
A Collaborative testbed Web Tool for Learning Model
Transformation in Software Engineering Education

D. Rodriguez-Gracia, J. Criado, L. Iribarne1, N. Padilla

Applied Computing Group, University of Almeria, Spain

Abstract

Software Engineering provides mechanisms to design, develop, manage and

maintain social and collaborative software systems. At present, the Software

Engineering Curricula includes teaching Model-Driven Engineering (MDE) as

a new paradigm that enables higher productivity, attempting to maximize com-

patibility between systems. Modern learning methods MDE require the use of

practical approaches to analyze new model-transformation techniques. Model

transformations are carried out by using very high-level languages, like the ATL

language. This model transformation language is built as a plugin for the Eclipse

framework, and users who want to collaborate and develop software with it,

have some difficulties executing ATL transformations outside this platform. To

handle models at runtime, it is interesting to perform the transformations in a

standalone way. In this context, we have developed a testbed web tool which

aims to be useful for learning model transformation techniques. The tool offers a

Graphical User Interface to test and verify the involved model transformations.

The proposal is useful as a collaborative scenario for learning MDE and model

transformation issues and techniques in Software Engineering education.

Keywords: MDE, Model Transformation, M2M, ATL, EMF, Learning tool.

1Email address: luis.iribarne@ual.es

Preprint submitted to Computers in Human Behavior November 27, 2014

1. Introduction

Nowadays, the Software Engineering (SE) educators have to deal with the

difficulty of teaching students not only the theoretical concepts (Offutt, 2013)

but also the engineering processes for actual projects. It is often not easy to find

representative examples that illustrate the software engineering process and the

difference of abstraction between software engineering programs and computer

science programs (Parnas, 1999). Nevertheless, the best way to get in touch

with these techniques is testing them by means of practical examples and using

the right tools when students are learning SE.

At present, the Curriculum in software engineering includes teaching Model-

Driven Engineering (MDE) as a new paradigm in the software development that

enables higher productivity attempting to maximize compatibility between sys-

tems. The previous statements can also be applied in the case of MDE, because

this methodology requires the use of practical approaches that allow both the

educators and software engineering students to analyze model transformation

techniques.

Within MDE, model transformations are the main mechanism for the de-

velopment of software systems, because these operations allow us to automate

the management of the models which have been defined to describe them. In

Model-Driven Architecture (MDA), model transformations have traditionally

been used at design time to build software from the Computation Indepen-

dent Model (CIM) level, going through Platform Independent Model (PIM) and

Platform Specific Model (PSM) levels, to the code level. Furthermore, model

transformations have also been used to refine models of a particular level based

on certain modifications of the system along its life cycle. However, at present,

some systems require to adapt themselves at runtime due to the changes in the

system context or due to new requirements that were not detected in the design

phase (Blair, 2009).

The most powerful method for implementing model transformations is the

use of transformation languages. ATLAS Transformation Language (ATL)

2

(Jouault, 2008) is one of the most widely used model transformation languages.

It is usually executed using the specific plugin within the Eclipse platform. This

fact implies that learning, design, implementation and execution of ATL model

transformations depend on the platform, which is not always desirable. It may

be interesting to be able to run the transformations outside such framework,

allowing more open access to model transformation techniques and encouraging

the use of such transformations to adapt systems at runtime.

In this context, the teaching-learning process can be improved if it is carried

out collaboratively between the different actors involved in the process. In

this regard, Computer-Supported Collaborative Learning (CSCL) may provide

the strategies required to successfully achieve such process. CSCL is based

on the development of software applications in which the collaboration has a

special emphasis. In this paper, we describe a tool available on the web that

aims to bring software engineering and model transformation techniques to SE

education. This tool is part of a series of applications that together conform a

CSCL environment. In this socio-technical environment, two types of products

appear: those products used for learning a specific feature of the domain of the

SE (such as the tool described in this paper), and those ones used to support

collaboration tasks (e.g., a collaborative editor, a subversion repository, etc.).

