
 Elsevier Editorial System(tm) for Computers & Industrial Engineering
 Manuscript Draft

Manuscript Number: CAIE-D-14-00168R1

Title: Efficient Heuristic Algorithms for the Blocking Flow Shop Scheduling Problem with Total Flow
Time Minimization

Article Type: Research Paper

Keywords: Scheduling; flow shop; blocking; total flow time; heuristics

Corresponding Author: Prof. Imma Ribas, Ph.D

Corresponding Author's Institution: Universitat Politecnica de Catalunya

First Author: Imma Ribas, Ph.D

Order of Authors: Imma Ribas, Ph.D; Ramon Companys, professor

Abstract: This paper proposes two constructive heuristics, i.e. HPF1 and HPF2, for the blocking flow
shop problem in order to minimize the total flow time. They differ mainly in the criterion used to select
the first job in the sequence since, as it is shown, its contribution to the total flow time is not negligible.
Both procedures were combined with the insertion phase of NEH to improve the sequence. However,
as the insertion procedure does not always improve the solution, in the resulting heuristics, named
NHPF1 and NHPF2, the sequence was evaluated before and after the insertion to keep the best of both
solutions. The structure of these heuristics was used in Greedy Randomized Adaptive Search
Procedures (GRASP) with variable neighborhood search in the improvement phase to generate greedy
randomized solutions. The performance of the constructive heuristics and of the proposed GRASPs was
evaluated against other heuristics from the literature. Our computational analysis showed that the
presented heuristics are very competitive and able to improve 68 out of 120 best known solutions of
Taillard's instances for the blocking flow shop scheduling problem with the total flow time criterion.

Efficient Heuristic Algorithms for the Blocking Flow Shop Scheduling

Problem with Total Flow Time Minimization

Abstract

This paper proposes two constructive heuristics, i.e. HPF1 and HPF2, for the blocking

flow shop problem in order to minimize the total flow time. They differ mainly in the

criterion used to select the first job in the sequence since, as it is shown, its contribution

to the total flow time is not negligible. Both procedures were combined with the

insertion phase of NEH to improve the sequence. However, as the insertion procedure

does not always improve the solution, in the resulting heuristics, named NHPF1 and

NHPF2, the sequence was evaluated before and after the insertion to keep the best of

both solutions. The structure of these heuristics was used in Greedy Randomized

Adaptive Search Procedures (GRASP) with variable neighborhood search in the

improvement phase to generate greedy randomized solutions. The performance of the

constructive heuristics and of the proposed GRASPs was evaluated against other

heuristics from the literature. Our computational analysis showed that the presented

heuristics are very competitive and able to improve 68 out of 120 best known solutions

of Taillard's instances for the blocking flow shop scheduling problem with the total flow

time criterion.

Cover Letter

Efficient Heuristic Algorithms for the Blocking Flow Shop Scheduling

Problem with Total Flow Time Minimization

Imma Ribas
1,a

, Ramon Companys
b

a Departament d’Organització d’Empreses, DOE – ETSEIB - Universitat Politècnica de

Catalunya. BarcelonaTech, Avda. Diagonal, 647, 7th Floor, 08028 Barcelona, Spain

 b EPSEB - Universitat Politècnica de Catalunya. BarcelonaTech, Av. Doctor Marañón, 44-

50, 3
rd

 floor 08028 Barcelona, Spain

1
 Corresponding author.

E-mail address: imma.ribas@upc.edu
Fax: +34 93 401 60 54

*Title Page including Author Details

Highlights

 Two efficient constructive heuristics for the Fm | block | ΣCi are proposed.

 We show that the insertion phase of heuristic NEH can worsen the solution.

 The structure of each constructive method is used in a GRASP combined with

VNS.

 The computational evaluation shows the good performance of these algorithms.

*Highlights (for review)

Reviewer #1:

Thank you for your comments and suggestions. According to them, we have prepared
a revised version of the paper, which we hope improves on the previous one. The
changes (including four new references) have been coloured in yellow. Figure 9 and 10
has also been reworked to facilitate its understanding.

The rational for using the flowtime criterion is not made in this paper. From my
understanding, makespan is a better representation for this type of problem. The
authors have to reinforce this point in Introduction with a decent literature search,
showing its relevance especially in industry.

According to your comment we have extended this part, in page 2, to show the
relevance of using the flow time minimization in industry. We have included four
references to reinforce this point.

For statistical analysis, was paired or unpaired test used? Also, it would be complete to
give the t-values alongside p-values.

We understand that, since we are comparing 7 algorithms, your question of whether we
used a paired or unpaired test, really means if we were using a blocked design or not.
The question is pertinent because we want the comparisons to be “fair”. That is the
reason to include the number of jobs (n) and the number of machines (m) in the design.
Further this allows analyzing the interactions, and therefore to see if all algorithms
behave equally independently of the difficulty; in other words, to see if some of them
are better or worse depending on n and m.
Since we are comparing 7 algorithms the appropriate technique is to conduct an
ANOVA, in our case the F and p values are provided in Table 10, and it can be seen
that all main effects and interactions are highly significant	��~0�. One possible way to
identify the reasons for rejection would be to conduct multiple comparisons and, as you
say, provide the p-values. A simpler and in this case, we believe, that better alternative
is to provide 95% confidence intervals for the average ARPD of each algorithm. Both
for simplicity and clarity we have used this alternative (Figure 8).

Tables are poorly formatted. Caption should be above the table. Column data should
be properly aligned (eg. Table 10).

Tables have been revised and Table 3 (see page 9) and Table 10 (see page 15) have
been reworked according to your suggestion. Note that in the revised version the
captions are above the table.

*Detailed Response to Reviewers

1

Efficient Heuristic Algorithms for the Blocking Flow Shop Scheduling

Problem with Total Flow Time Minimization

Abstract

This paper proposes two constructive heuristics, i.e. HPF1 and HPF2, for the blocking

flow shop problem in order to minimize the total flow time. They differ mainly in the

criterion used to select the first job in the sequence since, as it is shown, its contribution

to the total flow time is not negligible. Both procedures were combined with the

insertion phase of NEH to improve the sequence. However, as the insertion procedure

does not always improve the solution, in the resulting heuristics, named NHPF1 and

NHPF2, the sequence was evaluated before and after the insertion to keep the best of

both solutions. The structure of these heuristics was used in Greedy Randomized

Adaptive Search Procedures (GRASP) with variable neighborhood search in the

improvement phase to generate greedy randomized solutions. The performance of the

constructive heuristics and of the proposed GRASPs was evaluated against other

heuristics from the literature. Our computational analysis showed that the presented

heuristics are very competitive and able to improve 68 out of 120 best known solutions

of Taillard's instances for the blocking flow shop scheduling problem with the total flow

time criterion.

