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This paper proposes two constructive heuristics, i.e. HPF1 and HPF2, for the blocking 

flow shop problem in order to minimize the total flow time. They differ mainly in the 

criterion used to select the first job in the sequence since, as it is shown, its contribution 

to the total flow time is not negligible. Both procedures were combined with the 

insertion phase of NEH to improve the sequence. However, as the insertion procedure 

does not always improve the solution, in the resulting heuristics, named NHPF1 and 

NHPF2, the sequence was evaluated before and after the insertion to keep the best of 

both solutions. The structure of these heuristics was used in Greedy Randomized 

Adaptive Search Procedures (GRASP) with variable neighborhood search in the 

improvement phase to generate greedy randomized solutions. The performance of the 

constructive heuristics and of the proposed GRASPs was evaluated against other 

heuristics from the literature. Our computational analysis showed that the presented 

heuristics are very competitive and able to improve 68 out of 120 best known solutions 

of Taillard's instances for the blocking flow shop scheduling problem with the total flow 

time criterion. 
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1 Introduction 

 

Many industrial systems can be modeled as a flow shop with zero capacity buffers 

between consecutive machines. In this type of production configuration, a machine can 

be blocked by the job it has processed if the next machine is not available. To avoid or 

minimize machine blocking and idle time, accurate scheduling is necessary. Examples 

of blocking flow shop scheduling can be found in the production of concrete blocks, 

where storage is not allowed in some stages of the manufacturing process (Grabowski & 

Pempera, 2000); in the iron and steel industry (Gong et al., 2010); in the treatment of 

industrial waste and manufacture of metallic parts (Martínez et al., 2006); or in a robotic 

cell, where a job may block a machine while waiting for the robot to pick it up and 

move it to the next stage (Sethi et al., 1992) .  
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This paper deals with the blocking flow shop scheduling problem to minimize the total 

flow time of jobs, denoted as Fmblock∑Ci according to the notation proposed by 

(Graham et al., 1979), if jobs and machines are available at instant zero, a hypothesis 

considered here. If jobs’ release time are zero, this objective is equivalent to (total or 

average) flow time minimization, which, according to Rajendran (1993) and (Framinan 

et al. 2005), has been found to reduce the scheduling costs. Additionally, it has been 

found to be an important real-life objective in industries since it results in the even 

utilization of resources, even turn-over of finished jobs and reduced in-process 

inventory. Therefore, it is considered to be more relevant and meaningful for today’s 

dynamic production environment (Liu & Reeves, 2001). Pan and Ruiz (2013) remark 

that the need to reduce Work In Process (WIP) or in-process inventory has fostered the 

study of the total flow time.  

In the Fmblock∑Ci problem, n jobs have to be processed by m machines. All jobs 

follow the same route, implying that a job sequence determined for machine 1 is kept 

throughout the system. The processing time of job i{1,2,..., n} on machine j, j{ 

1,2,..., m} is 0, ijp .  

Although the blocking flow shop scheduling problem has not been as extensively 

studied as the permutation flow shop problem, the number of published papers 

concerning the former in order to minimize makespan has increased in recent years 

(Grabowski & Pempera, 2007; Wang et al., 2006;  Liu et al., 2008; Qian et al., 2009; 

Wang et al., 2010; Ribas et al., 2011; Davendra & Bialic-Davendra, 2013). However, 

little research has been done on total flow time criterion. From the best our knowledge, 

only Wang et al. (2010), who proposed a hybrid Harmony Search (HS) algorithm, Deng 

et al. (2012), who proposed a Discrete Artificial Bee Colony (DABC) algorithm and 

Moslehi and Khorasanian (2013), who presented a branch and bound algorithm that can 

be used in small instances, have addressed the Fmblock∑Ci problem. Therefore, it is 

interesting to intensify research to develop efficient heuristics for this problem, 

especially simple algorithms which are easy to adapt and implement in practical 

applications.  

In this paper, we present two constructive procedures and two versions of an efficient 

Greedy Randomized Adaptive Search Procedure (GRASP) combined with variable 

neighborhood search in the improvement phase, which use the structure of these 

constructive heuristics to generate greedy randomized solutions. Computational 
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evaluation against other algorithms from the literature has shown the effectiveness of 

the constructive heuristic and good performance of the proposed GRASP. 

 

The rest of the paper is organized as follows. In section 2, blocking flow shop 

scheduling is presented. Sections 3 and  4 describe the constructive procedures and the 

GRASP, respectively. Section 5 shows the computational evaluation of the algorithms 

and section 6 concludes.    

