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Abstract

This paper addresses a new problem to design a two-echelon supply chain network
over a multi-period horizon. Strategic decisions are subject to a given budget and concern
the location of new facilities in the upper and intermediate echelons of the network as
well as the installation of storage areas to handle different product families. A finite set
of capacity levels for each product family is available at each potential location. Further
decisions concern the quantities of products to be shipped through the network. Two
mixed-integer linear programming models are proposed that differ in the type of perfor-
mance measure that is adopted to design the supply chain. Under a cost minimization
objective, the network configuration with the least total cost is to be determined. In
contrast, under a profit maximization goal the aim is to design the network so as to
maximize the difference between total revenue and total cost. In this case, it may not
always be attractive to completely satisfy demand requirements. To investigate the im-
plications that the choice of these performance measures have on network design, an
extensive computational study is conducted using randomly generated instances that are
solved with a general-purpose solver.

Keywords: supply chain network design, facility location, capacity acquisition, profit
maximization, cost minimization.
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1 Introduction

Supply chain network design (SCND) is at the core of strategic planning in supply chain man-

agement (SCM). Whether to create a new network configuration or to redesign an existing

network is one of the major strategic decisions to be made, as the configuration of the network

defines the operating basis of the supply chain. According to Harrison [7], up to 80% of the

total cost of a product is driven by network design decisions.

SCND is a complex undertaking. It involves determining which facilities to include in the

supply chain network (e.g., plants, warehouses), their size and location, and establishing the

transportation links among the members of the supply chain as well as setting the flow of

materials through them. This paper focuses on a comprehensive problem arising in SCND. It

includes various key elements that are of practical relevance but have not yet been considered

simultaneously in the literature. Focus is given to the design of a supply chain network as

depicted in Figure 1.

Customer 
zones

Upper 

echelon 

facilities

Intermediate 

echelon 

facilities

Figure 1: A two-echelon supply chain network.

The network comprises two echelons involving two types of distribution facilities such as

central and regional warehouses. Demand for multiple products originates at the lowest layer

of the supply chain, namely, at customer zones. Moreover, products are grouped into families,

each having specific storage requirements. This is commonly known as class-based storage, a

policy used nowadays in many warehouses. Compared to other storage strategies, class-based

storage reduces floor space utilization, order picking times and costs (see, e.g., Muppani and

Adil [15, 16]). For each product family, a given set of storage areas with different sizes are

available to be installed at each potential location. Fixed installation costs for new storage
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areas reflect economies of scale.

Figure 2 shows an example of three possible facility configurations for the storage of three

families of refrigerated goods, each demanding specific temperature and moisture conditions.

Small and medium-sized storage areas are available for frozen goods. The chilled area (e.g.,

for dairy products) can occupy a small, medium or large space. For the special chilled area

(e.g., for fruit and vegetables) either a medium or a large-sized area can be installed. In total,

12 different configurations are possible.

chilled 

area

frozen 

area

special 

chilled 

area

special chilled 

area

chilled 

area

frozen 

area

Configuration CConfiguration A Configuration B

chilled area

frozen 

area special 

chilled 

area

Figure 2: Three possible configurations for a refrigerated storage facility.

Structural decisions to be made over a multi-period planning horizon are as follows: (i) se-

lection of new facilities from a given set of candidate locations to operate at the upstream

and intermediate echelons of the network; (ii) facility sizing through the installation of storage

areas with given capacities for product families at each open location; (iii) the investment of

an available budget for facility location and sizing. Further decisions concern the quantities of

products to be shipped from upper level facilities to intermediate level facilities, and from the

latter to customer zones (see Figure 1).

Through the consideration of a multi-period horizon, the design of the supply chain network

also entails the specification of when and where capacity expansions for given families should

be made, and how large they should be. A further distinctive feature of our model is that the

cost of operating a facility depends on the capacity utilization rate of the installed storage areas

at the facility. This aspect has been neglected in the literature as facility operating costs are

usually assumed to be fixed, although this does not apply to many situations.

A recent survey conducted by Melo et al. [14] has shown that cost minimization is the most

widely used objective in SCND. This means that the decision-making process aims at identify-

ing the network configuration with the least total cost. In contrast, a profit oriented objective

has received much less attention, although most organizations pursue this goal. In this case,

the physical distribution structure of the network that maximizes the difference between total
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revenue and total cost is to be determined. In this paper, we investigate the SCND problem

from both perspectives and discuss the implications that the choice of each of these perfor-

mance measures have on network design. Our comparison is based on the development of

appropriate mixed-integer linear programming (MILP) models and on their analysis through an

extensive computational study. In recent years, commercial optimization software has become a

powerful tool for solving a wide variety of large-scale optimization problems. As a result, many

organizations resort to optimization tools for decision support nowadays. Using a well-known

general-purpose solver, we will show that the above performance criteria have a strong impact

on the quality of the solutions obtained.

The contribution of this paper is twofold. First, it offers a new SCND model that significantly

generalizes previous models. This is accomplished through the integration of various strategic

features of practical relevance into a single model. Second, it analyzes the SCND problem from

two different viewpoints, namely, a cost minimization goal and a profit maximization objective.

Our study is - to the best of our knowledge - the first to investigate the impact of these

objectives on the configuration of the supply chain network and on the ability of commercial

optimization software to solve problem instances within a reasonable time limit.

The remainder of the paper is organized as follows. In the next section, we briefly review

the literature dedicated to SCND. We will show that there exist several SCND models that

consider some but not all of the characteristics of our problem. In Section 3, we describe two

mathematical formulations for our SCND problem, one considering a cost minimization goal

and the other following a profit maximization objective. Section 4 proposes various types of

valid inequalities to enhance the original formulations in an attempt to strengthen the bounds

of the corresponding linear relaxations. Section 5 focuses on an extensive computational study.

A new methodology for the random generation of test instances reflecting real-world situations

is introduced, followed by the analysis of the results obtained with a general-purpose solver.

In particular, our findings provide managerial insights on how the decision-making process is

impacted by the choice of the objective function. We conclude with a few general remarks and

present future research directions.

2 Related research

Over the last decades, facility location decisions have attracted a great deal of attention from

researchers. In recent years, increasing attention has also been paid to the interaction of
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these decisions with key features of strategic supply chain planning such as supplier selection,

production planning, technology acquisition, inventory planning, transportation mode selection,

and vehicle routing. The importance of integrating location decisions with other decisions

relevant to SCND has been highlighted in a recent survey by Melo et al. [14]. Economic

globalization has also prompted the development of more comprehensive facility location models

as evidenced by Meixell and Gargeya [13].

In this section, we provide a review of the literature with a focus on the development of

models for SCND rather than solution methods. In doing so, references will be limited to

relevant deterministic models in the extensive SCND literature that consider at least one of

the characteristics captured by our model. In particular, the following features will be covered:

multi-echelon, multi-commodity, facility sizing and capacity utilization, multi-period, investment

restrictions, and type of objective.

Multi-echelon supply chain networks

A crucial aspect of many realistic location problems concerns the existence of different types

of facilities, each one playing a specific role (e.g., production or warehousing), and a natural

material flow (that is, a hierarchy) between them. However, in their review of hierarchical

location models, Sahin and Süral [20] observe that facility location problems have been mostly

studied for networks comprising a single echelon of facilities and a customer layer. These findings

are also supported by Melo et al. [14]. In supply chain networks with multiple facility echelons,

location decisions often concern more than one type of facilities as in our case. Contributions in

this area include Jang et al. [10] and Pirkul and Jayaraman [17, 18]. Both plants and warehouses

are to be located to satisfy customers’ demands for multiple commodities. An upper limit is

specified on the number of facilities that can be open in each echelon. Altiparmak et al. [1] and

Jayaraman and Pirkul [11] extend this problem by including supplier selection and production

decisions.

Location and capacity acquisition

Facility sizing and location decisions are intertwined. The most common modeling approach is

to consider potential locations to be either uncapacitated or capacitated. In the former case,

the size of each new facility is an outcome of solving the location problem. However, in SCND,

it is more realistic to incorporate the capacity limitations in the facilities or equipment to be

established. Mazzola and Neebe [12] combine the location of new facilities with the purchase
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of capacity in a multi-commodity single-echelon network. Capacity acquisition involves the

selection of a capacity level for each new facility from a set of available discrete sizes with

fixed installation costs that capture economies of scale. This form of capacity acquisition is not

widely spread in strategic supply chain planning, whereas it is often considered in the design of

telecommunication networks (see, e.g., Gourdin et al. [6]). For a single product, Amiri [2] adopt

the same form of capacity acquisition as Mazzola and Neebe [12] in a two-echelon network,

where both plants and warehouses are to be located. Sadjady and Davoudpour [19] extend

the model in [2] by considering multiple commodities and the choice of transportation modes.

The acquisition of technology is also strongly associated with capacity decisions. Elhedhli and

Gzara [5] incorporate this feature into a model for the location of plants and warehouses to

meet demands for multiple commodities. In all the previous works [2], [5], [12], and [19] at

most one technology type can be installed at an open facility. Recently, Amrani et al. [3] have

also modeled capacity acquisition in conjunction with the location of plants and distribution

centers (DCs). An interesting feature of their model is that the demand of each customer must

be supplied by a single facility, either a DC or a plant.

