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Abstract

A Dynamic Rich Vehicle Routing Problem with Time Windows has been

tackled as a real-world application, in which customers requests can be ei-

ther known at the beginning of the planning horizon or dynamically revealed

over the day. Several real constraints, such as heterogeneous fleet of vehi-

cles, multiple and soft time windows and customers priorities, are taken into

consideration. Using exact methods is not a suitable solution for this kind of

problems, given the fact that the arrival of a new request has to be followed

by a quick re-optimization phase to include it into the solution at hand.

Therefore, we have proposed a metaheuristic procedure based on Variable

Neighborhood Search to solve this particular problem. The computational

experiments reported in this work indicate that the proposed method is fea-

sible to solve this real-world problem and competitive with the best results

from the literature. Finally, it is worth mentioning that the software devel-

oped in this work has been inserted into the fleet management system of a

company in Spain.
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1. Introduction

Many practical applications related to logistics in intelligent freight trans-

portation systems lead to vehicle routing problems with varying degrees of

difficulty regarding the problem constraints. The basic Vehicle Routing Prob-

lem (VRP) is composed of a set of customers that have to be served. A fleet

of homogeneous vehicles dispatched from a single depot is used to serve them,

returning to the same depot once the routes have been completed. The con-

straints associated to the problem are that vehicles can carry a maximum ca-

pacity and each customer has to be visited once by a single vehicle. Contrary

to these classical static vehicle routing problems, real-world applications of-

ten include evolution, as introduced by Psaraftis in 1980 [1], which takes into

consideration the fact that the problem data might change over the planning

horizon. Latest developments in fleet management systems and communica-

tion technology have enabled people to quickly access and process real-time

data. Therefore, Dynamic Vehicle Routing Problems (DVRPs) have been

lately given more attention. The aim of DVRPs is to dynamically route cus-

tomers taking into account not only the requests known at the beginning of

the planning horizon, but also new customer requests that arrive over it. Last

decade has been characterized by an increasing interest for DVRPs, with so-

lution methods ranging from mathematical programming to metaheuristics.

For a survey on DVRPs, we refer the interested reader to the reviews, books,

and special issues by Gendreau and Potvin [2], Ghiani et al. [3], Ichoua et

al. [4], Larsen et al. [5], and Pillac et al. [6].
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The aim of this work is to solve a real-world DVRP that has been posed to

the authors by some companies in the Canary Islands, Spain. The resulting

software will be embedded into a fleet management system. The requirements

provided by the companies lead to the consideration of several constraints,

which have to be integrated into the standard DVRP. In the literature, there

is a tremendous number of research papers related to VRP with additional

constraints. With the purpose of collecting all these possible constraints,

Vidal et al. [7] have given the notion of attributes of VRPs. Attributes refer

to additional constraints that aim to better take into account the specifici-

ties of real-world applications. These attributes complement the traditional

VRP formulations and lead to a variety of Multi-Attribute Vehicle Routing

Problems (MAVRPs), which are supported by a well developed literature

that includes a wide range of heuristics and metaheuristics [8]. Furthermore,

some MAVRPs combine multiple attributes together, yielding the so-called

Rich VRPs (RVRPs) [9]. The problem tackled in this work corresponds to

this last class of RVRPs. The attributes that are taken into consideration in

this work are summarized in the following items.

• Heterogeneous fleet. When the number of available vehicles is not lim-

ited, the problem is usually referred to as Vehicle Fleet Mix Problem

(VFMP). In the case in which the fleet of vehicles is limited, a more diffi-

cult version of the problem, called Heterogeneous Fleet VRP (HFVRP),

is revealed. This work handles a fixed set of heterogeneous vehicles.

We refer to the so obtained problem as Fixed HFDVRP (FHFDVRP).

Most literature papers assume an unlimited number of available vehi-

cles, so that the objective is generally to obtain a solution that either
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minimizes the number of vehicles and/or total travel cost. However,

the real-world problems arising in companies face several resource con-

straints such as a fixed fleet. Therefore, if there is not any feasible

solution for the instance at hand regarding the number of available ve-

hicles, it is required to determine what a good solution would then be

for the company (adding more vehicles, letting the drivers work after

their working shift, postponing services and maximizing the number of

customers served, etc.).

• Soft & Multiple time windows. Additional constraints arise if time win-

dows are associated to the depot and customers, obtaining the FHFD-

VRP with Time Windows (FHFDVRPTW ). In the implementation

carried out in this paper, multiple time windows for customers, which

can differ among them, are taken into consideration [10], [11]. In any

case, each customer is served at maximum once during the planning

horizon. Furthermore, the working shifts of the vehicles can be divided

into time intervals, which may differ among vehicles. Finally, soft time

windows and working shifts are considered, since some of them can be

violated. Particularly, if the working shifts corresponding to the ve-

hicles can be extended, extra hours are allowed for the drivers. This

leads to additional salary costs; the extra time is more expensive.

• Customer priority. The companies under consideration in this work as-

sign priorities to some customers. Depending on these priorities, some

services can be postponed until the next day. Together with extending

the working shifts of the vehicles, postponing customers services allows

4



the system obtaining valid solutions for the companies. Therefore, in

the case in which the fixed fleet of vehicles is not sufficient for serving

all customers, allowing extra time and/or postponing customers service

are possible alternatives if they are permitted by the companies.