Keywords: Scheduling; flow shop; blocking; total flow time; heuristics

1 Introduction

Many industrial systems can be modeled as a flow shop with zero capacity buffers

between consecutive machines. In this type of production configuration, a machine can

be blocked by the job it has processed if the next machine is not available. To avoid or

minimize machine blocking and idle time, accurate scheduling is necessary. Examples

of blocking flow shop scheduling can be found in the production of concrete blocks,

where storage is not allowed in some stages of the manufacturing process (Grabowski &

Pempera, 2000); in the iron and steel industry (Gong et al., 2010); in the treatment of

industrial waste and manufacture of metallic parts (Martínez et al., 2006); or in a robotic

cell, where a job may block a machine while waiting for the robot to pick it up and

move it to the next stage (Sethi et al., 1992) .

*Manuscript
Click here to view linked References

http://ees.elsevier.com/caie/viewRCResults.aspx?pdf=1&docID=9571&rev=1&fileID=309892&msid={D8AF59EF-CB99-4377-98C4-1B5EB45E177B}

2

This paper deals with the blocking flow shop scheduling problem to minimize the total

flow time of jobs, denoted as Fmblock∑Ci according to the notation proposed by

(Graham et al., 1979), if jobs and machines are available at instant zero, a hypothesis

considered here. If jobs’ release time are zero, this objective is equivalent to (total or

average) flow time minimization, which, according to Rajendran (1993) and (Framinan

et al. 2005), has been found to reduce the scheduling costs. Additionally, it has been

found to be an important real-life objective in industries since it results in the even

utilization of resources, even turn-over of finished jobs and reduced in-process

inventory. Therefore, it is considered to be more relevant and meaningful for today’s

dynamic production environment (Liu & Reeves, 2001). Pan and Ruiz (2013) remark

that the need to reduce Work In Process (WIP) or in-process inventory has fostered the

study of the total flow time.

In the Fmblock∑Ci problem, n jobs have to be processed by m machines. All jobs

follow the same route, implying that a job sequence determined for machine 1 is kept

throughout the system. The processing time of job i{1,2,..., n} on machine j, j{

1,2,..., m} is 0, ijp .

Although the blocking flow shop scheduling problem has not been as extensively

studied as the permutation flow shop problem, the number of published papers

concerning the former in order to minimize makespan has increased in recent years

(Grabowski & Pempera, 2007; Wang et al., 2006; Liu et al., 2008; Qian et al., 2009;

Wang et al., 2010; Ribas et al., 2011; Davendra & Bialic-Davendra, 2013). However,

little research has been done on total flow time criterion. From the best our knowledge,

only Wang et al. (2010), who proposed a hybrid Harmony Search (HS) algorithm, Deng

et al. (2012), who proposed a Discrete Artificial Bee Colony (DABC) algorithm and

Moslehi and Khorasanian (2013), who presented a branch and bound algorithm that can

be used in small instances, have addressed the Fmblock∑Ci problem. Therefore, it is

interesting to intensify research to develop efficient heuristics for this problem,

especially simple algorithms which are easy to adapt and implement in practical

applications.

In this paper, we present two constructive procedures and two versions of an efficient

Greedy Randomized Adaptive Search Procedure (GRASP) combined with variable

neighborhood search in the improvement phase, which use the structure of these

constructive heuristics to generate greedy randomized solutions. Computational

3

evaluation against other algorithms from the literature has shown the effectiveness of

the constructive heuristic and good performance of the proposed GRASP.

The rest of the paper is organized as follows. In section 2, blocking flow shop

scheduling is presented. Sections 3 and 4 describe the constructive procedures and the

GRASP, respectively. Section 5 shows the computational evaluation of the algorithms

and section 6 concludes.

2 Problem definition

In the blocking flow shop problem, a set of n jobs must be processed by m machines in

the same order, from the first machine to machine m. Each job i, iϵ{1, 2, ..., n} requires

a fixed positive processing time pj,i on every machine j, jϵ{1, 2, ..., m}. Jobs and

machines are available from time zero onwards. Our objective is to find a job

processing sequence that minimizes the total flow time. Fm|block|ΣCi can be modeled

with the following equations, where [k] is the index of the job in the k-th position in the

permutation, ej,k denotes the time at which the job [k] starts to be processed by machine

j and cj,k is the departure time of job [k] from machine j. Note that if job [k] can leave

machine j when it is completed, which depends on the availability of machine j+1, then

cj,k is not only the departure time but also the completion time of job [k] on machine j:

ej,k + pj,k ≤cj,k j=1, 2, ..., m k=1, 2, ..., n (1)

ej,k  cj,k-1 j=1, 2, ..., m k=1, 2 ,..., n (2)

ej,k  cj-1,k j=1, 2, ..., m k=1, 2, ..., n (3)

cj,k  cj+1,k-1 j=1, 2, ..., m k=1, 2, ..., n (4)




n

k
kmcTF

1
, (5)

 with k0c 0cj0c k1mk00j   ,,, ,, being the initial conditions.

If equations (2) and (3) are summarized as (6) and equation (1) and (4) as (7), the

schedule obtained is semi-active, which is interesting because an optimal solution can

be found in the subset of the semi-active set of solutions.

 ej,k =max{cj,k-1; cj-1,k} j=1, 2, ..., m k=1, 2, ..., n (6)

  1,1][,,, ,max  kjkjkjkj cpec j=1, 2, ..., m k=1, 2, ..., n (7)

4

3 Constructive heuristics

The constructive heuristics proposed are based on the profile fitting (PF) procedure by

McCormick et al. (1989) for solving sequencing problems in an assembly line with

blocking to minimize the cycle time. The PF technique tries to sequence jobs in order to

minimize machine timeout, which can be due to idle time, blocking time or the sum of

both (see Figure 1). This is an adequate objective for the blocking flow shop problem.

The PF method, combined with the insertion phase of the heuristic NEH (Nawaz et al.,

1983), was successfully used by Ronconi (2004) for scheduling jobs in a blocking flow

shop to minimize makespan. Thus, this procedure considers the blocking constraint;

however, it does not address total flow time minimization. To include this objective in

the construction of sequences, two variants are proposed.

(please insert Figure 1 near here)

First, we describe the PF heuristic to make clear the procedure and its variants.

