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Complexity and approximation for scheduling problem for a torpedo

G. Simonin1, R. Giroudeau1, and J.C. König1

1LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, UMR 5506

ABSTRACT

This paper considers a special case of the coupled-tasks scheduling problem on one processor. The general problems were
analyzed in depth by Orman and Potts [1]. In this paper, we consider that all processing times are equal to 1, the gap has
exact lengthL, we have precedence constraints, compatibility constraints are introduced and the criterion is to minimize the
scheduling length. We use this problem to study the problem of data acquisition and data treatment of a torpedo under the
water. We show that this problem isNP-complete and we propose anρ-approximation algorithm whereρ ≤ (L+6)

6 .
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1. Introduction

1.1. Presentation

In this paper, we present the problem of data acquisition
according to compatibility constraints in a submarine tor-
pedo, denotedTORPEDO problem. The torpedo is used
in order to make cartography, topology studies, tempera-
ture measures and many other tasks in the water. The aim
of this torpedo is to collect and process a set of data as
soon as possible on a mono processor. In this way, it pos-
sess few sensors, a mono processor and two types of tasks
which must be schedule: Acquisition tasks and treatment
tasks.

First, the acquisition tasksA = {A1, . . . , An} can be as-
signed to coupled-tasks introduced by Shapiro [2], indeed
the torpedo sensors emit a wave which propagates in the
water in order to collect the data. Each acquisition tasksAi

have two sub-tasks, the firstai sends an echo, the secondbi

receives it. For a better reading, we will denote the process-
ing time of each sub-taskai andbi. Between the sub-tasks,
there is an incompressible idle timeLi which represents the
spread of the echo in the water.

Second, treatment tasksT = {T1, . . . , Tn} are obtained
from acquisition tasks, indeed after the return of the echo,
various calculations will be executed from gathered infor-
mations. These tasks are preemptive and have precedence
constraints with the acquisition tasks. In this paper, we
will study the problem where every acquisition task have
a precedence relation with only one treatment task.

At last, there exist compatibility constraints between ac-
quisition tasks, due to the fact that some acquisition tasks
cannot be processed in same the time that another tasks.
In order to represent this constraint, a compatibility graph
Gc = (A, Ec) is introduced, whereA is the set of coupled-
tasks andEc represents the edges which link two coupled-
tasks which can be executed simultaneously. In other
words, at least one sub-task of a taskAi may be executed
during the idle time of another taskAj (see example in Fig-
ure 1).
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Fig. 1: Example of compatibility constraints withL1 = L2 = 3 and
L3 =2

The aim of the TORPEDO problem is to produce a short-
est schedule (i.e. to minimize the moment after the exe-
cution of the last task in the schedule denotedCmax) in
which compatibility contraints between acquisition tasks
and precedence constraints are respected. In scheduling
theory, a problem is categorized by its machine environ-
ment, job characteristic and objective function. So us-
ing the notation schemeα|β|γ proposed by [3], the TOR-
PEDO problem will be defined by1|prec, (ai, Li, bi) ∪
(Ti, pmtn), Gc|Cmax

1.

Our work consists in measuring the impact of the com-
patibility graph on the complexity and approximation of
scheduling problems with coupled-tasks on a mono proces-
sor. This paper is focusing on the limit between polynomial
problems andNP-complete problems, when the compati-
bility constraint is introduced.

1.2. Related work

The complexity of the scheduling problem, with coupled-
tasks and a complete compatibility graph2, has been inves-
tigated by Blazewicz and al. [4], Orman and Potts [1], Ahr
and al. [5]. Nevertheless, in the article we study a different
problem in which coupled-tasks (or acquisition tasks) must
respect a compatibility graph. Morever, in our model, we
consider a set of treatment tasks whose have a precedence
constraint with the set of acquisition tasks, whereas in ex-
isting works the authors ([4],[1],[5]) focus their studieson
precedence constraints between the acquisition tasks. By
comparing the results of Orman and Potts [1] and those ob-
tained by relaxing the constraint of compatibility, we can
measure the impact of compatibility constraint on this kind
of problem.

