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Abstract

The Ant Colony Optimization method is a heuristic algorithm for solving various optimization problems, particularly
the combinatorial optimization problems. Traditional ant-optimization methods might encounter search stagnation owing
to a biased pheromone map that is dominated by local optimal trails. To overcome this drawback and lower the number of
solution constructions for finding the optima, this paper presents an improving ant-optimization system, the Superior/Infe-
rior Segment-Discriminated Ant System (SDAS). This system proposes a segment-based pheromone update strategy to
deposit pheromone on superior segments and withdraw pheromone from inferior ones. The method uses the control-chart
technique to define superior and inferior limits to partition the constructed solutions into superior, inferior, and ordinary
solutions. Inferior and superior segments are then extracted from the superior and inferior solutions by stochastic set oper-
ations. Since the pheromone map is not easily dominated by any local optimal trail, the solution search is more efficient
and effective. Several benchmarks from the TSP-LIB and OR-LIB were used as sample problems to test the proposed sys-
tem against other ant-optimization systems, including the AS, ACS, AS rank, AS_elite, and MMAS. Numerical results
indicated that the SDAS obtains solutions that are similar to or better than others. Maturity index for the pheromone
map was discussed and experimental results showed that the proposed method was able to prolong the time for the
map to maturity to avoid earlier search stagnation.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Ant Colony Optimization (ACO) method is a population-based heuristic method that has been suc-
cessfully applied to solve several NP-hard combinatorial optimization problems (Dorigo & Stiitzle, 2003,
2004; Dorigo, Caro, & Gambardella, 1999). The first ACO algorithm was the Ant System (Colorni, Dorigo,
& Maniezzo, 1991) developed by Dorigo, Maniezzo, and Colorni (1996), which was applied to the traveling
salesman problem. The development of the system was inspired by the food-searching behavior of real ants.
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Ants communicate with each other by depositing pheromones on the trails they traverse. Remarkably, one will
find a colony of ants traveling on the shortest path between the food source and their formicary to move the
food home.

In general, an ACO method uses a set of artificial ants to construct solutions step by step and evolve the
solutions toward the optima. Three algorithmic mechanisms are involved in constructing a solution. The first
is a proportional probabilistic selection mechanism that guides the ants to select the next thing or object to
participate in the process of solution construction. The second is a memory-recording mechanism that makes
each ant record its own solution under construction and stores the best solution constructed so far by the col-
ony of ants. The third is a pheromone update mechanism that maintains a pheromone map to guide the ants’
solution search. The operations for constructing a solution are executed by the set of artificial ants iteration by
iteration to evolve the best solution constructed so far.

After the debut of the Ant System (AS), several extended, enhanced, and improved ant systems were suc-
cessively introduced. Typical systems include the Ant Colony System (ACS) (Dorigo & Gambardella, 1997),
the elitism-based (AS_elite) and the rank-based (AS_rank) Ant Systems (Bullnheimer, Hartl, & Strauss, 1999),
and the Max—Min Ant System (MMAS) (Stiitzle & Hoos, 2000). Some of the improved systems focus on bet-
ter selection mechanisms, some on pheromone update operations, and some on solution constructions. To
enhance the effectiveness of the ACO method, this paper presents an improved ant system, Superior/Inferior
Segment-Discriminated Ant System (SDAS). The SDAS proposes a segment-based pheromone update strat-
egy and an addition/subtraction discriminated pheromone update operation to avoid a quickly matured pher-
omone map (a biased map that is dominated by local optima). To examine the performance of the SDAS, we
only implemented the system for the traveling salesman problems and bin-packing problems; although the
applications can be applied to various kinds of combinatorial optimization problems.

We first briefly review several ACO methods and their approaches to solving the TSP and BPP in Section 2;
then present our ant system, the SDAS, in Section 3. Sections 4 and 5 display and compare the numerical
results of our method with other systems in solving the traveling salesman and bin-packing problems. In
the final section, conclusive remarks are addressed.

2. Literature review and background to theory

The Ant Colony Optimization method is a constructive heuristic algorithm. The solution to an optimiza-
tion problem is constructed step by step, by a population of agents — artificial ants. This method has been
widely used in solving combinatorial optimization problems whose solutions can be constructed iteratively
by heuristic algorithms. From a generalized viewpoint, a set of objects can be identified in a combinatorial
optimization problem. Constructing a solution to the problem is a repeated procedure that deals with these
objects one by one. For example, the objects for a Traveling Salesman Problem (TSP) are the cities to be vis-
ited by the salesman. An artificial ant composes a sequence of these cities (objects) one by one to form a trav-
eling route. For a Bin-Packing Problem (BPP), the objects are the items (parcels or boxes) to be packed into a
minimum number of bins. An artificial ant repetitively selects an object to place it to an allocated group
(opened bin) or additionally creates a new group (opens a new bin) before the placement, until no object is left.

In constructing a solution, objects are processed by the ant one by one until all of them are processed and
put into the solution. Normally, ants carry out this process by repeatedly selecting an object stochastically
from an updated candidate set of objects. Objects in the candidate set are either selected from the set of
non-processed objects stochastically or deterministically (for reducing the computation cost), or selected from
the set subject to constraints of the problem. The selected object is directly appended or inserted into the par-
tial solution under construction. The procedures of updating the candidate set, selecting an object, and placing
it to the solution are then iteratively executed until all objects are processed.

Although the object selection procedures for the TSP and BPP are in general the same, their solution struc-
tures are different. Suppose that z is the number of objects and @ is the set of the objects, O = {1,2,...,z}. Let
S represent a solution; then S for a TSP is an ordered sequence of objects, where

S:<51752a~~~7sz>7 S[E(Q; Si#sja VZ#J (1)

In contrast, S for a BPP is a set of groups of objects, where
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S= {Sl,SQ,...,Sg} = {{S“,Slg,...,Sl‘sl‘},...7{Sg1,Sg2,...,Sg‘Sg‘}}; Sk € O; k= 1,2,...,g;

£ (2)
J=12, 18] and ) [Si| =z.
k=1

For almost all of the ACO methods, a probability proportional selection method is used to select an object
from the candidate set to construct a solution. The selection probability for each candidate is computed from a
referenced pheromone value on a pheromone map and a computed heuristic value. Specifically, the probability
of object j to be selected to succeed object i is calculated from a pheromone value 7;; and a heuristic value #;;.
The heuristic value #;; is calculated using a local optimization approach to guide the selection complying with
the optimization objective. If the value of #;; is irrelevant with the objective, the optimality quest will be inef-
fective. Detailed formulations of the probability calculations are problem-dependent, and different ant systems
might have their own designs for them. The pheromone value 7; is defined in a pheromone map. The phero-
mone map is usually designed as a two-dimensional matrix, whose elements are constructed from the links
between two objects or between one object and other item (e.g., a bin in BPPs). Different problems have their
own designs of the matrix. An object-sequencing problem is to arrange the orders of objects to achieve an opti-
mization goal, where the TSP is a typical example. The pheromone map is designed as a square matrix,

T Tiz - Tz
Tor T2 0 T2z

T=[t]...= N E (3)
T2l T2 e Tz

The pheromone value 1; is thus defined as the tendency that object i is followed by object j in the ordered
sequence of objects. For a object-grouping problem (e.g., the BPP), a pheromone item 7; may be defined
as the tendency that object i and object j are grouped together in the same group or the tendency that object
i is grouped into group j. For the former case, the map is a square matrix, T = [7;]]... In contrast, T = [1;]..,
for the latter case, where g is the number of groups. Elements in the matrix are normally initialized with a
constant value 7o and then updated by different pheromone update operations in different ACO methods.