• Vehicle-Customer restrictions. There are also vehicle-customer limita-

tions, which indicate that some customers cannot be served by some

vehicles. Therefore, there will be a set consisting of vehicle-customer

constraints that can be due to several reasons such as road restrictions.

In the rest of the paper, we will refer to the problem considered in

this work as Dynamic Rich Vehicle Routing Problem with Time Windows

(DRVRPTW).

Additionally to these attributes, different objective functions can be re-

quired by the companies to solve the problem at hand. While the optimality

criterion of minimizing the total traveled distance is the most commonly used

in the VRP literature, more recent approaches use other objective functions.

Jozefowiez et al. [12] provide an overview of the research into routing prob-

lems with several objectives. In addition to the minimization of the total

traveled distance, important objectives are the minimization of the num-

ber of vehicles in use, the minimization of the total required time and some

other objectives related to reach a balance between the routes. In this work,

the main objective is to minimize the total traveled distance. Although the

problem under consideration in not a multi-objective one, a set of other ob-

jective functions are considered together with the main one, as it will be ex-

plained below; particularly, minimizing the number of vehicles, extra hours,
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postponed services and cost. All these functions will be used following a

lexicographical order.

Due to the difficulty for solving DRVRPTWs to optimality, heuristics

and metaheuristics constitute an increasingly active research area in the lit-

erature. In our work, a General Variable Neighborhood Search algorithm

(GVNS) [13] is proposed. The main differences between the problem tackled

in this paper and the ones proposed in the literature are related to the fact

that we consider a fixed heterogeneous fleet of vehicles and several real-world

constraints/attributes.

The main contributions of this paper rely upon the fact that the

DVRPTW including several real-world constraints required by some com-

panies has been tackled. A fixed heterogeneous fleet of vehicles is consid-

ered. Moreover, taking into account that the fleet is fixed, there might be

customers which cannot be served during the planning horizon and the so

obtained infeasibility has to be managed. Two alternative solutions are given

in this work; extending the working shifts of the drivers or maximizing the

number of customers served postponing the remainder. As far as we know,

this is the first work in the literature that uses all the previously explained at-

tributes together in DVRPTWs. Computational experiments over the most

common instances in the literature are carried out in this paper. The ob-

tained results are competitive if we compare them with the results in related

works. Moreover, some preliminary experiments performed with the fleet

management system are quite promising. It is worth mentioning that the

static part of the solution method proposed in this work, implemented by

means of metaheuristics, has already been integrated into the optimization
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tool used by the fleet management system of the company [14]. Finally, it

is important to notice that the algorithm proposed in this work can be run

by deactivating any or all the attributes mentioned above. Therefore, it is a

general purpose algorithm for solving DVRPTWs.

The rest of the paper is organized as follows. Section 2 reports the re-

lated works. Section 3 is devoted to describe the real-world Dynamic Rich

Vehicle Routing Problem with Time Windows (DRVRPTW) tackled in this

work. Section 4 summarizes the metaheuristic procedure developed to solve

the problem at hand. Section 5 reports the computational experiments per-

formed in this work. Finally, the conclusions and future works are given in

Section 6.

2. Related work

In general, solution approaches for DVRPTWs can be divided into two

main classes: those applied to dynamic and deterministic routing prob-

lems without any stochastic information, and those applied to dynamic and

stochastic routing problems, in which additional stochastic information re-

garding the new requests is known. Given the fact that in the real-world

application tackled in this paper, the information is dynamically given by a

company fleet management system, we will focus on the first class of dynamic

problems. In this case, solution methods can be based on either periodic or

continuous re-optimization. Periodic optimization approaches firstly gener-

ate an initial solution consisting of a set of routes that contain all the static

customers. Then, a re-optimization method periodically solves a static rout-

ing problem, either when new requests arrive or at fixed time slots [15].
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On the other hand, continuous re-optimization approaches carry out the op-

timization over the day by keeping high quality solutions in an adaptive

memory. In this case, vehicles do not know the next customer to be visited

until they finish the service of a request. The following literature references

regarding periodic optimization approaches to solve the DVRPTW are worth

mentioning. Chen and Xu [15] proposed a dynamic column generation al-

gorithm for solving the DVRPTW based on their notion of decision epochs

over the planning horizon, which indicate the moments of the day when the

re-optimization process is executed. Some other papers that make also use

of time slices and solve static VRPs are due to Montemani et al. [16], Rizzoli

et al. [17] and Khouadjia et al. [18]. In these last papers, requests are never

urgent and can be postponed since time windows are not handled. On the

other hand, the work by Hong [19] does consider time windows and therefore,

some requests can be urgent. Hong proposes a Large Neighborhood Search

(LNS) algorithm for real-time vehicle routing problem with time windows, in

which each time a new request arrives, it is immediately considered to be in-

cluded in the current solution. Xu et al. [20] also takes into account the same

problem with urgent requests, but uses a VNS as solving algorithm. Finally,

Ghannadpour et al. [21] tackle a DVRPTW, in which the time windows are

considered as fuzzy. Moreover, they use a homogeneous fleet of vehicles and

multiple objective functions.