1prec (resp. pmtn) represents the precedence constraints betweenA et
T (resp. the preemtivity of the treatment tasks)

2Notice, the lack of compatibility graph is equivalent to a fully con-
nected graph. In this way, all tasks may be compatible each other.
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Fig. 2: Global visualisation of the complexity of scheduling problems with coupled-tasks given by Orman and Potts [1]. The graphs are described like this:
ai, Li, bi, Gc represents the type of problem studied, whereai, bi andLi can take any value or be all equal to a constant. Finally, there is an arc from a
specific problem to a more general problem, and an edge between two symmetrical problems.

We derive two main results: First, starting from the com-
plexity results of Orman and Potts resumed in Figure 2,
we show the complexity of a special problem, denotedΠ1

which becomesNP-complete when the compatibility con-
straint is relaxed. TheNP-completeness ofΠ1 imply the
NP-completeness of all the problems which are more gen-
eral (see Figure 2). Second, we develop a polynomial-time
approximation algorithm based on a maximum matching
on the compatibility graph forΠ1.

This article is organized as follows: In the next section,
we will prove theNP-completeness ofΠ1 =1|prec, (ai =
bi =p, Li =L, Gc) ∪ (Ti, pmtn)|Cmax where the two sub-
tasksai andbi are equal to a constantp and the inactivity
timeLi is equal to a constantL (the reduction is based from
theNP-complete Clique, Garey and Johnson [6] GT19),
and sotbi

= tai
+ ai + Li = tai

+ p + L wheretai
(resp.

tbi
) is the starting time of the sub-taskai (resp. tbi

). In
the last section, we develop a polynomial-time approxima-
tion algorithm forΠ1 with performance guarantee less than
L+6

6 .

2. Complexity result

In this section, notice that in the special case whereL = 1,
the problem is polynomial. It is sufficient to find a max-
imum matching in the compatibility graph. We focus the
caseL 6= 1 and L is a data of the problem. The case
whereL = 2, is studied in another paper [7]. In order
to prove theNP-completeness ofΠ1, we will prove the
NP-completeness of the specific caseΠ2 = 1|prec, (ai =
bi =1, Li =L) ∪ (Ti, pmtn), Gc|Cmax.

Theorem 2.1 Let n be the acquisition tasks number, the
problem, to decide if an instance of the problem Π2 has
a scheduling length Cmax = 2n +

∑
Ti∈T Ti, is NP-

complete.

Proof

Our approach is similar to the proof of Lenstra and Rin-
noy Kan [3] for the problemP |prec; pj = 1|Cmax. This
demonstration is based on theClique decision problem (see
Garey and Johnson GT19 [6]):
INSTANCE: A graphG = (V, E) where|V | = n, and an
integerK.
QUESTION: Can we find a clique of sizeK in G ?
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Fig. 3: Illustration of polynomial-time transformation Clique∝ Π2

Our proof is based on the polynomial-time transformation
Clique∝ Π2. It is easy to see that the problemΠ2 is in
NP .

Let I∗ an instance of Clique, we will construct an
instanceI of Π2 with Cmax = 2n +

∑
Ti∈T Ti in the

following way:

Let G = (V, E) a graph in the instanceI, with |V | = n:

• ∀v ∈ V , an acquisition taskAv is introduced, com-
posed of two sub-tasksav andbv with processing time
av =bv =1 and with a latency timeLv, between these
two sub-tasks, of lengthL=(K − 1), calledslot.

• For each edgee = (v, w) ∈ E, there is a compatibility
relation between the two acquisition tasksAv andAw.



• For each taskAv, we introduce a treatment taskTv

which is its successor.

• EachTv has a processing time notedTv = L. Thus,
the treatment tasks will replace all the inactivity slot
of all theAv after the clique.

• We suppose that there is a clique of lengthK =(L+1)
in the graphG. Let us show that there is a scheduling
in Cmax = (2n +

∑
Ti∈T Ti) units of time. For that,

consider the following scheduling:

– From timet = 0 to t = L, we schedule theK =
(L+1) tasks which represent the vertices of the
clique of sizeK.

– From timet = (2L+2), we schedule the(n−K)
remaining tasksAv.

– In each slot from these(n − K) tasksAv, we
schedule the tasksTv. Since eachTv has as a
valueTv = L, by scheduling(n − K) tasksTv,
we will fill each slot of lengthL of the(n − K)
tasksAv.

– Remeaning treatment tasks are scheduled at the
end of the schedule.

With this allocation, we fill all the slots and we give a
valid scheduling in(2n +

∑
Ti∈T Ti) units of time.