To record trails of good solutions on the pheromone map, a solution is decomposed into a set of object-
links and the pheromone values corresponding to these links are intensified. In this paper, an object-link
decomposed from a solution is called a segment. Let L = {I;} be the segment set of all object-links of the prob-
lem, where /;; is directly corresponding to t;;. Therefore, L = {/;]i,j = 1,2,...,z} for the TSP and the BPP with
T =[t;].x-, While L = {/;li=1,2,...,z; j=1,2,...,g} for the BPP with T = [7;]..,. To identify the phero-
mone items to which a solution corresponds or to decompose a solution into object-links, a segmentation
operation on the solution is performed. Let HP™P™ WPe(.) be the segmentation operator of a problem type.
The segmentation result is a set of segments, which is also a subset of L. Therefore,

Hproblem type(s) g L. (4)

Once S is granted the rights for pheromone intensification, the pheromone items corresponding to the segment
set are identified.

At the end of a computational iteration or after a solution construction step, pheromone values on the
pheromone map are updated accordingly. Different update methods have been proposed in much ACO liter-
ature. In current ACO methods, pheromone values are usually intensified by one or a few elite solutions. The
elitism and the amount of pheromone added are determined from evaluating their objective achievements by
the objective function fPro°*™ ¥Pe(.) Conversely, all pheromone values are subjected to evaporation by deduct-
ing a certain amount from the values. In general, two kinds of pheromone intensification strategies are either
individually or jointly conducted in ant-optimization systems: step-wise and trail-wise strategies. The step-wise
pheromone intensification is conducted right after an ant has selected and added an object to the solution
under construction. Since no elitism information is available during the construction, every ant is granted
the rights to lay pheromone on the related segment in each step. The AS (Dorigo et al., 1996) executes this
step-wise pheromone intensification operation to mimic the natural behavior of real ants. This strategy is also
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called online pheromone update. The ACS adopts this strategy but names it local pheromone update (Dorigo &
Gambardella, 1997). The trail-wise strategy, also called offline pheromone update in literature, allows one or a
few ants to update the segments of their solutions when an iteration of solution construction is completed. The
AS_elite and AS_rank systems use this strategy. The ACS also adopts this strategy but names it global pher-
omone update.

As noticed, a pheromone management demon is employed to monitor the trail-wise pheromone intensifi-
cation strategy. This implementation is in fact deviated from natural behaviors of real ants, yet makes the sys-
tem more intelligent. Moreover, most of the ACO methods focus on trail elitism, not segment elitism, and on
pheromone deposit (intensification), not deduction. In contrast, Maniezzo (1999) fist proposed an update
strategy that either increases or decreases the pheromone value based on the objective value of a solution.
The proposed improving method was applied to solve the Quadratic Assignment Problem. Although the con-
cept of pheromone deduction was introduced, the pheromone updates were applied to all the segments of the
solution trail. This paper, however, suggests that not only the trails but also the segments on the trails should
be further distinguished for either rewarded with pheromone addition or punished with pheromone deduction.
Detailed design of this strategy is presented in Section 3.

List 1 outlines the main operations of a general ACO method. The solution construction procedure starts
from line 5 to line 9; its details are problem-dependent. Line 8 executes the step-wise pheromone intensification
strategy when an object is selected and added to the solution. Line 12 executes a user-specified local search to
enhance solution quality; however, this procedure is optional. Line 15 executes the frequently used trail-wise
pheromone intensification strategy to select a few elite trails for pheromone deposit. Line 17 optionally exe-
cutes a pheromone-reset operation to escape from search stagnation.

List 1. The computational flow of a general ACO method.
1. Initialize the pheromone map.
2. Construct an initial solution and assign it the best solution so far.
3. For r < 1 to iteration_limit
4 For k — 1 to number_of ants
5 For i «— 1 to number_of _objects
6. Construct and update the candidate set of non-processed objects.
7. Select one object from the candidate set and add it to the solution.
8 If a step-wise pheromone intensification strategy is used, add pheromone to the related segment.
9 End for
0 If a trail-wise pheromone intensification strategy is used, add pheromone to the segments of the con-
structed trail.
11.  End for
12.  Optionally execute a local search algorithm to improve the solution quality.
13.  Evaluate the constructed solution and update the best solution so far.
14.  Check for stop conditions to exit the algorithm.
15.  If elitism pheromone update strategy is used, identify the elite trails and add pheromone to the seg-
ments of the trails.
16. Evaporate a certain amount of pheromone from all pheromone items.
17. If a pheromone-reset policy is used, check for search stagnation to reset the pheromone map.
18. End for

The following two subsections illustrate the ACO models for the TSP and BPP, which were adopted in the
implementation of the proposed system.

2.1. Ant Colony Optimization methods for the traveling salesman problem
The TSP is essentially an object-sequencing problem. Many practical optimization problems are derived

from the TSP. Examples include various vehicle routing problems, integrated-circuit chip mounting (onto
PC boards) problems, assembly sequencing problems, job scheduling problems, etc. The TSP solution S
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shown in Eq. (1) is a route of ordered cities (objects), where s; is the ith visited city in the route. The set of
segments extracted from the route is:

HTSP(S) = {leSi+17lSi+151|i = 1727 ceeyZ T 1} U {lSzSNlSlSz}' (5)

For example, the extracted segments for a solution S = (1,2,5,3,4) are /5, b1, bs, Isz, Is3, I35, 134, 143, 41, and [14.
The corresponding pheromone items to these segments are then the targets for pheromone intensification. The
objective of the TSP is to minimize the route length

z—1

fTSP(S) = Z dSiS(Hrl) + dS:SI’ (6)

i=1

where d is the distance from city j to city k. In the AS, Dorigo et al. (1996) defined the probability that the ant
chooses city j from the candidate set N; to succeed city i as
o B
T .1
Pl‘j:%, VJEN, (7)
ZkeN;Tiknik

