ̃→ ∞ (cf. [1]).
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In the incompressible limit, traditional finite-element and finite-difference schemes suffer

from volumetric/Poisson locking. This locking phenomenon is due to the poor representation

of the divergence-free vector fields [2] in the underlying space. It is therefore not surprising

that locking-free numerical schemes of linear elasticity are related to discretization methods for

Stokes’ equations. A quick look at the paper by Bramble [3] reveals that the Stokes’ inf-sup

condition implies the fundamental 2nd Korn’s inequality in elasticity. Such ideas have led to the

development of stable and accurate numerical methods for Stokes’ equation via the augmented

Lagrangian formulation, see, e.g., [4, 5, 6]. Analysis of the corresponding iterative solution tech-

niques for the resulting linear systems are studied in [7], and the approach has been successful in

a variety of related applications [8, 9, 10].

Conversely, results from solving Stokes’ equations can be used for developing schemes for

nearly incompressible linear elasticity. For instance, in [1], Braess introduces an auxiliary vari-

able, p = div u, and uses the stability of a perturbed Stokes’ problem to derive a priori error esti-

mates which are uniform with respect to λ̃. Further works by Schöberl [11] and Carstensen [12]

utilize similar ideas to analyze and show robustness of multigrid solvers and reliability and effi-

ciency of a posteriori error estimation for finite-element discretizations of linear elasticity. We

note that, as shown in [13], the results derived here, combined with the operator preconditioning

framework in [14, 15], can be utilized to design novel a posteriori error estimators for nearly

incompressible linear elasticity.

Based on this notion, the main contribution of this work is to use stable discretizations of

Stokes’ equations to develop a preconditioner for linear elasticity that, unlike most others, is

provably robust and performs uniformly well for all values of λ̃ ∈ [0,∞). The main ingredients in

the construction are: (1) the action of the inverse of a standard, parameter-free, elliptic operator;

and (2) computing an H1-type orthogonal projection onto the space of (discrete) divergence-free

vector fields. We note here that computing the projection requires solving another parameter-free

(discrete) Stokes’ problem. The underlying idea comes from a simple observation concerning

linear elasticity with periodic boundary conditions, under which our preconditioner reduces to

the exact inverse of the linear elasticity operator. In general, the preconditioner is not the exact

inverse, but is very close to it. Such claims are validated by numerical tests showing that the

preconditioned linear system corresponding to discretizations of (1.1) have uniformly bounded

condition numbers.

This rest of the paper is organized as follows. Section 2 sets up the bilinear forms and notation

used throughout the paper. In Section 3, an inf-sup condition and Korn inequality is established

to help build a parameter-free preconditioner. Next, the spectral equivalence result that yields

the robust preconditioner is given in Section 4. The case of periodic boundary conditions is also

considered here. Finally, numerical results confirming the theory is shown in Section 5, with

concluding remarks given in Section 6.

2. Preliminaries and Notation

Let Ω ⊂ Rd with d ∈ {2, 3} be a bounded polyhedron with Lipschitz boundary. Let (·, ·)
denote the L2(Ω) inner product, ‖ · ‖ the L2(Ω) norm, Q = L2(Ω), and V ⊂ [H1(Ω)]d be a Hilbert

space. By 〈·, ·〉 we denote the duality pairing between V and its dual V ′ or Q and its dual Q′.
The boundary of Ω is Γ = ∂Ω = ΓD ∪ ΓN , where ΓD is a closed set with respect to Γ with a

nonzero (d − 1) dimensional measure. Further, we denote by [H1
D

(Ω)]d ⊂ [H1(Ω)]d the space of

vector-valued functions on Ω with vanishing traces on ΓD. Often, V = [H1
D

(Ω)]d, however, we
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also consider examples with periodic boundary conditions on the unit cube in Rd and thus, V and

Q will be modified accordingly.

The variational problem of (1.1) is to find u ∈ V such that

aλ(u, v) = a(u, v) + λb(v, div u) = 〈f, v〉, (2.1)

for all v ∈ V , where f := f̃/(2µ), λ := λ̃/(2µ), and

a(u, v) = (ε(u), ε(v)),

b(v, q) = (div v, q).