 Let σ the partial sequence and σ*i the partial sequence with job i added at the end of σ.

 Step 1: Select the job with the minimum sum of all operations of a job (Pi) and put it

in the first position in sequence σ. Set k=1. In case of ties, select the job with

minimum p1,i.

 Step 2: While k<n, calculate the machine timeout for each unscheduled job i when

job i is added to the partial sequence , denoted as *i. Select the job that leads to

the minimum timeout and add it to ; k=k+1. The timeout is calculated according to

equation (8). In case of ties, select the job which leads to the partial sequence with

minimum total flow time.

 Ind0 (i, k) = 


 
m

j

ijkjkj pcic
1

,,1,))()((

 (8)

In order to consider the total flow time criterion during the scheduling of jobs, a new

term was added to index (8) to measure the contribution of the evaluated job i to total

flow time of the partial sequence. Therefore, the first heuristic proposed, named HPF1,

can be defined as follows:

 Step 1: Select the job with minimum Pi and put it in the first position in sequence σ.

Set k=1. In case of ties, select the job with minimum p1,i.

 Step 2: While k<n, calculate index (ind1) as in equation (9) for each unscheduled

job i, where Ci is the completion time of job i. Select the job with minimum ind1. In

5

case of ties, select the job which leads to the partial sequence with minimum total

flow time.

)()1()))()(((),(1
1

,,1, -1][ki

m

j
ijkjkj CCpcickiind  


  (9)

Both procedures, PF and HPF1, schedule job i with the minimum sum of processing

time on machines m (Pi) in the first position, but this rule may not always be effective in

minimizing the total flow time. Consider the following 3-job, 3-machine problem where

jobs J1, J2 and J3 have the following processing time on each machine: J1=(2,3,4),

J2=(3,2,4) and J3=(4,3,2). The sum of processing times of each job is 9, but the total

flow time of schedules {J1. J2, J3}, {J2, J1, J3} and {J3, J1, J2} is 38, 39 and 41,

respectively. These differences are due to the front delay induced by the first job

scheduled (grey parts in Figure 2).

(please insert Figure 2 near here)

Hence, it is interesting to schedule in the first position not only the job with the

minimum completion time (minimum Pi) but also the one that generates the minimum

front delay. Front delay can be measured in several ways, one of which is by estimating

the slope of the line from the starting point of the first operation scheduled to the middle

point of the starting points of all operations. In Figure 3, we can observe that the slope

can be measured by calculating the tangent of angle α (tan(α)) by dividing the x-axis

value at the endpoint of this line:

m

pjm
x

m

j
ij

p

 
 1

,)(

by the y-axis value, which is

2
)1(


m

y p . Hence,

)m(m

p)jm(
)tan(

m

j
i,j

1

2
1







 .

A job which generates minor front delay has a low value of tan(α). Thus, scheduling the

job with minimum tan(α) in the first position of the sequence can help to minimize the

total flow time of the whole sequence.

(please insert Figure 3 near here)

However, as said before, the choice of the first job in a sequence depends on its

contribution to the total flow time (Pi) and resulting front delay. Therefore, in the

6

second procedure, named HPF2, we created a bicriteria index (R(i)) to measure both

terms. Note in equation (10) that the first term was corrected by multiplying it by m

because it had a different magnitude from the sum of processing time of a job. Observe

that, with the correction introduced in the first term, if the processing time in all stages

is 1, both terms are equal to m, which demonstrates that both have the same magnitude.







 





















m

j
i,j

m

j
i,j

p)(
)m(

p)jm(
)i(R

1

1 1
1

2
 (10)

Therefore, HPF2 can be defined as follows:

 Step 1: Select the job with minimum R(i) and put it in the first position in sequence

σ. Set k=1. In case of ties, select the job with minimum p1,i.

 Step 2: While k<n, calculate index (ind1) as in equation (9) for each unscheduled

job i. Select the job with minimum ind1. In case of ties, select the job which leads to

the partial sequence with minimum total flow time.

The flow time calculation in an n-job, m-machine flow shop for a given sequence is of

complexity O(nm). Hence, as k flow times in k jobs and m machines must be calculated

in step 2 of PF, HPF1 and HPF2, we can conclude that the complexity of these

procedures is O(n
2
m).

Finally, the insertion phase of NEH, adapted to the total flow time criterion, is applied

to the sequence given by PF, HPF1 and HPF2 to try to improve them. We name these

combinations NPF, NHPF1 and NHPF2, respectively. Therefore, the third step of these

heuristics is defined as follows:

 Step 3: In accordance with the order established in step 2, take the first two jobs and

schedule them in such a way that they minimize the total flow time of the partial

sequence, considering an instance with only two jobs. Then, for k=3 up to n, insert

the k-th job into one of the possible k positions of the partial sequence. Keep the

partial sequence with minimum total flow time. In case of ties, select the partial

sequence with minimum makespan.

Ribas et al. (2013) showed that, for the blocking flow shop problem with makespan

minimization, the insertion phase of NEH can worsen the solution, i.e. Cmax value

obtained by the initial sequence. This can also be observed in the sequences given by

PF, HPF1and HPF2 for the total flow time criterion, which is analyzed in Section 5.

Thus, in NPF, NHPF1 and NHPF2 the obtained sequence is evaluated before and after

the insertion phase to keep the best of both solutions. The complexity of NPF, NHPF1

7

and NHPF2 is O(n3m), which corresponds to the original complexity of NEH, because

now it is Step 3 which determines the complexity of these algorithms.

3.1 Experimental adjustment of heuristic parameters

Certain parameters of the NHPF1 and NHPF2 heuristics must be adjusted. In particular,

parameter µ in NHPF1and parameters λ and µ in NHPF2 require proper calibration.

Calibration was done on a test-bed created ad hoc to separate the calibration benchmark

from the final testing benchmark. Each algorithm was tested with 140 randomly

generated instances, grouped in 28 sets of size n x m, where n= {20, 50, 80, 110, 140,

170, 200} and m = {5, 10, 15, 20} on a 2 GHz Intel Core 2 Duo E8400 CPU with 2 GB

of RAM. To compare the solution given by each parameter value, the relative

percentage deviation (RPD) from a reference solution was calculated as in (11):

 100
,





k

khk

TFref

TFrefTF
RPD

 (11)

where TFk,h is the total flow time given by heuristic h with a fixed value of parameters

in instance k, and TFrefk is the best value of the total flow time obtained in this instance.

