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SUMMARY

Semiconductors are a central component of all electronic devices including

mobile phones, computers, and televisions. Demand for these items is only expected

to increase as electronics become more and more integrated into our society. In 2011,

over 7 billion semiconductor wafers were produced worldwide totaling $300 billion in

sales [27]. By 2014, demand was expected to exceed $336 billion, a 12% increase in

three years [69]. In order to keep up with demand and improve responsiveness, the

International Technology Roadmap for Semiconductors (ITRS) has set an objective of

a 15% reduction in cycle time for 25 wafer lots by 2020 [24]. An important component

in cycle time reduction is an efficient material handling system. Efficient material

handling results in low tool-to-tool delivery times and keeps tool utilization high [24].

To improve efficiency in material handling, this thesis proposes an adaptive dynamic

routing approach for unified AMHS systems that allows the system to self-regulate,

reducing steady-state travel times and avoiding excessive congestion and deadlock.

Additionally, our approach allows the AMHS layout to be improved such that vehicle

travel times are further reduced while still avoiding heavy congestion. To demonstrate

the effectiveness of the proposed approach, we developed a high-fidelity simulation of

vehicle movement and an associated automated layout generation tool. This allows

broad analysis of system design and operational control.

In the first part of this thesis, we detail the complexity of AMHS operation and

motivate the need for analysis through simulation. We then present a high-fidelity

discrete-event simulation developed in AutoMod to simulate the movement of vehicles

in a unified AMHS. It simulates the movement of vehicles move through a facility on

a top-mounted track system. Vehicle movement is highly complex and difficult to
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model analytically due to the high number of interacting vehicles, acceleration and

deceleration when exiting or entering curved edges, and the inability to pass slow-

moving or stopped vehicles. Our simulation accounts for these factors, implements

a complex policy for the control of idle vehicles, and mimics realistic traffic patterns

through the use of prototype production sequence data.

Secondly, we propose a dynamic routing approach that allows vehicles to be

rerouted while in progress in response to changes in the locations and severity of

congestion. If the origin, destination, and timing of all movements were known in

advance, a comprehensive routing plan to reduce delay could be generated a priori

via large-scale optimization. The uncertainty and production flexibility inherent in

this type of system, however, make this an online or real-time problem. The scale

of the system (hundreds of vehicles, processing locations, and storage locations) and

the frequency with which transfer requests occur (often less than one second between

requests) require an approach without excessive computation time or highly sophis-

ticated methods.

We propose that predicted edge traversal times be stored for each edge and up-

dated via exponential smoothing each time a vehicle completes traversal of the edge.

A vehicle’s route is controlled by routing tables stored at each diverging node. Tables

are periodically updated to reflect current predicted edge traversal times. A vehicle

selects the route that minimizes its own predicted travel time. Because predicted edge

traversal times are based on recent history and do not depend on the routes selected

by other vehicles, the solution can be decomposed by vehicle and the system-optimal

solution is equivalent to the user-optimal solution at a specific point in time.

We demonstrate that the consideration of congestion in routing decisions results

in a significant reduction in the frequency of heavy congestion and a 4%-6% improve-

ment in steady-state performance in a simulated prototype facility. Further, in the

case of exceptions such as vehicle breakdowns, dynamic routing allows the system to

xiii



recover to steady-state 80% faster than static routing even if static routing considers

congestion.

Lastly, we consider how the use of dynamic routing changes the effectiveness of

layout design. We present an Excel-based user interface that automatically generates

simulation files with the click of a button. The user selects characteristics from a

modular template and Visual Basic for Applications (VBA) generates files formatted

for use with AutoMod as well as all required input text files. This tool is flexible

enough to allow analysis of thousands of layouts for a bay-based rail structure. To-

gether with the simulation, these tools allow extensive analysis of the potential impact

layout changes made possible by dynamic routing.

Using this tool, we investigate the dual impact of dynamic routing and center and

outer loop redesign. Shortcuts on the center and outer loop allow both shorter point-

to-point distance and more alternate routes and detours. Under dynamic routing,

the system is able to use these alternate routes effectively to avoid heavy congestion

while taking the shortest possible route given current congestion. In our simulation,

we demonstrate that the preferred layout for dynamic routing differs from that for

static routing. Further, dynamic routing allows an eight-fold increase in the number of

shortcuts on the center and outer loops which reduces delivery time by an additional

24%.

xiv



CHAPTER I

INTRODUCTION

Semiconductors are a central component of all electronic devices including mobile

phones, computers, and televisions. Demand for these items is only expected to

increase as electronics become more and more integrated into our society. In 2011,

over 7 billion semiconductor wafers were produced worldwide totaling $300 billion in

sales [27]. By 2014, demand was expected to exceed $336 billion, a 12% increase in

three years [69]. In order to keep up with demand and improve responsiveness, the

International Technology Roadmap for Semiconductors (ITRS) has set an objective of

a 15% reduction in cycle time for 25 wafer lots by 2020 [24]. An important component

in cycle time reduction is an efficient material handling system. Efficient material

handling results in low tool-to-tool delivery times and keeps tool utilization high

[24]. In this thesis, we focus on a particular type of automated material handling

systems used in semiconductor manufacturing. Specifically, we propose an adaptive

dynamic routing approach for unified automated material handling systems (AMHSs)

that allows the system to self-regulate, reducing steady-state travel times and avoiding

excessive congestion and deadlock. We use simulation to demonstrate the effectiveness

of this approach. Lastly, we demonstrate that dynamic routing makes particular

layout changes possible that further improve steady-state travel times.

1.1 Motivation

1.1.1 System Description

Semiconductor manufacturing is a highly complex, re-entrant process in which wafers,

packaged in cartridges, are transported through hundreds of processing steps in a

clean-room facility. Because the production process is not linear, like an assembly
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line, but re-entrant where parts return to the same type of machine several times,

the flow of materials through the facility is highly complex. A cartridge will typically

progress through 400-500 processing steps over 6-8 weeks and often be placed in

storage locations between processing steps. There are typically fewer than ten types

of processes, so a cartridge returns to the same process many times.

Semiconductor manufacturing facilities, also know as wafer fabrication facilities

or wafers fabs, are typically organized into bays. Each bay contains machines that

perform one of several processes and many adjacent bays may contain machines of

the same type. This is done for equipment maintenance reasons and/or to facilitate

the storage of chemicals used by the process. Figure 1.1.1 shows the bay-based rail

structure and process assignment on a simulated prototype layout. The processes that

we consider are chemical vapor deposition (CVD), cleaning (CLN), photolithography

(PHO/PHOTO), etching (ETC/ETCH), chemical-mechanical planarization (CMP),

implantation (IMP), diffusion (DIFF), and metalization (MET/METAL). Three bay

locations have been removed to represent processing equipment that is large, taking

up more space than that typically allotted for a bay.

Figure 1: Prototype Facility Structure and Bay-to-Process Assignment

In previous technology generations, cartridges were transported by humans or

2



a combination of humans and automated systems. As technology has progressed,

however, the size, weight, and value of a cartridge has increased such that now this

requires automated material handling systems (AMHSs). In 300mm wafer fabrication

facilities, the current technology generation, various types of automated material

handling systems (AMHSs) are used, including track and conveyor-based systems.

Track-based systems employ Overhead Hoist Transport (OHT) vehicles that move

along tracks suspended from the ceiling. An example from www.spectrum.ieee.org is

shown in Figure 1.1.1.

Figure 2: Overhead Hoist Transport (OHT) System

OHT systems may either be segregated, where vehicles are confined to one area

of the facility and transfered from area to another via storage containers known as

stockers, or unified, where vehicles may move throughout the facility. In a unified

OHT system, bays are connected via a center loop and an outer loop and each bay has

two entrances and two exits. The center loop typically has four to eight travel lanes

with shortcuts to move among them. Figure 1.1.1 shows representations of these two

configurations. Segregated systems were most common in early 300mm facilities, but

3



unified systems have become more popular as the inefficiencies of segregated systems

are realized [6, 30].

Figure 3: Segregated and Unified AMHS Configurations

Conveyor systems have also been proposed where cartridges move along conveyors

and are, thus, not associated with vehicles. This continuous transport method is

considered a low-cost alternative in low-volume and small-batch facilities [51]. It

is not frequently used in 300mm facilities but is being considered as the industry

transitions to the next generation, 450mm chip facilities [46]. In this thesis, we focus

on unified systems, motivated by current practice.

The production scheduling system, which determines when and to where each

cartridge will move, is designed to minimize cycle time and maximize throughput.

Due to processing time uncertainty, the system does not pre-assign cartridges to

machines, but makes this assignment in real-time. Although the next process step

that a cartridge will visit is fixed by its production sequence, the exact machine or

storage location it will visit is not determined until it has complete processing at its

current step. At this time, a transfer request is generated specifying an origin and

4



destination and the material handling system responds as required to transport the

cartridge from one location to another.

In an OHT system, when a transfer request is generated, a centralized control

system assigns a vehicle to transport it. If no vehicle is available, the system adds the

request to a queue for requests awaiting assignment. Figure 1.1.1 represents vehicle

movement graphically. Upon assignment, the vehicle travels to the current location

of the cartridge, unloads the cartridge from the machine into the vehicle, travels to

either the next machine in the processing sequence or to a storage location, and loads

the cartridge into the next machine or storage location. The vehicle then becomes

idle until it is either assigned to a new request or asked to move so another vehicle

may pass. Routes must be selected from the vehicle’s starting location to the request

origin and from the request origin to its destination.

Figure 4: Logic of Vehicle Movement

5



1.1.2 Challenges

There are several design and operational decisions involved in making this complex

system run smoothly and efficiently. We categorize these decisions into layout design,

production scheduling, and material handling decisions. Design decisions include lo-

cating equipment on the production floor, selecting a material handling system, and

designing the material handling system layout. In unified systems, the material han-

dling system layout design involves both high-level design (i.e. a bay-based structure)

and low-level design (placement of shortcuts). Production scheduling decisions de-

termine when and to where each part will move. If a machine is available or will

be available soon, the production scheduling system determines which part will be

processed next. Overall, it aims to reduce cycle time and increase throughput while

considering complexities such as high-priority production lots and engineering test

lots. Additionally, it controls the use of storage locations throughout the facility.

Material handling decisions determine the assignment of vehicles to requests, the

routing of vehicles to serve requests, and the behavior of idle vehicles. The routing of

vehicles and control of idle vehicles becomes much more complex in unified systems.

Material handling decisions are typically slave to production scheduling decisions

in the sense that the material handling system has little advance knowledge of pro-

duction scheduling decisions and has no influence over them. Because the production

scheduling and material handling systems do not exchange information to aid in

decision making, the material handling system cannot make anticipatory decisions.

Vehicles cannot avoid areas where new requests are likely to occur and production

scheduling does not avoid assigning a cartridge to a machine in a congested area.

In this thesis, we focus on vehicle routing and the impact of vehicle routing policy

on layout design. Specifically, we seek to improve the system’s ability to transport

material quickly and predictably by improving vehicle routing policies and analyzing

rail layout design. Achieving this goal involves reducing congestion and the resulting
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average travel times as well as reducing the need for human intervention to resolve

case of severe congestion. Because layout design, production scheduling, and ma-

terial handling decisions are intrinsically linked, studying one of the three requires

consideration and modeling of of all three. Operationally, we focus on the high-fidelity

modeling of vehicle movement because this is our primary focus. To do this effectively,

however, we must also model production scheduling in sufficient detail to capture the

impact of production scheduling on vehicle routing. Even with a simplified version

of production scheduling, this system is difficult to model analytically due to the

inherent uncertainty due to processing time variability and the complexity of vehicle

interaction. The size of the network and the frequency with which decisions must be

made make computational efficiency a priority.

1.1.3 System Scale

Facilities often have 30 or more bays and thousands of stopping locations. Stopping

locations include both machine ports and storage locations. Suppose the facility is

modeled as a graph where nodes represent both stopping locations and rails intersec-

tion points and edges represent rails connecting nodes, the number of nodes may be

several thousand. Although the number of edges is limited because stopping location

nodes will have only one incoming and one outgoing edge and intersection point nodes

will have degree three (the sum of the number of incoming and outgoing edges will

equal three) because of the physical facility structure, the number of edges will be at

least equal to the number of nodes but will not exceed 1.5 times the number of nodes.

This network size is not, in itself, excessively large. However, when considered

in combination with the frequency with which decisions must be made, it becomes

intractable for computationally intense methods. Requests typically occur at a rate

of more than one per second and are not known in advance. Each time a request

arrives, a decision must be made on which vehicle to assign to a request and which
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route a vehicle should take from its current location to the origin and from origin to

destination. Additionally, because vehicles may not pass one another, idle vehicles

must yield to active vehicles, moving out of the way so the active vehicles may continue

on their paths. At the time of a yield request, the vehicle either moves out of the

way of the active vehicle as quickly as possible or is redistributed to another location

in the network so that not too many idle vehicles become clumped in one location.

Each yield request, thus, requires an additional routing decision. Even if we assume

the vehicles are routed statically, that is their routes may not change once they have

been assigned, this still amounts to more than one decision each second, on average.

1.1.4 Uncertainty

If all requests were known in advance, the routing problem could theoretically be

modeled as a large-scale integer program (although computational tractability may

still be an issue). All vehicle routes could be assigned a priori and system performance

would be predetermined. In our system, processing times are uncertain and the

production scheduling system is flexible in that cartridge-to-machine assignments

are not made ahead of time. For the material handling system, this means that

transfer requests are revealed over time and are not known in advance. This is know

as an online or real-time problem. Most online problems are impossible to model

deterministically. Stochastic methods, such as queuing have been used to approximate

system performance in similar systems, but they typically do not adequately model

vehicle interaction. They have been used extensively in the modeling of individual

loops in segregated AMHSs because the scale of these systems is smaller and vehicle

interaction less complex.
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1.1.5 Vehicle Interaction

The complexity of vehicle interaction results from the track-based nature of the sys-

tem, the size of vehicles relative to edge size, and the non-negligible effect of accelera-

tion and deceleration. When a vehicle stops to load or unload, it blocks other vehicles

from continuing along their intended route. Loading/unloading time is not negligible,

approximately 10 seconds. Loading and unloading occurs mostly in bays but also at

storage locations along the center loop. Thus, as a vehicle travels from one location

to another, it will necessarily pass many potential stopping locations. Also, in the

case of very heavy demand in one area of the network (frequent loading/unloading),

traffic may spill out from a bay into the center or outer loop.