Note that we divide the original equation by 2µ and obtain a modified parameter

λ =
ν

1 − 2ν
, 0 ≤ ν < 1

2
.

The bilinear forms in (2.1) define operators Aλ : V → V ′, and B : V → Q′ by

〈Aλu, v〉 := aλ(u, v),

〈Bv, q〉 := b(v, q) = (div v, q).
(2.2)

As λ = 0 is a special case, we define A := A0 with

〈Au, v〉 = a(u, v) := (ε (u) , ε (v)) . (2.3)

For any two operators, X and Y mapping a space V to its dual V ′, we write X . Y when

〈Xv, v〉 ≤ C 〈Yv, v〉 holds for any v ∈ V with a generic constant C depending on Ω and indepen-

dent of λ and µ. By X h Y, we denote X . Y and Y . X. Then, the goal of this paper is to show

that

A−1
λ h

λ

λ + 1
PA−1 +

1

λ + 1
A−1 =: Mλ, (2.4)

where P is the aλ(·, ·)-orthogonal projection onto the space of divergence-free vector fields.

Clearly P can be implemented by solving Stokes’ equations.

3. Brezzi’s inf-sup condition and Korn’s inequality

In order to develop a robust preconditioner, we consider some properties related to the inf-sup

condition on V × Q (see e.g. [16, 17, 18]):

inf
q∈Q

sup
v∈V

(div v, q)

‖∇v‖‖q‖ ≥ β̃ > 0. (3.1)

As is shown in [3], (3.1) is equivalent to the following inequality due to Nečas [19]:

‖u‖ .
‖u‖

2
H−1(Ω)

+

d∑

j=1

∥∥∥∥∥∥
∂u

∂x j

∥∥∥∥∥∥
2

H−1(Ω)



1/2

(3.2)

In addition, [3] shows that (3.2) implies Korn’s inequality:

‖∇u‖ . ‖u‖ + ‖ε(u)‖, ∀u ∈ [H1(Ω)]d. (3.3)
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The classical Korn’s inequality is found in [20, 21]. The proof of this inequality is simple under

Dirichlet boundary conditions. The situation is much more complicated in the case of traction

conditions on part of the boundary. We refer to Kondratiev and Oleinik in [22, 23], Duvaut and

Lions [24], Nitsche [25], and Bramble [3] for proofs of various types of Korn’s inequalities. An

important consequence of (3.3) is the following lemma which shows the coercivity of a(·, ·). For

completeness, we include a proof of this well known result following [26] (see Appendix A).

Lemma 3.1. [[26], p. 27] Let R be the space of rigid body motions,

R =
{
c +mx | c ∈ Rd, m ∈ so(d)

}
,

where x is the position vector in Rd and so(d) is the algebra of the real and anti-symmetric d × d

matrices. Then it holds that

‖∇u‖ . ‖ε(u)‖, ∀u ∈ [H1
D(Ω)]d ∪ (

[H1(Ω]d ∩R⊥L2
)
. (3.4)

We exploit the fact that the linear elasticity problem for large λ can be viewed as a penalty

formulation of a constrained minimization problem (see, e.g. [27, 2, 3, 19]). We introduce the

subspace of divergence-free functions,

W := Ker(B) =
{
v ∈ V

∣∣∣ Bv = div v = 0
}
.

As B = div is a continuous operator, its kernel is a closed subspace of V . Then, (3.4) and

the equivalence between (3.1) and (3.2) imply that a(·, ·) = (ε(·), ε(·)) is an inner product on V

with corresponding norm equivalent to the ‖ · ‖[H1(Ω)]d norm. This yields the following inf-sup

conditions, equivalent to (3.1):

inf
q∈Q

sup
v∈V

(div v, q)

‖ε(v)‖‖q‖ = inf
v∈W⊥

sup
q∈Q

(div v, q)

‖ε(v)‖‖q‖ ≥ β > 0. (3.5)

Here, the orthogonality in W⊥ is in terms of the inner product a(·, ·). For the proof of the equiva-

lence between the two conditions in (3.5), we refer to Girault and Raviart [27, Lemma 4.1].

