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Abstract 9 

This paper considers a replacement policy for a repairable system with a repairman, who can have 10 

multiple vacations. If the system fails and the repairman is on vacation, it will wait for repair until the 11 

repairman is available. Assuming that the system can not be repaired “as good as new” and a repair upon 12 

failure can be performed immediately with a probability of p, we optimise replacement policy using 13 

geometric processes. The explicit expression of the expected cost rate is derived, and the corresponding 14 

optimal policy can be determined analytically or numerically. Finally, a numerical example is given to 15 

illustrate the theoretical results of the model. 16 
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1. Introduction 19 

A repairable system is a system which, after failing to perform one or more of its functions 20 

satisfactorily, can be restored to fully satisfactory performance by any method, rather than the 21 

replacement of the entire system (Ascher and Feingold, 1984). Repair models developed upon 22 

successive inter-failure times have been employed in many applications such as the optimisation of 23 



2 

maintenance policies, decision making and whole life cycle cost analysis. With different repair levels, 24 

repair can be broken down into three categories (Yamez et al, 2002): perfect repair, normal repair and 25 

minimal repair. A perfect repair can restore a system to an “as good as new” state, a normal repair is 26 

assumed to bring the system to any condition, and a minimal repair, or imperfect repair, can restore the 27 

system to the exact state it was before failure. Example models for perfect, normal, and minimal repair 28 

are renewal process (RP) models or homogeneous Poisson process (HPP) models, generalised renewal 29 

processes, and non-homogeneous Poisson process (NHPP) models, respectively. On the basis of the 30 

relationship between failure intensities and time, repair models fall into three categories: models with a 31 

constant failure intensity (e.g. HPP models), models with an operating-time dependent failure intensity 32 

(e.g. NHPP models) and models with a repair-time dependent failure intensity (e.g. geometric processes 33 

(GP) models (Lam, 1988)).  34 

In reality, the survival times of a system after each repair can become shorter and shorter due to 35 

various reasons such as ageing and deterioration. The working times and repair times can be modeled by 36 

geometric processes as many authors have studied (Lam, 1988; Wu and Clements-Croome, 2005; Zhang 37 

and Wang, 2007). The geometric process introduced by Lam (1988) defines an alternative to the non-38 

homogeneous Poisson process: a sequence of random variables {Xk, k=1,2,...} is a geometric process if 39 

the distribution function of Xk is given by F(a
k-1

t) for k=1,2,... and a is a positive constant. Wang and 40 

Pham (1996) later refer the geometric process as a quasi-renewal process. Finkelstein (1993) develops a  41 

model: he defines a general deteriorating renewal process such that Fk+1(t) ≤ Fk(t). Wu and Clements-42 

Croome (2006) extend the geometric process by replacing its parameter a
k-1

 with a1a
k-1

+ b1b
k-1

, where 43 

a>1 and 0<b<1. The geometric process has been applied to reliability analysis and maintenance policy 44 

optimisation for various systems by authors; for example, Wu and Clements-Croome (2005), Castro and 45 

   e -   n (2006), Zhang and Wang (2007), and Braun et al (2008). 46 

The existing research mainly concentrates on the reliability analysis or maintenance optimisation with 47 

a consideration of the behaviours of repairable systems themselves. Little work has been conducted to 48 
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consider reliability analysis for a system where the repairman might take a sequence of vacations of 49 

random durations and a repair on a failure is a normal repair. Here we emphasize that the durations of 50 

vacations can be different. Such a vacation policy is called a multiple vacation policy, which has 51 

attracted attention in queuing theory (for example, Lee, 1988; Krishna et al, 1998; Chang and Choi, 52 

2005).  53 

The applications of such situations where a repairman can take multiple vocations can be found in 54 

practice. In some situations, a repairman can have two roles: one for caring a system and one for other 55 

duties, which can happen in a small/median firm that wants to use the repairman effectively. If the 56 

repairman is assigned to look after only one system, he might have plenty of idle time. In this paper, 57 

vocation can mean period when the repairman is on other duties. The repairman can periodically check 58 

the status of the system: if the system fails, he repairs it; if the system is working, he goes back to the 59 

other duties. Allocating the manpower of the repairman in such a way is more realistic and more 60 

profitable than simply assigning him a single role of being a repairman. 61 

This paper presents the formulations of the expected long-run profit per unit time for a repairable 62 

system with a repairman. We assume that the repairman takes multiple vacations. When the system fails, 63 

the repairman will be called in to bring the system back to a certain state. The time to repair is composed 64 

of two different periods: waiting and real repair periods. The waiting time starts from the component’s 65 

failure to the start to repair, and the real repair time is the time between the start to repair and the 66 

completion of the repair. Both the working and real repair times are assumed to be a type of stochastic 67 

processes: geometric processes, and the waiting times are subject to a renewal process. The probability 68 

that a failed system can be immediately repaired is assumed to be p. The expected long-run profit per 69 

unit time is derived and a numerical example is given to illustrate the theoretical results of the model. 70 