Multi-period SCND

Facility sizing issues are also handled in the literature in conjunction with a multi-period planning

horizon. Although the timing of facility locations and expansions over an extended time horizon

is of major importance to decision-makers in SCND, significantly less attention has been given

in the literature to this aspect compared to the static case (i.e. a single time period), see

Melo et al. [14]. One of the early contributions in this research area is by Shulman [21], who

focuses on a single product, single-echelon network design problem with location and capacity

acquisition decisions. Multiple capacity levels are available for selection in each time period.

In contrast, the models proposed by Antunes and Peeters [4], Hugo and Pistikopoulos [8], and

Thanh et al. [22, 23] are more comprehensive. The redesign of an existing network of schools is

studied in [4] through the gradual capacity expansion of new locations and the gradual capacity

reduction of existing facilities. Moreover, a maximum size is imposed on every new facility,

thereby limiting its expansion over the time horizon. In [8], the number of open plants and

the number of capacity expansions of given technologies are controlled by pre-defined minimum

and maximum values. In the problem studied by Thanh et al. [22, 23], the set of strategic

decisions includes facility location and capacity acquisition as well as production, distribution,

and inventory planning in a three-echelon network. Location decisions concern plants and
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warehouses whose capacities may be extended over the time horizon. In addition, supplier

selection occurs at the upstream layer of the network. Technology acquisition is also included in

a large-scale model developed by Vila et al. [24] which comprises location, production, inventory,

and transportation decisions along with international factors such as tariffs and duties. However,

location decisions regarding plants and DCs are only made at the beginning of the planning

horizon, while all other decisions including the purchase of capacity for a particular technology

may change over time.

Facility configuration and capacity utilization

Capacity utilization is also closely related to facility configuration. Typically, once capacity or

technology has been acquired for a location, all products handled by the new facility compete

for the installed capacity. This aspect is present in the models of Elhedhli and Gzara [5],

Jang et al. [10], Mazzola and Neebe [12], Sadjady and Davoudpour [19], Thanh et al. [22, 23],

and Vila et al. [24]. In contrast, Hugo and Pistikopoulos [8] consider the installed production

capacity to be product-dependent. Amrani et al. [3] also capture this aspect for production

facilities. However, at the DC layer the typical view of non-dedicated technology is adopted

by these authors. Often in SCND, it is only desired to establish a new facility if it will achieve

at least a given minimum throughput. This minimum activity level is usually specified as a

percentage of the available installed capacity. This aspect is considered by Amrani et al. [3],

Hugo and Pistikopoulos [8], and Thanh et al. [22, 23].

Capacity utilization is an important issue as the model to be presented in the next section

takes on a new perspective that differs from the literature presented above. This has to do

with the fact that in our case products are grouped into families and the configuration of a

new facility entails the acquisition of capacity for one or more families over a time horizon.

Dedicated technology offers economies of scale and is motivated by different families having

different storage and handling requirements (recall Figure 2). As will be shown in Section 3,

this aspect has a strong impact on the formalization of a mathematical model. Moreover, the

utilization rate of dedicated equipment is also closely related to facility operating costs. In our

case, the total quantity processed by a facility for a given family is subject to variable handling

costs that account, for example, for energy consumption. Amrani et al. [3] and Shulman [21]

are among the few authors that follow this view. In contrast, most of the literature on SCND

regards facility operating costs as being fixed (see, e.g., the above references).
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Investment capital

The establishment of new facilities is typically a long-term project involving substantial invest-

ment capital (e.g., for facility construction and equipment acquisition). This aspect is rarely

captured by SCND models, see Melo et al. [14]. An exception is the model developed by Antunes

and Peeters [4] which includes budget limitations for facility location, expansion and reduction

over multiple time periods. A tight budget (as is usually the case in location projects) strongly

limits the investment options in a given time period. This impacts not only the selection of

new facilities but also other strategic decisions (e.g., capacity acquisition).

Performance measures

The primary objective of SCND models has been the identification of the network configuration

with the least total cost. Almost 80% of the articles surveyed by Melo et al. [14] fall into this

category. The same applies to the majority of the references given in this section. Facility

location and logistics costs (e.g., for production and distribution) are among the most frequent

cost components. In contrast, profit maximization has received much less attention. Among

the references given before, only Vila et al. [24] have adopted an after-tax profit objective, that

is, the maximization of the difference between revenues and total costs, and taxes. Observe

that under a profit maximization goal, it may not always be attractive to meet all customers’

demands. This occurs when servicing certain customers yields additional costs that are higher

than the corresponding revenues. Moreover, in some cases, an organization may intentionally

lose customers when the costs of maintaining them are prohibitively high. This contrasts with

a cost minimization model in which the demand of every customer has to be satisfied. Finally,

there are a few contributions that propose multi-objective models. Altiparmak et al. [1] consider

three conflicting objectives: minimization of the total supply chain costs, maximization of the

total demand that can be satisfied within a pre-specified time limit, and maximization of a

balanced distribution of capacity utilization among the open facilities. The multi-objective

function of the model by Hugo and Pistikopoulos [8] represents a trade-off between maximizing

profit and minimizing ecological impacts (e.g., emissions, waste).

We conclude this section by observing that to the best of our knowledge, the impact of

considering a cost minimization objective versus a profit maximization goal has not been inves-

tigated so far. As mentioned above, the flexibility provided by a profit maximization perspective

to choose those demands to be filled is likely to significantly influence the configuration of the
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supply chain network, and hence, the interactions across all tiers of the supply chain. This

paper is the first to focus on this issue for a comprehensive model capturing various aspects

that have not yet been considered simultaneously in a single model.

3 Mathematical models

In this section, we propose two MILP formulations for the problem at hand. The models mainly

differ in their objective functions. After introducing the required notation and the decision

variables in Section 3.1, we present the constraints that are shared by both formulations in

Section 3.2. Finally, Section 3.3 is dedicated to the description of the cost minimization and

profit maximization objectives.

We assume that prior to the SCND project, all relevant data (demands, costs, capacity

acquisition options, available capital, and other factors) were collected by using, for example,

appropriate forecasting methods and company-specific business analyses.

3.1 Notation and definition of decision variables

In our SCND problem, a network comprising two types of facilities (e.g., central and regional

DCs) is to be established (recall Figure 1). A finite set of candidate sites for locating new

facilities in each echelon is available. Over a multi-period planning horizon, new facilities can

be established and their capacity can be gradually extended through the installation of storage

areas dedicated to families of products. In particular, we assume that the same type of storage

area can be selected in successive time periods for a given family. Table 1 introduces the index

sets to be used.

Table 2 summarizes all costs. These are divided into two categories, namely investment and

network operating costs. The first category comprises fixed costs for establishing new facilities

(F 1
t,i, F

2
t,i) over the time horizon and fixed costs for installing new storage areas (G1

t,i,`,k, G
2
t,i,`,k).

The latter reflect economies of scale. Investment options are limited by the budget available

in each time period. Network operating costs - the second cost category - include fixed facility

maintenance costs (M1
t,i,M

2
t,i) at new locations as well as variable operating (O1

t,i,`,k, O
2
t,i,`,k) and

shipment costs (S1
t,i,i′,p, S

2
t,i,j,p). Facility maintenance costs account, for example, for business

overhead costs (e.g., staff and security costs) that are incurred from the first time period in

which the new facility is established until the end of the time horizon. Operating costs are

charged to the capacity utilization rate of the installed storage areas and represent handling
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Symbol Description

T Set of time periods

J Set of customer zones

I1 Set of potential sites for locating new facilities in the upper echelon

I2 Set of potential sites for locating new facilities in the intermediate echelon

L Set of product families

P` Set of products that are part of family ` ∈ L

P Set of all products; P =
⋃
`∈L

P`

K1
` Set of different types of storage areas available for family ` ∈ L at a

location in the upper echelon

K2
` Set of different types of storage areas available for family ` ∈ L at a

location in the intermediate echelon

Table 1: Index sets.

expenditures. Finally, shipment costs are incurred by the delivery of the products from upper

echelon facilities to intermediate level facilities, and from these to the customer zones.

Table 3 introduces additional input parameters. We assume that the available storage areas

are sorted in non-decreasing order of their sizes. This means that for each family ` ∈ L,

the various capacity levels that can be installed at site i ∈ I1 are ordered such that Q1
i,`,1 <

Q1
i,`,2 < · · · < Q1

i,`,|K1
` |
. For intermediate echelon locations a similar assumption is made, that

is, Q2
i,`,1 < Q2

i,`,2 < · · · < Q2
i,`,|K2

` |
for every t ∈ T, i ∈ I2, and ` ∈ L.

Customers’ demands are expressed in units of measurement that depend on the product

type (e.g., kilogram, liter). In contrast, the sizes of storage areas are expressed in a unit of

storage space utilization rather than in a unit of measurement, such as feet or meters. A slot is

considered to be the smallest unit of assignable storage space. At intermediate echelon facilities,

such as regional warehouses, a slot has often the dimension of a standard pallet. Hence, the size

of a storage area of type k ∈ K2
` for family ` ∈ L in location i ∈ I2, i.e. Q2

i,`,k, is expressed as

the total number of available slots. For example, demand for milk is usually conveyed in liters.

In a regional warehouse, one-liter milk cartons are stored in standard pallets, each holding, e.g.,

200 cartons. Therefore, µ2
p = 0.005 is the conversion factor.