Next, we define P : V → W to be the orthogonal projection onto W with respect to a(·, ·). In

other words, for v ∈ V the projection Pv ∈ W is the unique solution to

a(Pv,w) = a(v,w), ∀w ∈ W. (3.6)

It is immediate to see that v0 = Pv solves the Stokes’ equation:

Find (v0, p) ∈ V × Q such that

a(v0,w) + b(w, p) = a(v,w), ∀w ∈ V,

b(v0, q) = 0, ∀q ∈ Q,
(3.7)

where the “pressure” p serves as a Lagrange multiplier for the divergence free constraint.

4. Spectral equivalence and a robust preconditioner

In this section, we use the aforementioned relationship between the inf-sup condition and

Korn’s inequality to develop a robust preconditioner, Mλ, for the linear elasticity equations. We

start by proving the spectral equivalence (2.4) between Mλ and the inverse of the linear elasticity

operator, Aλ.
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Theorem 4.1. If Mλ : V ′ → V is defined by

Mλ =
λ

1 + λ
PA−1 +

1

λ + 1
A−1, (4.1)

where Aλ, A, and P are as in (2.2), (2.3) and (3.6). Then,

〈g,Mλg〉 h 〈g, A−1
λ g〉 ∀g ∈ V ′. (4.2)

Proof. To show the spectral equivalence, it suffices to prove that for any λ ∈ [0,∞) and v ∈ V ,

〈Aλv, v〉 . 〈M−1
λ v, v〉 . 〈Aλv, v〉. (4.3)

It follows from P2 = P that

(I + tP)−1 = I − t

t + 1
P, ∀t ∈ R\{−1}. (4.4)

Using this fact, we obtain

M−1
λ =

(
1

λ + 1
(I + λP) A−1

)−1

= A ((λ + 1)I − λP)

= A + λA(I − P).

(4.5)

By comparing (4.5) with 〈Aλv, v〉 = 〈Av, v〉 + λ‖ div v‖2, it remains to show that

‖ div v‖2 h 〈A(I − P)v, v〉
= a (v − Pv, v − Pv) = ‖ε (v − Pv)‖2 .

(4.6)

The lower bound in (4.6) directly follows from

‖ div v‖ = sup
q∈Q, ‖q‖=1

(divv, q) = sup
q∈Q, ‖q‖=1

(div(v − Pv), q)

≤ ‖tr[ε(v − Pv)]‖ ≤
√

d ‖ε(v − Pv)‖ .

The upper bound is just a restatement of (3.5) because (I − P)v ∈ W⊥. In fact, we have

β ‖ε (v − Pv)‖ ≤ sup
q∈Q, ‖q‖=1

(
div(v − Pv), q

)

= sup
q∈Q, ‖q‖=1

(
divv, q

)
= ‖div v‖ ,

and this completes the proof of (4.6) and, hence, (4.2).

4.1. Periodic boundary conditions

To expose the main idea for the preconditioner and motivate how to tackle a more general

case, we investigate the case of periodic boundary conditions. Here, the spectral equivalence is

in fact an equality (“h” in (4.2) becomes “=”). For a given f (periodic in all d directions), we

extend the solution u to Rd by periodicity and use a Fourier transform. We define uλ, u∞, and u0

as the solutions to

Aλuλ = f, A∞u∞ = f, and Au0 = f,
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respectively. Here, A∞ is the operator corresponding to the Stokes equation (with periodic bound-

ary conditions) and u∞ is the velocity component of its solution. To show that Mλ = A−1
λ , we

prove that

uλ =
λ

λ + 1
u∞ +

1

λ + 1
u0. (4.7)

The proof of this relation is a straightforward computation using the Fourier transform and the

following identities:

̂div ε(w) =
1

2
|ξ|2(I + Πξ)ŵ, (4.8)