This paper focuses solely on describing the product which has been devel-

oped for the collaborative learning of model transformation techniques. For this

purpose, the tool makes use of ATL and Eclipse Modeling Framework (EMF)

(Steinberg, 2008) libraries to provide model transformation and model valida-

tion services. These capabilities have been tested by implementing a sequence

of transformations at runtime. This transformation sequence results in an adap-

tation process which is in charge of dynamically generating a non-preset Model-

to-Model (M2M) transformation from a repository of rules, which is responsible

for adapting component-based software systems. Thus, the tool allows us to

study how model transformations work based on the execution of this adap-

tation process, which operates in a standalone way without depending on the

Eclipse platform.

3

As mentioned above, the main use case of the tool is to provide an execution

environment for testing the adaptation of component-based systems. Therefore,

any software system which is built from components can be a use case of the

tool and, consequently, of the underlying adaptation process. Therefore, some

application examples are the smart home software systems, smart TV applica-

tions, component-based robotic systems, widget-based user interfaces, etc. All

these example scenarios offer a component-based architecture that may have

the necessity of being adapted at runtime and hence the proposed tool can be

used to learn how model transformations can be applied within this context.

The rest of the article is organized as follows. Section 2 reviews the context

of the tool and the implemented adaptation process. Then, Section 3 describes

the tool design and implementation details. Later, Section 4 gives some trans-

formation examples for the better understanding of how the tool works and

discusses the results. Section 5 shows an overview of related works and, finally,

Section 6 presents the conclusions of the work.

2. Adapting component-based software systems

In order to understand the developed tool, it is necessary to describe the sce-

nario from which the model transformation sequence that is executed emerged.

The aim of our sequence of transformations is to adapt component-based soft-

ware systems at runtime. In our research work, component-based software sys-

tems are represented in four levels, from the task specification to the running

software architectures as it is explained in (Criado , 2012) (see Figure 1). The

highest level of abstraction that describes our architectures is the task and con-

cepts level which matches the CIM level in MDE. The next one is the abstract

architectural model level which corresponds to the PIM level in MDE. It rep-

resents the software architecture in terms of what kind of components it must

contain, what the relationships between them are like, and what specifications

these components have. Then, the concrete architectural model level corre-

sponds to the PSM level in MDE and it describes what concrete components,

4

which have been selected from a repository, best fulfill the abstract definition of

the software architecture. Finally, the code level in MDE is represented by the

final software architectures, which are made up of the source code that generates

the running software system.

PIM

PSM

CIM

MDE

Concrete
Arch. Model1

Tasks and
concepts

Code Final GUI1

Concrete
Arch. Model2

Concrete
Arch. Model3

Abstract
Arch. Model3

Final GUI2

Model-driven adaptation of component-based systems

Final GUI3

Abstract
Arch. Model1

Dynamic Model
Transformation1

Abstract
Arch. Model2

Dynamic Model
Transformation2

Figure 1: Model Transformation of Component-based systems

The tool focuses on the execution of the mentioned transformation sequence,

which is performed at the abstract level of the architecture definitions. Its goal

is to adapt an architectural model using an M2M transformation not defined a

priori which is built at runtime by selecting some transformation rules defined

in a repository (Rodriguez, 2012). The transformation that adapts the archi-

tectural models is horizontal and it occurs in the PIM level. In addition, this

kind of transformation is endogenous, because the source and the target models

are defined according to the same metamodel (Mens, 2006).

Our adaptation process comprises a sequence of M2M transformations which,

taking as inputs (a) an initial architectural model, (b) a model with the context

information and (c) a repository model containing the transformation rules,

generates (d) the adapted architectural model as output (Figure 2). Although

the purpose of this paper is not to describe the adaptation process in depth, it

is necessary to briefly introduce the involved transformations:

(a) ContextProcessing is an M2M transformation in charge of processing

the context information and resolving the adaptation operations that must

be executed.

5

(b) RRR is an M2M transformation which is responsible for rating the trans-

formation rules of the repository.

(c) RuleSelection is an M2M transformation process which selects the high-

est rated rules.

(d) RSL is an M2M transformation that updates the attributes of the rule

repository based on the selected rules.

(e) RuleTransformation is a Higher-Order Transformation (HOT) (Tisi,

2009) which is in charge of translating the selected adaptation rules into

ATL rule model.

(f) ATLExtraction is a Textual Concrete Syntax (TCS) (Jouault, 2006)

extraction process responsible for generating the ATL code from the ATL

rule model.