In upper echelon locations, however, bulk storage is more common since other types of

storage facilities are used, such as silos and tanks. In this case, a unit of space utilization may

not be a slot. For example, in a dairy factory, milk is typically stored in a large tank with
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Symbol Description

F 1
t,i Fixed cost of establishing a new facility in site i ∈ I1 (upper echelon) in

period t ∈ T

F 2
t,i Fixed cost of establishing a new facility in site i ∈ I2 (intermediate echelon)

in period t ∈ T

G1
t,i,`,k Fixed cost of installing a new storage area of type k ∈ K1

` for family ` ∈ L

at location i ∈ I1 in period t ∈ T

G2
t,i,`,k Fixed cost of installing a new storage area of type k ∈ K2

` for family ` ∈ L

at location i ∈ I2 in period t ∈ T

M1
t,i Fixed maintenance cost incurred by a facility established in location i ∈ I1

in period t ∈ T

M2
t,i Fixed maintenance cost incurred by a facility established in location i ∈ I2

in period t ∈ T

O1
t,i,`,k Unit operating cost in period t ∈ T of a product belonging to family

` ∈ L that uses a storage area of type k ∈ K1
` installed at location i ∈ I1

O2
t,i,`,k Unit operating cost in period t ∈ T of a product belonging to family

` ∈ L that uses a storage area of type k ∈ K2
` installed at location i ∈ I2

S1
t,i,i′,p Unit shipment cost in period t ∈ T of product p ∈ P from a facility

operating at location i ∈ I1 to a facility operating at location i′ ∈ I2

S2
t,i,j,p Unit shipment cost in period t ∈ T of product p ∈ P from a facility

operating at location i ∈ I2 to customer zone j ∈ J

Table 2: Costs.

capacity for up to, e.g., 1000 hectoliters. The sizes of storage areas in such facilities (given by

Q1
i,`,k) are thus expressed in this unit. Using again the above example, the factor µ1

p = 0.00001

is necessary to convert liters into 1000 hectoliters. In the facility location literature, it is often

assumed that both customers’ demands and the capacities of new facilities have the same units

even when different products are considered. Amrani et al. [3] are among the few authors who

explicitly account for unit conversion in a similar way as in our case.

Strategic decisions on facility location and capacity acquisition are ruled by the binary

variables in Table 4, while distribution decisions are described by continuous variables given in

Table 5. The latter table also includes the auxiliary variables w1
t,i,`,k and w2

t,i,`,k, which gather

the total quantity of products belonging to family ` that are handled by a storage area of type

k at an upper, resp. intermediate, echelon facility in time period t. Finally, the variables ut

account for the non-invested capital in period t.

11



Symbol Description

dt,j,p Demand of customer zone j ∈ J for product p ∈ P in period t ∈ T

Q1
i,`,k Handling capacity of a storage area of type k ∈ K1

` installed

at location i ∈ I1 for product family ` ∈ L

Q2
i,`,k Handling capacity of a storage area of type k ∈ K2

` installed

at location i ∈ I2 for product family ` ∈ L

q1i,`,k Minimum throughput for the delivery of products of family ` ∈ L

from a storage area of type k ∈ K1
` installed at location i ∈ I1

q2i,`,k Minimum throughput for the delivery of products of family ` ∈ L

from a storage area of type k ∈ K2
` installed at location i ∈ I2

µ1
p Unit capacity handling factor of product p ∈ P in an upper

echelon location

µ2
p Unit capacity handling factor of product p ∈ P in an intermediate

echelon location

Bt Available budget in period t ∈ T

αt Unit return factor on capital not invested in period t ∈ T ∪ {0}
with α0 = 0

Table 3: Further input parameters.

3.2 Network design constraints

The following constraints impose the required conditions for the configuration of the supply

chain network.

∑
t∈T

z1t,i ≤ 1 i ∈ I1 (1)

∑
t∈T

z2t,i ≤ 1 i ∈ I2 (2)

∑

k∈K1
`

y1t,i,`,k ≤
t∑

τ=1

z1τ,i t ∈ T, i ∈ I1, ` ∈ L (3)

∑

k∈K2
`

y2t,i,`,k ≤
t∑

τ=1

z2τ,i t ∈ T, i ∈ I2, ` ∈ L (4)

∑
p∈P`

µ1
p

∑

i′∈I2
x1
t,i,i′,p =

∑

k∈K1
`

w1
t,i,`,k t ∈ T, i ∈ I1, ` ∈ L (5)

∑
p∈P`

µ2
p

∑
j∈J

x2
t,i,j,p =

∑

k∈K2
`

w2
t,i,`,k t ∈ T, i ∈ I2, ` ∈ L (6)
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Symbol Description

z1t,i 1 if a new facility is established in an upper echelon location i ∈ I1

in period t ∈ T , 0 otherwise

z2t,i 1 if a new facility is established in an intermediate echelon location

i ∈ I2 in period t ∈ T , 0 otherwise

y1t,i,`,k 1 if a new storage area of type k ∈ K1
` is installed in period t ∈ T at

an upper echelon location i ∈ I1 for family ` ∈ L, 0 otherwise

y2t,i,`,k 1 if a new storage area of type k ∈ K2
` is installed in period t ∈ T at

an intermediate echelon location i ∈ I2 for family ` ∈ L, 0 otherwise

Table 4: Binary decision variables.

Symbol Description

w1
t,i,`,k Total quantity of family ` ∈ L handled in period t ∈ T at a storage

area of type k ∈ K1
` installed at location i ∈ I1

w2
t,i,`,k Total quantity of family ` ∈ L handled in period t ∈ T at a storage

area of type k ∈ K2
` installed at location i ∈ I2

x1
t,i,i′,p Quantity of product p ∈ P shipped in period t ∈ T from location

i ∈ I1 to location i′ ∈ I2

x2
t,i,j,p Quantity of product p ∈ P shipped in period t ∈ T from location

i ∈ I2 to customer zone j ∈ J

ut Unspent budget in period t ∈ T ∪ {0} with u0 = 0

Table 5: Continuous decision variables.

q1i,`,k

t∑
τ=1

y1τ,i,`,k ≤ w1
t,i,`,k ≤ Q1

i,`,k

t∑
τ=1

y1τ,i,`,k t ∈ T, i ∈ I1, ` ∈ L, k ∈ K1
` (7)

q2i,`,k

t∑
τ=1

y2τ,i,`,k ≤ w2
t,i,`,k ≤ Q2

i,`,k

t∑
τ=1

y2τ,i,`,k t ∈ T, i ∈ I2, ` ∈ L, k ∈ K2
` (8)

∑

i′∈I1
x1
t,i′,i,p =

∑
j∈J

x2
t,i,j,p t ∈ T, i ∈ I2, p ∈ P (9)

∑

i∈I1
F 1
t,i z

1
t,i +

∑

i∈I2
F 2
t,i z

2
t,i +

∑

i∈I1

∑

`∈L

∑

k∈K1
`

G1
t,i,`,k y

1
t,i,`,k

+
∑

i∈I2

∑

`∈L

∑

k∈K2
`

G2
t,i,`,k y

2
t,i,`,k + ut = Bt + αt−1 ut−1 t ∈ T (10)

z1t,i ∈ {0, 1} t ∈ T, i ∈ I1 (11)
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z2t,i ∈ {0, 1} t ∈ T, i ∈ I2 (12)

y1t,i,`,k ∈ {0, 1} t ∈ T, i ∈ I1, ` ∈ L, k ∈ K1
` (13)

y2t,i,`,k ∈ {0, 1} t ∈ T, i ∈ I2, ` ∈ L, k ∈ K2
` (14)

x1
t,i,i′,p ≥ 0 t ∈ T, i ∈ I1, i′ ∈ I2, p ∈ P (15)

x2
t,i,j,p ≥ 0 t ∈ T, i ∈ I2, j ∈ J, p ∈ P (16)

ut ≥ 0 t ∈ T (17)

Constraints (1)-(2) guarantee that at most one new facility can be established in each

potential site over the time horizon. Constraints (3) ensure that in each time period at most

one type of storage area is installed for a product family at a potential site in the upper echelon,

provided that a facility is already operated in that site. Constraints (4) impose similar conditions

on intermediate echelon facilities. Constraints (5) and (6) enable the calculation of the total

quantity that is actually handled for products of each family in a given facility and time period.

Notice that on the left-hand side of equalities (5) and (6) the product units are converted into

capacity handling units that are in use in the corresponding echelon. Constraints (7) and (8)

state that the total quantity handled by a facility for a given family must be within pre-defined

lower and upper limits in each time period. Observe that conditions (1)-(4) together with (7)

and (8) are consistent with the definition of the binary variables in Table 4. This implies that

new facilities and storage areas operate from the time period they are established until the end

of the planning horizon. Constraints (9) are the usual product flow conservation conditions at

intermediate echelon facilities over the time horizon. The investment constraints (10) guarantee

that the available budget is invested in establishing new facilities as well as installing new storage

areas. Observe that the amount of capital not used in a given period earns interest and can

later be invested. Finally, conditions (11)-(17) are integrality and non-negativity constraints.

We note that it is not necessary to specify that the variables w1
t,i,`,k and w2

t,i,`,k are non-negative

due to inequalities (7) and (8).

Customers’ demands do not appear in any of the above constraints. As mentioned at the

end of Section 2, demand satisfaction is closely related to the type of objective considered.