̂divCε(w) =
1

2
|ξ|2

(
I + (2λ + 1)Πξ

)
ŵ, (4.9)

where Πξ = |ξ|−2ξξ∗, C(X) = 1
2
(X + X∗) + λ tr(X)I, and X ∈ Rd×d. Notice that Π2

ξ = Πξ and,

hence, (4.4) holds with Πξ instead of P. We then find that

ûλ = 2|ξ|−2

(
I − 2λ + 1

2(λ + 1)
Πξ

)
f̂, û0 = 2|ξ|−2

(
I − 1

2
Πξ

)
f̂. (4.10)

Furthermore, the Stokes’ problem in the Fourier space is:


1
2
|ξ|2(I + Πξ) ξ

ξ∗ 0




û∞

p̂

 =


f̂

0

 . (4.11)

Solving this system shows that

û∞ = 2|ξ|−2(I − Πξ )̂f, p̂ = |ξ|−2ξ∗̂f. (4.12)

Finally, the relation (4.7) follows immediately from (4.10) and (4.12).

4.2. Discrete problems

Although we have defined the preconditioner Mλ for Aλ on the continuous level, a quick

check shows that the analysis in Theorem 4.1 holds verbatim for the discretized problem as long

as a Stokes stable finite-element pair, Vh×Qh ⊂ V×Q, is available. In particular, assume Vh×Qh

satisfies the discrete inf-sup condition (cf. [27]),

inf
qh∈Qh

sup
vh∈Vh

(div vh, qh)

‖∇vh‖‖qh‖
≥ βh > 0, (4.13)

and let Ah
λ

: Vh → V ′
h

and uh ∈ Vh be given by

〈Ah
λuh, vh〉 = aλ(uh, vh) = 〈f, vh〉 ∀v ∈ Vh. (4.14)

Remark 4.2. Under the assumption divVh ⊂ Qh, (4.14) has uniform a priori error estimates

for all λ ∈ [0,∞). Here we refer to [28, 29, 30, 31] for stable Stokes’ element pairs satisfying

divVh ⊂ Qh and using discontinuous pressure spaces. We need to be careful when divVh 1 Qh

and modify the bilinear form aλ
h

in such cases as follows:

〈Ah
λuh, vh〉 = a(uh, vh) + λb(vh,Πhdivuh) = 〈f, vh〉 ∀v ∈ Vh, (4.15)
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where Πh is the L2-projection onto Qh. This approach has been discussed in [1, 11], where the

role ofΠh is implicit but crucial to drawing the connection with the Stokes’ equations, thus ensur-

ing robust a priori error estimates. In general, the action of Πh is computed by inverting a mass

matrix, which could be costly, especially when the functions in Qh are subject to inter-element

continuity constraints. It is, however, easy to justify that we can use a spectrally equivalent di-

agonal matrix, such as the diagonal of the mass matrix, to implement the action of Πh. This is

the approach we have taken in the numerical tests for the Taylor-Hood [32] (P2 × P1) element

as presented in Section 5.

Finally, let Wh = {vh ∈ Vh : b(vh, qh) = 0 ∀qh ∈ Qh}, Ah = Ah
0
, and Ph : Vh → Wh be the a(·, ·)

orthogonal projection. A proof, analogous to the proof of Theorem 4.1, then leads to

(
Ah
λ

)−1
h Mh

λ :=
λ

1 + λ
PhA−1

h +
1

λ + 1
A−1

h . (4.16)

An immediate, and important, observation is that computing the action of the preconditioner,

Mh
λ
, does not require a evaluating Phvh for some vh ∈ Vh directly. This would be difficult, as a

basis in the weakly divergence-free space, Wh, is not always available. Instead, the action of Ph

is computed by solving the discrete Stokes’ problem:

Find Phvh ∈ Vh, ph ∈ Qh such that

a(Phvh,wh) + b(wh, ph) = a(vh,wh), ∀wh ∈ Vh,

b(Phvh, qh) = 0, ∀qh ∈ Qh.
(4.17)

We add that the analysis we have given here provides a theoretical justification for the precondi-

tioning results reported in [33].