• Reciprocally, let us suppose that there is a scheduling
in (2n+

∑
Ti∈T Ti) units of time without inactivity

time for Π2, then let us show that the graphG con-
tains a clique of sizeK = (L + 1).
From these suppositions, we make essential com-
ments:

– With the precedence constraints between the
tasksAv andTv, it is easy to see that we can
schedule only tasksAv at t = 0, ∀v ∈ V . Thus,
the first treatment task could be scheduled only
starting fromt = (L + 2).

– Letap1 be the first sub-task of acquisition sched-
uled att = 0, with a slot of lengthL. We need
a clique of size(L + 1) to obtain a scheduling
without inactivity slot.

Thus we have(L + 1) acquisition tasks which are com-
patibles. And in the compatibility graphGc, we will have
an edge between each couple of these tasksAv. Conse-
quently, the tasksAp1 , Ap2 , . . . , ApL

, associated to the
vertices of the graph G, form a clique of sizeK = (L+1).

This concludes our proof of Theorem 2.1. �

From this result we can conclude of the NP-completeness
of Π1. With the global visualization of Figure 2, we see that
theNP-completeness ofΠ1 imply theNP-completeness
of all the more general problems. And thus, the open
problem in the study of Orman and Potts [1] become
NP-complete with the relaxation of the compatibility con-
straint.

3. Approximation algorithm

In this section, we will present and study a polynomial-
time approximation algorithm forΠ2 based on maximum
matching.

Remark 3.1 Notice that, in the case where processing time
of treatment tasks is greater than one (Ti > 1, ∀i), then
the sum of idle time in a schedule cannot be higher as if the
processing time of treatment tasks is one (Ti = 1).

In the following, treatment tasks will have processing time
equal toTi = 1. We will present an approximation algo-
rithm of the problemΠ2.

3.1. Lower bounds

We will give two lower bounds. For the first, optimal
scheduling is taken where we do not have any time of in-
activity. Moreover we know that the number of treatment
tasks is equal to the number of acquisition tasks and that in
worst case all the treatment tasks have an processing time
Ti = 1, ∀i. Thus, we have:

Copt
max ≥ Tseq = 2n +

∑

Ti∈T

Ti ≥ 2n + n = 3n (1)

For the second bound, the maximum matching is taken
of the compatibility graphGc, its cardinality ism, and
thus we have(n − 2m) independent vertices. In worst
case, optimal scheduling is greater than independent ver-
tices scheduling with the last treatment task. And so we
have:

Copt
max ≥ (n − 2m)(L + 2) + 1 (2)

For our study, our lower bound will be

Copt
max ≥ max{3n, (n − 2m)(L + 2) + 1} (3)

3.2. Upper bound

Algorithm 1 : A polynomial-time approximation algorithm
Instance: A, T , Gc, L ≥ 1
Result: Ch

max

begin
• Compute a maximum matching ofGc

• For each edge(i, j) of the maximum matching, the
acquisition tasksAi andAj are scheduled such that
taj

= tai
+ 1

• For each vertexi remaining, we schedule the
acquisition taskAi

• Allocate treatment tasks to the first free slot by
respecting the precedence constraints

end

We will give some essential remarks on the structure of the
scheduling given by our approximation algorithm. Let us
suppose that we have a scheduling given by the approxima-
tion algorithm with a maximum matching of sizem.

• In the first coupled-task matched, there is an incom-
pressible latency length of size(L − 1).
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Fig. 4: Illustration of the approximation algorithm

• We haven acquisition tasks, the scheduling length of
these tasks is2n.

• For two tasks matched, the incompressible latency
length is(L − 1).

• For each remaining vertex, incompressible latency
length isL.

• Considering the last acquisition taskAr. After its exe-
cution, we may process one treatment task denoted by
Tr (this case occurs when all the treatment tasks, ex-
ceptTr, are scheduled before the completion time of
Ar), or some treatment tasks (this case occurs when
there is no idle time before the completion time of
Ar). See figure (4), for an illustration of the case
where the taskTr is the only treatment task executed
after the completion time ofAr.
So, the number of treatment task executed afterAr is:
max{n − (m − 1)(L − 1) − (n − 2m)L, 1}

= max{n − nL + m(L + 1) + L − 1, 1} (4)

Finally, our upper bound will be:

Ch
max ≤ Texecution+ Tincompressible latency length

≤ [2n + max{n − nL + m(L + 1) + L − 1, 1}]
+ [(L − 1)m + L(n − 2m)]
≤ [2n + max{n − nL + m(L + 1) + L − 1, 1}]
+ [L(n − m) − m]

3.3. Relative performance

In the first step, the Tables 1 and 2 give a summarize of the

ratio of relative performanceρ ≤
Ch

max

C
opt
max

for L ∈ {1, 2, 3}.