The test results are summarized in Tables 1 and 2. The former shows the overall average

RPD obtained by NHPF1 for several values of µ. It can be observed that the average

RPDs for each µ are quite similar, but a slight improvement is obtained for µ=0.7 or

µ=0.75. Hence, this parameter was set to 0.75, but it could also have been set to 0.7.

Table 1. Average RPD value of NHPF1 for different values of µ

µ 0.65 0.70 0.75 0.80 0.85

NHPF1 0.285 0.284 0.284 0.285 0.285

Table 2 shows the overall average RPD obtained by NHPF2 for all tested combinations

of λ and µ values. The best values are obtained by setting µ to 0.75 and λ to 0.65. For

this reason, we used these values in the computational evaluation.

Table 2. Average RPD value of NHPF2 for different values of λ and µ

λ \ µ 0.65 0.70 0.75 0.80 0.85

0.55 0.533 0.463 0.378 0.427 0.525

0.6 0.520 0.448 0.373 0.423 0.511

0.65 0.510 0.441 0.362 0.414 0.499

0.7 0.508 0.439 0.367 0.407 0.503

0.75 0.510 0.445 0.374 0.413 0.507

8

4 Proposed Greedy Randomized Adaptive Search Procedure

A Greedy Randomized Adaptive Search Procedure (GRASP), first presented by Feo

and Resende (1989), is a metaheuristic algorithm commonly applied to combinatorial

optimization problems. GRASP consists of iterations made up of successive

constructions of a greedy randomized solution and a following local search which tries

to improve the solution until a specified stopping criterion is reached.

Two variants of a GRASP, each of which uses one of the proposed constructive

heuristics, i.e. NHPF1 and NHPF2, were implemented to construct greedy randomized

solutions. We name them GRASP(NHPF1) and GRASP(NHPF2) to specify the initial

constructive heuristic used. In both algorithms, the value of µ was randomly selected

from a uniform distribution between µmin and µmax (U[µmin, µmax]) at each iteration.

Moreover, in GRASP(NHPF2), the value of λ was set to 0.65, i.e. the value obtained in

the calibration test of NHPF2, to select the first job because, as shown in section 5.1,

this influences the quality of the generated sequence.

A general scheme of GRASP(NHPF1) and GRASP(NHPF2) is given in Figure 4.

(please insert Figure 4 near here)

Although the constructive randomized procedure used in each GRASP is slightly

different, the remaining structure is the same. The greedy constructive solution goes to

the local search, which consists of a variable neighborhood search made up of two

neighborhood structures: swap and insertion. The procedures for exploring them are

named LS1 and LS2, respectively.

In LS1, neighbors are generated for each job in the sequence by swapping one job with

all jobs that follow it in the sequence. If the best neighbor (σ’) is better than the current

solution (σ), it becomes the new current solution σ and the process continues until all

jobs have been considered. To avoid always exploring neighborhoods in the same order,

jobs are selected randomly.

 In LS2, neighbors are generated for each job in the sequence by removing the job from

its position and inserting it into all other possible positions. If the best neighbor (σ’) is

better than the current solution (σ), it becomes the new current solution σ and the

process continues until all jobs have been considered. As in LS1, jobs are selected

randomly.

9

The implemented local search (Figure 5) uses both structures, one after the other, at

each iteration. The first neighborhood to be explored is selected randomly with a

probability of 50%. After exploring the neighboring solutions of the current solution σ,

the local optimum σ’ is compared with σ. If the solution has improved, σ’ replaces σ and

the search continues in the other neighborhood. This process goes on until the current

solution is no longer improved. Next, the local optimum σ’ is compared with the best

solution σ* in terms of quality. If TF(σ’) is less than TF(σ*), then σ’ replaces σ*.

(Please insert figure 5 near here)

5 Computational evaluation

Prior to the evaluation of the proposed GRASP, a computational test was done to select

the value of µmin and µmax used by the GRASP to construct greedy randomized solutions.

This test was conducted on the same test-bed used before for the calibration of NHPF1

and NHPF2. Eight intervals of µ were tested and the results were analyzed by an

ANOVA. The hypotheses were tested by a residual analysis, which showed small

departures from normality mainly due to a low level of skewness and three borderline

outliers. However, the ANOVA method is robust to violations of this assumption. This,

together with the clarity of the results, validates the conclusions and makes a deeper

analysis unnecessary.

Table 3. ANOVA: ARPD versus interval, n and m

Source DF SS MS F P

Main Effects

interval 7 1.022 0.146 3.63 0.001

n 6 28.873 4.812 119.62 0.000

m 3 0.224 0.074 1.86 0.135

Interactions

Interval*n 42 3.847 0.091 2.28 0.000

Interval*m 21 0.252 0.012 0.30 0.999

n*m 18 3.919 0.217 5.41 0.000

Error 1022 41.113 0.040

Total 1119 79.253

The statistical analysis of results (see Table 3) indicates a significant difference between

intervals, n and their interaction, as shown in the interval plot in Figure 6. The interval

number corresponds to the following values of µmin and µmax according to this order:

[0,1], [0.1,1], [0.2,1], [0.3,1], [0.4,1], [0.5,1], [0.6,0.9], [0.7,0.8]. As can be seen, the

interval range depends on n; specifically, the range decreases when the number of jobs

10

increases. According to these results, for n 50 the interval can be set to [0,1], [0.1,1],

[0.2,1] or [0.3,1]. Nevertheless, when n increases up to 140 jobs, the best interval

becomes narrower ([0.4,1], [0.5,1]) and for n bigger than 140, the required interval is

further reduced [0.6,0.9]. This can be explained by the compromise between the

diversity of the greedy randomized solutions and their quality. For small values of n, a

narrow interval could lead to very similar solutions, causing the algorithm to be trapped

in the same local minimum. On the other hand, a narrower interval is required for higher

values of n because a huge interval could result in poor quality solutions, far from the

optimum, that would not be able to improve enough in a limited CPU time. Therefore,

we set the interval depending on n according to the values in Table 4.

Table 4. Values of µmin and µmax for each range of n

n µmin µmax

0 < n  50 0 1

75 < n  140 0.5 1

140 > n 0.6 0.9

(Please insert figure 6 near here)

In the following sections, the performance of the constructive heuristics and of the

GRASPs proposed is evaluated. Two tests, one for the former and one for the latter,

were done using Taillard’s (1993) benchmark for the blocking flow shop scheduling

problem with the total flow time criterion as in Wang et al. (2010) and Deng et al.