 

2 Problem definition 

 

In the blocking flow shop problem, a set of n jobs must be processed by m machines in 

the same order, from the first machine to machine m. Each job i, iϵ{1, 2, ..., n} requires 

a fixed positive processing time pj,i on every machine j, jϵ{1, 2, ..., m}. Jobs and 

machines are available from time zero onwards. Our objective is to find a job 

processing sequence that minimizes the total flow time. Fm|block|ΣCi can be modeled 

with the following equations, where [k] is the index of the job in the k-th position in the 

permutation,  ej,k denotes the time at which the job [k] starts to be processed by machine 

j and cj,k is the departure time of job [k] from machine j. Note that if job [k] can leave 

machine j when it is completed, which depends on the availability of machine j+1, then 

cj,k is not only the departure time but also the completion time of job [k] on machine j:  

ej,k + pj,k ≤cj,k     j=1, 2, ..., m    k=1, 2, ..., n (1) 

ej,k  cj,k-1          j=1, 2, ..., m  k=1, 2 ,..., n  (2) 

ej,k  cj-1,k          j=1, 2, ..., m   k=1, 2, ..., n  (3) 

cj,k  cj+1,k-1     j=1, 2, ..., m  k=1, 2, ..., n        (4) 




n

k
kmcTF

1
,    (5) 

 with k0c  0cj0c k1mk00j   ,,, ,,  being the initial conditions. 

If equations (2) and (3) are summarized as (6) and equation (1) and (4) as (7), the 

schedule obtained is semi-active, which is interesting because an optimal solution can 

be found in the subset of the semi-active set of solutions. 

 ej,k =max{cj,k-1; cj-1,k}                j=1, 2, ..., m    k=1, 2, ..., n (6) 

  1,1][,,, ,max  kjkjkjkj cpec    j=1, 2, ..., m    k=1, 2, ..., n (7) 
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3 Constructive heuristics 

 

The constructive heuristics proposed are based on the profile fitting (PF) procedure by 

McCormick et al. (1989) for solving sequencing problems in an assembly line with 

blocking to minimize the cycle time. The PF technique tries to sequence jobs in order to 

minimize machine timeout, which can be due to idle time, blocking time or the sum of 

both (see Figure 1). This is an adequate objective for the blocking flow shop problem. 

The PF method, combined with the insertion phase of the heuristic NEH (Nawaz et al., 

1983), was successfully used by Ronconi (2004) for scheduling jobs in a blocking flow 

shop to minimize makespan. Thus, this procedure considers the blocking constraint; 

however, it does not address total flow time minimization. To include this objective in 

the construction of sequences, two variants are proposed. 

 

(please insert Figure 1 near here) 

 

First, we describe the PF heuristic to make clear the procedure and its variants. 

 Let σ the partial sequence and σ*i the partial sequence with job i added at the end of σ.  

 Step 1: Select the job with the minimum sum of all operations of a job (Pi) and put it 

in the first position in sequence σ. Set k=1. In case of ties, select the job with 

minimum p1,i. 

 Step 2: While k<n, calculate the machine timeout for each unscheduled job i when 

job i is added to the partial sequence , denoted as *i. Select the job that leads to 

the minimum timeout and add it to ; k=k+1. The timeout is calculated according to 

equation (8). In case of ties, select the job which leads to the partial sequence with 

minimum total flow time. 

        Ind0 (i, k) = 


 
m

j

ijkjkj pcic
1

,,1, ))()(( 

   

 (8) 

In order to consider the total flow time criterion during the scheduling of jobs, a new 

term was added to index (8) to measure the contribution of the evaluated job i to total 

flow time of the partial sequence. Therefore, the first heuristic proposed, named HPF1, 

can be defined as follows: 

 Step 1: Select the job with minimum Pi and put it in the first position in sequence σ. 

Set k=1. In case of ties, select the job with minimum p1,i. 

 Step 2: While k<n, calculate index (ind1) as in equation (9) for each unscheduled 

job i, where Ci is the completion time of job i. Select the job with minimum ind1. In 
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case of ties, select the job which leads to the partial sequence with minimum total 

flow time. 

         

)()1()))()(((),(1
1

,,1, -1][ki

m

j
ijkjkj CCpcickiind  


    (9) 

Both procedures, PF and HPF1, schedule job i with the minimum sum of processing 

time on machines m (Pi) in the first position, but this rule may not always be effective in 

minimizing the total flow time. Consider the following 3-job, 3-machine problem where 

jobs J1, J2 and J3 have the following processing time on each machine: J1=(2,3,4), 

J2=(3,2,4) and J3=(4,3,2). The sum of processing times of each job is 9, but the total 

flow time of schedules {J1. J2, J3}, {J2, J1, J3} and {J3, J1, J2} is 38, 39 and 41, 

respectively. These differences are due to the front delay induced by the first job 

scheduled (grey parts in Figure 2).  

 

(please insert Figure 2 near here) 

 

Hence, it is interesting to schedule in the first position not only the job with the 

minimum completion time (minimum Pi) but also the one that generates the minimum 

front delay. Front delay can be measured in several ways, one of which is by estimating 

the slope of the line from the starting point of the first operation scheduled to the middle 

point of the starting points of all operations. In Figure 3, we can observe that the slope 

can be measured by calculating the tangent of angle α (tan(α)) by dividing the x-axis 

value at the endpoint of this line:
  

m

pjm
x

m

j
ij

p

 
 1

,)(

 
by the y-axis value, which is 

2
)1( 


m

y p . Hence,

)m(m

p)jm(
)tan(

m

j
i,j

1

2
1







 .  

A job which generates minor front delay has a low value of tan(α). Thus, scheduling the 

job with minimum tan(α) in the first position of the sequence can help to minimize the 

total flow time of the whole sequence. 