This aspect is detailed in the next section.
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3.3 Cost minimization vs profit maximization

When the decision-making process aims at identifying the supply chain network configuration

with the least total cost, then the following objective function needs to be considered:

Min
∑
t∈T

∑

i∈I1
M1

t,i z
1
t,i +

∑
t∈T

∑

i∈I2
M2

t,i z
2
t,i

+
∑
t∈T

∑

i∈I1

∑

`∈L

∑

k∈K1
`

O1
t,i,`,k w

1
t,i,`,k +

∑
t∈T

∑

i∈I2

∑

`∈L

∑

k∈K2
`

O2
t,i,`,k w

2
t,i,`,k

+
∑
t∈T

∑

i∈I1

∑

i′∈I2

∑
p∈P

S1
t,i,i′,p x

1
t,i,i′,p +

∑
t∈T

∑

i∈I2

∑
j∈J

∑
p∈P

S2
t,i,j,p x

2
t,i,j,p

− u|T | (18)

The terms in (18) comprise fixed facility maintenance costs as well as variable operating and

shipment costs. Observe that a revenue term u|T | is also included in (18), which encourages

the minimization of expenditures on establishing new facilities and installing storage areas for

product families (see also (10)).

Under a cost minimization objective, it is natural to impose the satisfaction of all customers’

demands. This is ensured by the following set of constraints:
∑

i∈I2
x2
t,i,j,p = dt,j,p t ∈ T, j ∈ J, p ∈ P (19)

Due to the above conditions, the total revenue obtained by selling the demanded quantities to

the customer zones is a fixed amount as it is known beforehand. Hence, it can be excluded

from the objective function (18).

In contrast, if the aim of the SCND project is to determine the network configuration yielding

the largest total profit over the time horizon, then it is not required to meet all customers’

demands (recall the discussion at the end of Section 2). Therefore, in this case equations (19)

are replaced by
∑

i∈I2
x2
t,i,j,p ≤ dt,j,p t ∈ T, j ∈ J, p ∈ P (20)

The demand choice flexibility provided by this case allows the identification of those demands

that can be satisfied profitably and those that represent a loss for the organization. As a result,

the total revenue that can be achieved is an outcome of the SCND project. In this case, the

notation introduced in Section 3.1 is extended by defining the per-unit revenue as follows:

Rt,j,p : Revenue of selling one unit of product p ∈ P to customer zone j ∈ J in period t ∈ T
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Hence, under a profit maximization objective, the following function is considered:

Max
∑
t∈T

∑

i∈I2

∑
j∈J

∑
p∈P

Rt,j,p x
2
t,i,j,p + u|T |

−
(∑

t∈T

∑

i∈I1
M1

t,i z
1
t,i +

∑
t∈T

∑

i∈I2
M2

t,i z
2
t,i

+
∑
t∈T

∑

i∈I1

∑

`∈L

∑

k∈K1
`

O1
t,i,`,k w

1
t,i,`,k +

∑
t∈T

∑

i∈I2

∑

`∈L

∑

k∈K2
`

O2
t,i,`,k w

2
t,i,`,k

+
∑
t∈T

∑

i∈I1

∑

i′∈I2

∑
p∈P

S1
t,i,i′,p x

1
t,i,i′,p +

∑
t∈T

∑

i∈I2

∑
j∈J

∑
p∈P

S2
t,i,j,p x

2
t,i,j,p

)
(21)

Let Pcost denote the SCND model defined by the objective function (18) subject to the

constraints (1)–(17) and (19). Moreover, we denote by Pprofit the SCND model given by the

objective function (21) subject to the constraints (1)–(17) and (20).

Finally, we point out that both models, Pcost and Pprofit, apply not only to the situation in

which a new supply chain is to be created but also to the re-design of an existing network. In

the latter case, facilities that already operate have the corresponding binary variables set to one

in the first time period (i.e. z11,i = 1, z21,i = 1). Moreover, the binary variables corresponding to

the storage areas already in use in each one of these facilities are also assigned the value one

in the first period. In this way, the expansion of an existing supply chain can also be modeled

over the planning horizon.

4 Enhancing the mathematical models

To be able to solve large-scale discrete optimization problems within a branch-and-bound or

branch-and-cut framework, a MILP formulation is often enhanced by adding valid inequalities.

Extensive computational experience suggests that the success of this approach critically depends

on the choice of the valid inequalities. The principal difficulty with this approach, however, is

that it is not a priori clear which class of valid inequalities is better for particular instances.

As Pcost and Pprofit are both large-scale MILP models, we follow this approach in this section

through devising several additional inequalities in an attempt to strengthen the bounds of the

corresponding linear relaxations. Ideally, this step also leads to a reduction of the computational

time required to solve to optimality an instance with a general-purpose solver.

We first introduce inequalities that are valid for both types of models, Pcost and Pprofit.

Afterwards, we focus on valid inequalities that are specific to the cost minimization model.
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4.1 Valid inequalities common to both models

The following constraints are redundant to the original models but may be relevant to their

linear relaxations:

x2
t,i,j,p ≤ dt,j,p

t∑
τ=1

z2τ,i t ∈ T, i ∈ I2, j ∈ J, p ∈ P

This set comprises a huge number of inequalities and thus, strongly affects the size of both

models, Pcost and Pprofit. A way of overcoming this drawback is to aggregate them as described

by (22) and (23), although this may weaken the impact of the inequalities:

∑
j∈J

x2
t,i,j,p ≤

∑
j∈J

dt,j,p

t∑
τ=1

z2τ,i t ∈ T, i ∈ I2, p ∈ P (22)

∑
p∈P

x2
t,i,j,p ≤

∑
p∈P

dt,j,p

t∑
τ=1

z2τ,i t ∈ T, i ∈ I2, j ∈ J (23)

As the number of customer zones |J | is usually much larger than the number of products |P |,
the size of the models increases considerably when constraints (23) are added instead of (22).

However, these inequalities are usually stronger than (22) with respect to the linear relaxation

bounds.

4.2 Valid inequalities specific to cost minimization

In addition to the constraints described in the previous section, it is also possible to devise

further inequalities that are specific to the case in which customers’ demands must be satisfied,

that is, to model Pcost. In particular, we will show that the minimum number of storage areas

required by each family in each time period can be determined. Recall that under a maximization

objective it is not possible to derive similar conditions due to the flexibility of not having to

meet demands completely.

Let us assume that if a new storage area is installed for family ` in a new location, then the

one with the largest size is selected. Furthermore, we assume that this choice can be made in

every time period. For an upper echelon location i ∈ I1 and a family ` ∈ L this means that

only the |K1
` |-th storage area (with size Q1

i,`,|K1
` |
) can be selected. Similarly, in an intermediate

echelon location i ∈ I2, the largest storage area has size Q2
i,`,|K2

` |
for family ` ∈ L.

For each family ` ∈ L we sort the largest storage sizes in non-decreasing order over the set

of candidate sites for new facilities. Regarding the upper echelon locations, this entails building
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the sequence Q1
[1],`, Q

1
[2],`, . . . , Q

1
[|I1|],` such that

Q1
[1],` ≥ Q1

[2],` ≥ . . . ≥ Q1
[|I1|],`

For intermediate echelon facilities, the ordered sequence is as follows:

Q2
[1],` ≥ Q2

[2],` ≥ . . . ≥ Q2
[|I2|],`

A minimum number of storage areas required by each family in each time period can now

be determined.

Consider an instance to the problem with 3 locations in the upper echelon. Additionally,

suppose that the largest capacity of a storage area for some family ` is 100, 80 and 70 at

locations 1, 2 and 3, respectively. Assume that the total demand for the products in family

` is 200 in period 2. Taking the above capacities into account and also the fact that we can

install the same type of storage area in different periods, we can directly state that at least two

storage areas must be available for family ` in period 2 (possibly one of size 100 installed in

period 1 and another installed in period 2). In fact, it is important to recall that the storage

areas available in every period t ∈ T may have been installed in any period 1, . . . , t.

Let us denote by R1
t,` a lower bound on the total number of storage areas operating in

period t for family `, and let Q̃1
t,` be their total capacity with t ∈ T and ` ∈ L. In addition, we

define R1
0,` = 0 and Q̃1

0,` = 0.

Let d̃1t,` define the total quantity demanded in period t for products in family `, that is,

d̃1t,` =
∑
p∈P`

µ1
p

∑
j∈J

dt,j,p t ∈ T, ` ∈ L

Observe that d̃1t,` is expressed in the storage units used at upper echelon facilities.

If the inequality Q̃1
t−1,` ≥ d̃1t,` holds, it means that the total capacity installed until period t−1

is also large enough to cover all the demand in period t. Therefore, R1
t,` = R1

t−1,`. Otherwise,

it is necessary to expand the available capacity by installing additional storage areas in period t.

The capacity thus acquired must cover u1
t,` = d̃1t,`− Q̃1

t−1,` units of demand. If u1
t,` < Q[1],` then

it suffices to install a single storage area, namely the largest one. In this case, R1
t,` = R1

t−1,`+1.

Otherwise, k new storage areas are required with k being a number greater than or equal to 2

such that the following inequalities hold:

k−1∑
m=1

Q1
[m],` < u1

t,` ≤
k∑

m=1

Q1
[m],`

18



It follows that R1
t,` = R1

t−1,` + k as this is the minimum number of storage areas operating in

the upper echelon in period t for family `.