Vehicle interaction is further complicated by acceleration and deceleration. Ve-

hicles require time to stop and start prior to and after loading/unloading and when

entering or exiting a curved edge because maximum velocity differs on straight and

curved edges. Not only will a decelerating vehicle delay itself while decelerating (this,

of course, is known in advance), but it will delay vehicles that are following in close

proximity. These effects are difficult to model exactly.

1.1.6 Production Scheduling

Even with a primary focus on modeling vehicle movement, it is important to consider

how changes in production scheduling input or decisions may impact these decisions.

In particular, we care about the impact of product mix on demand pattern. Each

product has a unique production sequence, visiting production processes in a different

order, and product mixes change frequently. Thus, the flow of traffic through the

facility, or demand pattern, may differ. Ideally, any vehicle movement policy or layout

design decision is robust to changes in product mix. The challenge in modeling this in

our problem is to effectively incorporate demand pattern while not requiring detailed

input data or excessive computation time.
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1.2 Contributions

In this thesis, we address the questions:

1. How do we model a unified semiconductor OHT system to evaluate operational

policies and layout design decisions?

2. How do we improve operational vehicle routing policies to reduce steady-state

travel times and avoid heavy congestion and deadlock?

3. How do we evaluate potential layout design changes, considering the impact of

operational policies on performance?

1.2.1 High-Fidelity AMHS Simulation

As described in Section 1.1, unified OHT systems present several modeling challenges

that are difficult to deal with analytically. Most significantly, demand uncertainty

and vehicle interaction. By demand uncertainty, we mean that transfer requests are

not known in advance and, thus, cannot be modeled deterministically. The high level

of variability in the material handling system, due to on-track loading and unloading,

and the size of the system and complexity of vehicle interaction make it difficult to

model via queueing methods. Thus, simulation is required to effectively evaluate

operational policies.

In Chapter 2, we present a high-fidelity discrete-event simulation developed in

AutoMod to simulate the movement of vehicles in a unified AMHS. It simulates track-

based vehicle movement and incorporates complexities of vehicles interaction, such

as acceleration and deceleration, on-track loading and unloading, and an idle vehicle

policy that requires that idle vehicles move out of the way of active vehicles. To

model demand patterns, it uses probability distributions generated from prototype

production sequences. We use our simulation to evaluate a new dynamic routing

policy and, further, to evaluate potential layout changes for use with dynamic routing.
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1.2.2 Dynamic Routing

In practice, the route that a vehicle travels is typically selected based on static factors

such as distance, maximum travel velocity on an edge, and the location of loading/un-

loading points. All requests for transport between a specific origin and destination

will use the same route regardless of current congestion location and intensity and

follow this route regardless of how the system changes. If congestion develops on the

intended path, the vehicle will still travel directly into the congestion, both delaying

itself and making the congestion worse.

Due to the structure of semiconductor manufacturing facilities, static routing of-

ten causes significant congestion including heavy congestion that requires manual

intervention to resolve. Heavy congestion is defined as a system state where vehicles

are unable to progress to their destinations at a reasonable pace. For our purposes,

we define heavy congestion as a speed index falling below 0.25 where speed index is

the average ratio across all vehicles of current velocity to maximum velocity. The

average speed index does not consider vehicles that are stopped to load or unload or

idle and intentionally stationary and maximum velocity is determined by a whether

a vehicle is on a curved or straight edge. Figure 1.2.2 shows a simulated occurrence

of heavy congestion. Blue and black vehicles should be moving and red vehicles are

stopped to load or unload. Though this situation is not a deadlock because vehicles

are still able to move, too many vehicles are trying to use the same edges, including

one where frequent stopping occurs. This heavy congestion results in severe delay and

may result in deadlock where vehicles are unable to progress. In practice, the system

may not reach as severe a state as in the simulation because engineers will intervene

before that happens. The need for intervention, however, disrupts system efficiency

and requires close monitoring. In order avoid such situations, engineers use ad hoc

congestion penalties. The method is not systematic, does not easily accommodate

changes in production sequence and product mix, and does not respond quickly to
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changing congestion characteristics.

Figure 5: Example of Heavy Congestion

In Chapter 3, we propose a dynamic routing approach that allows vehicles to

be rerouted while in progress in response to changes in the locations and severity

of congestion. We consider that rerouting vehicles while in progress will increase

the number of decisions significantly, often by more than a factor of ten. Thus,

the proposed method must be computationally efficient enough to handle this but

sensitive enough to effectively respond to congestion.

We propose a lookup table-based method where tables are periodically updated

to reflect the current system state. Each node is associated with a lookup table that

contains the next node in the path to each potential destination. When a vehicle must

make a routing decision, it looks up its next node in the appropriate routing table and

no new calculations are necessary. This is a dynamic routing method because routing

tables always send a vehicle over the path with the earliest estimated arrival time

regardless of whether that path has changed since the vehicle’s last decision point.

We propose the use of an all-to-all shortest path method to compute the routing

table where edge weights are continually updated based on recent history. Although

other table updates methods are possible, this method requires the fewest computa-

tions. The challenge is then how to estimate travel time on each path in order to

calculate shortest paths. We use an exponential smoothing method where the edge

weight for a particular edge is updated each time a vehicle traverses the edge. Given
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these edge traversal time estimates, at a particular point in time, the all-to-all short-

est path solution is a system optimal solution. Due to the uncertainty in the system,

however, there is no guarantee that the solution will be optimal over time.

We evaluate this approach relative to static routing using our simulation. We

consider the frequency of heavy congestion, steady state travel times and congestion,

and the efficiency of recovery from vehicle breakdown. We define a replication of

the simulation as resulting in heavy congestion if the speed index, as defined previ-

ously, falls below 0.25. While static routing frequently results in heavy congestion,

dynamic routing does not experience any replications with heavy congestion. For

replications that do not result in heavy congestion, we consider steady-state travel

times, both origin-to-destination delivery time and total system time, and speed in-

dex. In steady-state, speed index is a measure of how smoothly traffic is moving

through the system. In our simulation, we observe approximately a 5% improvement

in steady-state metrics. Lastly, we consider response to and recovery from vehicle

breakdown. We observe that dynamic routing immediately begins to route vehicles

away from this area of the network while static routing does not. This results in

improved system recovery, both in the frequency of recovery (in most cases, static

routing is not able to recover at all) and in the time it takes to recover.

1.2.3 Layout Analysis for Dynamic Routing

Having demonstrated that dynamic routing improves performance on a fixed layout,

we consider the question of how the layout can be adapted to make better use of

dynamic routing. It has been observed, both in practice and in simulation, that the

addition of a edge can lead to increased congestion and decreased routing performance.

With dynamic routing, however, vehicles will avoid the new edge and the surrounding

area if it becomes congested. Thus, we would like to determine what the optimal

layout is for use with dynamic routing. However, most facility layout problems have
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been shown in be NP-Hard [13]. In particular, even in simplified flow-based networks,

such as the traffic assignment problem, the problem of determining an optimal layout

is NP-Hard even for a single commodity [54]. Again, we turn to simulation to address

this question.

In the layout design process, ideally we are able to compare several (or more)

layouts in an iterative design process. To create simulation layouts manually is both

time-consuming and error-prone. In Chapter 4 we present an Excel-based user inter-

face to automatically generate simulation files with the click of a button. The user

selects characteristics from a modular template and Visual Basic for Applications

(VBA) generates files formatted for use with AutoMod as well as all required input

text files. This tool is flexible enough to allow analysis of thousands of layouts for

a bay-based rail structure. The user may change the number and travel direction

of the center loop, the connection type between the center and outer loops, and the

number and placement of center and outer loop shortcuts. Shortcuts allow movement

among long parallel travel lanes. The number of bays can be changed as can param-

eters that allow sensitivity analysis with respect to production scheduling, such as

bay-to-process assignment and the probability distributions associated with demand

pattern.

This tool may be used as part of an iterative design process where a system

layout or set of candidate layouts is selected through engineering experience or an

optimization model. The tool is used to translate those layouts into simulation files,

and the simulation provides performance data resulting from running the simulation

on these layout(s). These results may be used to refine an optimization model or

provide insight to engineers. This framework is shown in Figure 1.2.3.

We demonstrate, through the use of this tool, that dynamic routing allows an

eight-fold increase in the number of shortcuts on the center and outer loops without

resulting in heavy congestion. Whereas in static routing, adding a shortcut may
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Figure 6: Layout Design Process

cause additional congestion, with dynamic routing shorter point-to-point distances

result in shorter travel times without heavy congestion. We consider four candidate

center loop layouts that differ by the number and placement of shortcuts. With

static routing, the system is particularly sensitive to the placement of shortcuts and

frequently encounters heavy congestion in the same locations. With dynamic routing,

heavy congestion is avoided until bays become overloaded with their own demand.

Because the addition of shortcuts also reduces point-to-point distances, travel times

decrease even though speed index increases slightly in some cases. This analysis can

be viewed as the first step in an iterative process.
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1.3 Literature

We review relevant literature in AMHS and AGV systems. While the body of litera-

ture is much broader for AGV systems, most systems studied are significantly smaller

than our system, operating fewer than twenty vehicles. Our system typically operates

several hundred vehicles. AGV system design incorporates design considerations such

as equipment placement, rail configuration or flow path layout, and stopping point

placement as well as operational policy management such as vehicle dispatching, ve-

hicle routing, power system management, and idle vehicle control [65]. Production

scheduling decisions such as work-in-process (WIP) management and lot prioritiza-

tion also play an important role. We focus on decisions affecting vehicle routing and

layout design decisions. In this section, we first discuss several relevant surveys and

the focus on literature in modeling techniques, vehicle routing, and layout design.

Several surveys from the last fifteen years provide high-level overviews on deci-

sions related to AGV and AMHS system design. Vis [65] covers the whole spectrum

of design decisions including flow path layout, collision avoidance in systems with

bi-directional travel, stopping location placement, selecting an optimal number of ve-

hicles, vehicle dispatching, vehicle routing, and idle vehicle control. It points out,

in particular, that these decisions and systems are interrelated but often considered

separately.

Agrawal and Herugu [1] surveys fab design and analysis in semiconductor manu-

facturing. Design issues focus mostly on the difference between segregated, conveyor-

based, and unified AMHSs. Recall that segregated systems comprise independent

loops for each bay and the center loop and transfer cartridges among loops via stock-

ers. In unified systems, vehicles travel throughout the facility. Lin et al [39], Lin

et al [40], and Bahri et al [6] also compare several layouts, including segregated and

unified layouts, and conclude that unified systems perform better in terms of delivery

time, throughput, and vehicle utilization. Agrawal and Herugu[1] also cite several
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simulation-based analyses on design decisions and operational policies, emphasizing

that simulation is the most commonly used analysis tool because of the complexity of

the system. Most cited analyses focus on segregated systems. Agrawal and Herugu

[1] do not address flow path design or vehicle routing for unified systems.

Montoya-Torres [45] also surveys AMHS design and operation, including layout

design, vehicle dispatching, and idle vehicle control. It includes segregated, unified,

and conveyor-based system comparisons from literature, pointing out that no one type

performs best under different operating conditions. Most analyses are simulation-

based and the scope of the simulations is limited. Operationally, Montoya-Torres [45]

focuses on vehicle dispatching and refers to Qiu et al [52] for a survey on general

automated guided vehicle (AGV) routing. It states that much of the operational

policy management is proprietary.

Qiu et al [52] surveys vehicle dispatching (termed scheduling) and routing in gen-

eral AGV systems. For general path topologies, it defines static, time-windows based,

and dynamic methods. It defines static methods as the case where a vehicle’s entire

route must remain unoccupied until it completes travel, time-windows based as the

case where portions of the route are reserved incrementally as the vehicle progresses,

and dynamic as the case where the route is determined incrementally while the ve-

hicle progresses. Static methods are only feasible in networks with few vehicles.

Time-windows based methods are feasible for larger numbers of vehicles but the com-

putational complexity and time becomes large as the number of vehicles increases.

The dynamic routing methods presented are also computationally intense when the

number of vehicles or number of tasks is large. Routing on specific topologies such

as linear, loop, and mesh is discussed, but none are similar to unified AMHS layouts.

Qiu et al [52] also discusses flow path layout optimization, but all included methods

ignore the impact of congestion and vehicle interaction.

Le-Anh and De Koster[37] also surveys general AGV systems, including flow path
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design, optimizing the number of vehicles, vehicle dispatching, idle vehicle control, and

vehicle routing. Most flow path design methods do not consider vehicle interaction

and congestion. Lim et al[38] use a Q-learning method, which is a machine learning

technique, to estimate congestion. The discussion of routing is limited and references

Qiu et al [52].

1.3.1 Modeling AGV Systems

In Chapter 2, we describe the discrete-event simulation we developed to analyze rout-

ing and layout in a unified AMHS. Simulation is the most commonly used analysis tool

for modeling these systems due to the complexity of the system and its uncertainty[1].