α = 1 L = 2

if m ≥ n
3 , thenCh

max ≤ 3n + 1

Ch
max 3n if n+1

8 ≤m< n
3 , thenCh

max ≤ 4n−3m+1

if m < n+1
8 , thenCh

max ≤ 4n − 3m + 1

if m ≥ n
3 , thenCopt

max ≥ 3n

Copt
max 3n if n+1

8 ≤ m < n
3 , thenCopt

max ≥ 3n

if m < n+1
8 , thenCopt

max ≥ 4n − 8m + 1

if m ≥ n
3 , then ρ ≤ 1 + 1

3n

ρ 1 if n+1
8 ≤ m < n

3 , then ρ ≤ 4

3
+ 1

3n

if m < n+1
8 , then ρ ≤ 11

6

Tab. 1: Relative performance forL ∈ {1, 2, 3}

Now we focuses on study forL ≥ 4. Since thatm ≤ n
2 , it

easy to see thatmax{n−nL+m(L+1)+L−1, 1} = 1.

L = 3

if m = n
2 , thenCh

max ≤ 3n + 2

Ch
max if 2n+1

10 ≤m< n
2 , thenCh

max ≤ 5n−4m+1

if m < 2n+1
10 , thenCh

max ≤ 5n − 4m + 1

if m = n
2 , thenCopt

max ≥ 3n

Copt
max if 2n+1

10 ≤ m < n
2 , thenCopt

max ≥ 3n

if m < 2n+1
10 , thenCopt

max ≥ 4n − 8m + 1

if m = n
2 , then ρ ≤ 1 + 2

3n

ρ if 2n+1
10 ≤ m < n

2 , then ρ ≤ 5

3
+ 1

3n

if m < 2n+1
10 , then ρ ≤ 21

17

Tab. 2: Relative performance forL ∈ {1, 2, 3}

And soCh
max ≤ 2n + L(n − m) − m + 1.

Moreover, since thatCopt
max ≥ max{3n, nL + 2n −

2mL − 4m + 1}, the following cases must be considered:

• For m ∈ [0,
n(L−1)+1

2(L+2) [, it is easy to see thatCopt
max ≥

3n.

• For m ∈ [n(L−1)+1
2(L+2) , n

2 ], we will haveCopt
max ≥ nL +

2n − 2mL − 4m + 1.

According to the values ofm, we give the upper bound for
the length of the scheduling proposed by the heuristich,
and the lower bound for an optimal scheduling (see illus-
tration figure 5).

m

1

0
n
2

δ

n(L−1)+1
2(L+2)

δ = (L+6)
6 − 3n

6n(L+2)

ρ (L+3)
6

Fig. 5: Behavior of the relative performanceρ as a fonction ofm

Notice that form = 0, ρ = 1 (it is clear, because the
compatibility graph is an independent set), moreover for
m = n

2 , ρ = (L+3)
6 .



4. Conclusion

In this paper, we presented a scheduling problem on mono
processor with graph constraints and coupled-tasks. On
the negative side, we showed that the problemΠ2 is NP-
complete, our proof is based on the polynomial-time trans-
formation Clique toΠ2, and imply theNP-completeness
of all the more general problems (specially for the open
problem in Figure 2 which becomeNP-complete with the
relaxation of the compatibility constraint).

On the positive side, we gave an approximation algorithm
for Π2 with relative performance bounded byρ ≤ L+6

6 in
the worst case, whereL is the inactivity time of acquisition
tasks. The relative performance valueρ associated to the
algorithm depends on the parameterL, which is one of the
problem data. This remark brings a fundamental question:
"Is that our problem admits an approximation algorithm
with a performance guarantee equal to a constant value?".
The problem would be then in the classAPX , but if
we can show that it will never exist an approximation
algorithm with a performance guarantee equal to a constant
value, then our problem would be in the classnon−APX .
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