A tremendous amount of work in the field of vehicle routing problem us-

ing Variable Neighborhood Search (VNS) has been published. Bräysy [22]

gives the internal design of the Variable Neighborhood Descent (VND) and

Reduced Variable Neighborhood Search (RVNS) algorithms in detail, ana-
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lyzes the VRPTW problem, and indicates the VND algorithm as one of the

most effective ways to solve VRPTW problems. Polacek et al. [23] design

a VNS to solve the multidepot vehicle routing problem with time windows

MDVRPTW. Kytöjoki et al. [24] design a guided VNS algorithm to handle

the 32 existing large-scale VRP problems and compare it with a tabu search

algorithm (TS). The result showed that the VNS algorithm was more effec-

tive than the TS algorithm in solving time. Goel and Gruhn [25] introduce

the RVNS to solve the general VRP problem including time windows, vehi-

cle constraints, path constraints, travel departure time constraints, capacity

constraints, the order models compatibility constraints, multisupplier point

of the orders, and transport and service position constraints. Hemmelmayr

et al. [26] propose the VNS algorithm for periodical VRP problem. Fleszar

et al. [27] adopt a VNS algorithm to solve the open-loop VRP problem and

test 16 benchmark problems. In summary, several literature papers have

proved the effectiveness of developing VNS algorithms to solve a wide vari-

ety of VRPs, but none of them has tackled a Dynamic Rich Vehicle Routing

Problem with Time Windows.

3. Problem Definition

The real-world DRVRPTW solved in this paper is defined by means of

a network G = (V ,A), where V is the set of nodes, and A is the set of

arcs. It contains the depot, D, and a set of n customer nodes, C =(Cs,Cd),

which represent the requests characterized by their demand, location and

time windows. Cs is the set of static customers, that is, those known at

the beginning of the planning horizon. On the other hand, Cd is the set of
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dynamic customers, which appear over the planning horizon. Customer i can

have several time windows during the day, although it is visited at maximum

once. The depot has also an associated time window, that is unique, and a set

of m heterogeneous vehicles with different capacities. Moreover, associated

with each vehicle, k, there are also one or more time intervals of availability

during the planning horizon, that represent its working shift and that can be

different from one vehicle to another.

Designing a real-time routing algorithm depends to a large extent on how

much the problem is dynamic. In order to measure the dynamism of a given

problem instance, Lund et al. [28] defined the degree of dynamism of the

system as follows:

δ =
|Cd|
|C|
× 100, (1)

where |Cd| indicates the number of dynamic customers and |C| the total num-

ber of customers. Moreover, since the disclosure time of requests is also im-

portant, Larsen [29] defined the reaction time of customer i, that measures

the difference between the arrival time, ati, and the end of the corresponding

time window, biwi
. Notice that longer reaction times indicate that there is

more flexibility to insert any new request into the existing routes. Therefore,

the effective degree of dynamism provided by Larsen is stated as follows:

δeTW =
1

N

∑
i∈C

(
1− biwi

− ati
T

)
, (2)

where T is the length of the planning horizon.

In order to solve the DRVRPTW, firstly, we need to obtain the initial

routes containing the static customers Cs. This means that we must start
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from a solution to RVRPTW, which consists in determining a set of routes

of minimal total traveled distance, starting and ending at a depot, such that

every customer in Cs should be visited exactly once by one vehicle. The

sum of the demands associated with the nodes contained in a route never

exceeds the corresponding vehicle capacity. Moreover, each node must be

visited within its time window and it should be done within the corresponding

working shift of the used vehicle. Notice that, given the fact that the fleet of

vehicles of the company is fixed, it might not be possible to obtain a feasible

initial solution. However, in order to obtain an initial solution valid for the

company, it is possible to allow exceeding the working shifts of the vehicles,

using extra time, which incurs additional cost. Furthermore, we might allow

postponing customer services, what means that some customers might not

be served during the current planning horizon. If these two conditions were

not permitted, every node that cannot be inserted in a plan satisfying the

problem constraints, has to be rejected. Nevertheless, in order to provide the

company with a solution that includes all customer requests, the constraints

can be relaxed so that the time windows of the customers can be exceeded.

It means that infeasibilities appear.

Therefore, although minimizing the total traveled distance is the main

objective when determining the set of routes, additional objective functions

that have to be minimized using a hierarchical approach, have been taken

into account. Hierarchical evaluation means that the objective functions are

considered in a certain lexicographical order, so that if two selected solutions

have equal values for an objective function, then the next one in the order is

considered to break ties. The lexicographical order considered in the solution
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of the problem is the following.

• Total infeasibility (Sum of the times that the customers time windows

are exceeded).

• Number of postponed services.

• Number of extra hours (Sum of the times that the vehicles working

shifts are exceeded).

• Total traveled distance.

• Total number of routes.

• Time balance (difference between the largest and shortest routes made

by one vehicle regarding time) [30].

• Salary costs for each driver of each vehicle (extra hours are more ex-

pensive).

Note that this order for evaluating the objective functions intends to

firstly eliminate infeasibility, number of postponed services and number of ex-

tra hours required by the vehicles. If we are able to reduce to zero these three

objective function values, solutions that adjust to the company resources are

obtained. Therefore, in order to obtain the best possible solution, it is given

higher priority to those solutions that do not have infeasibilities, include all

the services and accomplish the working shifts of the drivers.

Once the initial static RVRPTW is solved, we have an initial plan com-

posed of a number of routes, so that the routes can be started and the dy-

namic customers can appear within the planning horizon. The DRVRPTW
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is strongly related to the static RVRPTW, as it can be described as a rout-

ing problem in which information about the problem can change during

the optimization process. As conventional static RVRPTWs are NP-hard,

DRVRPTW also belongs to the class of NP-hard problems. It is a discrete-

time dynamic problem, and can be viewed as a series of instances; each

instance is a static problem, which starts at a certain time and must be

solved within a specific deadline. Figure 1 shows a solution example, in

which the static and dynamic nodes can be distinguished. The solid lines are

already traversed by the vehicles, whereas dashed lines can be modified in

order to insert a new dynamic customer, as shown in Figure 2. Note that a

customer can have more than one time window, although it has to be visited

at maximum once during the day.