Note that the above reasoning relies on selecting only the largest storage areas in each

location. However, in practice, also smaller storage areas can be installed. Hence, R1
t,` is in

fact a lower bound on the actual number of storage areas that must be available in period t for

family `. Consequently, the following inequalities can be added to model Pcost:

t∑
τ=1

∑

i∈I1

∑

k∈K1
`

y1τ,i,`,k ≥ R1
t,` t ∈ T, ` ∈ L (24)

Regarding the intermediate echelon facilities i ∈ I2, the minimum number of storage areas

that must operate in period t ∈ T for family ` ∈ L, that is R2
t,`, is determined in a similar

way. In each period t, we need to compare the available storage capacity with the demand

requirements d̃2t,` of family `. The latter are determined by

d̃2t,` =
∑
p∈P`

µ2
p

∑
j∈J

dt,j,p t ∈ T, ` ∈ L

Hence, if the installed capacity is large enough then R2
t,` = R2

t−1,`. Otherwise, R
2
t,` = R2

t−1,`+k

with k denoting the number of storage areas that are additionally installed in period t (k ≥ 1).

The calculation of k follows the same steps as for upstream facilities.

The following inequalities are also valid for model Pcost:

t∑
τ=1

∑

i∈I2

∑

k∈K2
`

y2τ,i,`,k ≥ R2
t,` t ∈ T, ` ∈ L (25)

Note that we assume that the following necessary conditions for optimality hold for each

family ` ∈ L in each period t ∈ T :

d̃1t,` ≤ t×
|I1|∑
i=1

Q1
[i],` and d̃2t,` ≤ t×

|I2|∑
i=1

Q2
[i],`

In particular, in the first time period, the values of R1
1,` and R2

1,` are also useful to derive the

minimum number of new facilities that must be established in each echelon. For instance, as

R1
1,` indicates the minimum number of storage areas required by family ` and these storage areas

can only operate at R1
1,` different locations due to constraints (3), it follows that at least R1

1,`

new facilities must be established in time period 1. Furthermore, the family with the largest

number of required storage areas also imposes a lower bound on the number of new upper
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echelon facilities that must be established in the first period. A similar reasoning also applies

to intermediate echelon facilities. Hence, the following inequalities are valid for model Pcost:

∑

i∈I1
z11,i ≥ max

`∈L

{
R1

1,`

}
(26)

∑

i∈I2
z21,i ≥ max

`∈L

{
R2

1,`

}
(27)

Finally, we note that the class of inequalities (24)-(27) may be very useful, especially when

the right-hand side terms are significantly larger than one. In this case, the total number of

possible combinations of new locations and new storage areas decreases.

5 Computational experiments

Although problems Pcost and Pprofit are NP-hard, being generalizations of the multi-period un-

capacitated facility location problem (see Jacobsen [9]), nowadays state-of-the-art optimization

software can handle very large instances of real-world combinatorial problems. As a result,

many organizations resort to general-purpose solvers for decision support. In this section, we

assess the performance of a commercial optimization tool, namely CPLEX, on a set of randomly

generated instances. A further aim of our empirical study is to analyze the impact of the type

of objective function on the design of the supply chain network.

5.1 Characteristics of test instances

As benchmark instances are not available for the problems at hand, we randomly generated

72 instances by combining the values indicated in Table 6.

The number of products belonging to each family ranges from 3 to 5 commodities, being the

exact number randomly selected. Given that either 3 or 5 families are considered, the generated

instances comprise at least 9 and at most 25 products. Three capacity levels are assumed for

storage areas in both location echelons of the network. For k ∈ K1
` , resp. k ∈ K2

` , k = 1 refers

to a small storage area, k = 2 represents a medium-sized storage area, and k = 3 denotes

a large storage area. Although test instances are randomly generated, they reflect realistic

features of strategic SCND problems to capture a wide range of problem structures (e.g. the

fixed installation costs of storage areas reflect economies of scale). Appendix A provides the

details of the methodology developed to obtain test instances. Each instance is designed so
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Symbol Description Values

|T | Number of time periods 3, 4

|J | Number of customer zones 20, 30, 50

|I1| Number of potential locations in the upper echelon 3, 5, 7

|I2| Number of potential locations in the intermediate echelon 10, 15, 20

|L| Number of product families 3, 5

|P`| Number of products in family ` ∈ L 3, 4, 5

|P | Total number of products
∑

`∈L |P`|
|K1

` | Number of storage areas for family ` ∈ L in a facility 3

of the upper echelon

|K2
` | Number of storage areas for family ` ∈ L in a facility 3

of the intermediate echelon

Table 6: Cardinality of index sets.

that the feasible regions of both Pcost and Pprofit are not empty. This means that the capacity

levels of storage areas as well as the budget available in each time period are set in such a way

that it is possible to design a supply chain network to satisfy all customers’ demands if required

(that is, if model Pcost is solved). Nonetheless, the investment capital is a scarce resource as it

is often the case in practice.

The size of the test instances is summarized in Table 7. The data sets are divided into two

classes that differ by the length of their planning horizons. Each class comprises 36 instances.

On average, the expansion of the time horizon from 3 to 4 periods results in a 33.5% increase

of both the number of variables and constraints. In particular, the set of binary variables is

extensive. The set of continuous variables is mainly dominated by the variables ruling the

quantities to be shipped through the network. Details about the specific characteristics of each

instance are given in Tables 15 and 16 in Appendix B.

|T | = 3 |T | = 4

Avg Min Max Avg Min Max

# Binary variables 878 540 1296 1170 720 1728

# Continuous variables 29113 10840 60529 39170 14453 83705

# Constraints 4329 2367 6840 5755 3150 9391

Table 7: Size of the test instances.
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5.2 Numerical results for the original models

The models were implemented using IBM ILOG Concert Technology 2.9 and solved with IBM

ILOG CPLEX 12.1. All experiments were conducted on a PC with an Intel Core i7-2600 3.4 GHz

processor and 4 GB RAM. CPLEX was run with a CPU time limit of 8 hours.

Figure 3 displays the quality of the best feasible solution identified by CPLEX for every test

instance within the specified time limit. For each model M , with M = Pcost, Pprofit, solution

quality is measured by the integrality gap as follows:

MIP gap (%) =
|zB − zM |

zM
× 100% (28)

with zM denoting the objective value of the best feasible solution to model M and zB rep-

resenting the best bound. For Pprofit, z
B corresponds to the best upper bound, whereas zB

refers to the best lower bound in the case of Pcost.

The choice of a performance criterion for SCND has a strong effect on the results obtained

as shown in Figure 3. While near-optimal solutions are always identified by CPLEX under a

profit maximization goal, the same does not occur when the network configuration is driven by

a cost minimization objective. In particular, 40% of the instances exhibit a MIP gap between

10% and 55% in the latter case.

Table 8 gives a summary of the MIP gaps obtained with each type of performance measure.

The length of the time horizon and as a result, the size of the instances, have a significant impact

on solution quality. The class of problems with 4 time periods has on average a larger MIP gap.

This is particularly striking for model Pcost whose solution quality deteriorates significantly.

Tables 17–20 in Appendix B specify the MIP gap of each instance under the two types of

objective.

|T | = 3 |T | = 4

MIP gap (%) Pcost Pprofit Pcost Pprofit

Avg 6.92 0.15 16.73 0.26

Min 0.00 0.00 0.00 0.00

Max 43.07 0.67 52.91 0.94

Table 8: Synthesis of the quality of the best solutions identified for the original models.

Regarding the computational time required by CPLEX, Table 9 displays the average, min-

imum and maximum CPU times (in hours) for the two models Pcost and Pprofit. It can be

seen that the CPU time increases sharply with the number of periods. The examination of
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Figure 3: Quality of the best solutions identified for the original models Pcost and Pprofit.

Tables 17–20 (see Appendix B) confirms this observation and also reveals a significant time

variability.

The results shown so far indicate that the type of model considered has a strong effect both
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|T | = 3 |T | = 4

CPU (h) Pcost Pprofit Pcost Pprofit

Avg 5.8 5.3 7.2 6.4

Min 0.2 0.1 0.5 0.5

Max 8.0 8.0 8.0 8.0

Table 9: Computational time required by the original models.

on the computational time and on the solution quality. One way to measure the quality of a

MILP formulation is to determine the bound provided by its linear relaxation. In general, the

tighter the bound provided by the linear relaxation, the higher the quality of the MILP formu-

lation. Hence, in an attempt to understand the large differences in solution quality observed in

Figure 3, we also analyzed the LP bound of each instance under both objective functions. Note

that the optimal value of Pcost is bracketed from below by its LP bound, while the opposite

occurs with the LP bound of Pprofit. Figure 4 displays the relative LP gaps which are calculated

as follows:

LP gap (%) =
|zLP − zM |

zM
× 100% (29)

with zM denoting the objective value of the best feasible solution to modelM (M = Pcost, Pprofit)

and zLP representing the corresponding LP bound. The striking differences observed in Figure 4

reveal that the MILP formulation of the profit maximization problem is very tight. Moreover,

the quality of these bounds is independent of the instance size. In contrast, the LP bounds of

the cost minimization model vary between 25% and 150% and thus, are very poor. Table 10

summarizes these findings (see also Tables 17–20 in Appendix B for details specific to each

instance).

|T | = 3 |T | = 4

LP gap (%) Pcost Pprofit Pcost Pprofit

Avg 59.80 1.18 65.70 1.18

Min 25.20 0.58 28.11 0.61

Max 149.94 2.16 133.18 1.90

Table 10: Synthesis of the quality of the linear relaxation gap of the original models.