(g) ArchitecturalModelTransformation is the M2M transformation cre-

ated dynamically as result of the transformation sequence and it is in

charge of adapting the initial architectural model by applying the selected

transformation rules.

AAOpMM
Context

Processing
RSL Rule

Selection

Rule
Transformation

ArchitecturalModel
Transformationi ArchitecturalMi ArchitecturalMi+1

RMi

(1)

(2)

(3)

(3)

(4)

(5)

(5)

(6) (7)

(7)

(8)

(9)

(12)

(13) (14)

: conforms to

: Model

: M2M

ATLExtraction TMi

: TCSExtraction

(10) (11) (11)

AAOpMi
RRR

OBMi

(3)

: in / out

OBMM

ATLMM

ArchitecturalMM

ATL-TCS

TCSMM

RMM

RRM
(repository)

(b) (a) (d)

(c)

Figure 2: The adaptation schema executed by the tool

These transformations within the adaptation sequence are invoked in the

correct order from the web tool and the generated results are shown to the

6

user by means of a graphical user interface. These results include: the adapted

architectural model, the updated values of the repository of rules and the log

information related to the model transformations executed.

3. A web tool for testing model transformations

The sequence of transformations described above provides an appropriate

scenario to learn the behavior of model transformations. However, it is es-

sential to have a tool to carry out this adaptation process, not only running

the transformations involved, but also providing the user with a test scenario

which allows him/her to vary the input conditions and see the results that are

produced as output.

The developed tool is strongly linked to the one of the adaptation domain in

which our research work is based. In such domain, architectural models repre-

sent graphical user interfaces as part of research projects of the Spanish Ministry

and the Andalusian Government that require adaptation of Graphical User In-

terfaces (GUI) at runtime. In this context, it is useful to have component-based

user interfaces that adapt their functionality depending on the circumstances.

We intend to develop smart graphical user interfaces (SmartGUIs) which learn

from the user interaction, modifying and adapting their behavior.

Specifically, the tool describes an adaptation scenario in which a cooperative

task is performed (Iribarne, 2012). In this task, three users with different roles

participate and, at a certain point, they need to communicate. Therefore, the

user interfaces should be adapted, incorporating the communication components

(textual chat, audio, video, etc.) that allow them to interact. In addition, the

communication components that are incorporated into the GUIs depend on the

user’s profile and certain context variables.

In order to make the tool accessible from any platform, a graphical user

interface (Figure 3) has been developed in the web environment. Using this GUI,

students can test the input of different values of context variables (A). They can

select between different user profiles, considering that each one is associated

7

with a set of available components, which affects the transformation process.

Moreover, they can vary not only the values of the bandwidth and the memory

available in the system, but also the value of the average size of the files that are

being exchanged. The values affect the output of the transformation sequence,

since the generated architectural model must be adapted to the interaction and

the available resources.

Furthermore, the web tool shows some information about the repository

rules that are being used by the adaptation process (B). In this part of the

GUI, the attribute values of the rules involved in the model-to-model transfor-

mation processes are displayed. In addition, when the transformation sequence

is performed, students can see the updated values of the affected rules. On the

other hand, the right side of the GUI shows the current architectural model (C).

In this part of the user interface, students can see the architectural model that

is obtained at the end of the transformation sequence. This architectural model

describes the component-based graphical user interface as mentioned above, so

it is not the final view of the GUI, but just a representation of it.

Tool front-end

ATL
transformation

libraries

EMF
validation
libraries jQuery JSP calls

JSON responses

(1)
(4)

(2) (3)

(C)

(B)

(A)

(D)

(E)

Figure 3: Graphical user interface of the web tool

In order to provide more flexibility in the test scenario, the tool gives us

8

the possibility of selecting which rule repository is going to be used (D). We

can either select a predefined rule repository model from a series of predefined

models, or provide our own repository model. Once the modifications have

been made in the context variables, and the rule repository is selected, we

can start the execution of the transformation sequence by pressing “Launch

Adaptation” button. When the transformation processes have been executed,

the tool displays the adapted architectural model, the updated rule repository,

and some log information about the rules that have been performed in the M2M

transformations. This piece of information, shown at the bottom of the user

interface (E), allows us to check if the process is working properly. Additionally,

this part of the tool helps students to better understand the implemented model

transformations.