 

(please insert Figure 3 near here) 

 

However, as said before, the choice of the first job in a sequence depends on its 

contribution to the total flow time (Pi) and resulting front delay. Therefore, in the 
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second procedure, named HPF2, we created a bicriteria index (R(i)) to measure both 

terms. Note in equation (10) that the first term was corrected by multiplying it by m 

because it had a different magnitude from the sum of processing time of a job. Observe 

that, with the correction introduced in the first term, if the processing time in all stages 

is 1, both terms are equal to m, which demonstrates that both have the same magnitude.   







 





















m

j
i,j

m

j
i,j

p)(
)m(

p)jm(
)i(R

1

1 1
1

2
    (10)

   

Therefore, HPF2 can be defined as follows:  

 Step 1: Select the job with minimum R(i) and put it in the first position in sequence 

σ. Set k=1. In case of ties, select the job with minimum p1,i. 

 Step 2: While k<n, calculate index (ind1) as in equation (9) for each unscheduled 

job i. Select the job with minimum ind1. In case of ties, select the job which leads to 

the partial sequence with minimum total flow time. 

The flow time calculation in an n-job, m-machine flow shop for a given sequence is of 

complexity O(nm). Hence, as k flow times in k jobs and m machines must be calculated 

in step 2 of PF, HPF1 and HPF2, we can conclude that the complexity of these 

procedures is O(n
2
m). 

 
Finally, the insertion phase of NEH, adapted to the total flow time criterion, is applied 

to the sequence given by PF, HPF1 and HPF2 to try to improve them. We name these 

combinations NPF, NHPF1 and NHPF2, respectively. Therefore, the third step of these 

heuristics is defined as follows: 

 Step 3: In accordance with the order established in step 2, take the first two jobs and 

schedule them in such a way that they minimize the total flow time of the partial 

sequence, considering an instance with only two jobs. Then, for k=3 up to n, insert 

the k-th job into one of the possible k positions of the partial sequence. Keep the 

partial sequence with minimum total flow time. In case of ties, select the partial 

sequence with minimum makespan. 

Ribas et al. (2013) showed that, for the blocking flow shop problem with makespan 

minimization, the insertion phase of NEH can worsen the solution, i.e. Cmax value 

obtained by the initial sequence. This can also be observed in the sequences given by 

PF, HPF1and HPF2 for the total flow time criterion, which is analyzed in Section 5.
 

Thus, in NPF, NHPF1 and NHPF2 the obtained sequence is evaluated before and after 

the insertion phase to keep the best of both solutions. The complexity of NPF, NHPF1 
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and NHPF2 is O(n3m), which corresponds to the original complexity of NEH, because 

now it is Step 3 which determines the complexity of these algorithms. 

 

3.1 Experimental adjustment of heuristic parameters 

 

Certain parameters of the NHPF1 and NHPF2 heuristics must be adjusted. In particular, 

parameter µ in NHPF1and parameters λ and µ in NHPF2 require proper calibration.  

Calibration was done on a test-bed created ad hoc to separate the calibration benchmark 

from the final testing benchmark. Each algorithm was tested with 140 randomly 

generated instances, grouped in 28 sets of size n x m, where n= {20, 50, 80, 110, 140, 

170, 200} and m = {5, 10, 15, 20} on a 2 GHz Intel Core 2 Duo E8400 CPU with 2 GB 

of RAM. To compare the solution given by each parameter value, the relative 

percentage deviation (RPD) from a reference solution was calculated as in (11):  

 100
,





k

khk

TFref

TFrefTF
RPD

    

 (11) 

where TFk,h is the total flow time given by heuristic h with a fixed value of parameters 

in instance k, and TFrefk  is the best value of the total flow time obtained in this instance. 

 

The test results are summarized in Tables 1 and 2. The former shows the overall average 

RPD obtained by NHPF1 for several values of µ. It can be observed that the average 

RPDs for each µ are quite similar, but a slight improvement is obtained for µ=0.7 or 

µ=0.75. Hence, this parameter was set to 0.75, but it could also have been set to 0.7. 

Table 1. Average RPD value of NHPF1 for different values of µ 

µ 0.65 0.70 0.75 0.80 0.85 

NHPF1 0.285 0.284 0.284 0.285 0.285 

 

Table 2 shows the overall average RPD obtained by NHPF2 for all tested combinations 

of λ and µ values. The best values are obtained by setting µ to 0.75 and λ to 0.65. For 

this reason, we used these values in the computational evaluation. 

Table 2. Average RPD value of NHPF2 for different values of λ and µ 

λ \  µ 0.65 0.70 0.75 0.80 0.85 

0.55  0.533 0.463 0.378 0.427 0.525 

0.6  0.520 0.448 0.373 0.423 0.511 

0.65  0.510 0.441 0.362 0.414 0.499 

0.7  0.508 0.439 0.367 0.407 0.503 

0.75  0.510 0.445 0.374 0.413 0.507 
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4 Proposed Greedy Randomized Adaptive Search Procedure 

 

A Greedy Randomized Adaptive Search Procedure (GRASP), first presented by Feo 

and Resende (1989), is a metaheuristic algorithm commonly applied to combinatorial 

optimization problems. GRASP consists of iterations made up of successive 

constructions of a greedy randomized solution and a following local search which tries 

to improve the solution until a specified stopping criterion is reached.    