In view of these results, a further strengthening of the original MILP formulation of model

Pcost is required. In the next section, we evaluate the effect that the valid inequalities proposed

in Section 4 have on the linear relaxation bound.
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Figure 4: Quality of the LP gaps of the original models Pcost and Pprofit.

5.3 Impact of valid inequalities on the cost minimization model

The degree to which the original model Pcost is expanded depends on the number of valid

inequalities that are added. The first column in Table 11 indicates two different ways of
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strengthening the original formulation Pcost that were considered. The column under “Size

expansion (%)” gives the relative increase of the number of constraints resulting from combining

different inequalities. While constraints (24)–(27) are computationally inexpensive (in total

2 · |T | · |L|+2 inequalities), the same does not apply to constraints (22). For each class of test

instances, the percentage LP gap closed is given. This value is calculated as 100 × (zCUT −
zLP )/(z − zLP ), where zCUT denotes the value of the linear relaxation of Pcost enhanced

with valid inequalities and zLP represents the linear relaxation value of the original model. In

addition, z denotes the objective value of the best feasible solution available.

Size |T | = 3 |T | = 4

Additional inequalities expansion (%) Avg Min Max Avg Min Max

(24)+(25)+(26)+(27) 0.6 26.38 2.65 48.80 21.58 4.73 42.25

(24)+(25)+(26)+(27)+(22) 17.6 26.40 2.68 48.80 21.61 4.76 42.33

Table 11: Cost minimization model with additional inequalities - LP gap closed (%).

From Table 11, it is evident that the most significant enhancement is due to adding the valid

inequalities (24)–(27). Although the linear relaxation is further tightened with constraints (22),

the improvement is unimportant. In Tables 12 and 13, the original model is compared with

its best enhancement with respect to the best feasible solutions identified by CPLEX and the

required computational time.

Although the linear relaxation is strengthened, it does not significantly impact neither the

solution quality (see Table 12) nor the CPU time (see Table 13). For example, on average

CPLEX solves an instance with 4 time periods within 6.9 hours and the best feasible solution

has an integrality gap of 12.85%. As these results are rather disappointing, we further inves-

tigated why a cost minimization problem is considerably more difficult to solve than its profit

maximization counterpart.

|T | = 3 |T | = 4

Model Avg Min Max Avg Min Max

Pcost 6.92 0.00 43.07 16.73 0.00 52.91

Pcost+(24)+(25)+(26)+(27) 5.20 0.00 25.48 12.85 0.00 54.70

Table 12: Cost minimization: Final MIP gap (%) using the original model and its best

enhancement.
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|T | = 3 |T | = 4

Model Avg Min Max Avg Min Max

Pcost 5.8 0.2 8.0 7.2 0.5 8.0

Pcost+(24)+(25)+(26)+(27) 5.3 0.1 8.0 6.9 0.3 8.0

Table 13: Cost minimization: CPU time (hours) required by the original model and by its

best enhancement.

To this end, for each test instance we compared the best feasible solutions to Pcost and

Pprofit. Recall that each instance is generated in such a way that the feasible solution space

of Pcost is not empty and thus, the same holds with respect to the feasible region of Pprofit.

However, the solutions to the two problems differ considerably. Although the available budget

permits to design a network that satisfies all customers’ demands in each time period, this

only occurs in two instances (out of 72) under a profit maximization goal. In the remaining

70 instances, the percentage demand met in each time period ranges from 96.04% to 99.98%

(see Tables 19 and 20 in Appendix B). This indicates that the costs incurred by installing further

storage areas and shipping the products so as to cover all demand requirements are higher than

the corresponding revenues. This fact has an important managerial implication as it enables

the identification of those demands that represent a loss for the organization. Furthermore, the

solutions to Pprofit include storage areas with large capacity utilization, a characteristic that is

relevant in practice.

The linear relaxation of the cost minimization model tries to mimic this situation through

the assignment of fractional values to some of the variables ruling the installation of new storage

areas (i.e. y1t,i,`,k and y2t,i,`,k). The fractional values are selected in such a way that only the

required capacity is installed (see constraints (7) and (8)) to cover any remaining demand that

otherwise could not be satisfied with the capacity available in the network. As a result, the linear

relaxation bound is very weak. In contrast, due to constraints (19), to obtain a feasible solution

the setup of a few storage areas is enforced, even if they are operated at their minimum capacity

levels. Therefore, the relative difference between the objective value of a feasible solution and

the LP bound tends to be rather large.
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6 Conclusions

In this paper, we introduced a new SCND problem that generalizes several other problems

studied in the literature. The aim of the new problem is to design a two-echelon supply chain

network over a multi-period horizon. This entails locating new facilities in the upper and

intermediate echelons of the network and installing storage areas to handle different product

families. A finite set of capacity levels for each product family is available at each potential

location. Decisions concerning the quantities of products to be shipped through the network are

also to be made. A further novel aspect captured by our SCND problem is the investment of an

available budget for facility location and sizing in each time period. Moreover, variable facility

operating costs are considered which depend on the capacity utilization rate of the storage areas

installed at each new location. Application scenarios for our problem include the design of a

new network and/or the gradual expansion of (existing/new) facilities over a time horizon.

Our extensive computational study focused on the implications that the choice of different

performance measures have on network design. Under a profit maximization objective, it may

not always be attractive to completely satisfy demand requirements. In this case, the results

obtained by solving randomly generated instances with CPLEX indicate that our MILP formu-

lation is very good due to the tight upper bound provided by its linear relaxation. Furthermore,

CPLEX was able to identify feasible solutions with integrality gaps below 1% to all test in-

stances within the pre-specified time limit. In practice, as data estimates often contain errors,

it may not be meaningful to solve a problem instance to optimality. Hence, the near-optimal

solutions found by CPLEX provide a good basis for decision-making. In addition, the positive

results obtained under a profit maximization goal encourage the further development of even

more comprehensive models for SCND. For example, the current model could be extended by

considering direct shipments from upper echelon facilities to customer zones.

In contrast, the study of the SCND problem under a cost minimization objective provided

significantly different insights on the effect of this performance measure on solution quality

and computational time. Our numerical experiments suggest that the enforcement of demand

satisfaction yields a much more difficult problem. The linear relaxation bound of the MILP for-

mulation proved to be rather weak in most of the test instances. Our attempt to enhance the

original formulation by adding several valid inequalities did not produce on average significant

improvements. Moreover, the integrality gaps of the best feasible solutions identified by CPLEX

vary widely (up to 53%). In particular, solution quality seems to deteriorate as the number of
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time periods increases. These results indicate that further research is required to improve the

polyhedral description of the feasible solution set under a cost minimization objective. Hence,

future research will explore the application of decomposition techniques in an attempt to develop

a promising solution approach.
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Luso-Alemãs (A-20/2011)/DAAD-GRICES “New Quantitative Approaches for Logistics Network De-

sign Problems”. This support is gratefully acknowledged.

29



Appendix A: Data generation

The methodology for the random generation of test instances is described in detail below. Recall

that Table 6 presented in Section 5.1 gives the cardinality of the index sets.

The next table describes the generation of various parameters. In what follows, we denote

by U [a, b] the random generation of numbers in the interval [a, b] according to a uniform

distribution.

Symbol Description Values

µ1
p Unit capacity handling factor of product p ∈ P

in an upper echelon location U [0.0001, 0.001]

µ2
p Unit capacity handling factor of product p ∈ P

in an intermediate echelon location U [0.01, 0.05]

βd
t Parameter for demand generation, t ∈ T \ {1} U [1.05, 1.10]

d1,j,p Demand of customer zone j ∈ J for product p ∈ P

in period 1 U [20, 100]

dt,j,p Demand of customer zone j ∈ J for product p ∈ P

in period t ∈ T \ {1} βd
t · dt−1,j,p

αt Unit return factor on capital not invested in

period t ∈ T ∪ {0} α0 = 0, otherwise U [1.01, 1.03]

Table 14: Selected parameters.

As indicated in Table 14, the demand requirements increase between 5% and 10% between

two consecutive time periods.

To obtain the minimum throughput and the capacity level of each storage area in a given

location, the following procedure is employed.

• For i ∈ I1, ` ∈ L, and k ∈ K1
` , the capacity levels Q1

i`k are set according to

Q1
i,`,|K1

` | =
1

|I1| U [4, 6]
∑
p∈P`

(
µ1
p

∑
j∈J

d|T |,j,p

)

Q1
i,`,k = 0.7Q1

i,`,k+1, k = 1, . . . , |K1
` | − 1

The above formulas ensure that the expected maximum capacity available for each family,

over all facilities in the upper echelon, is equal to five times the total demand for products

belonging to this family.
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• A similar procedure is applied to each location in the intermediate echelon. The capacity

levels Q2
i,`,k, ` ∈ L, k ∈ K2

` are determined according to

Q2
i,`,|K2

` | =
1

|I2| U [1, 3]
∑
p∈P`

(
µ2
p

∑
j∈J

d|T |,j,p

)

Q2
i,`,k = 0.7Q2

i,`,k+1, k = 1, . . . , |K2
` | − 1

In this case, the expected maximum operating capacity for a family in the intermediate

level is twice the overall requirement of that family.