In solving large-scale TSPs, the size of the candidate set N, is set fixed to reduce computation complexity. The
candidate cities in N; are then a fixed number of closest cities to city i. Since the objective of the TSP is to
obtain a shortest route looping through all the cities, selecting a nearest city j to succeed city 7 is preferred.
The heuristic value #; is then simply assigned as the inverse of distance dj; i.e., n; = 1/d;. Power factors o
and f are used to intensify or relieve the influence of the values of 7; and #;;, respectively. Therefore, a higher
value of rfjnfi indicates a higher probability that object j will be chosen to succeed object i. If 77, dominates the
value, the solution search relies heavily on previous construction experience. In this case, search stagnation
occurs easily, since all ants refer to the same pheromone map and the map is likely to be biased by dominating
routes. Conversely, if o is set to 0, the heuristic value #;; dominates the selection and the solution search turns
out to be a greedy search, since local optimization heuristics are usually implemented in the computation of #;;.
After all the ants have constructed their solutions, pheromone values 7;; are updated by

Tij < (1 — p)T[j + ATU; Vi,j, (8)

where p is an evaporation rate that removes a small amount of pheromone from every segment. The added
amount of At; depends on whether the corresponding segment /; of 7; belongs to the segment set resulted
from the segmentation operation on a solution that deserve pheromone intensification. In the AS, since all
solutions constructed from the y ants are eligible for pheromone intensification,

y 0
Aty = Z At A = {gm(sw
k=1

where Q is a scalar and S” is the solution constructed by ant k. Various pheromone update methods for the
TSP were proposed in the successive ant systems for efficiency and quality improvements, such as the AS_elite,
AS rank, ACS, and MMAS.

if 1, € H™P(S)

otherwise,

©)

2.2. Ant Colony Optimization methods for the bin-packing problem

The bin-packing problem can be regarded as an object-grouping problem. A one-dimensional bin-packing
problem is to pack z objects (boxes or parcels with different sizes or weights) into a number of bins, subject to a
size or weight capacity constraint of the bin. The goal is either to use a minimum number of bins to pack these
objects, or to minimize the size or weight variances between the bins when the number of bins is given. The
solution S for the BPP is represented in Eq. (2) as a set of subsets of objects, where

Sk:{sk]7sk21---7sk|Sk\}; SkjEC”; ]:1,2,,|Sk‘ (10)

Note that Uf_,S; = ¢ and the capacity constraints are
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Wk:ZngWO; k=12,...,8, (11)

JESK

where w; is the size or weight of object j and W} is the size or weight capacity of the bin. Levine and Ducatelle
(2004) presented an ant-optimization method for the BPP and Cutting Stock Problem. The objective for the
BPP defined in their work was originally proposed by Falkenauer (1996), which was to maximize

e -1y (1) (12)

Sy

In Eq. (12), g is the number of bins used, W is the total weight of the objects packed in bin k; and 4 is an
objective influence factor of the load fraction of bin to the number of bin used. Maximizing the average of
load fractions of the bins can be interrupted as minimizing the number of bin used. Since the number of bins
used, g, is not predetermined and is to be minimized, the pheromone map used is a square matrix; i.e.,
T = [7;].x-. Therefore, segmentation operation on a BPP solution focuses on the links of objects packed in
the same bin, not on the links between the bin and the packed objects. Therefore, the segmentation operation
on solution S is

HPPP(S) = UH/(Sk), (13)
H'(Sy) = {1li,j € Sk, i #j}. (14)

H'(S)) is the segmentation operation on the packing results of bin k. The operation result is the complete set of
links between objects in bin k. Fig. 1 depicts a BPP solution S ={S},S,,5;,54 ={{5,1},{4,2},
{9,6,3},{7,8}}, which has nine objects packed into four bins. For each object depicted as a round-rectangle
in the bin stack, the value shown within the parentheses is its weight. Segmentation results of the solution are
H,(Sl) = {151,115} for bin 1, H/(Sz) = {142,124}f01' bin 2, H/(Sg) = {19691933 163,169,139, 136} for bin 3, and
H/(S4) = {178, [87} for bin 4. Therefore, HBPP(S) = {151,115, 142,124, 196: 193,163, 169, 139, 136, 178, 187}' If this solution
is granted rights for pheromone intensification, the corresponding pheromone values are to be intensified.
Note that if W, is 10 and the loading influence factor 4 is 2, the load fractions of bins 1 to 4 are ((3 + 5)/
10> = 0.64, (3 + 7)/10)*> = 1.0, (2 + 3 + 5)/10)*> = 1.0, and ((4 + 5)/10)*> = 0.81, respectively. The objective
value of the solution is f®*"(S) =1(0.64 4+ 1.0 4+ 1.0 4+ 0.81) = 0.86.

The discussed solution construction method, which was proposed by Levine and Ducatelle (2004), is an
iterative approach. Initially, a bin is opened as the current bin. The unpacked objects are selected one by
one and packed into the bin. The procedure subsequently opens a new bin as the current bin when none of

S S> S3 S4

Fig. 1. Schematic diagram of a bin-packing solution.
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the unpacked objects can be packed into the current bin. They defined the selection probability of choosing
object j to pack into the current bin « as
N3 N\
P, = “(@.)) "%) 5. YjEN, (15)
ZkeNaT(a7 k) n(k)

where N, is the set of unpacked objects whose weights can be added to bin ¢ without exceeding the weight
capacity Wy; t(a,j) is a pheromone equivalent reflecting the tendency of packing object j into bin «;

ZkeSaT,‘/ .
ta, ) =4 "B TS#OD (16)

1 otherwise,

where S, is the set of objects that are currently packed in bin a. The heuristic term #(j) is defined to prefer an
object with a larger weight to fully utilize the weight capacity left in the bin,

. w;

= —. 17
) =5 (17)
Levine and Ducatelle applied the traditional pheromone update method for the BPP, such that the pheromone

was updated by

e if [; € HBPP(S*

vy — (1= p)ry + Ay Vi, ji Avy = /) _ ) (18)
’ 0 otherwise,

where S™ is the best solution computed so far. In this paper, we adopt the above solution construction method
to solve the BPP while using our own pheromone update method.

Local search methods have been widely used in heuristic methods, such as GA, simulated annealing, and
particle swarm optimization method, to enhance solution qualities of larger-scale combinatorial optimization
problems. The k-opt (especially the 3-opt) local search method for the TSP has been adopted by much liter-
ature for its effectiveness in helping the search for global optima. One effective local search method for the
BPP was proposed by Falkenauer (1996) to first empty objects out of a few bins and then to swap the
unpacked objects with packed ones to enlarge load fractions of the packed bins. These methods have been
included in a few enhanced ACO methods to claim for their optimality searching capabilities. Generally, with-
out the help of the local search, the global optimal solutions for large-scale combinational optimization prob-
lems are nearly unattainable for general heuristic methods, including the enhanced and improved ACO
methods.