In summary, the tool consists of five areas, two for the modification of the

input data and three for the visualization and analysis of information generated

as output. In parts (A) and (D), we can change both values of the context vari-

ables as input rule repository, respectively. Furthermore, in parts (B), (C) and

(E), we can see the updated values of the repository of rules, the adapted archi-

tectural model, and the log information related to the model transformations

executed.

The tool has been implemented following a three-tier server architecture so

that it can be executed from any web platform without installing any local appli-

cation or Eclipse plugin. The graphical user interface described above performs

the functions of the front-end tool and is deployed in an Apache Web Server.

Another server offering the M2M transformation services has been developed

and deployed in a Tomcat Web Server. Finally, a third server that performs the

validation processes is also deployed in a Tomcat Web Server (see Figure 4).

This server architecture allows us to separate the tool functionalities and

make them independent. With this aim, ATL and TCS libraries have been

deployed in a separated server to provide functions responsible for executing

each M2M transformation and TCS extraction of the adaptation process. Ad-

ditionally, EMF libraries have been deployed in a different server that provides

9

functions which are called from the server in charge of the model transforma-

tions.

The steps to operating the tool are summarized as follows. In the first place,

the tool is accessed by means of the front-end represented by the described GUI.

Then, when the adaptation process is launched, the transformation services are

called asynchronously from the front-end server in order to execute the sequence

of model transformations (step 1 in Figure 3). These services are called through

Java Server Pages (JSP) requests. Within the transformation server, for each

new model that is generated, the validation server is called to check that this

model is built according to its metamodel (step 2).

The validation services are also called through JSP requests and their func-

tion is to check that Object Constraint Language (OCL) (Cabot, 2012) con-

straints and other structural definitions specified in the metamodels are fulfilled.

Once the validation has been run, the server sends a response in JavaScript

Object Notation (JSON) format (step 3), and the sequence of transformations

continues if the model has been successfully validated; otherwise, it will pro-

vide an error message. When all M2M transformations have been performed

and once checked that the models have been generated correctly, the result is

returned to show the user the adapted architectural model, the updated rule

repository and the log information about the transformation sequence (step 4).

4. Case study

In order to provide students with a test scenario, this section shows a case

study in which the tool is executed with specific input values. Let us remember

that the sequence of model transformations implemented by the tool aims to

adapt component-based GUIs, so it is necessary to briefly describe the assump-

tions of this scenario.

In our domain, a user interacts with a GUI which is made of the following

components: an email component, a chat, an audio component, a low-quality

video, a high-quality video, a file sharing component (in the same way as Drop-

10

box) and a digital blackboard. Moreover, the user profile has such an impact

on the components that it neither has the file sharing component nor the black-

board available. Similarly, the “technical” profile does not have the high quality

video component available either. In addition to the user profile, the context

variables related to the available bandwidth and memory, and the average size

of shared files also affect the output of the transformation process. Therefore,

the sequence of model transformations will modify the input model according

to the context variables and the current state of the architecture.

Let us suppose a user who starts with a graphical user interface with three

single, simple components: an Email component, a Chat component and an Au-

dio component. The user profile is a “technical” profile, the available bandwidth

is 750 kbps, the available memory is 1,500 MB and the average size of the shared

files is 50 MB. Then the following changes in the values of the context variables

occur: the new available bandwidth is 1,500 kbps, the available memory is 3,000

MB and the user is sharing files with an average size of 200 MB. Consequently,

the new adapted architectural model will incorporate the low quality video and

file sharing components, because the available resources have increased and the

file sharing component will be beneficial for the user, since large files are being

exchanged. We can see the transformation example in Figure 4.

Figure 4: Model transformation, Example #1

11

Figure 5: Model transformation, Example #2

In the next transformation example, let us suppose that the user who in-

teracts with the graphical user interface changes from a “technical” profile to

a “political” profile and, currently, the user is sharing files with an average

size of 100 MB rather than 200 MB. Then, on applying the sequence of model

transformations implemented by the tool, the resulting architectural model will

remove the file sharing component and the low quality video component and

will insert the high quality video component (see Figure 5). This is because, for

the technical profile, the high quality video component is not available, and for

the new value of the average size of the shared files, the file sharing component

is not needed (as it is possible to continue sharing smaller files using the chat

component).