Two variants of a GRASP, each of which uses one of the proposed constructive 

heuristics, i.e. NHPF1 and NHPF2, were implemented to construct greedy randomized 

solutions. We name them GRASP(NHPF1) and GRASP(NHPF2) to specify the initial 

constructive heuristic used. In both algorithms, the value of µ was randomly selected 

from a uniform distribution between µmin and µmax (U[µmin, µmax]) at each iteration. 

Moreover, in GRASP(NHPF2), the value of λ was set to 0.65, i.e. the value obtained in 

the calibration test of NHPF2, to select the first job because, as shown in section 5.1, 

this influences the quality of the generated sequence. 

A general scheme of GRASP(NHPF1) and GRASP(NHPF2) is given in Figure 4.  

 

(please insert Figure 4 near here) 

 

Although the constructive randomized procedure used in each GRASP is slightly 

different, the remaining structure is the same. The greedy constructive solution goes to 

the local search, which consists of a variable neighborhood search made up of two 

neighborhood structures: swap and insertion. The procedures for exploring them are 

named LS1 and LS2, respectively.  

In LS1, neighbors are generated for each job in the sequence by swapping one job with 

all jobs that follow it in the sequence. If the best neighbor (σ’) is better than the current 

solution (σ), it becomes the new current solution σ and the process continues until all 

jobs have been considered. To avoid always exploring neighborhoods in the same order, 

jobs are selected randomly. 

 In LS2, neighbors are generated for each job in the sequence by removing the job from 

its position and inserting it into all other possible positions. If the best neighbor (σ’) is 

better than the current solution (σ), it becomes the new current solution σ and the 

process continues until all jobs have been considered. As in LS1, jobs are selected 

randomly. 
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The implemented local search (Figure 5) uses both structures, one after the other, at 

each iteration. The first neighborhood to be explored is selected randomly with a 

probability of 50%. After exploring the neighboring solutions of the current solution σ, 

the local optimum σ’ is compared with σ. If the solution has improved, σ’ replaces σ and 

the search continues in the other neighborhood. This process goes on until the current 

solution is no longer improved. Next, the local optimum σ’ is compared with the best 

solution σ* in terms of quality. If TF(σ’) is less than TF(σ*), then σ’ replaces σ*.   

 

(Please insert figure 5 near here) 

 

5 Computational evaluation 

 

Prior to the evaluation of the proposed GRASP, a computational test was done to select 

the value of µmin and µmax used by the GRASP to construct greedy randomized solutions. 

This test was conducted on the same test-bed used before for the calibration of NHPF1 

and NHPF2. Eight intervals of µ were tested and the results were analyzed by an 

ANOVA. The hypotheses were tested by a residual analysis, which showed small 

departures from normality mainly due to a low level of skewness and three borderline 

outliers. However, the ANOVA method is robust to violations of this assumption. This, 

together with the clarity of the results, validates the conclusions and makes a deeper 

analysis unnecessary. 

Table 3. ANOVA: ARPD versus interval, n and m  

Source DF SS MS F P 

Main Effects      

interval   7 1.022 0.146 3.63 0.001 

n 6 28.873 4.812 119.62 0.000 

m 3 0.224 0.074 1.86 0.135 

Interactions      

Interval*n 42 3.847 0.091 2.28 0.000 

Interval*m 21 0.252 0.012 0.30 0.999 

n*m 18 3.919 0.217 5.41 0.000 

Error 1022 41.113   0.040   

Total 1119 79.253    

 

The statistical analysis of results (see Table 3) indicates a significant difference between 

intervals, n and their interaction, as shown in the interval plot in Figure 6. The interval 

number corresponds to the following values of µmin and µmax according to this order: 

[0,1], [0.1,1], [0.2,1], [0.3,1], [0.4,1], [0.5,1], [0.6,0.9], [0.7,0.8]. As can be seen, the 

interval range depends on n; specifically, the range decreases when the number of jobs 
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increases. According to these results, for n 50 the interval can be set to [0,1], [0.1,1], 

[0.2,1] or [0.3,1]. Nevertheless, when n increases up to 140 jobs, the best interval 

becomes narrower ([0.4,1], [0.5,1]) and for n bigger than 140, the required interval is 

further reduced [0.6,0.9]. This can be explained by the compromise between the 

diversity of the greedy randomized solutions and their quality. For small values of n, a 

narrow interval could lead to very similar solutions, causing the algorithm to be trapped 

in the same local minimum. On the other hand, a narrower interval is required for higher 

values of n because a huge interval could result in poor quality solutions, far from the 

optimum, that would not be able to improve enough in a limited CPU time. Therefore, 

we set the interval depending on n according to the values in Table 4. 

Table 4. Values of µmin and µmax for each range of n 

n µmin µmax 

0 < n  50 0 1 

75 < n  140 0.5 1 

140 > n 0.6 0.9 

 

(Please insert figure 6 near here) 

 

In the following sections, the performance of the constructive heuristics and of the 

GRASPs proposed is evaluated. Two tests, one for the former and one for the latter, 

were done using Taillard’s (1993) benchmark for the blocking flow shop scheduling 

problem with the total flow time criterion as in Wang et al. (2010) and Deng et al. 