(2012), although in the latter the authors use only the first 90 instances. Taillard’s test-

bed is composed of 120 instances, 12 sets of 10 instances each, from 20 jobs and 5

machines to 500 jobs and 20 machines where nϵ{20, 50, 100, 200, 500} and mϵ{5, 10,

20}, but not all combinations of n and m are available. In particular, sets 200x5, 500x5

and 500x10 are missing but they were added, as in (Pan & Ruiz, 2012), to maintain the

orthogonality of the experiment.

5.1 Evaluation of the constructive heuristics

In the first test we compared the performance of NPF, NHPF1 and NHPF2 against

NSPT, which, according to our nomenclature, indicates that the SPT rule is used to

sequence the jobs in the first step.

First, we analyzed the performance of the proposed constructive procedures with and

without the insertion phase to show that, in some instances, the insertion phase worsens

11

the solution. The results are summarized in the graphs of Figure 7, which show the

behavior of the constructive procedures before and after the insertion phase. Note that

we add “_i” to the procedure's name to show the results after the insertion phase. As can

be seen in the first graph, the insertion phase always improves the SPT sequence. On the

other hand, in the PF_i, HPF1_i and HPF2_i the solution is sometimes worse than in

PF, HPF1 and HPF2, respectively. This is so because these three procedures use good

constructive methods to sequence jobs which are able to find good solutions for the

problem at hand. Therefore, the solution before the insertion phase is quite good,

whereas the solution obtained by the SPT rule is poor.

(please, insert figure 7 near here)

It is also interesting that the more effective the constructive heuristic, the less advisable

the insertion phase. In general, the solutions obtained by PF are better than those

obtained by PF_i from 200 jobs onwards, whereas those obtained by HPF1 and HPF2

are better than by HPF1_i and HPF2_i, respectively, from 100 jobs. But this behavior is

not easy to predict because it can also be observed in instances with fewer jobs.

Therefore, when using the insertion procedure it is recommended to evaluate the

sequence before and after the insertion phase in order to retain the best of both

sequences. We implemented NPF, NHPF1 and NHPF2 according to this suggestion.

Second, these procedures were compared with the RPD index calculated as in (11),

considering (TFrefk) the best known solution so far as the reference value. These

reference values are summarized at the end of section 5.2 because some were improved

during the research.

The algorithms were coded in the same language (QuickBASIC) and tested on the same

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM.

The comparison of all procedures with the overall ARPD value (Table 6) indicates that

NPF is better than NSPT but worse than NHPF1 and NHPF2, which exhibit very good

performance. In particular, NHPF2 performs slightly better than NHPF1, suggesting

that the effect of selecting the first job in the sequence is not negligible. We can

therefore conclude that, in addition to the total processing time, the minimization of

front delay is a good criterion to select the first job in the sequence.

12

Table 6. Average RPD of constructive heuristics

n m NSPT NPF NHPF1 NHPF2

20 5 3.264 2.948 2.928 3.059

20 10 3.071 2.625 2.719 2.340

20 20 3.581 2.840 2.857 2.766

50 5 6.329 5.195 3.903 3.528

50 10 5.525 4.105 4.191 3.665

50 20 4.748 4.450 4.398 4.237

100 5 7.504 7.364 3.757 3.668

100 10 6.134 5.197 4.450 3.964

100 20 5.138 4.175 4.428 4.539

200 10 6.275 3.279 2.505 1.915

200 20 4.454 2.392 2.676 2.478

500 20 5.220 1.178 1.464 1.533

200 5 8.353 6.761 2.260 1.936

500 5 10.039 7.645 1.330 1.027

500 10 7.950 2.650 1.399 1.307

Overall

5.839 4.187 3.018 2.797

5.2 Evaluation of the GRASP heuristics

In the second test, we compared the proposed NHPF2, GRASP(HPF1),

GRASP(NHPF1), GRASP(HPF2) and GRASP(NHPF2) procedures against two

benchmark algorithms from the literature, the Harmony Search (HS) algorithm by

Wang et al. (2010) and the Discrete Artificial Bee Colony (DABC) algorithm by Deng

et al. (2012). As we showed that the insertion phase can worsen the obtained solution,

we included GRASP(HPF1) and GRASP(HPF2), which use HPF1 and HPF2 to

generate greedy randomized solutions, to see whether it is better to use the available

CPU time to add the insertion phase or to do a few iterations more.

All algorithms were coded in the same language (QuickBASIC) and tested on the same

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM. To make a fair

comparison, all algorithms adopted the CPU time limit as a stopping criterion, which

was fixed to k∙n
2
∙m 10

-5
seconds, with k set to 10 and 30 to analyze the performance of

these algorithms for two levels of CPU time. Five runs were carried out for each

algorithm for all 150 instances.

As in the other tests, the relative percentage deviation (RDP) was calculated from the

best known solution as in (11), taking as TFh.k the average total flow time obtained in

the 5 runs for heuristic h in instance k, and as TFrefk, the best known solution reported

in Table 11, at the end of this section.

13

Tables 7 and 8 show the average relative percentage deviation (ARPD) for each set of

nxm instances for k=10 and k=30, respectively. The comparison of both tables indicates

that the ranking between these algorithms is the same for the two levels of CPU time

and that they converge quite fast because the results for k=10 are not very different from

those obtained with an increased CPU time (k=30). From these results, we can say that

the proposed GRASPs outperform the other algorithms for those instances with more

than 20 jobs. For instances with 20 jobs, the best performing algorithm is DABC, but its

efficiency decreases for larger instance sizes, probably because this algorithm requires

much more time than the others to reach good solutions.

Table 7. Average ARPD value of heuristics for k=10

nxm NHPF2 HS DABC

GRASP

(HPF1)

GRASP

(NHPF1)

GRASP

(HPF2)

GRASP

(NHPF2)

20x5 3.059 0.515 0.090 0.151 0.138 0.145 0.172

20x10 2.340 0.202 0.067 0.248 0.157 0.198 0.310

20x20 2.766 0.112 0.039 0.183 0.205 0.161 0.138

50x5 3.528 5.576 2.358 1.866 1.755 1.695 1.673

50x10 3.665 4.777 2.320 1.760 1.790 1.748 1.743

50x20 4.237 3.360 1.577 1.340 1.416 1.385 1.328

100x5 3.668 7.622 3.253 1.911 1.985 1.928 1.925

100x10 3.964 6.394 3.804 2.404 2.387 2.046 2.085

100x20 4.539 5.093 2.871 2.306 2.159 2.142 2.183

200x10 1.915 6.109 2.948 1.040 1.061 0.999 0.994

200x20 2.478 4.408 2.491 1.083 0.942 0.909 0.940

500x20 1.533 5.235 3.043 0.546 0.465 0.438 0.469

200x5 1.936 8.430 2.913 0.809 0.882 0.756 0.750

500x5 1.027 10.217 2.861 0.613 0.610 0.481 0.588

500x10 1.307 8.018 3.730 0.733 0.690 0.626 0.670

Overall 2.797 5.071 2.291 1.133 1.110 1.044 1.065

The performance of NHPF2 is worth noting. For instances with more than 20 jobs, this

algorithm is better than HS and performs similarly to DABC, and for more than 100

jobs it is even more efficient because it obtains better solutions in a considerably shorter

CPU time. This means that, despite its simplicity, it is a good heuristic for the blocking

flow shop scheduling problem with flow time minimization.