2.3. Maturity of the pheromone map and search stagnation

Ant-optimization methods face a common challenge of controlling the maturing development of the pher-
omone map, in order to effectively and efficiently find a near-optimal solution. Faster maturation might easily
lead the solution search to a local minimum without exploring the solution space extensively. Slower matura-
tion, however, usually results in an inefficient search whose solution quality is not guaranteed. Therefore,
maintaining a /ive pheromone map in the optimizing process before search stagnation is crucial for obtaining
a better solution in fewer searches (solution constructions). The pheromone maps of different pheromone
update strategies have different value-update behaviors. Some might yield a dominating trail or trails quickly,
while others might be able to maintain a /ive (or immature) pheromone map or prolong the time to maturity.
Solution-search stagnation happens when the pheromone map is dominated by a trail or trails. A dominating
trail can be identified by connecting two pheromone items that have the two highest values on each row of the
pheromone map. Fig. 2 shows an example of the formation of a dominating trail. Note that the pheromone
values in bold face indicate the dominating trail embedded in the graph.

This paper uses the branch factor proposed by Stiitzle and Hoos (2000) to investigate the maturity of the
pheromone map. Suppose that z objects define the z x z pheromone map T in Eq. (3), where 7; is the
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00 09 02 08 0.1
09 00 02 0.1 07
T=|02 02 00 08 1.0
08 0.1 0.8 0.0 0.1
0.1 07 1.0 0.1 0.0

Fig. 2. Formation of a dominating trail on the pheromone map.

pheromone value of the link between objects i and j. A threshold is computed for each row to distinguish lar-
ger pheromone values from smaller ones. For row i the threshold is
v = I.gnin + K(,L.max _ ,L.;nin)7 0 <K< 1

i I

T = min {r;}, " = max {r;}, (19)
=12,z =12,z

where « is an interpolation parameter for the threshold. The branch factor of the pheromone map is then de-

fined as

b— Z?:lz;lei/7 ey = { 1 if 7 2' Xi (20)
2z 0 otherwise .

Notice that when two values are relatively larger than others in each row, they will be filtered out by the
threshold, and the branch factor of the map will ideally approach 1.0. Parameter « affects the evaluation of
the number of relative-large values in a row and the resulted branch factor. Although a small value 0.005
of x was suggested in Stiitzle and Hoos (2000), in some ACO methods we found it is too hard (tight) to let
the branch factor approach 1.0 for maturity recognition. Fortunately, we still can identify the maturity from
leveled changes of branch factors. Therefore, we can only state that a pheromone map becomes matured when
its branch factor is converged to a positive value. The pheromone map maturing behaviors of various ACO
methods are further discussed in Section 4, where numerical data are available for comparison.

3. Superior/Inferior Segment-Discriminated Ant System

This paper proposes an ant-optimization system that uses a segment-based pheromone update strategy,
Superior/Inferior Segment-Discriminated Ant System (SDAS). The object selection mechanism of the SDAS
is the same as the ACS, where an exploitation fraction is defined and a run-time random variable is generated
to determine whether using the probability proportional method (a stochastic approach) or deterministically
selecting an object j with the highest value of 7:?‘.17{;.. Therefore the selected object j* to succeed object i is

1

. . o 1,8 :
- {drgf_}éﬁ{ﬁjm/} if ¢ <gq, (21)

J otherwise,

where ¢ is a run-time random number normally distributed within [0, 1], go is the exploitation fraction
(0 < go < 1), and J is the object stochastically selected from the probability proportional method whose selec-
tion probabilities are defined in Eq. (7).

Instead of using the entire trail to update its pheromone values, the SDAS investigates every segment of the
chosen solution trails to build sets of superior and inferior segments. Superior segments merit a pheromone
deposit, while inferior ones are subject to pheromone withdrawal. First, the SDAS constructs a superior
and an inferior limit for evaluating the performance of ants, using the techniques of control charts. Solution
trails constructed by the ants are therefore classified into sets of superior, inferior, and ordinary trails. The
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segments of the superior and inferior trails are further investigated and classified into superior and inferior
segments.

3.1. Evaluation of superior, inferior, and ordinary trails

Most of the existing ACO methods let all ants or a few elite ants deposit pheromone on their trails. This
strategy can not sufficiently distinguish good segments from poor ones. For instance, when all ants (including
inferior ones) are allowed to deposit pheromone on their trails, the inferior trails might indistinct the phero-
mone strengthened by the superior ones. Conversely, when only a few elite ants are allowed to deposit pher-
omone, their trails are not guaranteed to be the truly superior, since some poor segments might be embedded
in them. On the other hand, if inferior trails are totally excluded from pheromone deposit and good segments
are embedded in these trails, the solution search would not be guided to the global optimum. Therefore, a trail
should not be indiscreetly labeled as inferior or superior for pheromone update, we need to investigate more
deeply into the segment level.

To overcome the pitfall of treating all segments of an elite trail as good segments, the SDAS focuses on the
segments. Pheromone values are not updated on all trails or all elite trails, but on individual segments. Trails
are evaluated first to identify superior and inferior trails. Their segments are further examined and extracted to
compose a set of superior segments and a set of inferior ones. Moreover, the pheromone-update process is not
simply one of depositing (intensifying) the pheromone. Instead, the pheromone value corresponding to a supe-
rior segment is intensified, while the value to an inferior segment is reduced. Superior segments earn their
rewards and inferior ones incur punishment. Therefore, segments are the focus of the SDAS and are discrim-
inated in pheromone updating.

To evaluate the solution trails, the SDAS first uses the control-chart technique to establish a superior limit
Fese and an inferior limit Fyopc On the objective values. Let y be the number of ants deployed and f,ax, fmins
and f be the minimum, maximum, and average of the objective values obtained from all the trails:

7 1 - k 1 - problem type /1 Qk g : k d k
= — = — r m S 5 . = ‘7 max = " 22
7 y;f y;f (8, fuin =, min ("} fuu = max {f} (22)

where S* is the solution constructed by ant k and f* is the objective value of trail k (solution S¥). For mini-
mization problems, the superior and inferior limits

Foest :J}_a)(,/?_fmin% (23)
Fuort = f + O(fmx — ), 0 <® <10, (24)

where  is a range factor for the limits. The trails are then divided into sets of superior, inferior, and ordinary
trails by these limits. Let U be the superior set of solution trails, U = {kW < Foest, K € {1,2,...,p}}, and V the
inferior set of solution trails, V' = { k[fk = Fyorst, K € {1,2,...,p}}. Note that Fy., approaches fr.x and Fiyors
approaches f,;, when o approaches 1.0, where fewer trails are regarded as superior or inferior.