Figure 1: Solution example
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Figure 2: Insertion of a dynamic customer

The fundamentals kept to solve the DRVRPTW are the following:

• Vehicles assigned to routes must serve the planned static customers,

and vehicles in the depot are dispatched according to the actual needs.

If a dynamic customer cannot be inserted into the current routes and

there are unused vehicles, a new route can be created to serve the

customer and the departure time of the vehicle will be the sum of the

arrival time of the customer and the processing time of the insertion.

This processing time corresponds to the computational time needed to

decide where to insert the new customer in the plan of routes.

• Dynamic customer requests are received in real time, and serviceabil-

ity of requesting customer is immediately verified. The corresponding

customer is acceded to the planning routes as quickly as possible.

• A customer is called target customer of a vehicle if the vehicle is moving

towards it or is serving its predecessor customer, and must be carefully

adjusted. Adjusting a target customer, i.e., inserting a new customer

before it, will change the line in which a vehicle is moving, and can

cause confusion in the traveling line. For this reason, adjusting target
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customers should be avoided as much as possible, and, in this work, it

will be only permitted in the two following cases:

– The time window of the new customer would be violated other-

wise.

– Adjusting the target customer avoids some constraints violations.

• The time spent on doing the insertion of a new customer is taken into

account, because meanwhile vehicles continue moving.

4. Solution Approach

Our interest is focused on metaheuristic methodologies for solving the

DRVRPTW that are capable of producing applicable high quality solutions

within reasonable computing times. The solution method proposed in this

work to solve the DRVRPTW is summarized in Algorithm 1. First of all,

an initial solution consisting of all the static customers is generated by using

an adapted Solomon Heuristic [31]. The obtained solution is then improved

running the General Variable Neighborhood Search (GVNS) [13] described

in Algorithm 2, developed in [14] to solve the static problem with all the

constraints required by the companies for which this dynamic problem has

also to be solved. This process (lines 3− 4) is iterated for a certain number

of iterations and the best reached solution is selected to be implemented by

the company. In this step, all the requests known at the beginning of the

planning horizon are already inserted in a route. Then, the dynamic heuristic

is applied for each new customer that appears while the vehicles are working.
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In the next sections, each of these steps are described in detail, from the

creation of the initial solution to obtaining dynamic solutions.

Algorithm 1: General Algorithm

// Create solution S∗ containing all static customers

1 Initialize solution S∗;

2 while (a maximum number of iterations N is not reached) do

3 S ← Run Solomon Heuristic;

4 S′ ← Apply GVNS to S;

5 if (S′ is better than S∗) then

6 S∗ ← S′;

// Insert dynamic customers at their arrival times

7 while (a new dynamic customer, i, appears) do

8 if (i must be adjusted because of its time window) then

9 Insert customer i in a route before a target customer;

10 Apply GVNS;

11 Continue;

12 else

13 Find the closest feasible route r to insert i without any accumulated infeasibility;

14 Find the best position p in r where the evaluation of objective functions are better;

15 if (r and p exists) then

16 Insert customer i in position p inside r;

17 Apply GVNS;

18 Continue;

· · ·
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while (a new dynamic customer, i, appears (continuation)) do
· · ·

19 if (i can be adjusted to eliminate constraints violations) then

20 Insert customer i in a route before a target customer;

21 Apply GVNS;

22 Continue;

23 else if (i can be inserted in a new route r) then

24 Insert customer i in route r;

25 Apply GVNS;

26 Continue;

27 if (extra time is permitted) then

28 Find the closest feasible route r to insert i without any accumulated infeasibility,

permitting extra time;

29 Find the best position p in r where the evaluation of objective functions are better;

30 if (r and p exists) then

31 Insert customer i in position p inside r;

32 Apply GVNS;

33 Continue;

34 if (extra time is permitted & i can be inserted in a new route r) then

35 Insert customer i in route r using the vehicle that needs the smallest extra time;

36 Apply GVNS;

37 Continue;

38 if (the priority of customer i < minPriority) then

39 Postpone customer i until the next day;

40 Apply GVNS;

41 Continue;

42 if (there is an alternative permitted customer j in a route r without any accumulated

infeasibility, that let the insertion of i) then

43 Postpone customer j;

44 Insert customer i in route r;

45 Apply GVNS;

46 Continue;

47 if (infeasibilities are permitted) then

48 Insert customer i in the route that supposes the smallest infeasibility (if it coincides

among routes, consider the remaining objective functions);

49 Apply GVNS;

50 Report infeasibility to the company;
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4.1. Creation of the initial solution with static customers Cs

In order to generate an initial solution, an ordering of the available ve-

hicles is obtained according to which the vehicles are selected to create the

routes. This ordering is given taking into account the capacity of each vehi-

cle, in such a way that vehicles with greater capacity are selected before. If

there are multiple vehicles with the same capacity, then they will be sorted

according to the number of consecutive hours that the vehicle is available, so

that vehicles having larger working shifts are selected first. Once having the

selection order of the vehicles, the routes are created one after the other. To

create a route, a vehicle and a seed customer, which will be selected among

the customers that are the farthest from the depot, have to be chosen. Each

customer is then attempted to be inserted, but if it is not compatible with the

vehicle due to restrictions, the next vehicle in the sorted list is chosen. After

inserting the seed customer, the proposed procedure follows the Solomon al-

gorithm [32], establishing the route locations where to insert each unplanned

customer and selecting the best customer to be inserted. When no more

customers can be inserted into the current route, the next one is started to

be created.