5. Numerical Results

In this section, we provide numerical examples demonstrating the effectiveness and robust-

ness of the preconditioner, Mh
λ
, as defined in (4.16). The computational domain is Ω = [0, 1] ×

[0, 1], and we seek to solve (2.1) for the exact solution u given by

u =

(
sin(πx) cos(πy), − cos(πx) sin(πy)

)
.

We compute the right-hand side, f, accordingly and impose pure Dirichlet boundary conditions,

i.e., Γ = ΓD. Equations are discretized on a uniformly refined triangular mesh with mesh size

h = 2−L, where we use continuous and piecewise quadratic Rd-valued polynomials in P2 to

approximate u. We test different finite-element spaces for the multiplier p.

The resulting linear system of equations is solved by the preconditioned conjugate gradient

method, with Mh
λ

as the preconditioner. We implement the actions of PhA−1
h

and A−1
h

using

direct solvers. The stopping criterion is based on the relative residual with tolerance 10−6. All

numerical experiments, including the discretization and the preconditioned linear solvers, were

implemented using the finite-element and solver library HAZmath [34].

For the first set of experiments, we employ the space of piecewise constants, P0, as the finite-

element space for p. Thus, we implement the action of PhA−1
h

by solving Stokes’ equations (3.7)

using the P2 × P0 finite-element pair, which is known to be inf-sup stable in 2D. We report

the performance of the proposed preconditioner in Table 1 (for the number of iterations) and

7



Table 1: Number of iterations for P2 × P0

h = 2−L ν = 0.25 ν = 0.4 ν = 0.49 ν = 0.499 ν = 0.4999

L = 2 4 5 6 6 6

L = 3 3 4 6 7 7

L = 4 3 4 6 7 7

L = 5 3 4 6 7 7

L = 6 3 4 5 7 7

Table 2: Condition number of Mh
λ

Ah
λ

for P2 × P0

h = 2−L ν = 0.25 ν = 0.4 ν = 0.49 ν = 0.499 ν = 0.4999

L = 2 1.15 1.48 2.52 2.84 2.88

L = 3 1.14 1.44 2.47 2.98 3.03

L = 4 1.13 1.44 2.55 2.90 2.94

L = 5 1.13 1.44 2.51 2.86 2.89

L = 6 1.13 1.44 2.45 2.87 2.91

Table 2 (for the condition number of Mh
λ
Ah
λ
). These results show that the number of iterations

and condition number remain stable as ν → 0.5−, i.e., as λ→ ∞. This observation confirms our

theoretical predictions.

For the second set of experiments, we utilize the nodal element space, P1, for p. In this case,

as we pointed out earlier, assembling b(vh,Πhdivuh) requires invertingMh, the P1 mass matrix.

In the tests, however, we use the inverse of diag(Mh) to approximateM−1
h

. Then the action of

PhA−1
h

is computed by solving (4.17) using the P2 × P1 finite-element pair (Taylor-Hood). The

performance of Mh
λ is presented in Table 3 (for the number of iterations) and Table 4 (for the

condition number of Mh
λ
Ah
λ
). Although the number of iterations and condition number is slightly

higher than those obtained with the P2 × P0 finite-element pair, they remain stable as ν→ 0.5−,
i.e., as λ→ ∞. This indicates that the efficacy of the proposed preconditioner Mh

λ
is not affected

by the choice of finite-element space for p, as long as the corresponding finite-element pair is

inf-sup stable.