When the superior and inferior trails are identified, superiority or inferiority can be assigned to their seg-
ments. In general, a segment of a superior trail is likely to be a good segment that makes a positive contribu-
tion to the objective value. If a segment appears on both superior and inferior trails, it cannot be classified
unambiguously as good or bad. Therefore, particular operations are required to extract superior and inferior
segments from the superior and inferior trails.

3.2. Determination of superior and inferior segments

The pheromone update strategy of the SDAS is a superior-added, inferior-subtracted (SAIS) strategy, dis-
criminating in favor of superior segments and against inferior ones. Superior and inferior segments are deter-
mined by a stochastic set operation.

Let S* represent the best solution so far. The set of corresponding segments to the best solution so far is

G = Hproblem lype(s*). (25)
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Applying the segmentation operation on the superior and inferior trails, the segment set of all of the superior
trails is

4" = U Hproblem type(sk> (26)

keU

and the segment set of all of the inferior trails is

B — U Hproblem type(sk). (27)
keV

The Venn diagram of Fig. 3(a) depicts a general compositional relation between G, A”, and B”, where L is the
set of all segments on the pheromone map. Note that segments belonging to the superior set A” might also
appear in B”. The segments in A” N B” are neither superior nor inferior and they should be excluded from
pheromone deposit or deduction. In the SDAS, segments of the best solution so far will be given a certain
amount of pheromone separately at the end of the pheromone update procedure. Therefore, they are excluded
from the superior and inferior segment sets. Consequently, the set of superior segments that deserve phero-
mone deposit is

A=4"-G-B, (28)

as depicted in Fig. 3(b). However, although segments in A’ can be regarded as superior segments, a stochastic
process is executed for each segment to determine whether it will be finally accepted as a superior segment.
Therefore, the superior segment set A is defined as

A={l;|l; €40, <0}, (29)

where 0,; is a run-time-generated normally distributed random value within [0,1], and 0 is a user-specified
threshold, 0 < 6 < 1.0. A conceptual diagram of set 4 is shown in Fig. 3(c). The definition of Eq. (29) is based
on an assumption (or a belief) that the superior segments are usually located on superior trails. Setting a high-
er 0 implies that the user has a stronger belief in this assumption. As a result, 0 can be regarded as the prob-
ability that the assumption is true.

Likewise, the inferior segment set B is extracted from B”, whose pheromone might be deducted. At first,
segments that appear in both G and B” are excluded from consideration to avoid subtracting pheromone from
segments of the best route so far. Then, similarly, the segments appearing both in B” and 4" are excluded.
Therefore, the segment set

B =B —-G-4A, (30)

as shown in Fig. 3(b). Again, there is an assumption that inferior segments usually come from inferior routes.
Therefore, the inferior segment set B is defined as

B={l;|ll; € B,0; <0}, (31)

where 0 is the threshold for being inferior, 0 < 6% < 1.0. A schematic diagram of set B is shown in Fig. 3(c).
Consequently, using the presented stochastic set operation, the SDAS can extract superior and inferior seg-
ments from the trails constructed by the ants, to have a basis for discriminated pheromone update.

AH BH

a b c

Fig. 3. Schematic diagrams of superior and inferior segment sets.
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3.3. Pheromone update process of the SDAS

The superior segments in set A4 receive additional pheromone, given by

g

AT,“:—*, if ll“EA, 32
and the inferior ones lose some of their pheromone, given by

AT” = —0 - T,‘j, if llj c B, (33)

where o is the discrimination factor, 0 < ¢ < 1.0. Note that pheromone update computations in Egs. (32) and
(33) are similar to the pheromone dropping and evaporation computations in traditional ant systems. How-
ever, they do not need to be designed in this way; i.e., variations of the SDAS can use different computations
to implement the SAIS (superior-added, inferior-subtracted) strategy. The last step of our pheromone update
procedure is to evaporate the pheromone of all segments and update the segments on the best solution so far.
Therefore, the pheromone of the SDAS is updated by

/(g*) if l,‘j €A
—0 - Tj; if l,EB
iy (1= p)uy + Avy; Vi jy A= 7 Y (34)
75 if l;€G
0 otherwise,

where p is the evaporation fraction, 0 < p < 1.0.

3.4. Pheromone reset

Since the SDAS allows the best solution so far to add pheromone on its segments to accelerate optimum
searching, as shown in Eq. (34), search stagnation might not be completely avoidable for problems having sev-
eral local optima. When the ants get stuck on a few solutions of local optima, a pheromone reset operation can
be optionally performed to discard the biased guiding information on the pheromone map. In this operation,
the amounts of pheromone on all segments are reset to the initial value 7y, while the best solution so far is kept
invariant. The purpose of pheromone reset is to erase the biased memory that crowds ants together on the
same trail or a few trails. The SDAS uses three indices to check for search stagnation: the branch factor of
the pheromone map; the number of successive iterations without solution improvement; and the number of
successive iterations without any renewal of the iteration-best solution.

The branch factor 4 is defined in Eq. (20). The SDAS defines a branch factor limit 5 to detect search stag-
nation. When b < b, the pheromone map is regarded as biased by a dominating trail, and search stagnation is
assumed. A value for x of 0.05 and a value for b of 1.1 were suggested in Stiitzle and Hoos (2000). Counters
and limits for the numbers of successive iterations without improvements on the iteration-best solution and
the best solution so far are implemented to detect for search stagnation. Once stagnation is detected, SDAS
resets all values in the pheromone map to the initial value 7.

4. Tests for solving the traveling salesman problem

In order to test and compare the performance of the proposed SDAS with other methods, we selected 15
TSPs from the OR-LIB as sample problems, ranging from small to large size. The ACO methods under eval-
uation included the AS, AS elite, AS rank, ACS, and MMAS. We reconstructed these systems following the
description in their original literature.

Most of the TSP benchmarks in the OR-LIB have known minimum route lengths. The goal of this test was
not to evaluate the capability of finding the minima, but the optimality searching capability. To reveal the
intrinsic algorithmic merits of an ACO method, this test simply set an execution time limit for all the methods
to solve these 15 problems. Local search was not activated in any method, neither the pheromone-reset
operation. For each benchmark, pilot runs were executed to determinate a pertinent execution time limit
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for all methods. The time limit was set long enough for all methods to unfold their optimality searching
capabilities.

The five ACO systems and our SDAS system for the TSP were programmed in C# programming language
and executed on the .NET Framework. Coding techniques were impartially implemented for these systems,
without particularly favoring any one. All the systems counted the number of route length evaluations for
each run, for cross references. The number was actually the number of solution constructions (or searches)
in every run, since no any local search was allowed or executed in the test. In addition, when a new shortest
route was found, the number of solution constructions was recorded and updated for the measurement of the
speediness of route length minimization.