(2012), although in the latter the authors use only the first 90 instances. Taillard’s test-

bed is composed of 120 instances, 12 sets of 10 instances each, from 20 jobs and 5 

machines to 500 jobs and 20 machines where nϵ{20, 50, 100, 200, 500} and mϵ{5, 10, 

20}, but not all combinations of n and m are available. In particular, sets 200x5, 500x5 

and 500x10 are missing but they were added, as in (Pan & Ruiz, 2012), to maintain the 

orthogonality of the experiment. 

 

5.1 Evaluation of the constructive heuristics 

In the first test we compared the performance of NPF, NHPF1 and NHPF2 against 

NSPT, which, according to our nomenclature, indicates that the SPT rule is used to 

sequence the jobs in the first step.  

First, we analyzed the performance of the proposed constructive procedures with and 

without the insertion phase to show that, in some instances, the insertion phase worsens 
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the solution. The results are summarized in the graphs of Figure 7, which show the 

behavior of the constructive procedures before and after the insertion phase. Note that 

we add “_i” to the procedure's name to show the results after the insertion phase. As can 

be seen in the first graph, the insertion phase always improves the SPT sequence. On the 

other hand, in the PF_i, HPF1_i and HPF2_i the solution is sometimes worse than in 

PF, HPF1 and HPF2, respectively. This is so because these three procedures use good 

constructive methods to sequence jobs which are able to find good solutions for the 

problem at hand. Therefore, the solution before the insertion phase is quite good, 

whereas the solution obtained by the SPT rule is poor.   

(please, insert figure 7 near here) 

 

It is also interesting that the more effective the constructive heuristic, the less advisable 

the insertion phase. In general, the solutions obtained by PF are better than those 

obtained by PF_i from 200 jobs onwards, whereas those obtained by HPF1 and HPF2 

are better than by HPF1_i and HPF2_i, respectively, from 100 jobs. But this behavior is 

not easy to predict because it can also be observed in instances with fewer jobs. 

Therefore, when using the insertion procedure it is recommended to evaluate the 

sequence before and after the insertion phase in order to retain the best of both 

sequences. We implemented NPF, NHPF1 and NHPF2 according to this suggestion. 

Second, these procedures were compared with the RPD index calculated as in (11), 

considering (TFrefk) the best known solution so far as the reference value. These 

reference values are summarized at the end of section 5.2 because some were improved 

during the research. 

The algorithms were coded in the same language (QuickBASIC) and tested on the same 

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM. 

The comparison of all procedures with the overall ARPD value (Table 6) indicates that 

NPF is better than NSPT but worse than NHPF1 and NHPF2, which exhibit very good 

performance. In particular, NHPF2 performs slightly better than NHPF1, suggesting 

that the effect of selecting the first job in the sequence is not negligible. We can 

therefore conclude that, in addition to the total processing time, the minimization of 

front delay is a good criterion to select the first job in the sequence. 
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Table 6. Average RPD of constructive heuristics 

n m NSPT NPF NHPF1 NHPF2 

20 5 3.264 2.948 2.928 3.059 

20 10 3.071 2.625 2.719 2.340 

20 20 3.581 2.840 2.857 2.766 

50 5 6.329 5.195 3.903 3.528 

50 10 5.525 4.105 4.191 3.665 

50 20 4.748 4.450 4.398 4.237 

100 5 7.504 7.364 3.757 3.668 

100 10 6.134 5.197 4.450 3.964 

100 20 5.138 4.175 4.428 4.539 

200 10 6.275 3.279 2.505 1.915 

200 20 4.454 2.392 2.676 2.478 

500 20 5.220 1.178 1.464 1.533 

200 5 8.353 6.761 2.260 1.936 

500 5 10.039 7.645 1.330 1.027 

500 10 7.950 2.650 1.399 1.307 

Overall 

 

5.839 4.187 3.018 2.797 

 

 

5.2 Evaluation of the GRASP heuristics 

In the second test, we compared the proposed NHPF2, GRASP(HPF1), 

GRASP(NHPF1), GRASP(HPF2) and GRASP(NHPF2) procedures against two 

benchmark algorithms from the literature, the Harmony Search (HS) algorithm by 

Wang et al. (2010) and the Discrete Artificial Bee Colony (DABC) algorithm by Deng 

et al. (2012). As we showed  that  the insertion phase can worsen the obtained solution, 

we included GRASP(HPF1) and GRASP(HPF2), which use HPF1 and HPF2 to 

generate greedy randomized solutions, to see whether  it is better to use the available 

CPU time to add the insertion phase or to do a few iterations more. 

All algorithms were coded in the same language (QuickBASIC) and tested on the same 

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM. To make a fair 

comparison, all algorithms adopted the CPU time limit as a stopping criterion, which 

was fixed to k∙n
2
∙m 10

-5 
seconds, with k  set to 10 and 30 to analyze the performance of 

these algorithms for two levels of CPU time. Five runs were carried out for each 

algorithm for all 150 instances.  