The paper is structured as follows. The coming section introduces geometric processes defined by 71 

Lam (1988), and assumptions. Sections 3 and 4 derives the expected long-run profit per unit time, and 72 
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discusses special cases, respectively. Section 5 offers numerical examples. Concluding remarks are 73 

offered in the last section.  74 

2. Definitions and Model Assumptions  75 

This section first borrows the definition of geometric processes from Lam (1988), and then makes 76 

assumptions for model development. 77 

2.1 Definition 78 

Definition 1  Assume  ,   are two random variables. For arbitrary real number  , there is 79 

(P  ≥ ) > (P  ≥ )  80 

then   is called stochastically bigger than  .  Similarly, if  81 

(P  ≥ ) < (P  ≥ )  82 

then   is called stochastically smaller than  . 83 

Definition 2 (Lam, 1988) Assume that { nX , n=1,2,…} is a sequen e of independent non-negative 84 

random variables. If the distribution function of nX  is )( 1taF n ,  for some a>0 and all, n=1,2, …, then 85 

{ nX , n=1,2,…}  is called a geometric process. 86 

Obviously,  87 

if a >1, then { nX , n=1,2,…} is stochastically decreasing, 88 

if a <1, then  { nX , n=1,2,…} is stochastically increasing, and 89 

if a =1, { nX , n=1,2,…} is a renewal process. 90 

2.2 Assumptions 91 

The following assumptions are assumed to hold in what follows. 92 

A. At time t=0, the system is new. 93 
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B. The system starts to work at time t=0, and it is maintained by a repairman. The repairman takes his 94 

first vacation after the system has started. After his vacation ends, there will be two situations.  95 

(a) If the system has failed and is waiting for repair, the repairman will repair it. He will then take 96 

his second vacation after the repair is completed.  97 

(b) If the system is still working, the repairman will take his second vacation. This operating policy 98 

continues until a replacement takes place.     99 

C. After the repairman finishes his vacation, the probability that he can immediately repair the failed 100 

system is p. Denote nV  as the waiting time after the nth failure occurs, where { nV , n =1,2,…} a e 101 

independently and identically distributed with distribution )0()( ttS  and  nEV . 102 

D. The time interval from the completion of the (n-1)th repair to that of the nth repair of the system is 103 

called the nth cycle of the system, where ,2,1n …. Denote the working time and the repair time of 104 

the system in the nth cycle ( ,2,1n …) as nX  and nY , respectively. Denote the length of the ith 105 

vacation during the nth cycle as { i

nZ ,n=1,2,…}. Denote the cumulative distribution functions of 106 

nX , nY , i

nZ  and )(xFn  as )(yGn , and )(zH n , respectively, where )()( 1xaFxF n

n

 , 107 

)()( 1 ybGyG n

n

 , and )()( 1zdHzH n

n

 . Denote )( 1XE = , )( 1YE = , and )( 1

1ZE = .        108 

E. nX , nY , i

nZ , and nV  (i=1,2,… and ,2,1n …) a e statisti ally independent. 109 

F. When a replacement is required, a brand new but identical component will be used, and the length 110 

of a replacement time is negligible. 111 

G. The following costs are considered: 112 

 1C : repair cost per unit time; 113 

 2C : reward per unit time when the system is working; 114 

 3C : cost incurred for a replacement; 115 
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 4C : reward per unit of the repairman when he is taking vacation or other duties, which can 116 

produce profits for the firm; 117 

 5C : cost per unit time when the system is waiting for repair; and 118 

 6C : cost per unit time incurred in the waiting time after the system has failed. 119 

3. Expected profit under replacement policy N  120 

Denote n  the times of vacations of the repairman during the nth cycle of the system. A typical 121 

progress is given in Figure 1.  122 

Figure 1 here 123 

Figure 1. A typical progress of the system 124 

Let 1T  be the time before the first replacement, nT  be the time between  the (n-1)th and nth 125 

replacement with n=2,3,…. The p o ess { nT , n=1, 2,…} forms a renewal process. Denote )(NP  as the 126 

expected long-run profit per unit time under replacement policy N, then we have 127 

                    )(NP =
t

lim
t

t][0,hin  profit wit Expected 
                         128 

Since { nT ,n=1,2,…} is a renewal process, the time between two adjacent replacements is the length 129 

for a replacement. Hence 130 

 )(NP =
cycle a oflength  expected

cyclet replacemen ahin profit wit expected
=

EW

ER
                     (1) 131 

Lemma 1. The probability of n  is given by 132 

 )( mP n )()]()([ 1

0
1 tadFtStS n

mm




  ,  ,2,1m …, ,2,1n …,N  133 

and  134 

       nE = )(])([ 1

0
1

tadFtS n

m

m


 