4.2. General Variable Neighborhood Search

General Variable Neighborhood Search (GVNS) is a metaheuristic for

solving combinatorial and global optimization problems based on a simple

principle; systematic changes of neighborhoods within the search. Many

extensions have been made, mainly to be able to solve large problem instances

[33], [34], [35].
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GVNS metaheuristic starts from an initial solution. Then, a so-called

shaking step is performed by randomly selecting a solution from the first

neighborhood. This is followed by applying an iterative improvement algo-

rithm. This procedure is repeated as long as a new incumbent solution is

found. If not, one switches to the next neighborhood (which is typically

larger) and performs a shaking step followed by the iterative improvement.

If a new incumbent solution is found, one starts with the first neighborhood;

otherwise one proceeds with the next neighborhood, and so forth. Starting

from an initial solution, this metaheuristic consists of the shaking, the local

search, and the move decision phases, which are explained below.

Algorithm 2 shows this process, where Nk (k = 1, . . . , kmax) is a fi-

nite set of neighborhood structures, and Nk(s) the set of solutions in the

kth neighborhood of a solution s. Usually, a series of nested neighbor-

hoods is obtained from a single neighborhood by taking N1(s) = N (s) and

Nk+1(s) = N (Nk(s)), for every solution s. This means that a move to the

k-th neighborhood is performed by repeating k times a move into the orig-

inal neighborhood. A solution s′ ∈ S is a local minimum with respect to

Nk if there is no solution s ∈ Nk(s′) ⊆ S better than s′ (i.e., such that

f(s) < f(s′) where f is the objective function of the problem). Moreover,

Nl, (l = 1, . . . , lmax) is the finite set of neighborhood structures that will be

used in the local search.

Therefore, in this algorithm we can see that the loop corresponding to

lines 2-11 is performed for a number of iterations, M , set by the computa-

tional experience. The processes of shaking, local search and move decision

in lines 5, 6 and 11, respectively, are iteratively performed until k = kmax. In
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Algorithm 2: General Variable Neighborhood Search (GVNS)

1 Generate an initial solution s.

// Iterations.

2 while (the stopping condition is not met (M is not reached)) do

3 (1) Set k 1;

4 (2) Repeat the following steps until k = kmax:

5 (a) Shaking. Generate a point s′ at random from the kth

neighborhood of s (s′ ∈ Nk(s)).

6 (b)Local search by VND.

7 (b1) Set l← 1;

8 (b2) Repeat the following steps until l = lmax:

9 − Exploration of neighborhood. Find the best neighbor s of

s in Nl(s);

10 − Move or not. If f(s′′) < f(s′), set s′ ← s′′ and l← 1;

otherwise, set l← l + 1;

11 (c) Move or not. If this local optimum is better than the

incumbent, move there (s← s′′), and continue the search with N1

(k ← 1); otherwise, set k ← k + 1.

the first place, the shaking step generates a solution s′ at random from the

kth neighborhood of s (s′ ∈ Nk(s)). Then, a local search based on V ND is

performed from s′ to obtain a solution s′′. The VND procedure uses the Nl

neighborhoods.
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4.2.1. Shaking

Shaking is a key process in the GVNS algorithm design. The main pur-

pose of the shaking process is to extend the current solution search space,

to reduce the possibility that the algorithm falls into the local optimal solu-

tion in the follow-solving process, and to get the better solution. The set of

neighborhood structures used for shaking is the core of the GVNS.

The set of neighborhoods selected for the shaking process of the GVNS

are not nested, and different kinds of movements are implemented following

the ideas described by Repoussis et al. [36]. The proposed sequence of move-

ments is defined as follows: GENI, Or − opt, CROSS, 2 − opt, relocate and

swapInter. This sequential selection is applied based on cardinality, which

implies moving from relatively poor to richer neighborhood structures. The

GENI operator [37] chooses a customer from a route and inserts it into other

route between the two closest customers to the previous one. The Or − opt

operator [38] relocates a chain of two consecutive customers of a route. The

CROSS operator [39] selects a subsequence of two customers from a route,

other subsequence of two customers from other route, and interchange both

subsequences. The 2− opt operator [40] chooses two customers of a route and

invert the sequence of customer visited between them. The relocate operator

[41] deletes a customer from a route and insert it into another route. The

swapInter operator selects a customer from a route, other customer from

other route, and swaps them. Note that these movements are performed in

the case in which no more infeasibility, postponed services or extra hours are

incurred.

21



4.2.2. Local Search

In a GVNS algorithm, local search procedures will search the neighbor-

hood of a new solution space obtained through shaking in order to achieve

a locally optimal solution. Local search is the most time-consuming part in

the entire GVNS algorithm framework and decides the final solution quality,

so that computational efficiency must be considered in the design process of

local search algorithm.

