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In independent investigations, the variable sample size (VSS) scheme and the side-sensitive synthetic (SS)
rule proved to reduce the delay with which the X chart signals. Based on these findings we investigate
the X chart’s performance with the joint use of the VSS scheme and the side-sensitive synthetic rule.
The SSVSS X chart outperforms the pure VSS X chart, especially when the risk of false alarms and the rate
of inspected items per sampling cannot be high. In these cases, the VSS X chart detects moderate mean
shifts (around one standard deviation) in half of the time thanks to the side-sensitive synthetic rule.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In 1920s, Walter A. Shewhart introduced the X control chart
with the well-known signaling rule that signals when a sample
point falls in the action region. The X chart with this easy-to-use
rule works properly when shifts in the process mean are larger
than one standard deviation – taking samples of size four, the X
chart requires less than 6.3 samples to signal a shift larger than
one standard deviation. For smaller shifts, the practitioners are
advised to use the Shewhart charts with supplementary run rules.
Champ and Woodall (1987) studied the X control chart with sup-
plementary run rules and they concluded that with these rules
the Shewhart chart is more sensitive to small shifts in the mean,
but not as sensitive as the cumulative sum (CUSUM) chart. The
synthetic chart proposed by Wu and Spedding (2000) is a run rules
chart that employs the conforming run length (CRL) to assess the
state of the process. The CRL is the number of conforming samples
between two consecutive nonconforming samples plus the ending
nonconforming one. A nonconforming sample is the one with an X
value larger than the upper control limit UCL ¼ l0 þ krX or smaller
than the lower control limit LCL ¼ l0 � krX , where l0 is the
in-control value of the process mean, k is the width of the control
limits and rX is the standard deviation of the sample mean. The

synthetic chart signals when CRL < L, where L is a specified positive
integer. Davis and Woodall (2002) constructed a Markov chain
model to evaluate the performance of the synthetic chart in terms
of the zero-state and the steady-state average run lengths (ARLs).

The interest in synthetic charts has been growing. Costa, De
Magalhaes, and Epprecht (2009) evaluated the properties of a syn-
thetic chart with two-stage testing that is able to signal changes in
the process mean and in the process variance. Machado, Costa, and
Rahim (2009) studied the properties of the synthetic VMAX chart
which is used to control the covariance matrix of bivariate pro-
cesses. Khoo, Lee, Wu, Chen, and Castagliola (2011) proposed a
synthetic double sampling (DS) chart, which combines the double
sampling X chart and the CRL chart for monitoring the process
mean. Costa and Machado (2015) extended their study by
including the side-sensitive feature and the computation of the
steady-state ARL. In terms of the zero-state, the synthetic DS chart
outperforms the DS chart. We cannot say the same regarding to the
steady-state ARL. Inspired by the works of Khoo et al. (2011) and
Haridy et al. (2012), Chong, Khoo, and Castagliola (2014) proposed
a synthetic double sampling chart for attributes, which combines
the double sampling np chart and the CRL chart. Recently, a lot of
research in SPC has focused in synthetic charts for univariate pro-
cesses, including synthetic X charts, see Wu, Ou, Castagliola, and
Khoo (2010), Zhang, Castagliola, Wu, and Khoo (2011), Yeong,
Khoo, Wu, and Castagliola (2012), Yeong, Khoo, Lee, and Rahim
(2013), Bajirao and Parasharam (2015), Guo, Wang, and Cheng
(2015), Khoo, Tan, Chong, and Haridy (2015), and Rajmanya and
Ghute (2014). Khoo, Wu, Castagliola, and Lee (2013), Haridy, Wu,
Abhary, Castagliola, and Shamsuzzaman (2014), Lee, Khoo, and
Xie (2014) and Lee and Khoo (2015) also considered the use of
synthetic charts to control multivariate processes.
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Machado and Costa (2014a) studied the side-sensitive version
of the synthetic chart. The side-sensitive chart signals when two
points, not far from each other and on the same side of the center-
line, fall beyond the warning limit. If the side does not matter, the
side-sensitive chart reduces to a synthetic chart. Machado and
Costa (2014b) also extended the work of Wu et al. (2010) combin-
ing the side-sensitive synthetic chart with an X chart. The results
proved that the synthetic-X chart performs better when it is
side-sensitive.