GRASP(HPF2) and GRASP(NHPF2) perform very similarly although the latter is

slightly more advantageous. The same is true of GRASP(HPF1) and GRASP(NHPF1).

Therefore, for simplicity, it is better to use HPF1 and HPF2 to construct greedy

randomized solutions. GRASP(HPF2) performs slightly better than GRASP(HPF1) for

14

instances with more than 20 jobs, a difference that grows with the number of jobs. The

same behavior is observed for NHPF1 and NHPF2.

Table 8. Average ARPD value of heuristics for k=30

nxm NHPF2 HS DABC

GRASP

(HPF1)

GRASP

(NHPF1)

GRASP

(HPF2)

GRASP

(NHPF2)

20x5 3.059 0.228 0.027 0.105 0.115 0.095 0.135

20x10 2.340 0.148 0.021 0.034 0.135 0.087 0.186

20x20 2.766 0.058 0.003 0.160 0.137 0.109 0.107

50x5 3.528 5.021 1.703 1.631 1.643 1.459 1.514

50x10 3.665 4.311 1.510 1.545 1.561 1.555 1.568

50x20 4.237 2.999 0.984 1.223 1.196 1.240 1.226

100x5 3.668 7.594 2.920 1.757 1.741 1.700 1.762

100x10 3.964 6.437 3.398 2.151 2.227 1.939 1.928

100x20 4.539 4.930 2.548 1.909 2.052 1.964 2.019

200x10 1.915 6.059 2.926 0.864 0.827 0.827 0.838

200x20 2.478 4.366 2.486 0.835 0.878 0.786 0.766

500x20 1.533 5.248 3.043 0.433 0.409 0.382 0.373

200x5 1.936 8.298 2.856 0.655 0.641 0.561 0.569

500x5 1.027 10.230 2.861 0.439 0.453 0.351 0.460

500x10 1.307 7.997 3.730 0.568 0.585 0.507 0.518

Overall 2.797 4.928 2.068 0.954 0.973 0.904 0.931

To validate the above observation, the results were analyzed by three-way completely

randomized ANOVA with interactions (Wu & Hamada, 2000) where the factors were

algorithm, number of jobs (n) and number of machines (m). The interactions allow us to

analyze the behavior of algorithms depending on the instance size. As the ranking and

the gap between algorithms are the same for both levels of CPU time, a statistical

analysis was conducted for the results obtained with k=30.

The statistical analysis confirmed a significant difference between algorithms, n, m and

their interaction. These results were analyzed using three graphs. Figure 8 shows the

interval plot of average RPD (ARPD) per algorithm, which makes clear that

GRASP(HF1), GRASP(HPF2), GRASP(NHPF1) and GRASP(NHPF2) are better than

the others. However, there is no statistical significant evidence that one is better but

since GRASP(HPF2) has an ARPD slightly lower than the others, we recommend this

algorithm for the problem at hand.

15

Table 10. Three-way ANOVA: ARPD versus Algorithm, n and m

Source DF SS MS F P

Main Effects

n 4 688.267 172.067 515.70 0.000

m 2 25.169 12.585 37.72 0.000

Algoritm 6 2038.140 339.690 1.18.08 0.000

Interactions

n*m 8 11.857 1.482 4.44 0.000

n*Algorithm 24 1021.643 42.568 127.58 0.000

m*Algorithm 12 179.737 14.978 44.89 0.000

Error 993 331.323 0.334

Total 1049 4296.136

 (please insert Figure 8 near here)

Figure 9 shows the interaction between the algorithms and n. It can be observed that for

n=20 NHPF2 performs worse than the others. For n=50 the algorithms are separated in

two groups: NHPF2 and HS, with lower performance, and the rest of algorithms. From

n=100 onwards, the four GRASPs are more efficient than the other algorithms and

NHPF2 performs better than DABC when n increases. Notice that the interaction is due

to the behavior of HS which, contrary to the others algorithms, performs worse when n

increases.

(please insert Figure 9 near here)

Figure 10 shows the interaction between the algorithms and m. The algorithms have

similar performance in all cases, irrespective of m. However, the interaction is due to

the performance of HS that decreases when m increases.

(please insert figure 10 near here)

Finally, the new best solutions found during this research are summarized in Table 11,

which can be used as a basis of comparison for future research. The number in columns

“Source” indicates the paper that reported the values: “1” for Wang et al. (2010), “2”

for Moslehi and Khorasanian (2013), “3” for Deng et al. (2012) and “4” for this

research. For simplicity, the numbering of Taillard’s instances is kept. Therefore,

instances from 1 to 120 belong to Taillard’s test-bed and those from 121-150 are the 30

instances added.

16

Table 11. Best solutions for the blocking flow shop with flow time criterion
Set Best Source Set Best Source Set Best Source