Kim et al [29, 31, 30] simulate an 18 bay unified AMHS in AutoMod to analyze dis-

patching and idle vehicle policies. They conclude that performance improvements can

be realized by allowing vehicles to be reassigned before they have reached either origin

and by implementing a continuous circulation idle vehicle control policy. Kim et al

[28] presents a tool to translate CAD files into AutoMod layout files and a generic

simulation framework to more efficiently generate simulation instances. Lin et al [39]

propose the unified AMHS system and demonstrate its effectiveness in an eight bay

simulation in e-M Plant. Han et al [19] compare single and double level tracks using

a 22 bay simulation and conclude that the double level track provides a significant

improvement in the number of moves per hour. Fukunari et al and Bahri and Gask-

ins [15, 5] use AutoMod to compare node-based methods for managing congestion

on several layouts. Fukunari et al conclude that incorporating historical information

in setting node penalties improves performance. Bahri and Gaskins conclude that

the use of node-balancing reduces delivery times by up to 30%. Bahri et al [6] com-

pare unified and segregated AMHS layouts using a simulation developed in AutoMod

and conclude that unified systems provides a 32% improvement in delivery times for
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normal lots. Sha and Yang [57] simulate a 10 bay unified AMHS to compare trans-

portation strategies with different objectives an conclude that improvements can be

made by using more sophisticated vehicle dispatching techniques. Christopher et al

[11] use a 20 bay simulation to compare dispatching policies, considering both ve-

hicle dispatching and machine scheduling. They conclude that the significance and

interaction of these factors depend upon the AMHS utilization. Simulation is also

commonly used to evaluate most AGV systems and other types of AMHS layouts

due to the high levels of complexity and uncertainty (e.g. [21, 42, 44, 41, 66, 36]).

In the relevant literature, the vehicle routing policy is either shortest distance or not

specified.

1.3.2 Routing in AGV Systems

In Chapter 3, we discuss routing methods and propose a congestion-aware dynamic

routing method. Limited work has been done in AMHS vehicle routing because the

transition to unified systems from segregated systems is relatively recent. In unified

systems, a vehicle moves throughout the entire network as opposed to being confined

to one specific area as it is in the older segregated design. Selection of routes is

more complex in unified systems. In terms of congestion-aware dynamic routing,

Yang et al [70] reroutes vehicles at each diverging intersection by selecting a route

from a candidate set using the number of vehicles currently traveling along a route

as a measure of congestion. It demonstrates a moderate improvement in steady-state

metrics in a small simulation but does not discuss the occurrence of heavy congestion,

deadlock, or vehicle breakdown. Patents [17] and [22] also propose route selection

using pre-determined candidate route sets. Both cover cases where vehicles are and

are not rerouted while in progress and do not present results. Patent [17] uses the

number of vehicles currently traveling along a route as a measure of congestion and

Huang et al [22] recommends the use of dynamic traffic information to compare the
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first, second, and third fastest routes but does not define a traffic metric. Because

these are patents, they do not provide results.

In general AGV systems, Lau and Woo [36] consider edge utilization, path dis-

tance, congestion-based waiting time, and processing locations to select a route but

the specific metric is not provided. Their proposed approach demonstrates improve-

ment in cycle time, load balancing, and network robustness in a 5x5 conveyor system.

Tanchoco and Taghaboni-Dutta [63] uses uncongested edge time plus estimated wait-

ing time to cross each node. Waiting time is estimated via a queueing model but

always assumes that vehicles take the shortest path to their destination. They con-

clude that this method is effective for small networks where traffic conditions are rel-

atively easy to predict. Other proposed AGV routing methods include time-windows

[32, 33, 23, 59, 10], incremental route planning [63], hierarchical simulation [56], petri-

nets [49, 50], zone-control [20], and agent-based [36, 47] methods. Most systems are

small with fewer than twenty vehicles and, thus, are difficult to implement is large

systems with several hundred vehicles.

1.3.3 Layout Design in AGV Systems

In Chapter 4, we address the issue of rail layout or flow path design in AMHSs.

Although recent research addresses the integration of flow path design with other

factors such as equipment layout [55, 53, 18, 2] and vehicle dispatching [4], to our

knowledge layout or flow path design for dynamic routing has not been considered.

Most unidirectional flow path design methods do not consider vehicle interaction and

congestion and most seek to minimize shortest path distance between a fixed set of

origin/destination pairs [37]. Basic models that do not consider congestion include the

integer programming model developed by Gaskins and Tanchoco [16] and improved

by Kaspi and Tanchoco, Kim and Tanchoco, and Kaspi et al [26, 33, 25] and others.

Lim et al [38] proposes a Q-learning method, a machine learning method, to estimate
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congestion.

Transportation planning faces similar network design questions. Integer program-

ming multi-commodity flow models are the most common method with congestion

modeled through non-linear objective functions or edge capacities. Magnanti and

Wong [43] provide a survey. Most models assume that demand is fixed and does not

very over time. Recent work focuses on the incorporation of uncertainty, with respect

to both travel lane availability and demand. Chen et al [9] provides a recent survey on

the incorporation of uncertainty. Most approaches use some form of stochastic pro-

gramming. After summarizing several approaches, Chen et al [9] describes in detail

a dependent change multi-objective programming model in a bi-level programming

framework.

1.3.4 State-of-the-Art

While most of the operational details of AMHSs in practice are proprietary, it is clear

from the literature that several areas provide opportunity for improvement. The need

for dynamic routing that considers congestion in unified AMHSs has been expressed,

including the existence of patents [17, 22], but limited literature addresses specific

methods or demonstrates improvement via high-fidelity simulation. Fukunari et al

and Bahri and Gaskins demonstrate that considering and/or balancing congestion in

routing decisions reduces delivery times [15, 5]. With respect to layout or flow path

design, we are not aware of any literature that considers layout effectiveness under

dynamic routing in AMHS or AGV systems, although [65] stresses the importance

of considering the interaction of operational and design decisions. In this thesis, we

propose a specific dynamic routing method that considers congestion and is efficient

enough to be used in large systems with frequent decisions. We then consider how the

use of this routing method impacts the effectiveness of particular flow path layouts.

In order to demonstrate the effectiveness of our routing method and illustrate the
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impact on layout, we use a high-fidelity simulation and associated automated layout

generation tool.
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CHAPTER II

SIMULATION

Semiconductor manufacturing is a highly complex and dynamic environment. Our

system, as described in Chapter 1, is challenging to model because of its large scale,

uncertainty, and complex vehicle movement. For this reason, we employ discrete-event

simulation. Discrete-event simulation incorporates randomness and is able to mimic

complex vehicle interaction. Because material handling systems are often difficult to

model analytically, commercial simulation software has been developed specifically to

model material handling systems.

Facilities often contain hundreds of machines and thousands of storage locations

and several decisions are made each second by the production scheduling and mate-

rial handling systems. Production scheduling decisions, such as when and to/from

where to move parts, are made in real-time instead of determined in advance, so it

is not possible to deterministically model the future course of the system given the

current available information. Though stochastic methods, such as queueing mod-

els, incorporate uncertainty, they are unable to model detailed vehicle movement. In

semiconductor manufacturing, vehicles are large relative to edge size and stopping

locations are closely spaced making the use of a queueing model challenging.

Vehicle movement and interaction in our system are complicated by physical sys-

tem constraints. Vehicles must accelerate and decelerate when exiting and entering

curved edges, behind slow moving or stopped vehicles, and to stop to load or unload.

Loading and unloading occur on track so vehicles often delay one another for the du-

ration of loading/unloading time. Because there are no parking locations, unassigned

or idle vehicles must be moved to allow active vehicles to pass.
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In this chapter, we present a detailed view of the high-fidelity discrete-event sim-

ulation we use to evaluate vehicle routing policies. Updates to the simulation for

use when considering layout are discussed in Chapter 4. Because we are interested

primarily in vehicle routing policies, we simulate vehicle movement in detail. We

incorporate production scheduling decisions through a production-based request gen-

eration method that mimics realistic demand patterns. First, we provide an overview

of the simulation, followed by detailed discussions of the prototype facility layout,

operational policies that govern vehicle movement, the request generation method,

simulation of vehicle breakdown, metrics that we record, and how we determine run

control parameters.

2.1 Overview

The simulation was developed in AutoMod simulation software and simulates the

movement of vehicles in a prototype facility. Vehicles are assigned in real-time to

transfer requests consisting of an origin and a destination. The user selects the number

of vehicles and parameters associated with request generation, vehicle movement,

vehicle breakdown, metric tracking, and run control. Figure 2.1 shows a snapshot of

the simulation while running. Green vehicles are moving to pick up a request, blue

vehicles are moving from origin to destination, red vehicles are stopped to load or

unload, and black vehicles are unassigned.

2.2 Layout

We consider a prototype facility based on guidance from a large electronics manu-

facturer. Though they have significant variability between facilities, our prototype

represents a typical facility. In Chapter 4, we present a layout generation tool that

allows the evaluation of thousands of different layouts by automating the generation

of simulation files. We also discuss updates to the simulation for that phase of anal-

ysis. In this chapter, we focus on the prototype facility and simulation as originally
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Figure 7: Simulation in Action

developed.

2.2.1 Rail Configuration

We simulate a unified AMHS with the layout shown in Figure 2.2.1. It comprises

20 bays aligned in two parallel rows, a center loop, and an outer loop. All rails are

unidirectional. Each bay has two entrances and two exits and vehicles travel through-

out the facility. The center loop has four lanes with alternating travel directions. In

the figure, blue X s represent stopping locations and red X s represent intersections

between rails. We made several updates in the second phase of our work to make the

rail layout more realistic. See Chapter 4 for discussion.

2.2.2 Stopping Locations

In the prototype layout, each bay has 60 stopping locations and an additional 240

are spread throughout the middle two lanes of the center loop. Inside bays, stopping

locations represent ports and storage locations called side-track buffers, we do not

distinguish between the two. Along the center loop, they represent storage locations
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Figure 8: Prototype Facility Layout

called stockers. In the second phase, the number of stocker locations on the center

loop is reduced and stopping locations associated with bays are introduced near bay

entrances and exits on the center loop.

2.3 Transfer Request Generation

Demand in the simulation (and the real system) is generated through transfer re-

quests. In the real system, transfer requests are generated by the production schedul-

ing system which is, in itself, highly complex. It considers factors such as machine

utilization, work-in-process (WIP) balancing, and lot prioritization. Because our fo-

cus is vehicle routing not scheduling, we model transfer requests in a simplified manner

with a focus on incorporating factors that are likely to impact routing decisions and

effectiveness. Primarily, we want the demand patterns or pattern of origin/desti-

nation pairs to mimic what is seen in the real system and for congestion to occur

similarly to what is experienced in practice.

We model the impact of production scheduling through a request generation

method based on production-based probability distributions. This method does not
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require the simulation of a wafer through its entire production sequence or detailed

knowledge of the production scheduling process. While our method is an approxi-

mation, we have built in the flexibility to adjust several parameters in order to allow

extensive sensitivity analysis. In the case that production information is not available,

we also provide the option to use uniform distributions instead.

A transfer request consists of an origin location, a destination location, and a

time. In the simulation, we use an infinite loop that randomly selects a value for

the time until the next request and then waits that amount of time before repeating.

After waiting the specified amount of time, an entity is created representing a request

and an origin and destination are assigned. We provide three options for controlling

the timing of requests and origin selection and two options for destination selection.

We first discuss destination selection. In production-based methods, we consider two

product types, A and B, and assume a probability of 0.5 is assigned to each. In the

rest of this description, we discuss only one product type but both are handled in the

same manner.

2.3.1 Destination Selection

We offer two options for destination selection. In one case, the destination does not

depend upon the origin and we select it uniformly across all stopping locations. In

the second method, we first select the destination process type, then the bay, then the

port. The destination will depend on the origin selection. We consider eight processes

and assign each bay to a particular process as shown in Figure 2.3.1. All center loop

locations are assigned to a dummy process type STOCKER.

Process type selection is based on a probability distribution we call the transition

matrix T . It specifies, for a particular origin type, the probability that the request

destination will have a particular type. Rows represent the origin process and columns

the destination process. Figure 2.3.1 shows an example of a transition matrix. Values
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Figure 9: Bay-to-Process Assignment

are only shown to the second decimal point. In this matrix, if the origin is of type

CLEAN, the destination has a 35% chance of being of type CLEAN, a 5% chance of

being of type CVD, a 15% chance of being of type DIFF, a 9% chance of being of

type ETCH, a 5% chance of being of type METAL, a 15% change of being of type

PHOTO, and a 15% chance of being a STOCKER.

Figure 10: Transition Matrix Example

The transition matrix is created using a prototype production sequence and pa-

rameters that specify the probability that a cartridge visits a side-track-buffer pSTB

28



or stocker pSTK between process steps. We use two 400-step prototype sequences and

assume a 20% chance of visiting a stocker and at 30% change of visiting a side-track-

buffer. To calculate the transition matrix, we first create a process-only transition

matrix TP with the eight process types from the production sequence. Cell (i, j) in

the process-only transition matrix is calculated by counting the number of times that

process type i is followed by process type j in the production sequence and dividing

by the total number of times process type i occurs. The last step in the process

sequence is excluded since there is no next step. We also calculate the overall process

frequency distribution P by counting the total number of times each process occurs

and dividing by the total number of steps.

To calculate cell (i, j) in T , we use:

T (i, j) =



(1− pSTK)TP (i, j)

(1 + pSTB)
, i 6= j, i, j 6= STOCKER

(1− pSTK)TP (i, j) + pSTB

(1 + pSTB)
, i = j, i, j 6= STOCKER

pSTK

(1 + pSTB)
i 6= STOCKER, j = STOCKER

P (j) j 6= STOCKER, i = STOCKER

0 i, j = STOCKER.

The (1 − pSTK)TP (i, j) terms in the numerator when i and j do not represent

stockers represent cartridges that go from a machine of one type to a machine or

side-track-buffer of another type. The pSTB term in the numerator represent car-

tridges that go from a side-track-buffer of one type to a machine of the same type.