 

As in the other tests, the relative percentage deviation (RDP) was calculated from the 

best known solution as in (11), taking as TFh.k the average total flow time obtained in 

the 5 runs for heuristic h in instance k, and as TFrefk, the best known solution reported 

in Table 11, at the end of this section. 
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Tables 7 and 8 show the average relative percentage deviation (ARPD) for each set of 

nxm instances for k=10 and k=30, respectively. The comparison of both tables indicates 

that the ranking between these algorithms is the same for the two levels of CPU time 

and that they converge quite fast because the results for k=10 are not very different from 

those obtained with an increased CPU time (k=30). From these results, we can say that 

the proposed GRASPs outperform the other algorithms for those instances with more 

than 20 jobs. For instances with 20 jobs, the best performing algorithm is DABC, but its 

efficiency decreases for larger instance sizes, probably because this algorithm requires 

much more time than the others to reach good solutions.   

Table 7. Average ARPD value of heuristics for k=10 

nxm NHPF2 HS DABC 

GRASP 

(HPF1) 

GRASP 

(NHPF1) 

GRASP 

(HPF2) 

GRASP 

(NHPF2) 

20x5 3.059 0.515 0.090 0.151 0.138 0.145 0.172 

20x10 2.340 0.202 0.067 0.248 0.157 0.198 0.310 

20x20 2.766 0.112 0.039 0.183 0.205 0.161 0.138 

50x5 3.528 5.576 2.358 1.866 1.755 1.695 1.673 

50x10 3.665 4.777 2.320 1.760 1.790 1.748 1.743 

50x20 4.237 3.360 1.577 1.340 1.416 1.385 1.328 

100x5 3.668 7.622 3.253 1.911 1.985 1.928 1.925 

100x10 3.964 6.394 3.804 2.404 2.387 2.046 2.085 

100x20 4.539 5.093 2.871 2.306 2.159 2.142 2.183 

200x10 1.915 6.109 2.948 1.040 1.061 0.999 0.994 

200x20 2.478 4.408 2.491 1.083 0.942 0.909 0.940 

500x20 1.533 5.235 3.043 0.546 0.465 0.438 0.469 

200x5 1.936 8.430 2.913 0.809 0.882 0.756 0.750 

500x5 1.027 10.217 2.861 0.613 0.610 0.481 0.588 

500x10 1.307 8.018 3.730 0.733 0.690 0.626 0.670 

Overall 2.797 5.071 2.291 1.133 1.110 1.044 1.065 

 

The performance of NHPF2 is worth noting. For instances with more than 20 jobs, this 

algorithm is better than HS and performs similarly to DABC, and for more than 100 

jobs it is even more efficient because it obtains better solutions in a considerably shorter 

CPU time. This means that, despite its simplicity, it is a good heuristic for the blocking 

flow shop scheduling problem with flow time minimization. 

GRASP(HPF2) and GRASP(NHPF2) perform very similarly although the latter is 

slightly more advantageous. The same is true of GRASP(HPF1) and GRASP(NHPF1). 

Therefore, for simplicity, it is better to use HPF1 and HPF2 to construct greedy 

randomized solutions. GRASP(HPF2) performs slightly better than GRASP(HPF1) for 
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instances with more than 20 jobs, a difference that grows with the  number of jobs. The 

same behavior is observed for NHPF1 and NHPF2.   

Table 8. Average ARPD value of heuristics for k=30 

nxm NHPF2 HS DABC 

GRASP 

(HPF1) 

GRASP 

(NHPF1) 

GRASP 

(HPF2) 

GRASP 

(NHPF2) 

20x5 3.059 0.228 0.027 0.105 0.115 0.095 0.135 

20x10 2.340 0.148 0.021 0.034 0.135 0.087 0.186 

20x20 2.766 0.058 0.003 0.160 0.137 0.109 0.107 

50x5 3.528 5.021 1.703 1.631 1.643 1.459 1.514 

50x10 3.665 4.311 1.510 1.545 1.561 1.555 1.568 

50x20 4.237 2.999 0.984 1.223 1.196 1.240 1.226 

100x5 3.668 7.594 2.920 1.757 1.741 1.700 1.762 

100x10 3.964 6.437 3.398 2.151 2.227 1.939 1.928 

100x20 4.539 4.930 2.548 1.909 2.052 1.964 2.019 

200x10 1.915 6.059 2.926 0.864 0.827 0.827 0.838 

200x20 2.478 4.366 2.486 0.835 0.878 0.786 0.766 

500x20 1.533 5.248 3.043 0.433 0.409 0.382 0.373 

200x5 1.936 8.298 2.856 0.655 0.641 0.561 0.569 

500x5 1.027 10.230 2.861 0.439 0.453 0.351 0.460 

500x10 1.307 7.997 3.730 0.568 0.585 0.507 0.518 

Overall 2.797 4.928 2.068 0.954 0.973 0.904 0.931 

 

To validate the above observation, the results were analyzed by three-way completely 

randomized ANOVA with interactions (Wu & Hamada, 2000) where the factors were 

algorithm, number of jobs (n) and number of machines (m). The interactions allow us to 

analyze the behavior of algorithms depending on the instance size. As the ranking and 

the gap between algorithms are the same for both levels of CPU time, a statistical 

analysis was conducted for the results obtained with k=30. 