The adaptation actions that can be performed depends on the available rules

of the repository which is managed by the tool. For this reason, we implemented

in the tool an option to be able to select between different repositories. It is

also possible to upload a custom repository with ATL transformation rules.

Thus, the tool can be used to test the behavior of our own transformation rules.

Both previous examples show the corresponding transformations obtained by

using an example repository, which is composed by the rules shown in Table 1.

According to the example domain, there is a rule for inserting each component

12

Table 1: Available rule repository

Rule ID Adaptation action

#1 add email

#2 add chat

#3 add audio

#4 add videoLQ

#5 add videoHQ

#6 add fileSharing

#7 remove email

#8 remove chat

#9 remove audio

#10 remove videoLQ

#11 remove videoHQ

#12 remove fileSharing

as well as a rule for its deletion.

With an illustrative purpose, we added to this repository the two rules shown

in Figure 6. The first rule (rule13) is in charge of inserting two components: a

simple component representing a low quality video element, and a complex com-

ponent (containing two simple components) for the management of the video

recording. Therefore, this rule is like the rule #4, but with an additional be-

havior. The second rule (rule14) is intended to delete the email component if

there is a chat component in the architecture.

In this case, if we use the previous repository (Table 1) with the addition

of the rules of Figure 6, we obtain another output model as a result, which is

different from the one shown in Figure 4. Taking the same values for the input

context variables and the same input model, the obtained model incorporates a

low-quality video component, a recording manager and a file sharing component;

otherwise, the resulting model removes the email component, as we can see in

Figure 7. We assume that the rule #13 is selected instead the rule #4 and that

the rule #14 is selected in addition to the rule #6. The context processing and

the selection of the rules are two modules of the adaptation schema (Figure 2),

and are not explained because the internal behavior of the adaptation is out of

the scope of this paper.

13

rule rule13() {

to

t1 : AMM!SimpleAbstractComponent (

component_name <- ’VideoLowQ’,

component_parent <- thisModule.getComponent(’GUI’)),

t2 : AMM!ComplexAbstractComponent (

component_name <- ’RecManager’),

t3 : AMM!SimpleAbstractComponent (

component_name <- ’LayoutSelection’

component_parent <- t2),

t4 : AMM!SimpleAbstractComponent (

component_name <- ’OutputConfig’

component_parent <- t2)

}

rule rule14() {

from

f : AMM!SimpleAbstractComponent (

f.component_name = ’Email’ and

thisModule.existComponent(’Chat’))

to drop

}

Figure 6: New transformation rules added to the repository

New context values:
- Technical profile

- 1,500 kbps bandwidth

- 3,000 MB main memory
- 200 MB avg. size of

 shared files

Model

Transformations

Figure 7: Model transformation, Example #3 (with new transformation rules)

14

Thus, we demonstrated how the results of model transformations are affected

by the inputs to these processes. In our example scenario of adaptation, the

inputs are the context variables and the component-based (input) models. We

also illustrated the importance of the rules which form part of the model trans-

formation process by introducing two new rules to the repository of available

rules. In this sense, we shown how our tool offers the possibility of modifying

the rule repository and use it in the transformation process. Users can try the

tool and deal with e-learning model transformation techniques by visiting the

following link: http://acg.ual.es/isoleres/adaptation.

5. Related work

There is a wide range of transformation languages such as ATL (Jouault,

2008), ETL (Kolovos, 2008), RubyTL (Sanchez, 2006) or TGG (Shurr, 1995).

Nevertheless, not all languages provide powerful tools for the specification of

the transformations or may be useful for teaching and for its application in

EIS education. Regarding model transformation tools, most of them are imple-

mented as plugin within the Eclipse environment or require the use of specific

software for their handling, execution and for testing purposes to assist the user

in learning.

Wires tool (Rivera, 2009) provides a graphical and executable language to

implement ATL transformations. The tool also offers mechanisms to enable

modular composition of complex model transformation chains. With this tool,

you can define a sequence of transformations by connecting the inputs and

outputs of each transformation with the required item. In contrast, the sequence

of transformations is already pre-established in our tool, and our goal is to show

their behavior, so that the user can change the values of the input models and

analyze their results.