The number of runs on a problem was ranging from 10 to 50, depending on the number of cities defined in
the problem. Numerical results were therefore averaged for comparison. For easier comparison on different-
size problems, an error percentage of the average length relative to the known optimum was calculated as

the average shortest length-the known shortest length
&E =
the known shortest length

x 100(%). (35)

Since the parameters defined in each ACO method have different functions and effects on its optimality search,
their values should be rigorously tuned for solving a particular problem or a particular type of problem. The
aim of this test was not to tune the best parameters for each method on each problem to have an absolutely
fair and equitable comparison. Therefore, the parameter setting for each method on each problem was simply
based on the suggestions or sample values provided in their original literature and the number of cities of the
TSP. Table 1 lists the parameter settings on each problem for each method. Note that the execution time and
the number of candidate cities were set based on the scale of the problem and the value of the optimum route
length. The test was executed on a personal computer with a 3.40 GHz Intel(R) Pentium(R) 4 CPU and 1GB
RAM.

The 15 TSPs were separated into three sets. The first set contained oliver30, att48, eil51, berlin52, and rat99.
The numerical results are shown in Table 2. The second set included kroA100, a280, lin318, att532, and rat783.
Their numerical results are listed in Table 3. All the six ACO methods were tested to solve these two sets of
benchmarks. The benchmarks in the last set were pch1173, d1291, fl1577, pr2392, and fI3795. In this set, to
save computation time, only our SDAS, AS, and MMAS were tested for the last two problems. Table 4 lists
the numerical results.

Figs. 4 and 5 compare the average error percentages obtained from the six methods for each problem. Note
that since minimum lengths of benchmarks rat99, lin318, d1291, and fI3795 are not available, their error per-
centages are not available. The averages and standard deviations of the minimum route lengths computed
from all methods for each problem are listed in Tables 2-4 for cross references. As shown in Fig. 4, the per-
formance of the SDAS is close to that of the MMAS in solving small-scale TSPs and both methods outper-
formed other methods. For medium- to large-scale TSPs, the results obtained from the SDAS are better than
that from other methods, as shown in Fig. 5.

Notably there are controversies over the rightness of comparison on different heuristics. Computation
complexities of exact algorithms can be analytically computed for comparison. However, for stochastic
factors and parameters involved algorithms, conducting an absolutely fair and right comparison is an
elaborate challenge and an impartial comparison basis is hard to establish. Therefore, the comparison
resulted from the test does not suggest that the SDAS outperforms other ACO methods in every aspect.
Nevertheless, it indicates that the proposed segment discriminated strategy has a rightful potential for
optimality search.

4.1. Discussion on the computational overhead

Referring to Tables 24, for each problem, the average numbers of solutions constructed by the six methods
within the same execution time limit are not far from each other. The differences between these values were
mainly due to the algorithmic complexities and parameter value settings of the ACO methods. Our program-
ming for these systems did not particularly favor any one. In fact, no any method always constructed more or
less solutions than others in the same execution time limit for all the problems.
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Table 1

Parameter settings of tested ACO methods for the 15 TSPs

Parameters oliver30 att48  eil5] berlin52  rat99  kroA100 a280 lin318  att532  rat783  pcbll73 di291  flI577  pr2392  fI3795
Number of runs 50 30 30 30 30 30 30 30 30 30 30 10 10 10 10
Number of candidate cities 10 10 20 20 20 20 20 20 10 10 13 10 20 10 10
Execution time limit (s) 1 6 12 6 15 15 100 200 240 300 600 660 660 1800 2400
Number of ants 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Pheromone factor « 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Heuristic factor 8 3 3 2 3 3 3 3 3 3 3 5 5 3 4 4
Initial pheromone value 7, 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
SDAS

Range factor @ 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8 0.85 0.85 0.85 0.85
Threshold 6 0.8 0.8 0.8 0.85 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.8 0.75 0.75 0.75
Threshold 0% 0.5 0.5 0.3 0.5 0.7 0.5 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.5 0.5
Evaporate rate p 0.06 0.03 0.1 0.1 0.1 0.1 0.15 0.15 0.25 0.35 0.5 0.5 0.35 0.6 0.6
Discrimination factor o 0.08 0.15 0.3 0.2 0.28 0.2 0.3 0.3 0.25 0.1 0.3 0.3 0.3 0.4 0.4
Exploitation fraction ¢o 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
AS

Evaporation rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Pheromone quantity 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
AS elite

Elite number 3 3 3 3 20 20 20 20 20 20 20 5 5 5 5
AS rank

Pheromone quantity 0.005 0.005  0.005  0.005 0.005  0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
ACS

Exploitation fraction 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Local update par. 0.06 0.03 0.1 0.1 0.1 0.1 0.15 0.15 0.25 0.35 0.5 0.5 0.35 0.6 0.6
Global update par. 0.08 0.15 0.3 0.2 0.28 0.2 0.3 0.3 0.25 0.1 0.3 0.3 0.3 0.4 0.4
MMAS

Best probability 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Swap period 5 5 5 5 5 5 1 1 1 1 1 1 5 5 5
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Table 2

Computational results for the first set of TSPs

Benchmark Methods  Avg. of the  Best route  Error Avg. of the number Avg. of the number of

(shortest route best route length percentage  of solution constructions  solution constructions

length) length STDEV (%) to find the best route

oliver30.tsp (424.869) SDAS 424.99 0.527 0.029 2148.8 4884.4
AS 429.52 2.927 1.095 2678.0 4737.6
ACS 427.59 2.383 0.641 3352.0 4752.0
MMAS 425.01 0.665 0.034 3312.8 4819.2
AS_rank 426.38 3.802 0.356 1585.6 4750.4
AS elite 425.96 1.110 0.256 3266.0 4652.0

att48.tsp (10628.000) SDAS 10,665.50 38.938 0.353 6700.0 13,324.7
AS 11,075.63 74.924 4.212 6010.7 13,137.3
ACS 11,211.53 104.721 5.491 7606.0 13,232.7
MMAS 10,663.53 38.248 0.334 7449.3 13,420.0
AS_rank 10,743.83 81.080 1.090 2854.0 12,965.3
AS elite 10,976.30 90.366 3.277 7305.3 13,105.3

eil51.tsp (429.983) SDAS 432.70 2.682 0.631 13,680.0 17,460.0
AS 450.37 6.901 4.742 11,388.0 17,500.0
ACS 457.94 5.439 6.502 8192.0 17,770.0
MMAS 431.68 2.048 0.395 11,748.0 18,514.0
AS_rank 439.10 4.496 2.121 4112.0 17,634.0
AS elite 444.11 4.206 3.286 11,876.0 17,634.0

berlin52.tsp (7544.366)  SDAS 7575.46 71.568 0.412 4680.0 8613.3
AS 7743.07 80.183 2.634 5551.3 8467.3
ACS 7758.10 106.289 2.833 4800.0 8673.3
MMAS 7571.12 70.583 0.355 6154.7 9039.3
AS_rank 7634.71 107.760 1.197 3362.0 8584.7
AS_elite 7631.28 72.755 1.152 5642.0 8464.7

rar99.tsp (n/a) SDAS 1250.58 15.392 n/a 7093.3 7737.3
AS 1309.10 11.737 n/a 4856.7 7455.3
ACS 1322.82 13.048 n/a 3653.3 7727.3
MMAS 1261.18 21.619 n/a 7214.0 7980.7
AS_rank 1285.46 14.390 n/a 5754.7 7693.3
AS elite 1265.21 16.301 n/a 6651.3 7810.0