When j represents a stocker, pSTK represents cartridges that go from machines or

side-track-buffers to stockers. The denominator (1 + pSTB) represents all cartridges

that go from machine or side-track-buffers of one type to anywhere else. When

i represents a stocker, we use the overall process frequency distribution P except

when j also represents a stocker. We do not allow stocker to stocker requests so

T (STOCKER, STOCKER) = 0.
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Once the destination process type has been selected, a specific bay is selected

randomly from bays of that type. Stocker bays in the center loop are divided into

four dummy bays for this purpose. The stopping location is then selected randomly

from among locations in that bay. Both bay and stopping location selection use

uniform distributions.

2.3.2 Origin Selection

For origin selection, we include three methods. In the first method, the origin is se-

lected from a uniform distribution across all network locations. In the second method,

the origin process type is selected first, followed by the bay and stopping location.

In the second method, the origin process is selected from a stationary distribution

S derived from the transition matrix T described previously. Because the transition

matrix is of the form used in Markov Chains, the stationary distribution can be cal-

culated using π = πT where π is the stationary distribution and T is the transition

matrix. By nature, our matrix is irreducible and positive recurrent, so a stationary

distribution exists. This stationary distribution represents the long-run average num-

ber of transitions that begin (and end) in each process. The stationary distribution

S can also be calculated directly using P as:

S(i) =


(1 + pSTB)P (i)

(1 + pSTB + pSTK)
, i 6= STOCKER

pSTK

(1 + pSTB + pSTK)
, i = STOCKER.

The stationary distribution associated with T , pSTB = .3, and pSTK = .2 is shown

in Figure 2.3.2.

Figure 11: Stationary Distribution Example
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In the third method, we more closely enforce flow balance in each bay. Over time,

inflow and outflow should be equal or balanced. To do this, we define net deliveries

d as the number of items in a bay that are available to be transported (not currently

involved in active requests). It is calculated as the total number of deliveries minus

the total number requests assigned with origin in that bay. After an initialization

period, the origin bay for a request is randomly selected from the distribution of net

deliveries across all bays. Once the origin bay has been selected, a stopping location

is assigned randomly across all locations in that bay using a uniform distribution.

In the simulation animation, we track net deliveries on screen as shown in Figure

2.3.2. Net deliveries for each bay are shown above the layout. Note that the highest

number correspond to bays (see Figure 2.3.1) associated with the highest demand in

the stationary distribution in Figure 2.3.2. Numbers inside each bay represent the

number of origins and destinations currently assigned to that bay and can be used

for analysis.

2.3.3 Request Timing

The time between requests is selected from an exponential distribution with either

a constant mean or a mean based on the current number of net deliveries as well as

an input parameter r. With the first or second origin selection method, the mean is

constant. With the third origin selection method, request timing may also depend

upon net deliveries. In this way, if vehicles are prevented from delivering a request

due to congestion, fewer new requests will be generated with an origin in that bay.

This more closely mimics behavior in the real system. In this case, when time until

the next request is generated, we calculate the mean µ for the exponential distribution

as µ =
d

r
. If the system is in steady-state, the value of d varies but not excessively.

r is an input parameter that must be set considering the number of vehicles and the

demand pattern. Often we target an 80%-90% vehicle utilization and determine an
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Figure 12: Net Deliveries Tracking Example

appropriate value of r by iterative trial-and-error. If d and r are not set appropriately,

the system may become overloaded and never to able to recover or may be excessively

under-utilized.

To achieve an appropriate steady-state value of d, we run an initialization period

distinct from (and shorter than) the statistical warm-up period. During this time, the

mean used for request generation is constant and net deliveries build up in the system

because we do not allow the number of net deliveries in any bay to drop below zero.

After the initialization period, we switch to request timing based on net deliveries and

the system enter steady-state, if possible, after an adjustment period. We sometimes

refer to the parameters that control request timing as workload parameters because
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they determine how heavily the system is used.

2.4 Vehicle Control

In discrete-event simulation, the system progresses over time by moving from one

scheduled event to the next. When one event occurs, it may trigger the schedul-

ing of another event. For example, when a vehicle arrives at its origin an event

will be scheduled that indicates that the vehicle completes pickup. The scheduling

of events associated with vehicles is controlled by operational logic and associated

parameters. Operational logic includes vehicle assignment, vehicle routing, vehicle

movement, loading/unloading, and idle vehicle control.

2.4.1 Vehicle Assignment

When a transfer request is generated, the system identifies the available vehicle with

the earliest predicted arrival time by running a one-to-all shortest path calculation

using Dijkstra’s algorithm on the reverse network (i.e. arcs directions are reversed).

Available vehicles include those not currently assigned to a request and those currently

delivering at their destinations. If a vehicle is currently delivering, the time remaining

until it complete delivery is included in the calculated arrival time. If no vehicle is

available, the system adds the request to a queue for requests awaiting assignment.

2.4.2 Vehicle Routing

We include static and dynamic routing with either distance-based edge weights or edge

weights that are updated via exponential smoothing each time a vehicle traverses an

edge. Both dynamic routing and our edge weight updated procedure are described in

detail in Chapter 3. With static routing, the system calculates a vehicle’s routes from

current location to origin and origin to destination at the time of the request based

on current edge weights. The vehicle follows this path regardless of what happens in

the system while en route. With dynamic routing, the system maintains node-based
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lookup tables that are periodically updated based on current information. When a

vehicle approaches a diverging node, it looks up its next node in the lookup table

based on its destination. For updating edge weights, the user specifies a weight λ to

be used in exponential smoothing. For dynamic routing, the user specifies the table

update interval.

2.4.3 Vehicle Movement

Much of the complexity of vehicle movement resulting from acceleration and decel-

eration and intersection control. A vehicle’s maximum velocity is lower on curved

edges than on straight edges so a vehicle must decelerate to enter a curved edge. Any

following vehicles must also decelerate. AutoMod controls this logic by user speci-

fied maximum velocities and acceleration/deceleration rates. We use a straight edge

maximum velocity of 3 m/s, a curved edge maximum velocity of 1 m/s, and rate

of acceleration of 2 m/s, and a rate of deceleration of 3 m/s. These values may be

changed for sensitivity analysis. Vehicles also must maintain a 1m separation between

them. Intersections are first-in-first-out (FIFO) and a vehicle may continue through

an intersection at maximum velocity if it is not entering a curved edge or slowing for

other reasons.

2.4.4 Loading/Unloading

We use a deterministic loading and unloading time of 10 seconds. All loading and

unloading occurs on-track and other vehicles are not allowed to pass a stopped vehicle.

A vehicle located on an edge behind a stopped vehicle may only be rerouted if there

is a diverging node between this vehicle and the stopped vehicle.

2.4.5 Unassigned Vehicle Policy

A vehicle that is not assigned to a request remains stationary until an active vehicle

requests it to yield. Active vehicles look ahead in order to request stationary vehicles
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to yield before decelerating behind the stationary vehicle. When requested to yield,

the unassigned vehicle moves forward to the next diverging intersection and follows

the edge opposite that which the calling vehicle will take. If the number of unassigned

vehicles in a bay exceeds a threshold, a vehicle requested to yield will be redistributed

to a bay with fewer unassigned vehicles.

2.5 Vehicle Breakdown

The system’s reaction to and ability to recover from exceptions such as vehicle break-

down are also important. For this reason, we provide the ability to simulate vehicle

breakdown. The location of a breakdown can either be selected from anywhere in

the network or can be restricted to the center loop. The time between breakdowns

is selected from an exponential distribution. We use 2700s as the mean. The break-

down is either short or long, determined randomly based on an input parameter that

specifies the probability that it is a long breakdown. Typically, we use 25%. If it

is a short breakdown, the actual length of time is selected randomly from a uniform

distribution with specified range. We use a range of 90-180s. If the breakdown is

long, it lasts a deterministic 600s.

2.6 Metric Tracking

Several different types of metrics are of interest and the simulation collects a variety

of metrics as well as detailed tracking information that can be used for post-analysis.

Detailed tracking can be turned on or off because it significantly increases run time.

We categorize metrics into request-based metrics, recorded for each request, and time-

based metrics, recorded at a fixed time interval. Time-based metrics reflect the system

state at each point in time. For ease of analysis, metrics frequently used in analysis

are averaged (either over all requests or all time points) and output in a separate file.

For these summary metrics, requests generated during the statistical warm-up period

and time points in the statistical warm-up period are excluded.
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2.6.1 Request-Based Metrics

We record request-based metrics at the time a request completes delivery. Several

types of metrics are important in evaluating system performance. Of primary interest

is vehicle travel time, including total time as well as the individual retrieval and

delivery components. For our purposes, retrieval time is defined as the time from

when a vehicle is assigned to the request to the time pickup at the origin is complete

and delivery time is defined as the time from when a vehicle completes pickup to the

time it completes delivery at the destination. Retrieval time depends upon vehicle

utilization because if fewer vehicles are unassigned, the assigned vehicle is likely to

be further away from the origin at the time it is assigned. For this reason, we often

focus on delivery time as a measure of the effectiveness of a vehicle routing method.

In the case where vehicle utilization reaches one, we also record the time a request

waits to be assigned a vehicle.

We are also interested in travel delay, or the difference between travel time and a

lower bound on travel time. For the prototype facility, we calculate lower bound travel

times using edge length, maximum velocity, and acceleration/deceleration required

when entering and exiting curved edges. We record lower bound for retrieval, delivery,

and total travel times. We also attempt to break down delay into in-bay delay caused

by loading and unloading vehicles, center loop delay caused by loading and unloading

vehicles, delay caused by a vehicle breakdown, and other delay. For these delay

metrics, only delay when a vehicle is fully stopped is considered.

In summary form, we record travel times, the difference between travel time and

lower bound time, the ratio between travel time and lower bound time. Having these

metrics for each load, we can also do more detailed analysis of the variability in travel

times and delay including calculating standard deviations and generating histograms

for the associated distributions.

36



2.6.2 Time-Based Metrics

In addition to measuring in impact of policy changes on individual requests, we want

to understand the impact of system state. For this, we record various system-wide

metrics at a predefined interval, typically 5s. Of importance are speed index and

vehicle utilization. Speed index for an individual vehicle is defined as the ratio of the

current velocity to the maximum velocity given location in the network. At a particu-

lar point in time, we record the average speed index across all vehicles that should be

moving, i.e. are not loading, unloading, or idle and stationary. Speed index measures

how smoothly traffic is flowing in the network, with a higher speed index indicating

less congestion. Vehicle utilization is the ratio of number of vehicles assigned to a re-

quest divided by the total number of vehicles. All else equal, lower travel times result

in a lower vehicle utilization. From another perspective, if the vehicle utilization goes

down due to lower travel times, the workload and thus transportation throughput are

increased.

We also collect several metrics for use in detailed analysis including the current

number of net deliveries, the current mean time between requests, the number of

slow moving and stopped vehicles, and the average current vehicle velocity of those

vehicles that should be moving. Viewed graphically over time, these metrics help in

understanding the progression of the simulation over time. For example, since speed

index is used to define heavy congestion, viewing the speed index one can immediately

see when the system starts to experience a phase change into heavy congestion.

2.6.3 Detailed Tracking

Detailed tracking allows extensive analysis of the progression of the simulation over

time. We provide the option to track detailed vehicle movements and detailed edge

usage. If either of these options is turned on, we collect information in a form that

allows flexible post-analysis. For vehicle tracking, each time a vehicle reaches a node,
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we records the time and request that the vehicles is carrying (if applicable). For edge

tracking, we report the average edge traversal time for each edge in the network. This

information can also be computed from detailed vehicle tracking, but we provide the

option to output it directly for ease of analysis. Both options extend simulation time

significantly.

2.7 Run Control

2.7.1 Warm-Up Period and Simulation Time

We establish a warm-up period based on speed index and vehicle utilization in an

initial set of replications of distance-based static routing. Speed index is defined as the

average over all vehicles that should be moving (i.e. not stopped for loading/unloading

and not idle and stationary) of the current velocity divided by the maximum velocity

given a vehicle’s location in the network. We graphically determine when the system

reaches steady-state. We use a total simulation run time of eleven times the warm-up

period (ten times plus the warm-up). In our analyses, we use a warm-up time of

1200s and a total simulation time of 13200s.

2.7.2 Number of Replications

To determine a sufficient number of replications for steady-state analysis, we run

twenty initial replications. We remove those replications that reach heavy congestion

and calculate standard deviations on key metrics in the remaining replications. If they

are sufficiently low, we use these replications for steady-state analysis. In our simu-

lation, few replications often result in low standard deviations. Even though fewer

than twenty replications may be sufficient, we always run at least twenty replications

in order to be able to compare the frequency of heavy congestion. We discuss the

impact of the number of replications on the statistical significance of specific results

in Chapter 3.
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CHAPTER III

ROUTING

In this chapter, we address the problem of vehicle routing in the unified automated

material handling system (AMHS) described in Chapter 1. In this system, requests

occur online or in real-time and specify that a cartridge is ready to be transported

from an origin to a destination. We assume that the vehicle with the earliest predicted

arrival time is assigned to the request and consider the question of how to determine

and control the route a vehicle takes from its current location to the request origin

and from the request origin to the destination.

This problem is challenging due to the large scale of the network, the frequency

with which decisions are made, the uncertainty associated with online system, and the

complexity of vehicle interaction. In particular, computational efficiency is of utmost

importance. In this chapter, we first discuss the general category of routing problems

followed by potential approaches to our problem and a selected approach. We follow

this with a simulation-based analysis of our proposed approach that demonstrates

significant improvement over existing methods.

3.1 Routing Problems

Routing problems are widespread in industrial engineering and operations research

with applications in transportation, logistics, supply chain, manufacturing, telecom-

munications, and network optimization. In a routing problem, a set of cars, trucks,

trains, automated guided vehicles, data, or electronic signals is routed through a net-

work such that a set of requests is satisfied in a way that minimizes some objective

function (i.e. cost, time, distance). The meaning of the term request varies by con-

text but may include visiting delivery, pickup, or customer service locations, driving
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from an origin to a destination, transporting a person or load from an origin to a

destination, or routing an electronic data packet from an origin to a destination.