205 2010 2020

1 14953 1,2,3,4 11 22358 1,2,3,4 21 34683 1,2,3,4

2 16343 1,2,3,4 12 23881 1,2,3,4 22 32855 1,2,3,4

3 14297 1,2,3,4 13 20873 1,2,3,4 23 34825 1,2,3,4

4 16483 1,2,3,4 14 19916 1,2,3,4 24 33006 1,2,3,4

5 14212 1,2,3,4 15 20196 1,2,3,4 25 35328 1,2,3,4

6 14624 1,2,3,4 16 20126 1,2,3,4 26 33720 1,2,3,4

7 14936 1,2,3,4 17 19471 1,2,3,4 27 33992 1,2,3,4

8 15193 1,2,3,4 18 21330 1,2,3,4 28 33388 1,2,3,4

9 15544 1,2,3,4 19 21585 1,2,3,4 29 34798 1,2,3,4

10 14392 1,2,3,4 20 22582 1,2,3,4 30 33174 1,2,3,4

505 5010 5020

31 72672 3,4 41 99674 3,4 51 136865 3,4

32 78140 3 42 95608 4 52 129958 4

33 72913 4 43 91791 3,4 53 127617 3,4

34 77399 4 44 98454 3,4 54 131889 3,4

35 78353 4 45 98164 3 55 130967 3

36 75402 3,4 46 97246 4 56 131760 4

37 73842 4 47 99953 3,4 57 134217 3,4

38 73442 4 48 98027 4 58 132990 4

39 70871 3,4 49 96708 3,4 59 132599 3,4

40 78729 4 50 98019 4 60 135710 4

100x5 100x10 10020

61 288627 4 71 354524 4 81 425304 4

62 280491 4 72 335609 4 82 436360 3

63 276576 4 73 344090 4 83 430634 3

64 261278 4 74 359491 4 84 432344 4

65 274638 4 75 338537 3 85 427150 4

66 267554 4 76 327254 4 86 430532 3

67 275823 4 77 336360 4 87 437739 4

68 269872 4 78 343368 4 88 441173 3

69 285428 4 79 344563 4 89 432876 3

70 282828 4 80 347845 4 90 437785 4

20010 20020 500x20

91 1282396 4 101 1502049 4 111 8733885 4

92 1284743 4 102 1542868 4 112 8854894 4

93 1283521 4 103 1556987 4 113 8793747 4

94 1283126 4 104 1549491 4 114 8839615 4

95 1283888 4 105 1517943 4 115 8797812 4

96 1252880 4 106 1530159 4 116 8849661 4

97 1304158 4 107 1532090 4 117 8786821 4

98 1304187 4 108 1547372 4 118 8808920 4

99 1279766 4 109 1527564 4 119 8792132 4

100 1278516 4 110 1545061 4 120 8862934 4

2005 500x5 500x10

121 1077132 4 131 6390125 4 141 7556997 4

122 1026709 4 132 6418782 4 142 7673115 4

123 1066136 4 133 6467532 4 143 7630163 4

124 1051122 4 134 6336628 4 144 7627243 4

125 1065882 4 135 6374245 4 145 7507780 4

126 1028241 4 136 6286829 4 146 7538161 4

127 1083187 4 137 6268190 4 147 7513119 4

128 1051034 4 138 6360466 4 148 7577516 4

129 1065897 4 139 6329512 4 149 7551199 4

130 1039941 4 140 6321622 4 150 7637538 4

17

6 Conclusions

This paper focuses on the blocking flow shop problem in order to minimize the total

flow time of jobs. First, two constructive algorithms based on the PF algorithm, NHPF1

and NHPF2, are presented. They consist of three steps: selection of the first job in the

sequence, construction of the remaining sequence in order to minimize machine

timeout, and insertion phase of NEH to try to improve the sequence. However, as the

insertion phase can worsen the solution, especially in NHPF1 and NHPF2, the

procedures evaluate the sequences obtained before and after the insertion phase to retain

the best of both algorithms.

 The main difference between NHPF1 and NHPF2 is the selection of the first job in the

sequence. NHPF1 chooses the job with a shorter processing time whereas in NHPF2 the

front delay generated by the jobs is also considered. The computational evaluation

showed not only the good performance of the two algorithms but also the significant

influence of the selection of the first job to be scheduled on the quality of the resulting

sequence.

Second, four versions of a GRASP are described. The main difference between them is

the constructive procedure used to obtain greedy randomized solutions, i.e. HPF1,

NHPF1, HPF2 and NHPF2. The GRASPs was combined with a variable neighborhood

search that uses the insertion and swap neighborhood. These algorithms were tested

against two algorithms proposed for the problem at hand, i.e. the HS algorithm (Wang

et al., 2010) and a DABC procedure (Deng et al., 2012), and against the NHPF2

algorithm here proposed. The comparison between them indicated that the presented

GRASPs outperform the other algorithms in those sets of more than 20 jobs and that,

despite its simplicity, NHPF2 performs better than HS for instances with more than 20

jobs, and even better than DABC for instances with more than 100 jobs.

Finally, the new best known solutions found during this research for most of the

Taillard’s instances used in the blocking flow shop with total flow time minimization

are reported. These new solutions could serve as a basis for comparison for future

studies.

One future research direction involves the application of the above algorithms to more

complex scheduling problems considering other constraints like setup times, parallel

machines or multicriteria scheduling problems. Their simplicity and good performance

make them real candidates for adaptation to and implementation in real situations.

18

 References

Davendra, D., & Bialic-Davendra, M. (2013). Scheduling flow shops with blocking

using discrete self-organising migration algorithm. International Journal of Production

Research, 51(8), 2200-2218.

Deng, G., Xu, Z., & GU, X. (2012). A discrete artificial bee colony algorithm for

minimizing the total flow time in the blocking flow shop scheduling. Chinese Journal of

Chemical Engineering, 20(6), 1067-1073.

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally

difficult set covering problem. Operatons Research Letters, 8, 67-71.

Framinan, J. M., Leisten, R., & Ruiz-Usano, R. (2005). Comparison of heuristics for

flowtime minimisation in permutation flowshops. Computers & Operations Research,

32(5), 1237–1254.

Gong, H., Tang, L., & Duin, C. W. (2010). A two-stage flow shop scheduling problem

on a batching machine and a discrete machine with blocking and shared setup times.

Computers & Operations Research, 37(5), 960-969.

Grabowski, J., & Pempera, J. (2000). Sequencing of jobs in some production system.

European Journal of Operational Research, 125(3), 535-550.

Grabowski, J., & Pempera, J. (2007). The permutation flow shop problem with

blocking. A tabu search approach. Omega, 35(3), 302-311.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan A.H.G. (1979).

Optimization and approximation in deterministic sequencing and scheduling: A survey.

Annals of Discrete Mathematics, 5, 287-326.

Jeff Wu, C. F., & Hamada, M. (2000). Experiments. planning, analysis, and parameter

design optimization (Wiley Series in Probability and Statistics ed.). New York: Wiley-

Interscience.

Liu, B., Wang, L., & Jin, Y. (2008). An effective hybrid PSO-based algorithm for flow

shop scheduling with limited buffers. Computers & Operations Research, 35(9), 2791-

2806.

Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the

P//∑Ci scheduling problem. Data Envelopment Analysis, 132(2), 439–452.