The statistical analysis confirmed a significant difference between algorithms, n, m and 

their interaction. These results were analyzed using three graphs. Figure 8 shows the 

interval plot of average RPD (ARPD) per algorithm, which makes clear that 

GRASP(HF1), GRASP(HPF2), GRASP(NHPF1) and GRASP(NHPF2) are better than 

the others. However, there is no statistical significant evidence that one is better but 

since GRASP(HPF2) has an ARPD slightly lower than the others, we recommend this 

algorithm for the problem at hand. 
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Table 10. Three-way ANOVA: ARPD versus Algorithm, n and m  

Source DF SS MS F P 

Main Effects      

n 4 688.267 172.067 515.70 0.000 

m 2 25.169 12.585 37.72 0.000 

Algoritm 6 2038.140 339.690 1.18.08 0.000 

Interactions      

n*m         8 11.857 1.482 4.44 0.000 

n*Algorithm      24 1021.643 42.568 127.58 0.000 

m*Algorithm      12 179.737 14.978 44.89 0.000 

Error 993 331.323 0.334   

Total 1049 4296.136    

 

 (please insert Figure 8 near here) 

 

Figure 9 shows the interaction between the algorithms and n. It can be observed that for 

n=20 NHPF2 performs worse than the others. For n=50 the algorithms are separated in 

two groups: NHPF2 and HS, with lower performance, and the rest of algorithms. From 

n=100 onwards, the four GRASPs are more efficient than the other algorithms and 

NHPF2 performs better than DABC when n increases. Notice that the interaction is due 

to the behavior of HS which, contrary to the others algorithms, performs worse when n 

increases. 

(please insert Figure 9 near here) 

 

Figure 10 shows the interaction between the algorithms and m. The algorithms have 

similar performance in all cases, irrespective of m. However, the interaction is due to 

the performance of HS that decreases when m increases. 

(please insert figure 10 near here) 

 

Finally, the new best solutions found during this research are summarized in Table 11, 

which can be used as a basis of comparison for future research. The number in columns 

“Source” indicates the paper that reported the values:  “1” for Wang et al. (2010), “2” 

for Moslehi and Khorasanian (2013), “3” for Deng et al. (2012) and “4” for this 

research. For simplicity, the numbering of Taillard’s instances is kept. Therefore, 

instances from 1 to 120 belong to Taillard’s  test-bed and those from 121-150 are the 30 

instances added. 
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Table 11. Best solutions for the blocking flow shop with flow time criterion 
Set Best Source  Set Best Source  Set Best Source 