In general, the computational overhead of the SDAS is insignificant comparing to others. Note that,
all methods, except the AS, sort the objective values of all solutions to rank them or to select elite one
or ones. In the SDAS, no significant computation overhead is incurred to identify the inferior and supe-
rior solutions. Segmentation operations on those elite solutions are unavoidable for all methods to
update the corresponding pheromone items. In the SDAS, an extra flag map was implemented to indi-
cate each segment as a superior segment, an inferior segment, a normal segment, or a segment on the
best solution so far, during the segmentation operations. The SDAS algorithm then loops through each
pheromone item once to evaporate pheromone and to either subtract or intensify its value according to
the flag. Other methods also need to evaporate all pheromone items and to deposit pheromone on the
elite trails, where a segment might be computationally traversed many times if it appears in several elite
trails. Therefore, extra memory resource is required in the SDAS, while the computational overhead is
insignificant.

4.2. Discussion on the pheromone maturing behaviors
One simple way to study the optimization behaviors of an ACO method is to investigate the variation of the

computed best route length. Fig. 6 shows an example of the evolutions of the six ACO methods in solving the
a280 benchmark. Fig. 7 displays the branch factors of these runs. For easier and closer comparisons, the figure
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Table 3
Computational results for the second set of TSPs
Benchmark Methods Avg. of the best Best route Error Avg. of the number Avg. of the number of
(shortest route route length length percentage  of solution constructions solution constructions
length) STDEV (%) to find the best route
kroA100.tsp SDAS 21,819.89 247.551 2.511 6708.0 7171.3
(21,285.443) AS 23,034.84 264.405 8.219 3954.7 7150.0
ACS 23,205.53 257.860 9.021 35353 7294.0
MMAS  21,835.32 318.050 2.583 7353.3 7582.0
AS_rank 22,498.61 203.694 5.700 5589.3 7104.0
AS elite  22,165.35 344.798 4.134 6226.7 7156.0
a280.tsp (2586.770) SDAS 2856.93 115.661 10.444 7397.3 8015.3
AS 3067.82 40.085 18.597 4446.7 7966.0
ACS 2981.63 58.350 15.264 4950.0 8364.0
MMAS 2915.54 84.239 12.710 8337.3 8584.7
AS rank  3027.98 48.254 17.056 5769.3 8008.7
AS elite 2952.95 54.730 14.156 7296.7 8427.3
lin318.tsp (n/a) SDAS 45,582.60 553.542 n/a 11,405.3 12,409.3
AS 47,523.44 357.726 n/a 7851.3 12,569.3
ACS 47,539.37 294.375 n/a 5478.0 12,856.0
MMAS  48,690.05 1625.284 n/a 11,717.3 12,454.7
AS rank 46,787.66 448.003 n/a 8086.7 12,505.3
AS elite  46,256.99 583.013 n/a 10,002.0 12,779.3
att532.tsp SDAS 32,231.50 559.337 16.418 4853.3 5536.7
(27,686.000) AS 33,290.03 263.675 20.241 3900.7 5686.0
ACS 32,526.90 227.463 17.485 2196.7 5294.0
MMAS  35,286.83 785.648 27.454 4456.7 5239.3
AS_rank 32,992.10 278.888 19.165 4033.3 5740.0
AS elite 32,611.83 505.634 17.792 4318.7 5284.0
rat783.tsp SDAS 10,442.04 235.421 18.579 3188.7 3482.0
(8806.000) AS 10,803.16 61.881 22.680 2884.0 3720.0
ACS 10,589.86 75.739 20.257 1656.7 3362.7
MMAS  11,513.48 116.832 30.746 3051.3 3375.3
AS rank 10,755.10 81.596 22.134 2650.7 3737.3
AS elite  10,714.30 98.052 21.670 2701.3 3411.3

is partially enlarged in Fig. 8. The interpolation factor k of Eq. (19) was set to 0.005 for branch factor eval-
uations. The curve distributions shown in these figures are typical for all benchmarks solved in the test.

As depicted in Fig. 6, the SDAS persisted in improving the solution for a long period of time before
the solution stagnation happened. In addition, the continuity and depth of route length decreasing were
smoother and deeper than others. Among the methods, although the ACS had the fastest length decreas-
ing rate initially, it encountered search stagnation the earliest. The MMAS had a similar behavior as the
SDAS but with a lower decreasing rate and a shallow decreasing depth. The AS, AS_rank, and AS_elite
shared a similar evolution behavior: the objective value decreases with a different amount in a slower rate
than that of the ACS.

Figs. 7 and 8 show the variation of the branch factor for the six ACO methods. For all methods, the branch
factor first increases to a maximal value, then continuously decreases, and finally levels off. The pheromone
map with the highest branch factor might play an important role in the successive optima search. We regard
the time period from the beginning to the time reaching the maximal branch factor as an information accumu-
lation stage or self organizing stage. During this stage, the map is more gathering the solution construction
experience than guiding the solution search. Notice that, the time values elapsed to reaching the maximal
branch factor of the SDAS and MMAS are longer than those of the rest. In this case the maximal branch
factor for the SDAS is 138.95, which is close to one half of the number of cities, 280, of the ¢280 benchmark.
This is due to the earlier pheromone deductions on the inferior segments and the value of k in Eq. (19) was set
small (0.005) to have each row threshold close to the minimal pheromone value of the row.
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Table 4
Computational results for the third set of TSPs
Benchmark Methods  Avg. of the Best route  Error Avg. of the number of  Avg. of the number of
(shortest route best route length percentage solution constructions solution constructions
length) length STDEV (%) to find the best route
pcb1173.tsp (56,892.000)  SDAS 68,100.33 863.449 19.701 2810.0 3223.3
AS 71,501.02 755.193 25.679 2594.0 3014.0
ACS 68,700.09 388.885 20.755 1814.0 3194.0
MMAS 75,951.74 826.772 33.502 3148.0 3314.0
AS rank 71,769.91 394.407 26.151 2760.0 3340.0
AS _elite 71,521.70 374.366 25.715 2802.0 3340.0
dI1291.tsp (n/a) SDAS 61,363.03 837.163 n/a 2190.0 2870.0
AS 59,680.17 603.799 n/a 2266.0 2760.0
ACS 58,232.76 537.835 n/a 2198.0 2984.0
MMAS 64,409.44 568.871 n/a 2706.0 2962.0
AS_rank 59,811.86 386.568 n/a 2412.0 2982.0
AS elite 59,337.51 434.469 n/a 2498.0 2980.0
f1577.tsp (22,249.000) SDAS 26,222.18 302.145 17.858 1454.0 2014.0
AS 27,309.92 240.343 22.747 1638.0 2100.0
ACS 26,378.26 273.728 18.559 1386.0 2100.0
MMAS 31,399.05 395.484 41.126 2014.0 2078.0
AS rank 27,571.13 202.879 23.921 1732.0 2094.0
AS _elite 27,380.95 203.192 23.066 1654.0 2100.0
pr2392.tsp (378,062.826) SDAS 469,619.20 6717911 24.217 1700.0 2302.0
AS 476,091.58 2482.945 25.929 2024.0 2338.0
MMAS 516,234.22 2585.069 36.547 2254.0 2330.0
f13795.tsp (n/a) SDAS 34,696.69 295.095 n/a 818.0 1164.0
AS 36,886.96 228.992 n/a 1020.0 1188.0
MMAS 44,197.29 705.204 n/a 1138.0 1200.0