3.1.1 Problem Definition

The term routing problem covers a wide variety of contexts and assumptions. In some

cases, a route refers to a sequence of customers that a vehicle will visit such as in a

delivery or service route. These problems are sometimes called tour selection problems

and are usually modeled via the standard Vehicle Routing Problem (VRP) and its

variants. We focus on routing problems sometimes called path selection problems

where a route is a series of edges connecting an origin and a destination. In our

discussion, we use the terms path and route interchangeably.

A routing problem can be defined on a graph G = (N,E) where N is a set of

nodes representing locations and E is a set of edges representing travel lanes connect-

ing nodes. N includes both stopping locations NS and travel lane intersections NI .

We use the term stopping location to refer to delivery, pickup, or customer service

locations or transport origins and destinations. Intersections represent physical loca-

tions where travel lanes cross, merge, or diverge. Edges in E may be directed (i.e.

one-way travel) or undirected (i.e. two-way travel). For each edge e ∈ E, there is a

weight we that represents travel distance, time, or cost. In some instances, we may be

a function of other parameters and variables (e.g. the amount of traffic on the edge).

The objective of the routing problem is usually to minimize the total time, distance,

or cost of a solution.

A set of requests R is defined as a set of origin/destination pairs R = {(o, d)}

where o ∈ Ns, d ∈ Ns such that a load must travel or be transported from origin to

destination. In some cases, additional information such as customer demand or release

times are also associated with each request. Requests may be known in advance or

may be revealed over time. If known in advance, the problem is called offline. If
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revealed over time, it is called online. Online problems present unique challenges

because the system must either be re-optimized each time a new request arrives or

the new request should be routed assuming existing routes are fixed. Also, because

future requests will affect the realized travel time of current requests, it is not possible

to guarantee optimality.

3.1.1.1 Shortest Path Problems

The simplest path selection model is the shortest path problem (SPP) of finding the

shortest route from a node s to another node t, which is defined on the graph G as:

min
P∈Pst

∑
(i.j)∈P

wij (1)

where Pst is the set of elementary paths from s to t. When all wij values are in-

dependent of s and t, we can solve the path selection problem between each pair of

nodes independently. Dynamic programming algorithms such as Dijkstra’s [12] or

Bellman-Ford [8] are typically use to solve this problem. On networks, such as ours,

with non-negative costs and no negative cycles, Dijkstra’s algorithm can be imple-

mented with complexity O(|V | log |V |+ |E|) [60] and Bellman-Ford with complexity

O(|V ||E|) [7]. The one-to-all shortest path problem where one origin has many des-

tinations is also efficiently solved by these algorithms. All-to-all (or some-to-some)

shortest path problems are typically either solved by solving one one-to-all problem

for each origin or by specialized algorithms such as Floyd-Warshall [14]. [67] proposes

an algorithm particularly applicable for the some-to-some problem.

3.1.1.2 Mutli-Commodity Flow Problems

The one-to-one, some-to-some, and all-to-all path selection problems can be formu-

lated as mathematical programs. They are a type of uncapacitated multicommodity

flow problem (MCFP) defined on the graph G = (N,E) and a set of origin/destination
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pairs R = {(o, d)} where o ∈ Ns and d ∈ Ns.

minimize
∑

(o,d)∈R

∑
(i,j)∈E

wijx
od
ij

subject to
∑

j|(i,j)∈E

xodij −
∑

j|(j,i)∈E

xodij = 1 ∀i ∈ N, (o, ) ∈ R|o = i (2)

∑
j|(i,j)∈E

xodij −
∑

j|(j,i)∈E

xodij = −1 ∀i ∈ N, (o, d) ∈ R|d = i (3)

∑
j|(i,j)∈E

xodij −
∑

j|(j,i)∈E

xodij = 0 ∀i ∈ N, (o, d) ∈ R|o 6= i, d 6= i (4)

xodi,j ∈ {0, 1} ∀(i, j) ∈ E, (o, d) ∈ R

Constraints (2), (3), (4) ensure preservation of flow and demand satisfaction.

Variables are binary with the variable xij taking the value 1 if a request (o, d) uses

edge (i, j). If |R| = 1, this is equivalent to the s− t shortest path problem. If |R| > 1,

the problem can be decomposed into |R| independent s-t shortest path problems.

3.1.1.3 Modeling Vehicle Interaction and Congestion

In practice, applications involving path selection problems are challenging to model

due to the complexity of vehicle interaction. While simple shortest path and multi-

commodity flow models consider only origin to destination routes, physical routing

problems typically require the consideration of empty vehicle movement, both the

route an assigned vehicle takes to the request origin and the vehicle’s behavior when

not assigned to a request. Physical systems also require the consideration of vehicle

interaction. Because two vehicle cannot occupy the same location at the same time,

they necessarily impact one another. This interaction is typically modeled either

through collision-avoidance or congestion-impacted travel times. Collision-avoidance

methods model the movement of vehicles precisely in a time-dependent network.

Time-dependent networks are described in the next subsection. Congestion-impacted

42



travel time methods model the impact of vehicle interaction or congestion on edge

traversal times. Congestion may also be limited through the use of edge capacities.

The classes of models described previously models the movement of vehicles as a

constant flow. In the multi-commodity flow model, capacities may be added to edges

to constrain the amount of flow allowed on each edge. If an edge reaches its capacity,

some of the flow will be forced to use an alternate path. Edge weights may also be

used to model vehicle interaction, for example, making wij a function wij(xij) of flow

on the edge. In these cases, the path selection problem becomes nonlinear and cannot

be decomposed into several independent shortest path problems. In addition, it is

often difficult to determine an appropriate edge weight congestion model, particularly

in system where vehicles are large relative to edge size.

3.1.1.4 Time-Dependent Routing

Time-dependent networks may be time-expanded or incorporate time-windows on

edges or nodes. In a time-expanded network, the graph G is copied such that each

node is repeated for each time interval and an edge e connects two nodes it1 and jt2

if it takes t2− t1 time units to travel from i to j. An edge from it1 to it1+1 represents

a holding action at i. Edge capacities are used to limit the number of vehicles on an

edge at one time. Sometimes the graph is transformed such that each edge may be

traversed in one time interval so edges only connect nodes where t2− t1 = 1. Because

G is copied for each time interval, the size of the time-expanded graph depends upon

the granularity of the time intervals and the length of the time horizon. To model

a system with high-fidelity requires relatively small granularity and, thus, a large

network.

Time-windows based methods incorporate reserved time-windows on each node

or edge in G and impose a limit on the number of vehicles on the edge/node at one

time. For discussion, we assume time windows are on edges. Typically, the graph is
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discretized such that only one vehicle may occupy an edge at a time. This approach is

most common when new routes are determined with respect to existing time windows

as opposed to optimizing the whole system at once. When a new route is determined,

if the next edge in a potential route is scheduled to be occupied at the time the vehicle

would like to enter, the vehicle must wait and enter once the edge becomes free. A

modified shortest path algorithm can be used to solve this problem, but it is more

computationally intense than the basic form. If waiting is not allowed at nodes, it

becomes NP-Hard [58].

Time-dependent methods are computationally intense, making them difficult to

implement in systems where system status changes frequently. They are also difficult

to use in systems where vehicles are not allowed to preemptively wait at intersections

because these methods typically assume that a vehicle can wait until its scheduled

time to enter an edge. In reality, if the edge is unoccupied upon arrival, the vehicle

will enter immediately. To keep the model and the real system in sync over time,

scheduled routes must be continually updated which can be computationally and data

intensive. Though time-dependent methods have been used in the literature to model

AGV systems [32, 33, 23, 62, 48, 61, 64, 59, 10], in most cases the physical network

is small and the number of vehicles is fewer than twenty.

3.2 Dynamic Routing Methods

To address the specific problem of vehicle routing in a unified AMHS, we need a

method that is computationally efficient enough to handle frequent requests in a large

network, allows routes to change while in progress, and considers the impact of vehicle

interaction in selecting routes. We care both about changes in congestion due to

vehicle interaction and about predicted vehicle interaction. We consider seven possible

approaches and select the one that meets our requirements. We assume that each

request is routed immediately when it arrives unless no vehicles are available. It would
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also be possible to route new requests in batches of a fixed size or at fixed intervals.

We determine that time-dependent networks are too computationally intense for our

purposes and non-dynamic methods are not responsive enough.

3.2.1 Static Shortest Path

In a static shortest path approach, a vehicle’s route is selected via a shortest path

algorithm at the time of the request. The vehicle follows this route regardless of

changes in network status as it progresses. Edge weights used in route calculation

may be based on edge length and maximum velocity, based on historical average

edge traversal time, updated with recent edge traversal times, or predicted based

on future routes. We call these edge weights Distance-Based, Long-Run Average,

Updating, and Predictive, respectively. In this thesis, we consider the first three. We

use Distance-Based edge weights as a baseline, representing current practice. Long-

Run Average edge weights incorporate regular delay such as that due to acceleration

and deceleration at curved edges and places with frequent congestion but they do no

adjust to changes in system status. Updating edge weights capture both long-run

delay and changes in system status. The sensitivity to new information is determined

by an input parameter. More detail on this parameter can be found in Section 3.3.

We do not consider Predictive edge weights at this time, due to the difficultly of

making accurate predictions and the computational requirements of these methods.

Predictive edge weights may consider the future routes of existing requests and/or

the probability of new requests occurring in various locations.

3.2.2 Dynamic Shortest Path

In our dynamic shortest path approach, a vehicle evaluates its route at every diverging

intersection using routing tables periodically updated using current edge weights.

With Updating edge weights, this means that routes may change at each routing

table update. For computational tractability, rather than the vehicle re-computing a
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shortest path algorithm, we use a node-based lookup table method where the vehicle

looks up its next node in a table associated with the diverging node based on its

destination. More detail on this approach can be found in Section 3.3. If Distance-

Based or Long-Run Average edge weights are used with this method, it is equivalent

to static shortest path because edge weights do not change over time.

3.2.3 Static K-Shortest Path

A set of candidate paths may be used instead of recomputing a single shortest path

each time a request comes in. The candidate set is generated a priori using Distance-

Based or Long-Run Average edge weights. At the time of a request, each route in the

candidate set is evaluated based on current edge weights. This is often computation-

ally more efficient than static shortest path, but does not allow routes to change while

in progress. In terms of performance, with Distance-Based or Long-Run-Average edge

weights, this method is equivalent to static shortest path. Dynamic k-shortest path

may also be considered where a vehicle re-evaluates its route at every diverging node,

but this is computationally inefficient since even the static version is too time con-

suming for our application.

3.2.4 Randomized K-Shortest Path

Instead of using edge weights that change over time to select a path from a candidate

set, we may randomly select a path from that set. In this case, the system is not

able to respond to congestion, but traffic may be better distributed throughout the

network. In implementing this method, one must be careful to select only candidate

routes that are not excessively long. The number of paths that are of reasonable

length may vary significantly by origin/destination pair.
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3.2.5 Static Time-Expanded Shortest Path

Another approach is to model the movement of vehicles exactly through the use of

a time-expanded network. The network may either be discretized over time such

that there is a node for each location at each time step or each node or edge may

have time windows associated with it. The network must be discretized in a way

that each edge (or node) may only be occupied by one vehicle at a time. At the

time of a request, a vehicle selects a route using either a shortest path algorithm or

a candidate route set, ensuring that it does not occupy a location at the same time

as anther vehicle. These methods are both computationally expensive and difficult

to implement in practice due to the complexity of vehicle movement. Particularly in

FIFO (first in, first out) networks, where it is not possible to stop a vehicle at an

intersection preemptively, vehicles will not progress along their routes as modeled.

Thus, for the method to be effective, the location of a vehicle and the timing of

its future routes must be periodically synchronized with the real system. Dynamic

versions of theses methods are also possible where the entire system is frequently

re-optimized, but this is computationally inefficient since even the static version is

too time consuming.

3.2.6 Pre-Computed Multi-Commodity Flow

A static multi-commodity flow approach allows the consideration of predicted vehicle

interaction even with pre-computed routes. Using Distance-Based or Long-Run Av-

erage edge weights, a multi-commodity flow model with binary flow variables selects

a route for each origin/destination pair based on expected average demand. Vehicle

interaction is considered through edge capacities or the objective function. Example

of objective functions that consider vehicle interaction are minimizing the maximum

edge flow or a piecewise linear function of edge flow. Computational efficiency of this

method will vary depending on the objective function and constraints, but since the
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computation is only done once it is not a problem. This method does not respond to

the changing congestion status, however, and does not allow routes to change while

in progress.

3.2.7 Dynamic Multi-Commodity Flow

Dynamic versions of multi-commodity flow models may be considered where a multi-

commodity flow model is run either each time a decision must be made or at pre-

defined intervals based on existing requests. Depending on the objective and con-

straints, this may become computationally intractable. Without edge capacities and

with an objective of minimizing travel time, this method when computed at pre-

defined intervals is equivalent to dynamic shortest path.

3.2.8 Comparison

In Table 1, we compare the possible methods in terms of the requirements. An X indi-

cates that the method meets the requirement and a P indicates that the method may

meet the requirement. Static shortest path and k-shortest path consider congestion

if they use updating edge weights. Note that no single method meets all four require-

ments. Dynamic shortest path and dynamic multi-commodity flow both meet three of

the four but dynamic multi-commodity flow is either equivalent to dynamic shortest

path or is too computationally intense for use in our application. Thus, our proposed

method is a dynamic shortest path method using updating edge weights. Although

it does not directly consider future vehicle interaction, updating edge weights provide

an approximation based on recent history.