As explained before, Nl, (l = 1, . . . , lmax) is the finite set of neighborhood

structures that will be used in the local search, conducted by a Variable

Neighborhood Descent (VND). The Variable Neighborhood Descent (VND)

method is obtained if the change of neighborhoods is performed in a de-

terministic way. Its steps are presented in Algorithm 3. The sequence of

movements considered in this work is the following: Relocate, swapIntra and

swapInter. The two first ones work as explained above, and the swapIntra

operator chooses two customers from a route and swaps them.

Algorithm 3: Variable Neighborhood Descent (VND)

// Function VND(s,lmax).

1 while (improvement is obtained) do

2 Set l← 1;

3 while (l <= lmax) do

4 s′ ← argminy∈Nl(s)f(s);

5 NeighborhoodChange(s,s′,l); //Change neighborhood
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4.2.3. Move Decision

The last part of the heuristic concerns the acceptance criterion. Here

we have to decide whether the solution produced by GVNS will be accepted

as a starting solution for the next iteration. The hierarchical evaluation of

objectives explained in Section 3 has been used for this purpose.

4.3. Insertion of Dynamic Customers

Once the selected initial solution is being implemented, new dynamic

customers might be revealed over the planning horizon, which have to be in-

serted in any route. As explained above, a customer is called target customer

of a vehicle if the vehicle is moving towards it or is serving its predecessor

customer. In this work, adjusting a target node, i.e., inserting a dynamic

customer before the target node, will be only permitted in two cases: when

the time window of the dynamic customer would be violated otherwise, and

when adjusting a target node avoids some constraints violations.

Therefore, let us suppose that the dynamic customer i arrives at time ati.

As reported in line 8, Algorithm 1 first tries to adjust customer i if its time

window will be violated otherwise. In this case, the customer is inserted

before a target customer and the GVNS algorithm is applied in order to

improve the solution. It is necessary to clarify that every time the GVNS

algorithm is used henceforth, its operators are applied only after the target

customer in each route, since the other customers have been already visited

and their order cannot be changed.

If the customer does not need to be adjusted, then a feasible existing

route where to insert the new customer is searched (lines 13 and 14). For

each of these routes, from the last visited customer to the last customer in
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the route, it is searched the feasible insertion point with the best result for

the evaluation of the objectives. If it is found, the customer is inserted and

the GVNS algorithm is applied in order to improve the resulting solution.

If inserting the customer has not been possible, then we will try to ad-

just the customer to avoid constraints violations (line 19). In this case, the

customer is inserted before a target customer and the GVNS algorithm is

applied in order to improve the solution. In other case, the new customer is

inserted in a new route and the GVNS algorithm is applied, if there is an

available vehicle which can serve it.

At this point, if the new customer has not been inserted yet, then we try

to use extra time if permitted (lines 27− 37). If the customer cannot still be

inserted, we try to postpone its service if the minimum priority permits to do

this (line 38). Otherwise, we try to postpone the services of other customers

that have not been visited yet and allow to insert the new one in the route,

if the minimum priority permits to do this (line 42).

Finally, if the new customer has not been inserted or its service postponed

yet, it will be inserted into the route that involves less infeasibility (line 47),

also taking into account the evaluation of the objectives.

This way, we can manage two possibilities. The first one is rejecting the

customers that cannot be feasibly inserted, as it is done in related works from

the literature [19, 20]. This can be made by setting the minimum priority to a

high value. The second possibility is permitting time windows infeasibilities

in the customers in order to provide a solution with all the customers. To

the best of our knowledge, it has not been proposed in the related literature.

At this point, it is worth mentioning that this process of deciding where
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to introduce a new dynamic customer in the planification of routes, takes a

certain time that must be taken into account in real applications. Otherwise,

vehicles can have changed their position when the planification is modified.

5. Experimental Results

This section is devoted to thoroughly describe the computational experi-

ments carried out in this work to assess the quality of the solutions provided

by the algorithm developed to solve a real-world DRVRPTW. The test work

has been done using a computer with Intel(R) Core(TM) i5−2320 CPU, 3.00

GHz, 6 Gb RAM and a Linux operating system. The algorithm has been

coded in C++.

As mentioned before, the requirements provided by the real companies

lead to the consideration of several constraints, which have to be integrated

into the standard problem. For example, the use of a fixed set of hetero-

geneous vehicles, customers with priorities and several time windows, or

vehicle-customer restrictions. Solving this problem with optimality is really

important for companies, which obtain a cost saving through it.

Even though our algorithm has been developed to solve a real-world

DRVRPTW, which has many different attributes and constraints, it would

be advisable to know if the results obtained using the standard instances in

the literature, which do not take into account these attributes, are competi-

tive with the best ones in related works. Therefore, in order to compare our

results with the results in the literature, we have used the standard VRPTW
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Solomon benchmark instances 1. In these benchmark problems, 100 nodes

are distributed in an Euclidean plane of 100 x 100 square, and the travel

times between nodes are equal to the corresponding Euclidean distances.

There are six types of problems, named R1, R2, C1, C2, RC1 and RC2,

each with 8-12 problems. Specifically, the data set designed by Lackner [42]

is adopted for dynamic tests 2. Each problem has five groups of dynamic

data which are used to depict five different degrees of dynamism of 90%,

70%, 50%, 30% and 10%, respectively. Furthermore, our algorithm has been

tested with real instances, which present the whole set of real constraints.

Starting from four real instances of a company in Canary Islands, n1, n2,

n3, and n4, dynamic instances have been generated 3 for the five different

degrades of dynamism, 90, 70, 50, 30 and 10. Random reaction times have

been used for this purpose.