Martinez, S., Dauzère-Pérès, S., Guéret, C., Mati, Y., & Sauer, N. (2006). Complexity

of flowshop scheduling problems with a new blocking constraint. European Journal of

Operational Research, 169(3), 855-864.

McCormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B. (1989). Sequencing in an

assembly line with blocking to minimize cycle time. Operations Research, 37, 925-936.

19

Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flow shop scheduling

problem with total completion time criterion. Computers & Operations Research, 40(7),

1874-1883.

Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95.

Pan, Q., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem

with flowtime minimization. European Journal of Operational Research, 222(1), 31-43.

Pan, Q.-K., & Ruiz, R. (2013). A comprehensive review and evaluation of permutation

flowshop heuristics to minimize flowtime. Computers & Operations Research, 40(1),

117–128.

Qian, B., Wang, L., Huang, D. X., & Wang, X. (2009). An effective hybrid DE-based

algorithm for flow shop scheduling with limited buffers. International Journal of

Production Research, 47(1), 1-24.

Qian, B., Wang, L., Huang, D. X., Wang, W., & Wang, X. (2009). An effective hybrid

DE-based algorithm for multi-objective flow shop scheduling with limited buffers.

Computers & Operations Research, 36(1), 209-233.

Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to minimize

total flowtime. International Journal of Production Economics, 29(1), 65–73.

Ribas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable

neighbourhood search algorithm for the blocking flowshop problem. European J. of

Industrial Engineering, 7(6):729-754

Ribas, I., Companys, R., & Tort-Martorell, X. (2011). An iterated greedy algorithm for

the flowshop scheduling problem with blocking. Omega, 39(3), 293-301.

Ronconi, D. P. (2004). A note on constructive heuristics for the flowshop problem with

blocking. International Journal of Production Economics, 87(1), 39-48.

Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., & Kubiak, W. (1992).

Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible

Manufacturing Systems, 4, 331-358.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64(2), 278-285.

Wang, L., Pan, Q., & Fatih Tasgetiren, M. (2010). Minimizing the total flow time in a

flow shop with blocking by using hybrid harmony search algorithms. Expert Systems

with Applications, 37(12), 7929-7936.

Wang, L., Pan, Q., Suganthan, P. N., Wang, W., & Wang, Y. (2010). A novel hybrid

discrete differential evolution algorithm for blocking flow shop scheduling problems.

Computers & Operations Research, 37(3), 509-520.

20

Wang, L., Zhang, L., & Zheng, D. (2006). An effective hybrid genetic algorithm for

flow shop scheduling with limited buffers. Computers & Operations Research, 33(10),

2960-2971.

 Figure 1. Sequence for a 4-job, 4-machine blocking flow shop

Figure 2. Completion time of jobs J1, J2 or J3 when scheduled in the first position of a sequence

Figure 3. Measurement of front delay

Figure 4. Pseudocode of GRASP(NHPF1) and GRASP(NHPF2)

Figure 5. Pseudocode of the Local Search

Figure 6. Interval plot of ARPD values for each interval and n values

Figure 7. ARPD values of each constructive procedure by nxm

Figure 8. Interval plot of ARPD values of algorithms for k=30

Figure 9. Interval plot of ARPD values of algorithms and n

Figure 10. Interval plot of ARPD values of algorithms and m.

 M1 a b c d
 M2 a b c d

 M3

a b c d
 M4 a b c d

Blocking time Idle time

Figure1

 M1 J1

M1 J2

M1 J3
 M2

J1

M2

J2

M2

J3

 M3 J1

M3 J2 M3 J3

Figure 2

y
p

x
p

α

M1

M2

M3

M4

t
Front delay

Figure 3

Procedure GRASP(NHPF1)

 σbest = ∞

 repeat

 µ=µmin+(µmax-µmin)*random(0,1)

 σ’ ← NHPF1(µ)

 σ’←local_search (σ’)

 if cost(σ’)< cost(σbest)

 σbest← σ’

 end

 until stopping_condition met

end

Procedure GRASP(NHPF2)

 σbest = ∞

 repeat

 λ=0.65

 µ=µmin+(µmax-µmin)*random(0,1)

 σ’ ← NHPF2(λ, µ)

 σ’←local_search (σ’)

 if cost(σ’)< cost(σbest)

 σbest← σ’

 end

 until stopping_condition met

end

Figure 4

Procedure Local Search

 TF*= TF(σ); σ * = σ;

 nm=0

 if random < β then

 ls = 0

 else ls = 1

 endif

 do

 nm=nm+1;

 TF0 = TF(σ)

 If ls =0 then

 LS1

 else
 LS2

 endif
 if TF(σ) < TF0 or nm=1 then

 ls = 1 – ls

 else exit do

 endif

 loop

 end

Figure 5

n

interval

20
0

17
0

14
0

11
0805020

87654321876543218765432187654321876543218765432187654321

1.2

1.0

0.8

0.6

0.4

0.2

0.0

A
R

P
D

95% CI for the Mean

Interval Plot of ARPD

Figure 6

Figure 7

N
H

PF2
H

S

GR
A

SP(N
H

PF2
)

GR
A

SP(N
H
PF1)

G
RA

SP(H
PF2)

G
RA

SP(H
PF1)

D
A

B
C

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

Algorithm

A
R

P
D

95% CI for the Mean

Interval Plot of ARPD by algorithm

Figure 8

9
6
3
0

9
6
3
0

9
6
3
0

9
6
3
0

N
H
PF2

H
S

GRA
SP(N

H
PF2)

GRA
SP(N

H
PF1)

G
R
A

SP(H
PF2)

G
R
A

SP(H
PF1)

D
A

BC

9
6
3
0

n = 20

Algorithm

A
R
P
D

n = 50

n = 100

n = 200

n = 500

95% CI for the Mean

Interval Plot of ARPD by n and algorithm

Figure 9

8
6
4
2
0

8
6
4
2
0

N
HPF2HS

G
RA

SP(N
H
PF

2)

G
RA

SP(
N
H
PF1)

G
RA

SP(
H
PF2

)

G
RA

SP
(H

PF
1)

D
A
BC

8
6
4
2
0

m = 5

Algorithm

A
R
P
D

m = 10

m = 20

95% CI for the Mean

Interval Plot of ARPDby m and Algorithm

Figure 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Acknowledgments

This work was partially supported by the Spanish Ministry of Science and Innovation

under the project RESULT - Realistic Extended Scheduling Using Light Techniques

with reference DPI2012-36243-C02-01.

Acknowledgement