• Regarding the minimum throughput levels, they are specified as a percentage of the

available capacity:

q1i,`,k = 0.4Q1
i,`,k, i ∈ I1, ` ∈ L, k ∈ K1

`

q2i,`,k = 0.4Q2
i,`,k, i ∈ I2, ` ∈ L, k ∈ K2

`

The generation of cost data relies on the parameters βc
t ∈ U [1.02, 1.05] for t ∈ T \ {1}.

For each t > 1, βc
t indicates that a given cost factor increases between 2% and 5% compared

to the previous time period (details are given below).

• The fixed installation costs of storage areas are generated in order to reflect economies

of scale. In the first time period, they are set according to

G1
1,i,`,k = 100 ·

√
Q1

i,`,k/µ
1, i ∈ I1, ` ∈ L, k ∈ K1

`

G2
1,i,`,k = 100 ·

√
Q2

i,`,k/µ
2, i ∈ I2, ` ∈ L, k ∈ K2

`

with µ1 and µ2 denoting the averages of the corresponding capacity handling factors,

that is,

µ1 =

∑
p∈P

µ1
p

|P | , µ2 =

∑
p∈P

µ2
p

|P |
In the remaining time periods, these costs are calculated as follows:

G1
t,i,`,k = βc

t ·G1
t−1,i,`,k, i ∈ I1, ` ∈ L, k ∈ K1

` , t = 2, . . . , |T |
G2

t,i,`,k = βc
t ·G2

t−1,i,`,k, i ∈ I2, ` ∈ L, k ∈ K2
` , t = 2, . . . , |T |
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• The fixed costs of establishing new facilities are set according to

F 1
t,i =

∑

`∈L
G1

t,i,`,|K1
` |, t ∈ T, i ∈ I1

F 2
t,i =

∑

`∈L
G2

t,i,`,|K2
` |, t ∈ T, i ∈ I2

Observe that the cost of installing the largest storage area for each family sets the fixed

setup cost at a potential location.

• The unitary operating costs are generated in order to capture economies of scale. In the

first time period they are generated as follows:

O1
1,i,`,k =

1000√
Q1

i,`,k/µ
1
, i ∈ I1, ` ∈ L, k ∈ K1

`

O2
1,i,`,k =

1000√
Q2

i,`,k/µ
2
, i ∈ I2, ` ∈ L, k ∈ K2

`

In the remaining time periods, we consider:

O1
t,i,`,k = βc

t ·O1
t−1,i,`,k, i ∈ I1, ` ∈ L, k ∈ K1

` , t = 2, . . . , |T |
O2

t,i,`,k = βc
t ·O2

t−1,i,`,k, i ∈ I2, ` ∈ L, k ∈ K2
` , t = 2, . . . , |T |

• In the first period, the unitary shipment costs S1
1,i,i′,p are drawn from a uniform [1, 5]

distribution for every i ∈ I1, i′ ∈ I2, and p ∈ P . In the remaining time periods we set

S1
t,i,i′,p = βc

t · S1
t−1,i,i′,p, t = 2, . . . , |T |

• The unitary costs of shipping products from intermediate level facilities to customer zones

are generated in a similar way. For every i ∈ I2, j ∈ J , and p ∈ P we consider:

S2
1,i,j,p = U [5, 10]

S2
t,i,j,p = βc

t · S2
t−1,i,j,p, t = 2, . . . , |T |
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• For the generation of the fixed facility maintenance costs, first an estimation of the

maintenance cost in each time period is calculated as follows:

m1
1,i =

F 1
1,i

|L| , i ∈ I1

m1
t,i = βc

t ·m1
t−1,i, i ∈ I1, t = 2, . . . , |T |

m2
1,i =

F 2
1,i

|L| , i ∈ I2

m2
t,i = βc

t ·m2
t−1,i, i ∈ I2, t = 2, . . . , |T |

Next, the maintenance costs per period are summed up:

M1
t,i =

|T |∑
τ=t

m1
τ,i, i ∈ I1, t ∈ T

M2
t,i =

|T |∑
τ=t

m2
τ,i, i ∈ I2, t ∈ T

Regarding the capital available in each time period for opening new facilities and installing

storage areas, we set Bt = B1 for t = 2, . . . , |T |. In the first period, B1 is drawn from a

uniform distribution on the range [2.2Γ, 3.5Γ] with

Γ = max
i∈I1

F 1
1,i +max

i∈I2
F 1
2,i +

∑

`∈L
max
i∈I1

G1
1,i,`,|K1

` | +
∑

`∈L
max
i∈I2

G2
1,i,`,|K2

` |

Our numerical tests confirm that the available budget is relatively tight, in particular in the first

period.

Finally, to obtain the revenues for selling the products to the customer zones, we combine

the average costs incurred to operate the network in the following way:

R2
t,j,p =

1

TDt

·




∑
i∈I1

M1
t,i

|I1| +

∑
i∈I2

M2
t,i

|I2|


+ µ1 ·

∑
i∈I1

∑
`∈L

∑
k∈K1

`

O1
t,i,`,k

|I1| · ∑
`∈L

K1
`

+

µ2 ·

∑
i∈I2

∑
`∈L

∑
k∈K2

`

O2
t,i,`,k

|I2| · ∑
`∈L

K2
`

+

∑
i∈I1

∑
i′∈I2

S1
t,i,i′,p

|I1| · |I2| +

∑
i∈I2

S2
t,i,j,p

|I2| , t ∈ T, j ∈ J, p ∈ P

with TDt denoting the total quantity demanded in period t ∈ T , that is, TDt =
∑

j∈J
∑

p∈p dt,j,p.

Preliminary tests showed that the choices described above lead to meaningful instances to the

problems.
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Appendix B: Complementary results

Table 15 describes the main characteristics of the 36 test instances with a planning horizon

comprising 3 periods. Similar information for the second class of 36 instances with 4 time

periods is provided in Table 16. The first column of these two tables identifies each instance.

The following 5 columns give the number of potential facilities in the upstream and intermediate

echelons of the network (|I1|, |I2|), the number of customer zones (|J |), the number of product

families (|L|), and the total number of products (|P |). As mentioned in Section 5.1, the latter

value is the outcome of randomly choosing at least 3 and at most 5 products in each family. The

columns under “# cont. var.”, “# bin. var.”, and “# const.” give the number of continuous

variables, binary variables, and constraints, respectively.

Table 17, resp. 18, displays the results obtained with CPLEX for model Pcost and the class of

instances with 3, resp. 4, time periods. The first column identifies each instance. The CPU time

required by CPLEX (in hours) is given in the second column. Recall that CPLEX is run with a

time limit of 8 hours. The MIP gap reported by CPLEX upon termination is displayed in the

third column (see the definition in (28)). The fourth column (“# nodes”) indicates the total

number of nodes explored in the branch-and-cut tree. Finally, the last column gives the linear

relaxation lower bound as defined in (29). Similar information is included in Tables 19 and 20

for the profit maximization model. In this case, the average percentage demand satisfied by

the best feasible solution is also presented (“Avg demand met (%)”). Moreover, the LP gap

refers in this case to the linear relaxation upper bound.

A closer examination of Tables 17–20 reveals that the time limit of 8 hours is reached by

70.8% (51) of the instances under a cost minimization objective. Mostly instances with |T | = 4

belong to this group. Under a profit maximization goal, 58.3% (42) of the instances required

8 hours of CPU. Furthermore, it can be seen that CPLEX identifies the optimal solution of 29

(40.3%) instances with Pprofit. In contrast, optimality seems to be more difficult to be achieved

with model Pcost as it is only obtained in 20 (27.8%) instances.

34



Instance |I1| |I2| |J | |L| |P | # cont. var. # bin. var. # const.

1 3 15 20 3 10 10840 540 2367

2 3 15 20 5 17 18409 864 3966

3 3 15 30 3 12 18310 540 2937

4 3 15 30 5 18 27544 864 4611

5 3 15 50 3 12 29110 540 3657

6 3 15 50 5 17 41359 864 5496

7 3 20 20 3 10 14425 690 2882

8 3 20 20 5 17 24499 1104 4826

9 3 20 30 3 9 18445 690 3032

10 3 20 30 5 18 36679 1104 5486

11 3 20 50 3 12 38785 690 4202

12 3 20 50 5 17 55099 1104 6356

13 5 15 20 3 11 12919 600 2618

14 5 15 20 5 17 20029 960 4208

15 5 15 30 3 9 14719 600 2678

16 5 15 30 5 19 30829 960 4988

17 5 15 50 3 11 27769 600 3608

18 5 15 50 5 16 40504 960 5543

19 5 20 20 3 10 15679 750 3028

20 5 20 20 5 18 28129 1200 5188

21 5 20 30 3 11 23779 750 3478

22 5 20 30 5 17 36829 1200 5578

23 5 20 50 3 12 40279 750 4348

24 5 20 50 5 18 60529 1200 6808

25 7 15 20 3 12 15178 660 2869

26 7 15 20 5 16 20434 1056 4345

27 7 15 30 3 11 18913 660 3094

28 7 15 30 5 16 27634 1056 4825

29 7 15 50 3 12 31378 660 3949

30 7 15 50 5 18 47164 1056 6175

31 7 20 20 3 10 16933 810 3174

32 7 20 20 5 17 28759 1296 5310

33 7 20 30 3 10 22933 810 3474

34 7 20 30 5 17 38959 1296 5820

35 7 20 50 3 10 34933 810 4074

36 7 20 50 5 17 59359 1296 6840

Table 15: Characteristics of the test instances - |T | = 3.
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Instance |I1| |I2| |J | |L| |P | # cont. var. # bin. var. # const.