The work in (Guerra, 2010) presents an Eclipse tool to define model transfor-

mation specifications by using a visual concrete syntax. This tool is developed

with Graphical Modeling Framework (GMF) (Gronback , 2008) and generates

15

ETL transformations. This tool is useful for building visual transformation lan-

guages, as it makes their understanding and teaching easier. However, it does

not provide extra support for the execution of the transformation or for the

visualization of the models on which it operates.

Regarding the model validation, the work presented in (Bezivin, 2006) de-

scribes how the ATL model transformation tool itself may be used to validate

the models generated in a transformation process. In our case, the model vali-

dation is performed by using the EMF libraries, so that the models are validated

according to their metamodel, due to the structural constraints and the OCL

constraints defined within the metamodel through OCLInEcore.

Furthermore, the USE tool (Gogolla, 2007) allows models with OCL con-

straints to be validated contrary to the developer’s assumption. This tool shows

not only a graphical user interface to navigate through the models and the

constraints but also some log information about the executed model checking.

Another work making a comparison of tools for OCL can be found in (Toval,

2003).

It is possible to find some related work that provides a test scenario. In

(Moring, 2009), a tool implemented within DiVA project to test a dynamic cus-

tomer relationship management (DCRM) system is shown. In this tool, the

system analyzes the context and explicitly constructs a suitable configuration

using Aspect-Oriented Modeling (AOM) techniques at runtime. The tool vali-

dates this configuration by using traditional MDE techniques, such as invariant

checking or simulation. Moreover, the system automatically generates a safe

reconfiguration script to actually adapt the running business system. The dif-

ference is that our tool uses model transformations to perform reconfigurations,

rather than Dynamic Software Product Lines (DSPL).

6. Conclusions

This paper presents a collaborative web tool that can be used for the experi-

mentation by students of Software Engineering (SE) courses. The tool has been

16

developed for the implementation of a sequence of model transformations and

allows us to perform the involved model transformations and model validations

as part of an adaptation process for component-based graphical user interfaces.

The transformation and validation services are deployed on a three-tier server

architecture and are called asynchronously by the web tool.

Among other features, such services can be reused and invoked by different

web applications that require the execution of ATL model transformations and

EMF model validations. For a better understanding of the tool, we presented a

case study with three execution examples, which shows how an initial model is

adapted to variations in the context variables introduced by means of the tool.

Using this developed tool, we achieved two objectives. On the one hand,

it is a validation tool of our proposed adaptive model transformation at run-

time and, on the other hand, it is a practical approach to MDE. Thus, the

final goal of the proposal presented in this paper is the tool can be used as an

educational-learning object, in which the users may experience (in a practical

way) the model transformation concepts, and perform a sequence of operations

at runtime, allowing the users to analyze the obtained results.

As mentioned above, our research work focuses on the development of a

CSCL (Computer-Supported Collaborative Learning) environment for SE learn-

ing. This environment is made up of a set of SE domain-specific and general-

purpose tools aimed to support the teaching-learning collaborative processes.

Therefore, a key issue is the integration of the tool described in this article with

the existing ones in the CSCL environment.

Finally, we want to develop some satisfaction and opinion surveys that will be

carried out on students using the web tool. In addition, we intend to incorporate

the possibility of dynamically defining the context variables and their range in

order to make the tool more open and less restricted to the scenario.

17

Acknowledgments

This work was funded by the EU ERDF and the Spanish Ministry of Econ-

omy and Competitiveness (MINECO) under Project TIN2013-41576-R, and

the Spanish Ministry of Education, Culture and Sport (MECD) under a FPU

grant (AP2010-3259), and the Andalusian Regional Government (Spain) un-

der Project P10-TIC-6114. This work was also supported by the CEiA3 and

CEIMAR consortiums.

References

J. Offutt, “Putting the Engineering into Software Engineering Education”, IEEE

Software, 30(1), 2013, pp. 93–95.

D. Parnas, “Software Engineering Programs Are Not Computer Science Pro-

grams”, IEEE Software, 16(6), 1999, pp. 19–30.