6. Concluding Remarks

Theorem 4.1 and the corresponding numerical tests in Section 5 confirm that a robust dis-

cretization and solvers for nearly incompressible elasticity must rely on robust solvers for Stokes’

equations. This point is important as it confirms the relationship between the inf-sup condition

for Stokes’ equation and the second Korn’s inequality for linear elasticity. Numerical results

8



Table 3: Number of iterations for P2 × P1

h = 2−L ν = 0.25 ν = 0.4 ν = 0.49 ν = 0.499 ν = 0.4999

L = 2 4 5 5 5 5

L = 3 4 6 11 12 12

L = 4 4 6 12 15 15

L = 5 4 6 12 15 15

L = 6 4 6 11 14 15

Table 4: Condition number Mh
λ

Ah
λ

for P2 × P1

h = 2−L ν = 0.25 ν = 0.4 ν = 0.49 ν = 0.499 ν = 0.4999

L = 2 1.20 1.71 4.31 5.69 5.89

L = 3 1.20 1.71 4.38 5.81 6.02

L = 4 1.19 1.71 4.38 5.81 6.02

L = 5 1.18 1.71 4.38 5.81 6.02

L = 6 1.17 1.71 4.38 5.81 6.02

show that the proposed preconditioner, Mh
λ
, remains stable as ν → 0.5−, i.e., as λ → ∞, re-

gardless of the choice of finite-element space for p, as long as it forms a Stokes’ inf-sup stable

finite-element pair. While the preconditioner is robust for several families of finite elements, in

our view, the best suited ones are elements recently developed in [35, 30], as they provide spaces

with projections that commute with the divergence and lead directly to discretizations for linear

elasticity. Finally, we note that this work would be useful in designing auxiliary space precondi-

tioners for the elasticity equation when discretized using (any) stable finite-element space.

Acknowledgements

The work of Adler and Hu is partially supported by the National Science Foundation (NSF)

under grant DMS-2208267. The research of Zikatanov is supported in part by the U. S.-Norway

Fulbright Foundation and the U. S. National Science Foundation grant DMS-2208249.

A. Proof of Lemma 3.1

Lemma A.1. Let R be the space of rigid body motions

R =
{
c +mx | c ∈ Rd, m ∈ so(d)

}
,
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where x is the position vector in Rd and so(d) is the algebra of the real and anti-symmetric d × d

matrices. Then it holds that

‖∇u‖ . ‖ε(u)‖, ∀u ∈ [H1
D(Ω)]d ∪ (

[H1(Ω]d ∩R⊥L2
)
. (A.1)

Proof. First, we only consider u ∈ V = [H1
D

(Ω)]d and remark that the proof for the case when

u ∈ [H1(Ω]d ∩ R⊥L2 is similar and simpler.

To start, assume that (A.1) is not true. Then, there exists a sequence {vn} ⊂ V such that

‖∇vn‖ = 1 and ‖ε(vn)‖ ≤ 1
n
. From the Poincaré inequality, we conclude that {vn} is a bounded

sequence in L2(Ω). Next, since the embedding V = [H1
D

(Ω)]d →֒ L2(Ω) is compact, we conclude

that this bounded sequence has a subsequence convergent in L2(Ω). We denote the subsequence

again by {vn}. Applying (3.3) to u = (vn − vm) for sufficiently large n and m, we find that {vn} is

a Cauchy sequence in V and hence, converges to some element v ∈ V . This gives ‖∇v‖ = 1 and

ε(vn)→ 0. Hence, ε(v) = 0. This implies that v is a rigid body motion, namely, v = mx + c ∈ R.

What remains is to show that if ΓD has a nonzero (d − 1) dimensional measure, then v = 0.

This will lead to a contradiction with the assumption that (A.1) does not hold. Let us pick x ∈ ΓD

such that ΓD is smooth in a neighborhood of x. For the case of a polyhedral domain, which

we consider here, take x in the interior of a planar face of ΓD. For any y that is in this planar

face, we have m(x − y) = 0. Since the face is of dimension (d − 1), it follows that m has at

least a (d − 1)-dimensional kernel. However, m is antisymmetric and real, and all its nonzero

eigenvalues are pure imaginary and are complex conjugate to each other, that is, the nonzero

eigenvalues come in pairs. Hence, we cannot have any nonzero eigenvalue of m. Thus, m = 0

and v is a constant vector vanishing on ΓD. We then conclude that v = 0 which contradicts

‖∇v‖ = 1 and shows (A.1).
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