The pheromone map with the highest branch factor starts guiding the search for optimal solutions (local or
global ones) with different organizing and adjusting capabilities in different methods. During this guiding
stage, the branch factor decreases until the pheromone is matured with dominated trails. If the map does
not bear comprehensive optimality information or the map already has prejudiced items, wider explorations
are impossible and the objective improvement is quickly leveled off. This unfavorable case applies to the AS,
AS_rank, and AS_elite. As shown in Fig. 8, the branch factor decreasing stage for the SDAS lasts for itera-
tions 55-370 and yields a better final solution than others. The branch factor might not be a good index to
reveal the liveliness of the pheromone map, yet its variation helps to figure out the maturing status. From
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Fig. 4. Error comparisons for small-scale TSPs.
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Fig. 6. Route length minimization progresses on benchmark a280.

the numerical data obtained in the test, it seems that the pheromone map of the SDAS is more /ive in solution
search than others.

5. Tests for solving the bin-packing problem

We tested 80 bin-packing benchmarks from the OR-LIB; they are classified into four sets of problems with
different numbers of objects: 120, 250, 500, and 1000. Each set consists of 20 problems that are originally gen-
erated stochastically. These problems, defined in files binpackl, binpack2, binpack3, and binpack4, were desig-
nated and contributed by Falkenauer (1996). The weights of the objects are uniformly distributed in (20,100)
to be packed into bins of a weight capacity of 150. Each problem is identified as #Y_X, where the u stands for
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Fig. 8. Comparisons of branch factor convergence on benchmark a280.

uniform distribution, the Y is the number of objects, and the X is the serial number in each set; e.g., u/20_00,
u250_07, ul000_19, etc. In addition, the minimum number of bins for each problem was known and provided
in Falkenauer (1996).

We reconstructed all the six ACO systems for the BPP, using the Levine and Ducatelle’s ACO method
that has been discussed in Section 2.2. Although various local search methods can be used to enhance the
BPP solutions, they were not adopted in the test. Some literature claimed optimum was found quicker or
easier than other methods, yet the optimality searching capability was not all due to the proposed method,
but largely the local search. Therefore, finding the minimum numbers of bins was not the goal of this test;
instead, intrinsic solution search capabilities of these ACO methods for the BPP were of interest. The test
simply focused on their objective achievements against the same limit of execution time, without any oper-
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Table 5
Parameter settings for the four categories of BPPs
Parameters ul20 X u250 X u500_X ul000_X
Number of runs 10 10 10 2
Number of candidate cities 20 120 240 1200
Execution time limit (s) 120 250 500 1000
Number of ants 20 20 20 20
Pheromone factor o 1 1 1 1
Heuristic factor 3 3 3 3
Initial pheromone value 1, 0.05 0.05 0.05 0.05
SDAS
Range factor o 0.85 0.85 0.85 0.85
Threshold 0 0.8 0.8 0.8 0.8
Threshold 6% 0.6 0.6 0.6 0.6
Evaporate rate p 0.1 0.13 0.15 0.1
Discrimination factor ¢ 0.15 0.25 0.25 0.1
Exploitation fraction gq 0.8 0.8 0.8 0.8
AS
Evaporation rate 0.95 0.95 0.95 0.95
Pheromone quantity 0.01 0.01 0.01 0.01
AS elite
Elite number 3 3 3 3
AS_rank
Pheromone quantity 0.005 0.005 0.005 0.005
ACS
Exploitation fraction 0.8 0.8 0.8 0.8
Local update par. 0.1 0.13 0.15 0.1
Global update par. 0.15 0.25 0.25 0.1
MMAS
Best probability 0.05 0.05 0.05 0.05
Swap period 5 5 5 5

ation of local search or pheromone reset. The execution time limit was set to a value that allows all of the
methods to unfold their optimality searching capabilities. Table 5 lists the ACO parameters setting for

each set of BPPs.
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Fig. 9. Objective comparisons between ACO methods for u/20_X BPPs.
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where the objective value is calculated by Eq. (12), with 4 set to 3.0. In this test, all of the problems were exe-
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cuted 10 times, except the problems in the #/000_X set, which were executed only twice for time saving. When
we executed these problems, most of the methods could quickly obtain a number of bins close to but not
exactly the known minimum. This achievement was mainly due to the effective solution construction
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Fig. 13. Total excess number of bins resulted from the ACO methods for the four problem sets.

algorithm. Without the aids from any local search, every method had difficulties in obtaining the minimum
number of bins. From the figures shown, our SDAS generated better results than others (except the
ul120_07). Our non-biased pheromone map could prolong the time to search stagnation and guided the com-
putation to better objective values than others. For each run on each benchmark, the number of bins above
the known minimum was calculated and cumulated for each set of the BPPs. Fig. 13 compares the total excess
numbers of bins on each problem set for the methods. Note that there were 200 runs (20 problems x 10 runs)
executed for the first 3 sets and 40 runs (20 problems x 2 runs) for the last set. From the comparisons, our
SDAS showed a superior optimality searching capability than others.

6. Conclusion

This paper has proposed a segment-based pheromone update strategy for the ACO method. The presented
SDAS adopts both pheromone deduction and intensification to attempt to maintain a /ive pheromone map to
guide the solution search. Numerical results have shown that this method prolongs the time toward phero-
mone maturity and the time to search stagnation. In addition, the segment-based optimality information
stored in the pheromone map can lead the solution searches to a better one than other methods. Although,
it is hard to claim that the SDAS outperforms other ACO methods in every aspect, the proposed pheromone
update strategy is worth of further attention.
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