G. Blair, N. Bencomo and R.B. France, Models@Run.time, Computer, 40(10),

2009, pp. 22–27.

F. Jouault, F. Allilaire, J. Bzivin and I. Kurtev, “ATL: A model transformation

tool”, Science of Computer Programming, 72(1-2), 2008, pp. 31–39.

D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, “EMF: Eclipse Mod-

eling Framework”, Addison-Wesley Professional, 2008.

J. Criado, L. Iribarne, N. Padilla, J. Troya and A. Vallecillo, “An MDE approach

for Runtime Monitoring and Adapting Component-based Systems: Applica-

tion to WIMP User Interface Architectures”, in 38th Euromicro Conference

on Software Engineering and Advanced Applications, 2012, pp. 150–157.

D. Rodrguez-Gracia, J. Criado, L. Iribarne, N. Padilla and C. Vicente-Chicote,

“Runtime Adaptation of Architectural Models: An Approach for Adapting

User Interfaces”, in 2nd International Conference on Model and Data Engi-

neering, 2012, pp. 16–30.

18

T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation”, Electronic

Notes in Theoretical Computer Science, 152, 2006, pp. 125–142.

M. Tisi, F. Jouault, P. Fraternali, S. Ceri and J. Bzivin, “On the Use of Higher-

Order Model Transformations”, in 5th European Conference on Model-Driven

Architecture Foundations and Applications, 2009, pp. 18–33.

F. Jouault, J. Bzivin and I. Kurtev, “TCS: a DSL for the Specification of Textual

Concrete Syntaxes in Model Engineering”, in 5th International Conference on

Generative Programming and Component Engineering, 2006, pp. 259–254.

L. Iribarne, N. Padilla, J. Criado, C. Vicente-Chicote, “Metamodeling the Struc-

ture and Interaction Behavior of Cooperative Component-based User Inter-

faces”, Journal of Universal Computer Science, 18(19), 2012, pp. 2669–2685.

J. Cabot and M. Gogolla, “Object Constraint Language (OCL): A Definitive

Guide”, in M. Bernardo, V. Cortellessa and A. Pierantonio (eds), Formal

Methods for Model-Driven Engineering, LNCS, vol. 7320, Springer, Heidel-

berg, 2012, pp. 58–90.

D.S. Kolovos, R.F. Paige, F. Polack, “The Epsilon Transformation Language”,

Theory and Practice of Model Transformations, 2008, pp. 46–60.

J. Snchez-Cuadrado, J. Garca-Molina, M. Mernanguez-Tortosa, “RubyTL: A

Practical, Extensible Transformation Language”, Model Driven Architecture-

Foundations and Applications, 2006, pp. 158–172.

A. Schrr, “Specification of graph translators with triple graph grammars”,

Graph-Theoretic Concepts in Computer Science, 1995, pp. 151–163.

J.E. Rivera, D. Ruiz-Gonzlez, F. Lpez-Romero, J. Bautista and A. Vallecillo,

“Orchestrating ATL Model Transformations”, in MtATL, 2009, pp. 34–46.

E. Guerra, J. de Lara, D. Kolovos and R. Paige , “A Visual Specification Lan-

guage for Mode-to-Model Transformations”, in 2010 IEEE Symposium on

Visual Languages and Human-Centric Computing, 2010, pp. 119–126.

19

R.C. Gronback, “Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit”, Addison-Wesley Professional, 2008.

J. Bzivin and F. Jouault, “Using ATL for Checking Models”, Electronic Notes

in Theoretical Computer Science, 152, 2006, pp. 69–81.

M. Gogolla, F. Bttner and M. Rochters, “USE: A UML-based specification envi-

ronment for validating UML and OCL”, Science of Computer Programming,

69(1–3), 2007, pp. 27–34.

A. Toval, V. Requena and J. Fernndez, “Emerging OCL tools”, Software and

Systems Modeling, 2(4), 2003, pp. 248–261.

B. Moring, O. Barais, J.M. Jzquel, F. Fleurey and A. Solberg, “Mod-

els@run.time to support dynamic adaptation”, Computer, 42(10), 2009, pp.

44–51.

20

	Introduction
	Adapting component-based software systems
	A web tool for testing model transformations
	Case study
	Related work
	Conclusions