Three kinds of experiments have been carried out. For the first one, we

have solved the test problem instances avoiding extra hours for vehicles and

time window infeasibilities for customers, and allowing postponed customer

services. This experiment has been performed in order to obtain the most

comparable results with the results in the literature. For the second exper-

iment, we have solved the test problem instances avoiding extra hours for

vehicles and postponed customer services, and allowing time window infeasi-

bilities for customers. In this case, we have provided solutions which include

all customer requests relaxing time windows for customers. Third experiment

1http : //web.cba.neu.edu/ msolomon/problems.htm
2http : //www.fernuniversitaet− hagen.de/WINF/inhalte/benchmark data.htm
3https : //sites.google.com/site/gciports/vrptw/dynamic− vrptw
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analyzes the results obtained over real instances.

The recent works in the related literature [19] and [20], take into account

similar considerations to those of our work regarding the basic dynamic prob-

lem. The main differences of the problem tackled in this paper and the ones

proposed by Hong [19] and Xu et al. [20] are on one hand, the fact that we

consider a heterogeneous fleet of vehicles, and on the other hand, the fact

that we consider many real constraints. For these reasons, we have taken the

results in these works as reference to assess the quality of our method.

In both articles from the literature, the average time spent in doing the

insertion of a new dynamic customer is about 30 seconds. This delay may lead

to significant changes in the routes state, so that we take it into account. The

Solomon’s test instances use an unspecified unit of time to define the service

times and time windows. However, it does not make sense considering that

the units are seconds, overall in relation to the time spent doing customer

insertions. The next significative time unit is the minute. For this reason, we

have considered the minute as the smallest possible time unit, and therefore

we have fixed the delay to 0.5 units (30 seconds = 0.5 minutes). None of the

works taken as reference make a real discussion about this question.

The parameters M and N used in the GVNS algorithm have been statis-

tically set to 20 and 10, respectively.

5.1. Comparison with the literature for the DVRPTW

For the first experiment carried out in this work, we have run 15 ex-

ecutions for each single Solomon’s test instance under different degrees of

dynamism, and we have chosen the best results among them to calculate the

average values of each group of instances (R1, R2, C1, C2, RC1 and RC2).
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Then, we have selected the best results for each group of instances between

the ones given in [19] and [20]. In order to make a valid comparison, the

extra time has not been permitted in the executions, but postponing cus-

tomers has been enabled. In this way, Tables 1 and 2 give the comparison

results. For both tables, first column shows the set of test problem instances

and the second column shows degrees of dynamism. The next columns show

the average number of vehicles, the average total distance, and the average

insertion time (in seconds) obtained using our method based on General Vari-

able Neighborhood Search (GVNS ) and the one in work [19] (Ref.). We also

calculate the relative error (ARE (%)). Finally, the last two columns present

the ratio of postponed customers using our method and the one in [19].

As can be seen in the average row of Table 1, although we improve the

number of vehicles only a few times, in most cases, our distance results im-

prove the literature ones. It is remarkable that in Table 1, for the group

of instances C1, the distances obtained by GVNS are lower than the ones

obtained in [19] despite that GVNS does not postpone any customer. More-

over, for the degrees of dynamism 90, 30 and 10 of instances RC1, we also

obtain lower distances with a shorter number of postponed services. In gen-

eral, there are many cases in which our ratio of postponed customers is lower.

This means that we are including more customers into the solution and even

in those cases our total distances are lower.

For test problem instances in Table 2, we never postpone any customers.

In addition, our insertion times are substantially lower than the best ones,

and this is really important because companies need a customer insertion

process as quick as possible in order to obtain an efficient system.
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If instead of selecting the best results among the 15 executions to calculate

the average values of each group of instances, we calculate the average of the

15 executions, we obtain Tables 3 and 4. Although in this case the ratio of

postposed customers is better, obviously, in general results have less quality

than before. Notice that the works taken as reference ([19] and [20]) do not

calculate these averages.

5.2. Computational results for the DRVRPTW

In order to provide a solution which includes all customer requests, the

constraints can be relaxed so that time windows of customers are permitted

to be exceeded, such as indicated by the companies. As mentioned above,

it means that infeasibilities appear, and in this case we will try to minimize

the total infeasibility in the plan of routes. Tables 5 and 6 give the compar-

ison results in this case. Again, first column shows the set of test problem

instances and the second column shows degrees of dynamism. The third col-

umn reports the average of the total infeasibility (in seconds) for each group

of instances. The next columns show the average number of vehicles, the av-

erage total distances, and the average insertion times (in seconds) obtained

using our method (GVNS ) and the ones in [19] (Ref.). We also calculate the

relative error (ARE (%)).

Note that this comparison in not really fair, since if we include all cus-

tomers in the solutions, it will be reasonable that the number of vehicles and

the total distance are higher than if we postpone some customers, which is

what reference work [19] does.

As shown in the tables, the majority of times the reported total infeasibil-

ity is very small (a few seconds). Regarding total distance, we obtain results
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very close to the best ones (1% and 3% of average difference), but the number

of times that we improve the results is less than in the previous experiments.

However, as explained before, it has to be taken into account that it is logical

that the routes containing all customers would involve longer distances. The

same fact is observed with the number of routes. Nevertheless, our insertion

times are again substantially lower than the best ones in the literature. It

is noticeable that the total infeasibility for instances in Table 6 is always 0,

because, as seen before, we did not postpone any customer service.