The variable sample size (VSS) scheme introduced by Costa
(1994) has also the purpose to improve the ability of the X chart
in signaling mean shifts smaller than one and a half standard devi-
ations. According to the VSS scheme, the position of the last sample
mean defines the size of the next sample. If the sample mean falls
in the central region, then it is reasonable to relax the control by
decreasing the size of the next sample. Otherwise, if the sample
mean falls in the warning region, then it is reasonable to tighten
the control by increasing the size of the next sample. The idea of
varying not only the size of the samples but also the sampling
intervals and/or the control limits was also explored by Costa
(1997, 1998, 1999a, 1999b). Recent papers dealing with X charts
with variable parameters include Castagliola, Zhang, Costa, and
Maravelakis (2012), Costa and Machado (2011), Lee (2013),
Chew, Khoo, Teh, Castagliola, and Industrial Engineering (2015),
Lim, Khoo, Teoh, and Xie (2015) and Noorossana, Shekary, and
Deheshvar (2015).

In this article, we propose two VSS X charts; the first one is
combined with a synthetic chart (SVSS X chart) and the second
one is combined with a side-sensitive synthetic chart (SSVSS X
chart). The Markov chain approach helped to obtain the properties
of the proposed charts.
2. Assumptions and the measures of performance

The SVSS and SSVSS X charts are employed to monitor a process
whose quality characteristic of interest (X) is normally distributed,
X � N (l; r2). The process starts and remains in a state of statistical
control until the occurrence of an assignable cause. During the in-
control period l ¼ l0 and after that the mean shifts to
l1 ¼ l0 þ dr. After a true alarm, the assignable cause is eliminated
and the process is brought back to the state of statistical control.

According to Davis and Woodall (2002), the proper quantity to
measure the performance of a synthetic chart is the steady state
ARL (SSARL) – the ARL under the assumption that the process
remains in-control for a long time before the occurrence of the
assignable cause. There are many other quantities to measure the
performance of the control charts. For example, Wu, Yang, Jiang,
and Khoo (2008) used the Extra Quadratic Loss (EQL) to measure
and compare the performance of the charts, which is given by:

EQL ¼ r2

dmax

Z dmax

0
d2SSARLðdÞdd ð1Þ

where SSARLðdÞ is the SSARL computed with l ¼ l1 and dmax is the
upper bound of d. Expression (1), assumes that all mean shifts
within the range (0 < d 6 dmax) occur with equal probability, that
is, the magnitude of the shift, d, is a random variable with uniform
distribution (see Wu et al. (2008) for details).
3. The VSS X chart

When the VSS scheme is in use, random samples with variable
size, switching between small (n1) and large (n2) sizes, are taken at
regular intervals of time. The standardized sample means
ZðniÞ ¼ ðX � l0Þ
ffiffiffiffi
ni

p
=r are plotted on a control chart with warning

(�w) and action (�k) limits.
The size of each sample depends on the point position of the

preceding sample. If the current ZðniÞ point falls in the central
region, then the next sample size will be n1, and if the current
ZðniÞ point falls in the warning region, then the next sample size
will be n2. The chart produces a signal when a sample point falls
in the action region. The specifications of w and k take into account
the constraint that during the in-control period the conditional
probability p0, of a sample point falling in the central region, given
that it did not fall in the action region, is:

p0 ¼ Pr½jZðniÞj < wj jZðniÞj < k� ð2Þ
The size of the first sample that is taken from the process when

it is just starting, or after a false alarm, is randomly decided to be
small (large) with probability p0 (1 � p0). During the in-control
period, all samples have a probability p0 of being small and a prob-
ability of 1 � p0 of being large.

During the in-control period, the rate of inspected items per
sampling (n) is given by

�n ¼ n1p0 þ n2ð1� p0Þ ð3Þ
The steady-state ARL of the VSS chart is (see Costa (1994) for

details):

SSARL ¼ p0
1� p22 þ p12

ð1� p11Þð1� p22Þ � p12p21

� �

þ ð1� p0Þ
1� p11 þ p21

ð1� p11Þð1� p22Þ � p12p21

� �
ð4Þ

where

p11 ¼ Pr½jZðn1Þj < wjl ¼ l1�
p12 ¼ Pr½w < jZðn1Þj < kjl ¼ l1�
p21 ¼ Pr½jZðn2Þj < wjl ¼ l1�
p22 ¼ Pr½w < jZðn2Þj < kjl ¼ l1�
4. The VSS synthetic charts