  .  135 

where )(tSm  is the cumulative distribution function of 


m

i

i

nZ
1

. 136 

Proof  According to the law of total probability, we have 137 
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1

1

1









m

i

i
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m

i

i

nn ZXZPmP   = 


0
P )(],[ 1

1

1

1

tadFtXZtZ n
m

i

n

i

n

m

i

i

n









   138 

= )()]()([ 1

0
1 tadFtStS n

mm




  ,  139 

and 140 
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nE =





1

)(
m

n mmP  =


1m

m )()]()([ 1

0
1 tadFtStS n

mm




   141 

         = )()]()([ 1

0
1

1

tadFtStSm n

mm

m










  = )(])([ 1

0
1

tadFtS n

m

m


 


  . ⁪  142 

From the assumptions, the length of a replacement cycle is given by 143 

W =
 

N

n k

k

n

n

Z
1 1









1

1

}]{)(}{[
N

i

iiiii BIVYAIY  144 

=




1

1

N

n

nY +
 

N

n k

k

n

n

Z
1 1









1

1

}{
N

i

ii BIV . 145 

where 1}{ AI  if event A occurs, otherwise 0. Denote iA {the system can be repaired immediately 146 

after the ith failure}, and iB {the system can not be repaired immediately after the ith failure}. 147 

Hence,  148 
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1




n

k

k

nZE
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
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          = )(
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n
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m

k
n
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


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
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          =
1nd


)(])([ 1

0
1

tadFtS n

m

m


 


  , and 151 






1

1

}]{[
N

i

ii BIVE =




1

1

}]{[
N

i

ii BIVE = )1)(1( pN  . 152 

The expected time for a replacement is  153 

EW  =




1

1

N

n

nEY +


N

n

E
1

][
1




n

k

k

nZ


+




1

1

}]{[
N

i

ii BIVE  154 

=





1

1
1

N

n
nb


+




N

n
nd1

1


)(])([ 1

0
1

tadFtS n

m

m


 


  + )1)(1( pN           (2) 155 

and the profit within a cycle is  156 

R 2C 


N

n

nX
1

+ 4C 
 

N

n k

k

n

n

Z
1 1



1C 




1

1

N

n

nY 5C )(
1 1

n

N

n k

k

n XZ
n

 
 



]}{[
1

1

6 





N

i

ii BIVEC - 3C  157 

= )( 52 CC  


N

n

nX
1

+ )( 54 CC  
 

N

n k

k

n

n

Z
1 1



1C 




1

1

N

n

nY ]}{[
1

1

6 





N

i
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The expected profit within a cycle is given by 159 

ER )( 52 CC  




N

n
na1

1


+ )( 54 CC  




N

n
nd1

1


)(])([ 1

0
1

tadFtS n

m

m


 


  1C 






1

1
1

N

n
nb


               160 

)1)(1(6 pNC  3C                                                       (3)  161 
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If we consider equations (1), (2) and (3), we obtain the expected long-run profit per unit time as 162 
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N
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N
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N

n
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m

N
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n

N

n
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1
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1

1
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1

1
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1

0
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1
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)1)(1()()]([

)1)(1()(])([)()(







         (4) 163 

4. Special cases  164 

We assume that the cumulative distribution functions of nX , nY , i

nZ , and nV  are 165 

)(tFn )( 1taF n = )exp(1
1

t
a n





  166 

)(tGn G b tn( )1 = )exp(1
1

t
bn





 , 167 

)(tH n )( 1tdH n = )exp(1
1

t
d n





  168 

and  169 

)(tS = )exp(1


t
  170 

respectively, where 0t . 171 

As we assume that i

nZ ( ,2,1i …, m ) are mutually independent, the probability density function of 172 




m

i

i

nZ
1

 is a hypo-exponential distribution (Ross, 1997).  173 

Lemma 2. Assume that random variables 1V ， 2V ，…， nV  are independently and identically 174 

distributed with an exponential distribution of parameter 0 , then the probability density function of 175 




n

i

iV
1

 is   176 

)(tn =
t

n

e
n

t
0

)!1(

)( 1

00  



                                       (4) 177 

Denote the cumulative distribution function of 


n

i
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1

 as )(tn , then 178 

   tt
n
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1

)( 




                                                (5) 179 

Proof. From Ross (1997), we have )(tn =
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e
n

t
0
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
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Theorem 1. The expected long-run profit per unit time is given by 182 
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There exists an optimal N* that maximizes the value P(N). 184 