3.3 Proposed Dynamic Routing Method

Our proposed method updates edge weights via exponential smoothing and an all-

to-all shortest path problem is run at a defined time interval based on current edge

weights. Vehicles may be rerouted each time they approach a diverging node (where
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Table 1: Comparison of Possible Routing Methods

Computationally
Efficient

Allows Route
Change

Considers
Congestion

Considers Future
Vehicle

Interaction

Static Shortest
Path

X P

Dynamic Shortest
Path

X X X

Static K-Shortest
Path

X P

Randomized
K-Shortest Path

X

Static
Time-Expanded
Shortest Path

X X

Pre-Computed
Multi-Commodity

Flow
X X

Dynamic
Multi-Commodity

Flow
X X X
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they have a route choice) based on the most resent route calculation. In this way,

routes always reflect the most recently available edge traversal time estimates and

the system, at any point in time, reflects the system-optimal solution given this

information. In this section, we present the details of our proposed approach.

3.3.1 Graph

We model our system as a directed graph where nodes correspond to loading/unload-

ing ports and rail intersection points and edges to rail segments connecting nodes.

Each edge is assigned a weight that represents its estimated traversal time. For some

purposes, we consider the intersection point network where nodes represent only rail

intersection points, not ports. We use the term diverging node to indicate a node

that has more than one outgoing edge. Note that in typical OHT networks, the total

number of incoming plus outgoing edges associated with a node is no more than three.

3.3.2 Congestion-Aware Edge Weights

For each edge, we store an edge weight that represents the estimated traversal time.

When a vehicle passes a node, the system records the time that it took for that vehicle

to traverse that edge and updates the estimated edge traversal time using exponential

smoothing,

tnij = (1− λ)tn−1ij + λlnij,

where tnij is the edge weight for edge (i, j) after the nth traversal, lnij is the nth

traversal time, and λ is a parameter indicating the sensitivity of the estimated edge

traversal time to new information.

Initially, we set the edge weight equal to the length of the edge divided by the

maximum travel velocity on that edge. With a small value of λ, estimated edge

traversal times approach the long-run average. Good values of λ may vary with

layout and operational characteristics affecting the likelihood of heavy congestion or

deadlock. We use one value of λ across the whole system but could use edge-specific
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values of λ. For example, it may be preferable to use larger values of λ for areas of

the network with more frequent congestion and smaller for areas that are sparsely

used.

Previously studied measures of congestion, such as the number of vehicles cur-

rently moving on a route, represent an instantaneous view of system congestion. By

incorporating recent information in addition to current information, a more robust

representation can be achieved. Our method also incorporates expected delay due

to layout characteristics such as likely deceleration behind vehicles entering curved

edges.

3.3.3 Route Computation and Selection

In our proposed method, vehicles are routed and rerouted using node-based lookup

tables. Traditionally, a vehicle’s route is stored as a vehicle attribute. At each

diverging node the vehicle selects its next node from the stored route. To route

dynamically, a vehicle recalculates its route at each diverging node to ensure that its

preferred route has not changed. If we have R requests during a T second simulation

time and each route has an average of D diverging nodes, the total number of route

calculations will be R ∗ (D + 1), which may not be evenly distributed over time.

Our proposed method stores a lookup table at each diverging node containing

the next node in the route to each destination. Tables are updated periodically over

time at a fixed time interval. As a vehicle approaches the diverging node, it looks

up its next node in the table. For example, in Figure 3.3.3 a vehicle (red triangle)

is approaching node I and has a destination of node Z. The vehicle looks in the

table associated with node I in the row for destination Z. The table indicates that

the vehicle should next go to node A based on the current congestion status. Note

that each vehicle with a particular destination approaching a given node between two

subsequent table updates will follow the same route.
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Figure 13: Lookup Table-Based Routing

To update a table, we run a one-to-all shortest path calculation on the intersection

point network using Dijkstra’s algorithm. Table updates may be easily parallelized

since the one-to-all calculation for each diverging node is independent. With an I

second update interval over a T second simulation time, we update tables T/I times.

Thus, the number of calculations does not increase with a higher number of requests

or more diverging nodes, allowing efficient use in large networks. Because tables are

updated at fixed intervals, computational requirements are uniform over time. In

our implementation, the complexity of each table update is O(|N |3) where |N | is the

number of intersection point nodes.

3.4 Computational Results

To test proposed our approach, we use the simulation described in Chapter 2. We com-

pare our dynamic shortest path routing method with updating edge weights against

the static shortest path routing method using Distance-Based, Long-Run Average,

and Updating edge weights. Our method provides a moderate improvement in steady-

state performance, a significant reduction in the frequency of heavy congestion, and

an improved response to vehicle breakdown. Even though transfer requests are gen-

erated at the rate of 1-2 per second, the dynamic routing algorithm is fast enough so
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that no delays occur in its simulated implementation.

3.4.1 Routing Parameters

We compare static and dynamic routing using three parameter settings for each λ

and the table update interval. In the tables and graphs, Routing Method indicates

either static (S) or dynamic (D) routing, Table Updates Interval indicates the time

in seconds between table updates for dynamic routing, Edge Type indicates either

distance-based (DB), long-run average (LRA), or updating (U) edge weights, and

Edge Weight Parameter indicates the value of λ for updating edge weights.

3.4.2 Metrics

For steady-state replications, we report total time in the system, deliver time, vehicle

utilization, speed index, and number of requests completed. Total time in the system

is defined as the time from when a request is generated until delivery is complete.

The deliver time is the time from when pickup is complete until the time delivery is

complete. Vehicle utilization at a particular point in time is the percent of vehicles

assigned to a request. Speed index is the average ratio of current velocity to maximum

velocity. At a particular point in time, the average is taken across all vehicles that

should be moving (i.e. not stopped to load/unload or intentionally idle). Maximum

velocity will depend on whether the vehicle is on a curved or straight edge.

Time in system and deliver time are reported as the average over all completed

requests generated after the warm-up period. Vehicle utilization and speed index are

a system-wide value recorded every 5 seconds of simulation time. A lower total time

in system, deliver time, and vehicle utilization and higher speed index and number

of requests completed are desirable. Due to acceleration and deceleration, a speed

index of 1 is not attainable but with no congestion the speed index can reach 0.9.
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3.4.3 Base-Case Results

The base case scenario has 175 vehicles and an average steady-state vehicle utiliza-

tion of 88%. Because heavy congestion occurs in six of twenty replications using

distance-based static routing, our steady-state metrics comprise the average across

the remaining fourteen replications. We consider the same replications for other pa-

rameter settings. These replications are also steady-state because they do not reach

heavy congestion. A heavy congestion replication is defined as one that has a speed

index below 0.2 at the time of completion.

Six of the initial twenty replications reach heavy congestion under static routing.

The remaining fourteen replications result in standard deviations that are sufficiently

low so we use these fourteen replications for steady-state analysis. Table 2 presents

these steady-state results including 95% confidence intervals. The routing method is

identified in the form routing method - table update interval - edge weight type - edge

weight parameter where routing method is static (S) or dynamic (D), table update

interval is in seconds, edge weight type is distance-based (DB), long-run average

(LRA), or updating (U), and edge weight parameter is a value between 0 and 1.

We present edge weight parameters of 0.1 and 0.9. We tested additional values and

found only a slight difference in steady-state performance. The value of 0.1 tended

to perform best with performance decreasing slightly as the edge weight parameter

increased toward 0.9. This is likely because as the value increases, it diverts traffic

to longer routes more easily in response to congestion. At some workload levels, this

may be required to avoid heavy congestion.

Tables 3 and 4 show the t-statistic for paired t-tests for deliver time and number

of requests delivered, respectively. With 13 degrees of freedom in a two-sided t-test at

a 95% confidence level, the difference between two parameter settings is significant if

the absolute value of the t-statistic is greater than 2.16. In Tables 3 and 4, we show,

in bold, values where the column parameter setting shows a significant improvement
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Table 2: Steady-State Mean and 95% Confidence Interval
Routing
Method

Total Time
in System

Deliver Time
Vehicle

Utilization
Speed Index

Requests
Completed

S-NA-DB-NA 113.0 77.6 0.88 0.66 16357
(112.99,119.45) (77.6,77.97) (0.88,0.92) (0.66,0.67) (16356.86,16679.49)

S-NA-LRA-NA 106.7 74.3 0.86 0.70 16945
(106.67,110.83) (74.35,74.9) (0.86,0.9) (0.7,0.71) (16945,17244.93)

S-NA-U-0.1 107.5 74.8 0.87 0.70 16975
(107.48,111.49) (74.83,75.34) (0.87,0.91) (0.7,0.7) (16975.29,17281.18)

S-NA-U-0.9 109.3 75.8 0.87 0.69 16784
(109.26,113.57) (75.83,76.41) (0.87,0.91) (0.69,0.7) (16783.71,17103.95)

D-1-U-0.1 106.9 74.7 0.86 0.70 16919
(106.88,110.81) (74.68,75.29) (0.86,0.9) (0.7,0.71) (16919.29,17258.47)

D-10-U-0.1 107.1 74.9 0.86 0.70 16923
(107.13,110.69) (74.88,75.39) (0.86,0.9) (0.7,0.71) (16922.93,17285.86)

D-60-U-0.1 107.5 74.8 0.86 0.70 16918
(107.49,112.29) (74.81,75.41) (0.86,0.91) (0.7,0.71) (16918.21,17224.94)

D-1-U-0.9 108.1 75.2 0.86 0.70 16830
(108.06,111.87) (75.18,75.77) (0.86,0.91) (0.7,0.71) (16829.64,17191.1)

D-10-U-0.9 108.5 75.5 0.86 0.70 16802
(108.47,112.41) (75.53,76.01) (0.86,0.91) (0.7,0.7) (16801.57,17093.02)

D-60-U-0.9 108.9 75.8 0.87 0.69 16797
(108.94,112.24) (75.79,76.26) (0.87,0.91) (0.69,0.7) (16796.93,17125.11)

over the row parameter setting. Note that deliver time improvement has a positive

t-statistic and number of requests delivered improvement has a negative t-statistic

because a lower deliver time and a higher number of requests completed are preferred.

The tables are symmetric so all values in the first column are significant in the negative

direction. Only deliver time and number of requests delivered are shown but other

metrics show similar patterns.

Table 3: Deliver Time Paired T-Test Test Statistic
Routing
Method

S-NA-
DB-NA

S-NA-
LRA-NA

S-NA-
U-0.1

S-NA-
U-0.9

D-1-
U-0.1

D-10-
U-0.1

D-60-
U-0.1

D-1-
U-0.9

D-10-
U-0.9

D-60-
U-0.9

S-NA-DB-NA 22.73 20.44 10.47 16.03 19.61 14.71 13.33 10.84 11.33
S-NA-LRA-NA -22.73 -3.83 -18.59 -2.07 -4.74 -3.48 -8.00 -11.08 -10.64
S-NA-U-0.1 -20.44 3.83 -8.53 1.17 -0.68 0.12 -2.85 -5.74 -8.16
S-NA-U-0.9 -10.47 18.59 8.53 8.87 7.59 10.41 6.89 2.95 0.29
D-1-U-0.1 -16.03 2.07 -1.17 -8.87 -1.67 -1.39 -3.67 -7.02 -6.39
D-10-U-0.1 -19.61 4.74 0.68 -7.59 1.67 0.47 -3.04 -6.86 -8.07
D-60-U-0.1 -14.71 3.48 -0.12 -10.41 1.39 -0.47 -3.08 -5.62 -6.08
D-1-U-0.9 -13.33 8.00 2.85 -6.89 3.67 3.04 3.08 -3.99 -5.95
D-10-U-0.9 -10.84 11.08 5.74 -2.95 7.02 6.86 5.62 3.99 -1.98
D-60-U-0.9 -11.33 10.64 8.16 -0.29 6.39 8.07 6.08 5.95 1.98

All alternative parameter settings show a statistically significant improvement over

distance-based static routing in most metrics. The long-run average edge type and
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Table 4: Number of Requests Delivered Paired T-Test Test Statistic
Routing
Method

S-NA-
DB-NA

S-NA-
LRA-NA

S-NA-
U-0.1

S-NA-
U-0.9

D-1-
U-0.1

D-10-
U-0.1

D-60-
U-0.1

D-1-
U-0.9

D-10-
U-0.9

D-60-
U-0.9

S-NA-DB-NA -7.07 -9.06 -5.49 -7.35 -6.82 -8.75 -6.51 -5.78 -6.04
S-NA-LRA-NA 7.07 -0.94 2.92 0.65 0.57 0.55 2.40 3.55 3.27
S-NA-U-0.1 9.06 0.94 3.64 1.78 1.69 2.03 3.56 5.59 5.47
S-NA-U-0.9 5.49 -2.92 -3.64 -3.18 -2.19 -2.82 -1.21 -0.38 -0.23
D-1-U-0.1 7.35 -0.65 -1.78 3.18 -0.11 0.04 3.99 4.81 3.42
D-10-U-0.1 6.82 -0.57 -1.69 2.19 0.11 0.11 2.33 2.77 2.72
D-60-U-0.1 8.75 -0.55 -2.03 2.82 -0.04 -0.11 2.37 4.10 2.92
D-1-U-0.9 6.51 -2.40 -3.56 1.21 -3.99 -2.33 -2.37 0.76 0.80
D-10-U-0.9 5.78 -3.55 -5.59 0.38 -4.81 -2.77 -4.10 -0.76 0.12
D-60-U-0.9 6.04 -3.27 -5.47 0.23 -3.42 -2.72 -2.92 -0.80 -0.12

dynamic routing with a table update interval of one second and an edge weight pa-

rameter of 0.1 show the best performance. All settings with an edge weight parameter

of 0.1 outperform those with an edge weight parameter of 0.9. There is less sensitivity

to the table update interval parameter. We conclude that static routing with long run

average edge weights and dynamic routing with a low sensitivity to new information

perform well under low workload scenarios that do not reach heavy congestion. The

benefit of dynamic routing over static routing is seen in the high-workload and vehicle

breakdown scenarios.