4.1. The side-sensitive synthetic X chart with variable sample size
(SSVSS X chart)

The side-sensitive synthetic chart combined with the VSS X
chart (SSVSS chart) signals when a sample point falls in the action
region or two points, not far from each other and on the same side
of the center line, fall in the warning region-two, see Fig. 1. To mea-
sure the distance between these two points, the conforming run
length (CRL) is defined by taking into consideration the following
stratification; samples with their X values in the warning region-
two are nonconforming and samples with their X values in the cen-
tral region or even in the warning region-one are conforming. The
CRL is the number of conforming samples between two consecu-
tive nonconforming samples plus the ending nonconforming one;
in other words, the first of the two consecutive nonconforming
samples is the reference to compute the CRL. A CRL lower than or
equal to a specified positive integer L (CRL < L) triggers a signal,
except for the case when the X values of the two consecutive non-
conforming samples fall in different warning regions. If the X value
of the first nonconforming sample falls in the (lower) upper warn-
ing region-two and X value of the second nonconforming sample
falls in the (upper) lower warning region-two the proposed chart
doesn’t signal but, similarly to the cases where the CRL > L, the end-
ing nonconforming sample becomes the reference to compute the
next CRL. The construction of the transition probabilities matrix
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Fig. 1. The SSVSS X chart.

Table 1
The one-step transition between two states of transient matrix.

State (i) pij State (j) pij State (i)

A� 00..00.00c A+

B� 00..00.00w B+

00..00..00c D� Signal D+ 00..00..00w
C� 00..00..01 C+

C� 00..00..01 C+

00..00..01 C+

B+ 00..00..10w
A+ 00..00..10c

00..00..01 C++D+ Signal C++D+ 00..00..01

00..00..10c A+

00..00..10w B+

C+ 00..00..01
A� 00..10..00c A+

B� 00..10..00w B+

00..01..00c C�+D� Signal C++D+ 00..01..00w
C� 00..00..01 C+

A�
00..10.00c A+

B�
00..10.00w B+

00..01..00c C�+D� Signal C++D+ 00..01..00w
C� 00..00..01 C+
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(TP matrix) is the first step to obtain the steady-state ARLs (SSARLs)
of the SSVSS X chart. The general form of the TP matrix is in (5);
with L = 3, the TP matrix reduces to the one in (6).

According to Fig. 1, the ZðniÞ ¼ ðX � l0Þ
ffiffiffiffi
ni

p
=r values, shortly Z

values, of the last L samples, including the current sample, define
the transient states: ‘‘0” means jZj < wc , ‘‘1” means
�k < Z < �wc; and ‘‘1” means wc < Z < k. The position of the cur-
rent sample, shortly Zc , also defines the size of the next sample,
because of that, when the current sample is conforming
(jZcj < wc), it is necessary to distinguish if jZcj < w (represented
by ‘‘0c”) or w < jZcj < wc (represented by ‘‘0w”). If jZcj < w the next
sample will be small, but ifw < jZcj < k (union of ‘‘1”, ‘‘1” and ‘‘0w”)
the next sample will be large.

The one-step transitions between two states of the transient
matrix (5) are in Table 1. According to Table 1, if the current state
is state (00 . . .01), (0 . . .010c), (0 . . .010w), . . . , (001 . . .0c),
(001 . . .0w), (010 . . .0c), (010 . . .0w), (100 . . .0c) or (100 . . .0w) and
the next sample point falls in the lower warning region-two,
�k < Z < �wc; the Markov chain moves to state 00 . . .01.
Similarly, if the current state is state (00 . . .01), (0 . . .010c),
(0 . . .010w), . . . , (001 . . .0c), (001 . . .0w), (010 . . .0c), (010 . . .0w),
(100 . . .0c) or (100 . . .0w) and the next sample point falls in the
upper warning region-two, wc < Z < k, the Markov chain moves to
state 00. . .01.

The approach based on the TP matrix to study the performance
of the side-sensitive synthetic X chart (SS chart) can also be used to
obtain the SSARLs of the X chart with the supplementary run rules
suggested by the Western Electrical Handbook (1956), shortly
the RR chart. The difference lies on the set of transient states. For
instance, the side-sensitive X chart with L = 2 requires five

transient states: (00), (01), (01), (10), (10), whereas the X chart
with the two-of-three supplementary rule requires these same five

transient states plus (11) and (11). Khoo and Ariffin (2006),
Acosta-Mejia (2007) and Antzoulakos and Rakitzis (2008) dis-
cussed the Shewhart X charts and their delay reduction in signaling
small shifts thanks to the use of the supplementary run rules. One
of the Reviewers proved that the side-sensitive rule is exactly the
revised 2-of-L+1 rule proposed by Antzoulakos and Rakitzis (2008).