Once again, if instead of selecting the best results among the 15 executions

to calculate the average values of each group of instances, we calculate the

average of the 15 executions, we obtain Tables 7 and 8. In general, results

have less quality than before, but notice that the works taken as reference

([19] and [20]) do not calculate these averages.

5.3. Computational results for real instances

Once we have verified that the algorithm is competitive using instances of

the literature, it has been tested with the real instances of a company in the

Canary Islands, n1, n2, n3, and n4. As for Solomon instances, 15 executions

have been done for each instance and degree of dynamism, and the average

of the best result for each instance has been calculated.

Three different experiments have been done using these real instances in

order to see how customers priorities influence the results. In the first case,

priorities allow to postpone any customer service if its insertion into routes

involves some infeasibility. In the second case, customers priorities do not

allow to postpone their service, so that infeasibilities are allowed if this is the

only possibility when trying to insert them into a route. Finally, in the third
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case, priorities have been generated randomly, so that some customers can

be postponed due to their low priorities, and other customers cannot. Thus,

both postponed customers and infeasibilities appear.

Results in Tables 9, 10 and 11 have been obtained, corresponding to the

first, second and third experiment. The average over the four real instances

is reported. First column reports the degree of dynamism. The next columns

indicate the average number of vehicles, traveled distance, time for obtaining

the initial static solution and insertion time. The last two columns show

the average of postponed services and the average infeasibility (violations

of customers time windows). As can be seen, the lowest number of vehicles

and total traveled distance are obtained in the first experiment, because each

customer which cannot be inserted without infeasibilities is postponed. An

average of about 6 customers are postponed. However, in the second experi-

ment it is exactly the opposite; the number of vehicles and the total distance

increase because every customer is inserted, but the total infeasibility is re-

ally high. The results of the third experiment are in the middle situation,

as some customers are postponed and other customers produce infeasibility

when are inserted into routes. The number of postponed customers is about

3 and the total infeasibility is quite low. Finally, note that in these instances

it was not required exceeding the working shifts of the vehicles.

In summary, we can conclude that the priorities of the customers signifi-

cantly influence on the final plan of routes for the dynamic problem. Thereby,

companies should carefully assign priorities to their customers in order to ob-

tain the best balance between number of postponed services for the next day

and the total infeasibility obtained.
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Dod(%) NV TD First Time Total Time Post Infeasibility

90 11.50 1180972.50 27.25 870.26 10.75 0.00

70 11.50 1073427.50 1360.99 1964.10 10.00 0.00

50 9.00 1066800.50 287.85 689.91 6.75 0.00

30 6.75 1021237.25 350.10 581.75 2.75 0.00

10 6.25 894760.25 670.85 745.18 2.00 0.00

Ave. 9.00 1047439.60 539.41 970.24 6.45 0.00

Table 9: Real instances with customer service postponing

Dod(%) NV TD First Time Total Time Post Infeasibility

90 12.50 1473052.50 34.79 924.97 0.00 18289.13

70 11.75 1446777.50 1710.79 1393.63 0.00 16013.00

50 9.75 1284227.50 271.30 730.83 0.00 10931.00

30 7.75 1094064.25 349.45 739.11 0.00 6533.88

10 6.25 958972.50 551.53 689.60 0.00 3388.38

Ave. 9.60 1251418.85 583.57 1095.63 0.00 11031.08

Table 10: Allowing infeasibility, but no customer service postponing

Dod(%) NV TD First Time Total Time Post Infeasibility

90 11.25 1304612.50 31.98 1281.72 5.25 8802.63

70 10.50 1209942.50 1414.56 2021.65 4.50 6658.63

50 10.00 1149097.75 585.15 1047.78 4.50 4154.63

30 7.50 1091210.50 357.87 666.55 3.25 0.00

10 6.50 899648.75 580.63 677.87 1.25 812.75

Ave. 9.15 1130902.40 594.04 1139.11 3.75 4085.73

Table 11: Allowing infeasibility and customer service postponing
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6. Conclusions

A metaheuristic solution approach based on Variable Neighborhood Search

(VNS) is proposed for solving a Dynamic Rich Vehicle Routing Problem with

Time Windows (DRVRPTW). It combines a set of real-world constraints

proposed by some companies in the Canary Islands, Spain. The designed

algorithm manages two possibilities: rejecting the customers that cannot be

feasibly inserted taking into account priorities, or permitting time windows

infeasibilities in customers in order to provide a solution with all customers.

In order to assess the behavior of our approach, we have compared the

obtained results with the best results in the literature using the standard test

problem instances. In some cases, our results are not only competitive with

the related literature, but also even better. Moreover, our insertion times are

substantially lower than the best ones.

Taking into account that the method proposed in this work has been

developed to solve a real problem with a real set of constraints, it is not

supposed to be the most competitive with the standard Solomon instances,

which have other features. However, in that case, we have obtained results

very close to the best ones in the literature.

Additionally, we propose solutions with infeasibilities in order to include

all customers in the final solutions. In this case, logically, the total distance

increases, but our results are still very close to the best ones in the literature.

It is important to note that we are considering the time needed to insert any

new dynamic customer in the plan, which can influence in the final results.

Finally, we have also analyzed the effect of the different restrictions in the

final solutions using instances based on the real ones provided by a company.
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In this case, the importance of customers priorities on the final plan has

become clear.
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