3.4.4 High-Workload Results

In the high-workload scenario, with 250 vehicles and more frequent requests, distance-

based routing results in heavy congestion in all twenty replications. Figure 3.4.4

shows the smoothed progression of the speed index over time for one replication of

this scenario. Only one instance of dynamic routing is shown but the performance is

similar across parameter settings. The speed index for distance-based edge weights

experiences a quick transition from steady-state to near zero. Each of the other static

routing cases ends in heavy congestion but some effort is made periodically to recover.

The dynamic routing case does not enter heavy congestion.

Table 5 shows the frequency of heavy congestion in the base case and high-

workload scenarios. The frequency of heavy congestion decreases from 100% to 80%
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Figure 14: Higher-Workload Speed Index Example

with long-run average edge weights with static routing. Updating edge weights with

static routing further reduces the frequency to 35%-45%. With dynamic routing,

the frequency is further reduced. A one second update interval with an edge weight

parameter of 0.1 does not result in heavy congestion in any of the twenty replications.

Table 5: Frequency of Heavy Congestion
Routing
Method

Base Case
Higher-Workload

Scenario

S-NA-DB-NA 30% 100%
S-NA-LRA-NA 0% 80%
S-NA-U-0.1 0% 35%
S-NA-U-0.9 0% 45%
D-1-U-0.1 0% 0%
D-10-U-0.1 0% 30%
D-60-U-0.1 0% 15%
D-1-U-0.9 0% 15%
D-10-U-0.9 0% 10%
D-60-U-0.9 0% 5%

We use the binomial test to determine statistical significance. We find that long-

run average edge weights do not provide a statistically significant improvement over

distance-based static routing at the 95% confidence level but all settings with ad-

justing edge weights do provide improvement over both distance-based and long-run

average edge weights. For settings with an edge weight parameter of 0.9, dynamic

routing shows a statistically significant improvement over static routing. We cannot
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draw any conclusions with respect to the edge weight parameter because the differ-

ence is not statistically significant. The determination of an appropriate edge weight

parameter is likely to workload-specific.

3.4.5 Vehicle Breakdown Results

In the vehicle breakdown scenario, the number of vehicles and the request frequency

are the same as in the base case but vehicle breakdowns occur on the center loop with

an exponential inter-breakdown time with mean 2700 seconds. When a breakdown

occurs, each center loop edge is selected with equal probability and the next vehicle

to enter that edge must come to a stop. A breakdown is short (90-180 seconds) with

a probability of 0.75 and long (600 seconds) with a probability of 0.25. We focus on

the center loop in order to observe deadlock and recovery behavior.

For analysis, we focus on the response to and recovery from vehicle breakdown.

Figure 3.4.5 shows the smoothed progression of the speed index over time for a repli-

cation with a long breakdown at approximately 6300 seconds. All parameter settings

react to the breakdown with a significant decrease in speed index. Dynamic routing

allows vehicles to be immediately routed away from the congested area while static

routing only allows new requests to be routed away from this area. Dynamic routing

quickly returns to a steady-state speed index. Static routing settings with updating

edge weights recover after more than 1500 seconds and static routing with distance-

based and long run average edge weight settings never recover. In this example, a

short breakdown also occurs at approximately 12,800 seconds. Dynamic routing does

not experience a significant drop in the speed index whereas static routing does.

Across all replications, we observe results consistent with those presented in the

above example. Static routing with distance-based and long run average edge weights

are unlikely to recover, static routing with updating edge weights recover but after a

substantial length of time, and dynamic routing recovers more quickly. As before we
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Figure 15: Vehicle Breakdown Speed Index Example

define heavy congestion as a speed index falling below 0.2. We define recovery as a

speed index reaching above 0.5 after falling below 0.2.

Figures 3.4.5 and 3.4.5 summarize these results. Static routing with distance-based

edge weights reaches heavy congestion in seventeen of twenty replications and only

recovers in one replication. Static routing with long run average edge weights reaches

heavy congestion in thirteen of twenty replications and recovers in two of them. The

remaining settings reach heavy congestion in ten to fourteen replications but recover

in either all cases or all except one. The difference between static and dynamic routing

in scenarios with updating edge weights is seen in the time to recovery as shown in

Figure 3.4.5. Both cases of static routing have average recovery times of over 1500

seconds. Dynamic routing average recovery times are below 350 seconds. The time

to recovery in dynamic routing is not sensitive to differences in parameter settings.

3.5 Conclusion

In this chapter, we proposed a congestion-aware dynamic routing method that uses

edge weights continually updates based on edge traversal times. For computational

efficiency, our method routes and re-routes vehicles using node-based lookup tables
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Figure 16: Frequency of Heavy Congestion and Recovery

Figure 17: Average Time to Recovery

where, at each diverging node, a vehicle looks up its next node in a table based on

its destination. Routing tables are periodically updated using current edge weights.

By considering congestion and allowing vehicles to be rerouted, we demonstrate via

simulation a moderate improvement in steady-state performance, a significant reduc-

tion in the frequency of heavy congestion, and an improved ability to react to and

recover from exceptions such as vehicle breakdowns.
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CHAPTER IV

LAYOUT DESIGN

Having demonstrated in Chapter 3 that dynamic routing provides significant improve-

ment over static routing for a fixed layout, in this chapter we address the question of

how layout can be improved to make better use of dynamic routing. In particular, we

focus on how the number and placement of shortcuts on the center and outer loops

affects system performance differently with static versus dynamic routing. For our

purposes, a shortcut is a short edge connecting two longer edges. We assume that

the long parallel travel lanes that make up the center and outer loops are fixed and

consider four configurations for center and outer loop shortcuts.

This focus on shortcuts in the center and outer loops is motivated by what has

been experienced in practice, suboptimal placement of a shortcut with the use of

static routing sometimes causes prohibitive congestion. Two possible reasons for this

are that 1) the new shortcut is included in the shortest path for a large number

of origin/destination pairs and that 2) the shortcut shifts shortest paths such that

increased traffic travels through an already busy area of the network. We observe the

second case in our simulation when using static routing. With dynamic routing, if

these areas become congested vehicles will avoid them because with congested travel

time estimates they no longer lie along the shortest path. With dynamic routing, the

system is less sensitive to shortcuts placement and continues to function efficiently

with a significant increase in the number of shortcuts. With the increased number of

shortcuts, point-to-point distances are reduced enough to reduce travel time by 25%.

Traditional network design problems assume static routing and, if congestion is
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considered, the congestion patterns created by static routing. Because dynamic rout-

ing adapts to changes in congestion by changing traffic patterns, the ideal layout for

use with dynamic routing may differ significantly from that for static routing. Finding

an optimal layout for dynamic routing is a challenging problem.

Even for static routing, with a realistic set of constraints, network design is chal-

lenging. Network design problems are typically modeled as integer programs [68] and,

with a realistic set of constraints, are difficult to solve. Although the basic network

design problems, without the consideration of congestion or any other additional con-

straints, is a series of shortest path problems [68] and thus polynomially solvable, with

the addition of a fixed charge in the objective function associated with the inclusion

of an edge, the problem becomes NP-Hard [35] even with fractional flow. Also, the

consideration of congestion either with edge capacities or in edge weight functions

causes the problem to be NP-Hard [34].

Incorporating dynamic routing into a network design problem would also require

an effective method of modeling it analytically. The complexities of our problem,

particularly the nature of vehicle interaction and congestion and the uncertainty as-

sociated with demand, make this difficult. Most network design models that consider

congestion use a flow-based representation where congestion is either limited by arc

capacities or modeled as a function of flow [43]. For example, in the user-optimal or

selfish equilibrium models used in traffic and internet routing, it is common for travel

time to be represented as a non-decreasing and convex function of flow [3]. Linear

and polynomial functions are common [54]. In our system, the interaction of indi-

vidual vehicles is significant as vehicles are non-infinitesimal in size. Also, because

loading/unloading occurs on track, a stopped vehicle prevents other vehicles from

continuing on their paths creating a highly variable congestion pattern that cannot

necessarily be modeled by a simple function.

To aid in developing such an analytical model, we develop a simulation support
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tool that allows efficient generation of thousands of potential layouts. We intend

to use this tool in an iterative framework where an optimization or other model

produces a layout that can be translated into a simulation layout and tested via

simulation. The results from the simulation will then be used to provide feedback

to the optimization model and insight to the analyst. In this chapter, we present

an Excel-based automated layout generation tool that allows efficient generation of

thousands of potential layouts for a bay-based unified AMHS. In addition, we update

the request generation method in our simulation to provide additional flexibility and

the bay structure to be more realistic.

In this chapter, we also present results that highlight the potential impact of

making layout changes for use with dynamic routing. We use our layout generation

and simulation tools to demonstrate that the impact of layout changes may impact

performance significantly differently depending on whether static or dynamic routing

is used. We observe that with static routing, suboptimal shortcut placement creates

delay and results in heavy congestion when shortest paths travel through high demand

bays. Dynamic routing is able to avoid high demand bays as they become congested,

making the system more robust to variation over time. With dynamic routing, we

are able to increase the number of shortcuts eight-fold which reduces point-to-point

distance and allows a 25% decrease in travel time.

4.1 Automated Layout Generation Tool

Building a simulation layout and adjusting parameters requires at least several hours

for a knowledgeable user. To facilitate the generation of simulation layouts, we de-

veloped an Excel-based automated layout generation tool that generates all required

simulation file with the click of a button. The user selects from a modular menu of

facility and operational characteristics in an Excel template. Visual Basic for Ap-

plications (VBA) generates text files formatted for AutoMod and associated input
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text files. It allows efficient generation of thousands of different layouts defined by

the modular selection of characteristics used in the design of a typical unified AMHS

system. The tool was developed in Excel in order to be portable across users without

requiring unique software or programming knowledge. The user selects characteris-

tics of the bays, center loop, outer loop, demand pattern, and operational control. In

addition to generating simulation files, the tool records network information that can

be used in post-analysis such as node coordinates and edge lengths. In combination

with simulation output, this allows efficient and flexible graphical data analysis.

The layouts produced by this tool are unified AMHS layouts with one line of bays

along the top and one line along the bottom. Bays can be selectively removed as

shown in Figure 4.1 to represent machine that require more floor space. The bay

structure, either 3-lane or 4-lane, shown in Figure 4.1 differs from that used in the

initial simulation, reflecting a more realistic structure.

Figure 18: Bay Placement and Optional Bay Removal

The center loop area may have four or eight lanes with several travel directions

options as shown in Figures 4.1 and 4.1. Several types of connections between the

center and outer loops are possible, examples of which are shown in Figure 4.1.

Together, there are fourteen options for the center loop configuration, not considering
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Figure 19: Bay Structure

the placement of shortcuts.

Figure 20: Center Loop Travel Direction: Four Lanes

Figure 21: Center Loop Travel Direction: Eight Lanes
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Figure 22: Examples of Center to Outer Loop Connection Types

Center and outer loop shortcuts may be aligned either with the center of a bay

or directly between two bays. Shortcuts are placed via a table, as shown in Figure

4.1, where the user indicates whether the shortcuts should direction should be up or

down. We allow the placement of up to n − 1 shortcuts between each set of travel

lanes on the center loop, where n is the number of bays, with some limitations on

the placement of shortcuts at the right and left sides. The shape of a shortcut differs

based on the direction of travel of the connecting lanes as shown in Figure 4.1.

Figure 23: Placement of Center Loop Shortcuts

Figure 24: Shortcut Shape

All parameters associated with vehicle control, request generation, and scenario
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definition are also entered in the Excel file so that only limited manipulation is re-

quired within the simulation itself. Vehicle characteristics include the number of

vehicles, the vehicle velocity on straight edges, the vehicle velocity on curved edges,

the rate of acceleration, and the rate of deceleration. In addition being used di-

rectly in the simulation, these values are used to calculate initial edge weight values

and lower bound travel times. Request generation parameters include bay-to-process

assignment and storage parameters (see Figure 4.1) and transition matrices.

Figure 25: Process-to-Bay Assignment and Storage Parameters

4.2 Simulation Updates

In addition to developing the layout generation tool, in this phase of our work we

made several updates to the production-based request generation method to allow

more flexibility in analysis and to better represent the real system. We allow a

more flexible use of storage and modify the initialization procedure. In addition, we

introduce a batch process, which is explained below.

In our initial simulation, we use one parameter to specify each the probability of a

cartridge visiting a stocker between processing steps and the probability of a cartridge

visiting a side-track-buffer between processing steps. In this phase, we allow different

parameters for each processing type. For example, the probability of visiting a stocker

when going to a CLEAN machine may differ from the probability of visiting a stocker

when going to a PHOTO machine. This mimics the real system where storage may
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be used more often to keep bottleneck machines highly utilized. In addition, stocker

locations are consolidated along the center loop and assigned one to each bay as

shown in Figure 4.2.

Figure 26: Center Loop Port/Side-Track Buffer and Stocker Placement

Instead of using a transition matrix that incorporate the process-only transition

matrix and the storage parameters, we use the process-only transition matrix and

storage parameters directly in the simulation. The overall process is shown in Figure

4.2. As in the initial simulation, the request origin may be selected from a stationary

distribution or from the distribution of net deliveries. We use a stationary distribu-

tion generated in the same was as in the initial simulation but using the new storage

parameters. Once the bay has been selected, it is assigned as a stocker with probabil-

ity
pSTK

1 + pSTK + pSTB

where pSTK and pSTB are the probabilities that a cartridge visits

a stocker and side-track-buffer, respectively, between process steps. pSTK and pSTB

are those associated with the origin process. This is important in determining the

destination process. When tracking net deliveries, stockers are considered separately
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from the bays themselves. Once the origin bay has been selected, if it is a bay as op-

posed to a stocker, it is assigned as a side-track-buffer with probability
pSTB

1 + pSTB

. As

before, for machines and side-track-buffers the specific location is selected uniformly

from all stopping locations in the bay.