Proof. Since i

nZ ( ,2,1i …, m ) are independently and identically distributed with an exponential 185 

distribution of parameter 


1nd
, then the probability distribution of 
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m

i

i
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1

is a gamma distribution with 186 

scale parameter 
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
 and shape parameter m , the probability density function of 
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i
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1
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Hence, the cumulative distribution function of 
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Hence, the expected long-run profit per unit time is given by 197 
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      (6) 198 

Since 1a , 10  b , the expected long-run profit per unit time is monotonously increasing when the 199 

number N is small, and the expected long-run profit per unit time is monotonously decreasing when the 200 
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number N is large. 1)(lim CNP
N




. Therefore, there exists a maximum value in )(NP , or we can find 201 

the optimum replacement policy *N , which maximizes the value of )( *NP  .                202 

This proves the theorem. 203 

5. Numerical examples 204 

In this section, we will give examples to demonstrate the theoretical results of our model.  205 

5.1 Sensitivity analysis for the repair times influencing the profit  206 

If we set a 1.1, 98.0b ,  100,  1, 1C 20, 2C 500, 3C 5000, 4C 200, 6C 100,  0.2,  207 

and 8.0p , then the optimum number for a replacement will be N=8, and the corresponding expected 208 

long-run profit per unit time is 535.09. The change of value P(N) with repair times N is shown in Figure 209 

2. The value P(N) increases rapidly when repair times changes from 1 to 8, and then decreases slowly 210 

when repair times increases. This indicates that the expected long-run profit per unit time is more 211 

sensitive to big values of N*. In case it is not possible to undertake a replacement when repair times 212 

reaches N*(=8), we can replace the system after more repairs have been conducted, rather than less. This 213 

is because larger N* (3 < N* <13, say) tends to have greater profit, whereas smaller N* might not have 214 

good profits (N*<4). 215 

Figure 2 here 216 

Figure 2 The expected long-run profit per unit time P(N) against repair times N. 217 

a N* P(N*) a N* P(N*) a N* P(N*) 

1.01 17 665.03 1.18 6 459.75 1.35 5 367.5 

1.02 15 650.42 1.19 6 452.3 1.36 5 363.7 

1.03 13 634.58 1.2 6 445.19 1.37 5 360.03 

1.04 12 618.46 1.21 6 438.4 1.38 4 356.47 

1.05 11 602.68 1.22 6 431.9 1.39 4 353.03 

1.06 10 587.58 1.23 6 425.68 1.4 4 349.69 

1.07 10 573.27 1.24 6 419.72 1.41 4 346.46 

1.08 9 559.78 1.25 5 414.01 1.42 4 343.33 



11 

1.09 9 547.07 1.26 5 408.52 1.43 4 340.29 

1.1 8 535.09 1.27 5 403.24 1.44 4 337.34 

1.11 8 523.79 1.28 5 398.17 1.45 4 334.47 

1.12 8 513.12 1.29 5 393.3 1.46 4 331.69 

1.13 7 503.02 1.3 5 388.6 1.47 4 328.98 

1.14 7 493.46 1.31 5 384.07 1.48 4 326.35 

1.15 7 484.38 1.32 5 379.7 1.49 4 323.8 

1.16 7 475.76 1.33 5 375.49 1.5 4 321.31 

1.17 7 467.56 1.34 5 371.43    

Table 1: The expected long-run profit per unit time against the values of a and N*. 218 

5.2 Sensitivity analysis for parameters a and N 219 

If we keep the values of parameters in Section 5.1, apart from the parameter a, we obtain results shown 220 

in Table 1. Table 1 shows how the optimum repair times N* and the expected long-run profit per unit 221 

time change when parameter a changes from 1.01 to 1.5. From Table 1, we have the following results. 222 

 We can see that the optimum N* is sensitive to a small change of parameter a when a is smaller 223 

than 1.1: the optimum N* change from 17 to 9. The optimum N*  becomes stable when  a is 224 

larger than 1.1: it changes from 8 to 7 when a changes from 1.11 to 1.21. The N*  remains even 225 

more stable when a is larger than 1.21.  226 

 The expected long-run profit per unit time for smaller a, for example, changing from 1.01 to 227 

1.05, changes faster than that for larger a. As we can image, smaller a’s  a e mo e p ofitable than 228 

larger a’s. This is because they require fewer replacements and earn greater profit. 229 

Figure 3 shows all of the changes over parameter a and repair times N, which gives a visual description 230 

on the changes of the expected long-run profits, parameter a and failure times N. 231 

Figure 3 here 232 

Figure 3 The expected long-run profit per unit time P(N) against repair times N and parameter a. 233 

6. Conclusions 234 
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Searching an optimal replacement point for a system maintained by a repairman with multiple vocations 235 

is of interest and importance. This paper derived the expected long-run profit per unit time for such a 236 

system. We also considered a special scenario where the working times, real repair times, and vacation 237 

times are geometric processes. A numerical example is given to illustrate the theoretical results of the 238 

model.  239 
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