205    2010    2020   

1 14953 1,2,3,4  11 22358 1,2,3,4  21 34683 1,2,3,4 

2 16343 1,2,3,4  12 23881 1,2,3,4  22 32855 1,2,3,4 

3 14297 1,2,3,4  13 20873 1,2,3,4  23 34825 1,2,3,4 

4 16483 1,2,3,4  14 19916 1,2,3,4  24 33006 1,2,3,4 

5 14212 1,2,3,4  15 20196 1,2,3,4  25 35328 1,2,3,4 

6 14624 1,2,3,4  16 20126 1,2,3,4  26 33720 1,2,3,4 

7 14936 1,2,3,4  17 19471 1,2,3,4  27 33992 1,2,3,4 

8 15193 1,2,3,4  18 21330 1,2,3,4  28 33388 1,2,3,4 

9 15544 1,2,3,4  19 21585 1,2,3,4  29 34798 1,2,3,4 

10 14392 1,2,3,4  20 22582 1,2,3,4  30 33174 1,2,3,4 

505    5010    5020   

31 72672 3,4  41 99674 3,4  51 136865 3,4 

32 78140 3  42 95608 4  52 129958 4 

33 72913 4  43 91791 3,4  53 127617 3,4 

34 77399 4  44 98454 3,4  54 131889 3,4 

35 78353 4  45 98164 3  55 130967 3 

36 75402 3,4  46 97246 4  56 131760 4 

37 73842 4  47 99953 3,4  57 134217 3,4 

38 73442 4  48 98027 4  58 132990 4 

39 70871 3,4  49 96708 3,4  59 132599 3,4 

40 78729 4  50 98019 4  60 135710 4 

100x5    100x10    10020   

61 288627 4  71 354524 4  81 425304 4 

62 280491 4  72 335609 4  82 436360 3 

63 276576 4  73 344090 4  83 430634 3 

64 261278 4  74 359491 4  84 432344 4 

65 274638 4  75 338537 3  85 427150 4 

66 267554 4  76 327254 4  86 430532 3 

67 275823 4  77 336360 4  87 437739 4 

68 269872 4  78 343368 4  88 441173 3 

69 285428 4  79 344563 4  89 432876 3 

70 282828 4  80 347845 4  90 437785 4 

20010    20020    500x20   

91 1282396 4  101 1502049 4  111 8733885 4 

92 1284743 4  102 1542868 4  112 8854894 4 

93 1283521 4  103 1556987 4  113 8793747 4 

94 1283126 4  104 1549491 4  114 8839615 4 

95 1283888 4  105 1517943 4  115 8797812 4 

96 1252880 4  106 1530159 4  116 8849661 4 

97 1304158 4  107 1532090 4  117 8786821 4 

98 1304187 4  108 1547372 4  118 8808920 4 

99 1279766 4  109 1527564 4  119 8792132 4 

100 1278516 4  110 1545061 4  120 8862934 4 

2005    500x5    500x10   

121  1077132 4  131 6390125 4  141 7556997 4 

122 1026709 4  132 6418782 4  142 7673115 4 

123 1066136 4  133 6467532 4  143 7630163 4 

124 1051122 4  134 6336628 4  144 7627243 4 

125 1065882 4  135 6374245 4  145 7507780 4 

126 1028241 4  136 6286829 4  146 7538161 4 

127 1083187 4  137 6268190 4  147 7513119 4 

128 1051034 4  138 6360466 4  148 7577516 4 

129 1065897 4  139 6329512 4  149 7551199 4 

130 1039941 4  140 6321622 4  150 7637538 4 
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6 Conclusions 

 

This paper focuses on the blocking flow shop problem in order to minimize the total 

flow time of jobs. First, two constructive algorithms based on the PF algorithm, NHPF1 

and NHPF2, are presented. They consist of three steps: selection of the first job in the 

sequence, construction of the remaining sequence in order to minimize machine 

timeout, and insertion phase of NEH to try to improve the sequence. However, as the 

insertion phase can worsen the solution, especially in NHPF1 and NHPF2, the 

procedures evaluate the sequences obtained before and after the insertion phase to retain 

the best of both algorithms. 

 The main difference between NHPF1 and NHPF2 is the selection of the first job in the 

sequence. NHPF1 chooses the job with a shorter processing time whereas in NHPF2 the 

front delay generated by the jobs is also considered. The computational evaluation 

showed not only the good performance of the two algorithms but also the significant 

influence of the selection of the first job to be scheduled on the quality of the resulting 

sequence.   

Second, four versions of a GRASP are described. The main difference between them is 

the constructive procedure used to obtain greedy randomized solutions, i.e. HPF1, 

NHPF1, HPF2 and NHPF2. The GRASPs was combined with a variable neighborhood 

search that uses the insertion and swap neighborhood. These algorithms were tested 

against two algorithms proposed for the problem at hand, i.e. the HS algorithm (Wang 

et al., 2010) and a DABC procedure (Deng et al., 2012), and against the NHPF2 

algorithm here proposed. The comparison between them indicated that the presented 

GRASPs outperform the other algorithms in those sets of more than 20 jobs and that, 

despite its simplicity, NHPF2 performs better than HS for instances with more than 20 

jobs, and even better than DABC for instances with more than 100 jobs. 

Finally, the new best known solutions found during this research for most of the 

Taillard’s instances used in the blocking flow shop with total flow time minimization 

are reported. These new solutions could serve as a basis for comparison for future 

studies. 

One future research direction involves the application of the above algorithms to more 

complex scheduling problems considering other constraints like setup times, parallel 

machines or multicriteria scheduling problems. Their simplicity and good performance 

make them real candidates for adaptation to and implementation in real situations. 
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 Figure 1. Sequence for a 4-job, 4-machine blocking flow shop 

Figure 2. Completion time of jobs J1, J2 or J3 when scheduled in the first position of a sequence 

Figure 3. Measurement of front delay 

Figure 4. Pseudocode of GRASP(NHPF1) and GRASP(NHPF2) 

Figure 5. Pseudocode of the Local Search 

Figure 6. Interval plot of ARPD values for each interval and n values 

Figure 7. ARPD values of each constructive procedure by nxm  

Figure 8. Interval plot of ARPD values of algorithms for k=30 

Figure 9. Interval plot of ARPD values of algorithms and n 

Figure 10. Interval plot of ARPD values of algorithms and m. 
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Procedure GRASP(NHPF1) 

 σbest = ∞  

      repeat 

 µ=µmin+(µmax-µmin)*random(0,1) 

 σ’ ← NHPF1(µ) 

 σ’←local_search (σ’) 

  if cost(σ’)< cost(σbest) 

  σbest← σ’ 

 end 

      until stopping_condition met 

end  

Procedure GRASP(NHPF2) 

 σbest = ∞  

      repeat 

 λ=0.65 

 µ=µmin+(µmax-µmin)*random(0,1) 

 σ’ ← NHPF2(λ, µ) 

 σ’←local_search (σ’) 

  if cost(σ’)< cost(σbest) 

  σbest← σ’ 

 end 

      until stopping_condition met 

end  
 

Figure 4



 

Procedure Local Search 

    TF*= TF(σ);  σ * = σ;  

       nm=0 

   if random < β then 

     ls = 0 

   else ls = 1 

   endif          

     do 

          nm=nm+1; 

         TF0 = TF(σ)  

        If ls =0 then    

           LS1  

         else  
           LS2 

         endif 
         if TF(σ) < TF0 or nm=1 then 

             ls = 1 – ls  

          else exit do 

         endif 

   loop 

 end  

Figure 5
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