37 3 15 20 3 10 14453 720 3150

38 3 15 20 5 18 25925 1152 5422

39 3 15 30 3 10 20453 720 3550

40 3 15 30 5 17 34745 1152 5962

41 3 15 50 3 10 32453 720 4350

42 3 15 50 5 18 58325 1152 7582

43 3 20 20 3 10 19233 920 3835

44 3 20 20 5 17 32665 1472 6427

45 3 20 30 3 10 27233 920 4235

46 3 20 30 5 19 51545 1472 7507

47 3 20 50 3 10 43233 920 5035

48 3 20 50 5 19 81945 1472 9027

49 5 15 20 3 10 15725 800 3344

50 5 15 20 5 17 26705 1280 5604

51 5 15 30 3 10 21725 800 3744

52 5 15 30 5 16 34805 1280 6104

53 5 15 50 3 10 33725 800 4544

54 5 15 50 5 17 57305 1280 7644

55 5 20 20 3 10 20905 1000 4029

56 5 20 20 5 17 35505 1600 6749

57 5 20 30 3 12 34505 1000 4829

58 5 20 30 5 19 54705 1600 7829

59 5 20 50 3 11 49305 1000 5509

60 5 20 50 5 17 76305 1600 8789

61 7 15 20 3 11 18617 880 3678

62 7 15 20 5 18 30485 1408 6066

63 7 15 30 3 11 25217 880 4118

64 7 15 30 5 18 41285 1408 6786

65 7 15 50 3 11 38417 880 4998

66 7 15 50 5 19 66305 1408 8486

67 7 20 20 3 10 22577 1080 4223

68 7 20 20 5 18 40505 1728 7231

69 7 20 30 3 12 36497 1080 5023

70 7 20 30 5 17 51945 1728 7751

71 7 20 50 3 11 51137 1080 5703

72 7 20 50 5 18 83705 1728 9391

Table 16: Characteristics of the test instances - |T | = 4.
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Instance CPU (h) MIP gap (%) # nodes LP gap (%)

1 0.3 0.00 3557 110.77

2 8.0 1.00 50297 85.84

3 1.8 0.00 5977 47.28

4 8.0 5.51 8626 100.57

5 2.7 0.00 4687 28.69

6 8.0 9.17 1990 35.65

7 0.2 0.00 2634 47.16

8 8.0 1.46 24065 88.87

9 1.5 0.00 11116 44.05

10 8.0 1.15 12123 53.17

11 6.9 0.00 13965 34.06

12 8.0 13.92 1338 41.17

13 0.5 0.00 4713 39.46

14 1.3 0.00 17003 52.06

15 0.6 0.00 5221 34.93

16 8.0 15.48 6004 57.08

17 3.8 0.00 4519 38.09

18 8.0 15.79 3719 45.17

19 0.7 0.00 10912 43.88

20 8.0 4.93 20741 149.94

21 2.1 0.00 6733 27.10

22 8.0 2.47 6815 39.54

23 8.0 1.68 4060 25.20

24 8.0 30.37 1191 46.42

25 3.6 0.00 21017 57.60

26 8.0 17.57 18861 143.79

27 6.5 0.00 21194 34.99

28 8.0 43.07 9680 119.55

29 8.0 5.34 6429 28.98

30 8.0 12.60 1326 34.57

31 8.0 4.58 43068 94.90

32 8.0 14.94 11391 133.21

33 8.0 3.79 25220 56.03

34 8.0 24.31 4220 65.17

35 6.8 0.00 7840 27.68

36 8.0 20.14 981 40.26

Table 17: Cost minimization - Detailed results for |T | = 3.
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Instance CPU (h) MIP gap (%) # nodes LP gap (%)

37 0.5 0.00 3652 42.28

38 8.0 1.19 15145 41.48

39 1.8 0.00 13469 104.78

40 8.0 13.10 4857 53.52

41 8.0 0.23 20036 42.42

42 8.0 9.50 1352 28.10

43 4.4 0.00 47138 103.27

44 8.0 1.55 28712 108.89

45 8.0 0.65 25454 59.99

46 8.0 18.01 3111 59.73

47 8.0 2.23 9688 95.49

48 8.0 30.60 1106 74.96

49 1.2 0.00 7904 103.58

50 8.0 7.72 8047 57.47

51 4.9 0.00 24364 32.84

52 8.0 24.75 4317 51.97

53 8.0 17.05 2829 65.71

54 8.0 27.99 1178 48.11

55 6.8 0.00 71257 48.52

56 8.0 39.46 3291 108.63

57 8.0 1.80 9733 65.30

58 8.0 46.89 1368 74.79

59 8.0 20.94 1801 35.69

60 8.0 24.32 691 40.76

61 8.0 5.10 11025 55.80

62 8.0 52.91 8750 133.18

63 8.0 13.51 10930 43.64

64 8.0 35.52 2933 59.89

65 8.0 17.72 3391 38.77

66 8.0 23.53 890 41.59

67 8.0 9.18 20040 104.19

68 8.0 42.23 4005 116.56

69 8.0 9.32 6569 54.17

70 8.0 46.40 1331 68.04

71 8.0 15.86 2048 37.50

72 8.0 42.94 697 63.59

Table 18: Cost minimization - Detailed results for |T | = 4.
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Instance CPU (h) MIP gap (%) # nodes Avg demand met (%) LP gap (%)

1 0.4 0.00 6524 97.81 2.16

2 2.9 0.00 16129 97.20 1.96

3 1.0 0.00 7579 98.71 1.24

4 8.0 0.02 12744 99.22 1.23

5 3.1 0.00 6647 99.76 0.70

6 8.0 0.03 6555 99.45 0.70

7 0.2 0.00 1840 97.13 1.77

8 2.7 0.00 6836 97.92 1.93

9 0.4 0.00 2586 98.88 1.29

10 8.0 0.04 5769 98.55 1.17

11 4.1 0.00 6458 99.79 0.63

12 8.0 0.22 1351 99.79 0.70

13 0.5 0.00 3104 97.72 1.62

14 3.3 0.00 14357 97.20 1.71

15 0.2 0.00 3754 99.80 0.94

16 8.0 0.49 3371 99.43 1.22

17 3.0 0.00 4904 99.86 0.66

18 8.0 0.34 2902 99.80 0.72

19 0.1 0.00 1048 98.06 1.36

20 8.0 0.12 4306 97.92 1.54

21 1.5 0.00 2811 99.27 1.00

22 8.0 0.38 1894 98.39 1.04

23 6.5 0.00 4156 98.94 0.59

24 8.0 0.38 710 99.29 0.70

25 4.4 0.00 16361 98.69 1.80

26 8.0 0.67 10937 99.17 1.85

27 8.0 0.05 17967 98.18 1.14

28 8.0 0.51 5216 99.44 1.17

29 8.0 0.22 3908 99.29 0.65

30 8.0 0.41 991 100.00 0.69

31 5.2 0.00 13331 96.04 1.77

32 8.0 0.27 6493 97.76 1.64

33 8.0 0.05 9898 98.82 1.04

34 8.0 0.57 2393 99.36 1.04

35 8.0 0.32 3268 99.77 0.58

36 8.0 0.40 1018 99.91 0.64

Table 19: Profit maximization - Detailed results for |T | = 3.
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Instance CPU (h) MIP gap (%) # nodes Avg demand met (%) LP gap (%)

37 0.73 0.00 4836 98.45 1.90

38 8.00 0.13 10330 99.21 1.80

39 1.83 0.00 6946 99.48 1.31

40 8.00 0.03 6529 99.71 1.20

41 2.75 0.00 6392 99.57 0.69

42 8.00 0.26 1267 100.00 0.72

43 0.47 0.00 2997 98.38 1.82

44 8.00 0.06 10863 98.39 1.75

45 2.91 0.00 6144 98.71 1.12

46 8.00 0.29 2144 99.67 1.07

47 8.00 0.02 6361 99.98 0.67

48 8.00 0.27 802 99.78 0.71

49 1.87 0.00 9765 96.49 1.71

50 7.20 0.00 16894 99.43 1.78

51 2.38 0.00 14826 99.43 1.12

52 8.00 0.48 1915 99.49 1.19

53 8.00 0.10 4196 99.12 0.70

54 8.00 0.39 849 99.67 0.80

55 0.76 0.00 2972 98.50 1.48

56 8.00 0.56 2279 97.66 1.54

57 7.59 0.00 17858 99.46 1.01

58 8.00 0.39 981 99.09 1.07

59 8.00 0.24 1735 99.87 0.61

60 8.00 0.30 678 99.14 0.61

61 5.23 0.00 10284 97.44 1.59

62 8.00 0.94 4960 99.02 1.88

63 8.00 0.57 6080 99.68 1.32

64 8.00 0.68 1279 99.31 1.22

65 8.00 0.39 2706 99.63 0.73

66 8.00 0.37 540 99.69 0.66

67 2.93 0.00 5089 97.56 1.50

68 8.00 0.94 2740 97.55 1.60

69 8.00 0.45 3855 99.03 1.02

70 8.00 0.79 1335 97.86 1.27

71 8.00 0.35 1373 99.53 0.62

72 8.00 0.42 672 99.67 0.67

Table 20: Profit maximization - Detailed results for |T | = 4.
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