Figure 27: Origin/Destination Selection Process

Once the origin has been selected, the destination function is selected. If the

origin is a stocker or side-track-buffer, the destination process is the same as the

origin process. If the origin is a side-track-buffer, the bay is the same, as well. If is

a stocker, the destination bay is the bay associated with the stocker. If the origin

is a machine, the destination process is selected via the transition matrix. In this

case, the destination is assigned as a stocker with probability pSTK where pSTK is the

parameter associated with the use of a stocker for the destination process.

Instead of using a request generation warm-up period as in the initial simulation,

we initialize the system via a stationary distribution. An input parameter specifies

the initial number of net deliveries and they are distributed across processes via the

stationary distribution. Distribution among bays uses a uniform distribution.

In the real system, some processes are batched meaning that several items are

processed at one time. We model this using the DIFF process with batch size B as

an input parameter. Every Bth time a request with an origin of type DIFF is selected,

B requests are created with potentially differing destinations. Those requests with

DIFF origin that are selected in between are discarded.
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4.3 Computational Results

To demonstrate the potential of our simulation analysis tools and gain insight into

the improvements possible with layout changes for dynamic routing, we compare

four configurations for the center and outer loops, differing only by the number and

placement of shortcuts. We observe that static routing results in heavy congestion

caused by suboptimal shortcut placement. Layouts that increase flow too much in

high-demand areas of the network become overloaded. Dynamic routing eliminates

this heavy congestion in all layouts considered. Further, adding shortcuts always has

a positive impact on travel times. By maximizing the number of shortcuts on the

center and outer loops, delivery times and total system times decrease by 24%-26%

with constant request frequency parameters. By also increasing request frequency,

the transportation throughput, or number of requests delivered, increases by more

than 26% without the occurrence of heavy congestion. Thus, we conclude that sub-

stantial improvement is possible with the implementation of layout changes for use

with dynamic routing.

4.3.1 Configurations

4.3.1.1 Rail Layout

We consider four center and outer loop configurations for the prototype layout shown

in Figure 4.3.1.1 with 32 four-lane bay locations, 16 along the top and 16 along the

bottom. Three bays are removed from the top row to represent the additional space

required for photolithography equipment. The center loop has eight lanes. Lanes 1

and 2 go from left to right, 3 and 4 go from right to left, 5 and 6 go from left to

right, and 7 and 8 go from right to left. Shortcut placement for the four center loop

configurations is shown in Figure 4.3.1.1. We refer to these configurations as 1, 2,

3, and 4. From layout 1 which has the fewest shortcuts, we increase the number

of shortcuts by up to a factor of eight as in layout 4. The two lanes in the outer
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loop have opposite travel directions and outer loop shortcut density follows the same

pattern as the center loop.

Figure 28: Baseline Layout

Figure 29: Center Loop Configurations

4.3.1.2 Request Generation Parameters

Bay-to-process assignment is shown in the table at the bottom of Figure 4.3.1.1.

Process-to-process transition matrices are determined based upon prototype produc-

tion sequences. All processes except PHOTO have the same side-track buffer and
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stocker usage parameters: cartridges visit a side-track-buffer between process steps

30% of the time and a stocker 20% of the time. For the PHOTO process, 70% go

to side-track buffers and 20% to stockers. The bay-to-process assignment, transi-

tion matrices, and storage parameters result in the demand per bay shown in Figure

4.3.1.2.

Figure 30: Demand per Bay

4.3.1.3 Workload Settings

To test for sensitivity to the number of vehicles in the system, we consider scenarios

with 400, 500, and 550 vehicles. As the number of vehicles increases, vehicle interac-

tion causes more delay but in the absence of excessive congestion the system is able

to deliver more requests. Request frequency parameters are set such that vehicle uti-

lization for layout 1 with 400 vehicles is between 80% and 90% for both steady-state

static and dynamic routing. We use these parameters for each scenario. We also

present results for the 400 vehicle scenarios where request frequency is increased as

average point-to-point distance decreases due to the addition of shortcuts.
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4.3.1.4 Run Control Parameters

We establish a warm-up period of 1200s based on analysis of speed index and vehicle

utilization in an initial set of replications of distance-based static routing. Speed index

is defined as the average over all vehicles that should be moving (i.e. not stopped

for loading/unloading and not idle and stationary) of the current velocity divided

by the maximum velocity given a vehicle’s location in the network. We graphically

determine when the system reaches steady-state.

The number of replications is initially set at 20 to evaluate frequency of heavy

congestion. With dynamic routing no heavy congestion occurs, so we consider all

replications for steady-state analysis. Standard deviations are very low indicating

that this number of replications is sufficient.

4.3.2 Results

For static routing, we present results that confirm what has been experienced in

practice, that suboptimal layout design may increase the frequency of prohibitive

congestion and delay. This significantly limits the subset of feasible layout options

and prevents the inclusion of many short point-to-point routes. We then demonstrate

that the use of dynamic routing eliminates heavy congestion even with the addition

of a large number of shortcuts. The addition of these shortcuts reduces delivery and

total time by 24%-26%. If we increase request frequency but not to the point of

overload, 26% more requests can be accommodated in the simulation time for a fixed

number of vehicles.

4.3.2.1 Static Routing Results

With static routing, if an edge is used on the shortest distance path for many orig-

in/destination pairs the edge and adjacent areas will likely become overloaded. This

is particularly true if frequent loading and unloading also occurs on that edge. We

observe this to be the case in the simulation as shown in the simulation snapshot in
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Figure 4.3.2.1.

Figure 31: Snapshot of Heavy Congestion

Figure 4.3.2.1 shows graphically the frequency of heavy congestion for each sce-

nario. A replication with heavy congestion is defined as having a speed index below

0.25 at the end of a replication. Note that with static routing, once a replication

reaches heavy congestion it does not recover. Layout 2 experiences significantly more

heavy congestion than the other layouts followed by layout 4. To demonstrate why,

Figure 4.3.2.1 shows shortest path flows weighted by the percent of requests using

that path. Dark edges are used by highest percent of demand. In all layouts, high

demand bays such as CLEAN and PHOTO have higher flow. In layout 2, a higher

percentage of requests cut through bays in the top row, specifically the leftmost of

the high-demand bays. In layouts 1, 3, and 4 approximately 5% of the total demand

uses the right lane in this bay, but in layout 2 6.5% uses this lane. This is a 25% to

30% increase in traffic on this edge. Because this lane is in a bay, vehicles frequently

stop here to load and unload. This combination of frequent stopping and additional

cut-through traffic appears to overload this area of the network.
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Figure 32: Frequency of Heavy Congestion with Static Routing
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Figure 33: Weighted Shortest Path Flow
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Figure 4.3.2.1 shows the locations where heavy congestion occurs which confirms

the correlation between shortest path flow and the location of heavy congestion.

Each cell contains a network map where black edges indicate that at the end of

the simulation time vehicles were stopped on this edge. Every instance of heavy

congestion in layout 2 involves the high-demand bays in the top row. Across layouts,

only 6 of 88 replications that reach heavy congestion do not involve this part of the

network, indicating that the combination of high demand bays in close proximity and

vehicles cutting through these bays to reach the center loop often results in deadlock.

These results highlight the idea that the placement of shortcuts and their impact on

shortest path routing is significant with static routing.

77



Figure 34: Location of Heavy Congestion
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4.3.2.2 Dynamic Routing Results

Dynamic routing avoids the heavy congestion experienced with static routing. No

heavy congestion occurs in 20 replications of each of the scenarios presented above.

With dynamic routing, vehicles use the in-bay center lanes to avoid lanes with frequent

loading and unloading and routes vehicles away from congested bays that they have

no need to enter.

Since no heavy congestion occurs, the addition of shortcuts to reduce point-to-

point distances becomes feasible with dynamic routing. Figure 4.3.2.2 shows the

retrieval and delivery times for each scenario. As the number of shortcuts increase,

from layout 1 to layout 4, average delivery time decreases by 24%-26% and retrieval

time by 15% - 24%. Note that retrieval times depend on vehicle utilization so they

decrease between the 400 and 500 vehicle scenarios. Because vehicle utilization be-

comes quite low as more vehicles are added and request frequency parameters are

held constant, there is diminishing return and little difference is seen between 500

and 550 vehicles. Note that confidence intervals are very tight on these values.

Delivery times may not always decrease with the addition of shortcuts as one

would intuitively expect. If congestion increases too severely, delivery times may

instead increase. We do see congestion increase as shortcuts are added. Figure 4.3.2.2

shows the speed index across scenarios. A higher speed index indicates that traffic

is moving more smoothly. We see that the speed index decreases as the number of

shortcuts increases except for 400 vehicles between layouts 3 and 4. Interestingly, we

do not see a consistent change in speed index across layouts as the number of vehicles

increases.

With request frequency held constant, vehicle utilization drops as low as 52%.

In practice, engineers typically target a vehicle utilization of 80% or higher. For

this reason, we consider scenarios where request frequency increases as a function of

point-to-point distance. This does not provide a consistent workload across scenarios,
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Figure 35: Retrieval and Delivery Times with Dynamic Routing

Figure 36: Speed Index with Dynamic Routing
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but targets a vehicle utilization between 80% and 90%. Ideally, the transportation

throughput or number of requests delivered will increase as the request frequency

increases but delivery times will not change. Because vehicle utilization is higher,

retrieval time will increase.

Figure 4.3.2.2 shows the transportation throughput for each layout with 400 ve-

hicles and increased request frequency. No heavy congestion occurs so these results

represent the average across 20 replications and have very tight confidence intervals.

Layouts 1 and 4 both have vehicle utilizations of 86%-87% but layout 4 is able to

deliver 26% more requests due to shorter deliver times. Thus, the system capacity is

much higher.

Figure 37: Transportation Throughput with Dynamic Routing and Increased Re-
quest Frequency
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4.4 Conclusion

In this chapter, we investigated how rail layout performance differs between static

and dynamic routing. With static routing, adding shortcuts may lead to prohibitive

congestion and delay. With dynamic routing, vehicles are able to avoid overloading

particular areas of the network while taking advantage of shorter point-to-point dis-

tances. Using an automated layout generation tool, we simulate four center and outer

loop configurations to demonstrate that, with dynamic routing, the system continues

to function in steady-state even with an eight-fold increase in the number of shortcuts.

This improves routing performance by 25%.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

This thesis considers the issues of vehicle routing and layout design in large-scale

unified automated material handling systems (AMHSs). We develop a high-fidelity

simulation of vehicle movement that incorporates complexities of vehicle control and

uncertainty in request generation. To allow flexible analysis, we develop a layout

generation tool that automatically generates simulation layout files when the user

selects a set of modular characteristics.

We propose a dynamic routing method that allows vehicles to be rerouted in

progress in response to changes in the severity and location of congestion. Congestion

is modeled using recent historical information and updated via exponential smoothing.

We demonstrate, via simulation, that our dynamic routing method results in a 4%-

6% improvement in steady-state routing performance, a significant reduction in the

frequency of heavy congestion, and an improved response to and recovery from vehicle

breakdown.

Having demonstrated the benefit of dynamic routing on a fixed layout, we consider

the question of how to improve the layout to take advantage of dynamic routing. We

demonstrate that dynamic routing allows an eight-fold increase in the number of

shortcuts along the center and outer loop which results in a 35% improvement in

steady-state routing performance and the elimination of the occurrence of prohibitive

congestion.

Three areas of future research follow naturally from this thesis:

• dynamic routing in general AGV systems,

• integration of material handling decisions with other production decisions, and
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• AMHS layout optimization and analytical modeling of dynamic routing.

We have demonstrated the benefits of using dynamic routing in the unified AMHSs

used in semiconductor manufacturing. Automated guided vehicles systems, however,

are varied in their characteristics and purposes. In particular, bidirectional travel

lanes present a host of additional challenges. In our system, is it assumed that inter-

section control if first in, first out and that the this logic is controlled independently

from the routing system via sensors. In bidirectional systems, routing and intersec-

tion control are often considered at the same time. For example, the routing system

may preemptively request that a vehicle stop before entering an intersection to allow

another vehicle to pass. In our system, the routing decision controls only which edge

a vehicle selects when it has an option. In bidirectional systems and some other types

of systems, many more decisions are controlled by the routing system. It would be an

interesting and challenging questions to extend our approach to other specific system

types as well as more general networks.

As we have discussed, in semiconductor AMHSs, production scheduling decisions

are nearly independent of material handling decisions although they mutually depend

on one another. It is likely that considering them together rather than in isolation

will improve the performance of both systems. For example, if the material handling

systems knows that in the near future a particular bay will be generating several new

requests, a vehicle may preemptively avoid that bay on its route. Likewise, if the

production scheduling systems knows that a particular bay is heavily congested when

selecting a destination for a particular request, it may choose to select a destination

in a different bay. Because the production scheduling system is itself so complex, to

simulate it in detail would likely be computationally prohibitive. Thus, one must de-

termine which production scheduling characteristics and decisions are most important

and relevant when modeling the systems together.

In addition to production scheduling, better integrating routing with other aspects
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of AGV system design are an ongoing research questions. Equipment location, flow

path or layout design, optimizing the number of vehicles, vehicle dispatching, inven-

tory, and idle vehicle control are some of these characteristics. In addition, facilities

continue to evolve as technology changes. Many facilities are multi-level now, using

lifts to transport cartridges among floors, and some may be several buildings large.

Each of these systems presents unique challenges for design and control. Overall, the

end goal is throughput with consideration of constraints such as lot priority.

Lastly, having shown that layout can be improved for dynamic routing, a next

question is what is and how do we find an optimal layout for use with dynamic

routing. As we have discussed, static routing and dynamic routing behave different

and result in different preferences for rail layout. Network design is a difficult problem

with any realistic set of constraints, even with static routing. Because the problem is

well-studied, we would like to be able to take advantage of existing methods, however,

doing so requires the incorporation of dynamic routing into an integer programming

framework. This is an open and challenging problem. Because of the operational

complexity of the system, any optimization model will need to be validated through

simulation. Because of the complexity, the most effective design frameworks may

incorporate the iterative use of an optimization model with simulation.
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