ð5Þ

ð6Þ
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Table 2
The probabilities of the transient matrix (5).

Aþ ¼ Pr½jZðn2Þ þ d
ffiffiffiffiffiffi
n2

p j < w� A� ¼ Pr½jZðn1Þ þ d
ffiffiffiffiffiffi
n1

p j < w�
Bþ ¼ Pr½jZðn2Þ þ d

ffiffiffiffiffiffi
n2

p j < wc � � Pr½jZðn2Þ þ d
ffiffiffiffiffiffi
n2

p j < w� B� ¼ Pr½jZðn1Þ þ d
ffiffiffiffiffiffi
n1

p j < wc � � Pr½jZðn1Þ þ d
ffiffiffiffiffiffi
n1

p j < w�
Cþ ¼ Pr½wc < Zðn2Þ þ d

ffiffiffiffiffiffi
n2

p
< k� C� ¼ Pr½wc < Zðn1Þ þ d

ffiffiffiffiffiffi
n1

p
< k�

Cþ ¼ Pr½�k < Zðn2Þ þ d
ffiffiffiffiffiffi
n2

p
< �wc � C� ¼ Pr½�k < Zðn1Þ þ d

ffiffiffiffiffiffi
n1

p
< �wc �

Dþ ¼ Pr½jZðn2Þ þ d
ffiffiffiffiffiffi
n2

p j > k� D� ¼ Pr½jZðn1Þ þ d
ffiffiffiffiffiffi
n1

p j > k�
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The probabilities of the events ‘‘1”, ‘‘0w”, ‘‘0c” and ‘‘1” depend on
the sample size; with large samples, they occur with probabilities
Cþ, Bþ, Aþ and Cþ, and with small samples, they occur with
probabilities C�, B�, A� and C�, see Table 2. The absorbing
state can be reached from any transient state. Depending on the
transient state, the absorbing state is reached with probability
Dþ; D�; Dþ þ Cþ; Dþ þ Cþ; D� þ C�, or D� þ C�. During the
in-control period d = 0, consequently, Aþ ¼ A� ¼ A; Bþ ¼ B� ¼ B;
Cþ ¼ C� ¼ Cþ ¼ C� ¼ C; and Dþ ¼ D� ¼ D.

The SSARL is the resulting product of S0ARL, where S is the
vector with the stationary probabilities of being in each nonab-
sorbing state and ARL is the vector of ARLs taking each nonab-

sorbing state as the initial state. The ARL is given by ðI� RÞ�11,
where I is a 4L � 4L identity matrix, R is the transition matrix
given in (5) with the last row and column removed, and 1 is a
4L � 1 vector of ones. The S vector is the solution of S0Radj ¼ S,
constrained to S01 ¼ 1. The matrix Radj is an adjusted version of
R, where the non-zero cells of all lines are divided by 1 – D–C,
except the non-zero cells of the two central lines that are divided
by 1 � D. The matrix Radj is in (7). The SðiÞ elements of S are given
by g�1SCðiÞ, where g is the sum of SCðiÞ; i ¼ 1;2; . . . ;4L. The 4L ele-
ments SCðiÞ of vector SC are in Table 3, with E ¼ A=ð1� D� CÞ,
F ¼ B=ð1� D� CÞ, G ¼ C=ð1� D� CÞ, A0 ¼ A=ð1� DÞ, B0 ¼
B=ð1� DÞ, and C0 ¼ C=ð1� DÞ. The Average Number of Observa-
tions to Signal (ANOS) has also been used to compare the perfor-
mance of the VSS charts. The steady state ANOS is the resulting

product of S0ðI� RÞ�1N; the 4L elements NðiÞ of vector N are also
in Table 3.
0 0 0 0 . . . 0 0 0 F E G 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 F E G 0 0 . . . 0 0 0 0
F E 0 0 . . . 0 0 0 0 0 G 0 0 . . . 0 0 0 0
F E 0 0 . . . 0 0 0 0 0 G 0 0 . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 F E . . . 0 0 0 0 0 G 0 0 . . . 0 0 0 0
0 0 F E . . . 0 0 0 0 0 G 0 0 . . . 0 0 0 0
0 0 0 0 . . . F E 0 0 0 G 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 C0 B0 A0 C0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 C0 B0 A0 C0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 G 0 0 0 E F . . . 0 0 0 0
0 0 0 0 . . . 0 0 G 0 0 0 E F . . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 0 G 0 0 0 E F . . . 0 0 0 0
0 0 0 0 . . . 0 0 G 0 0 0 0 0 . . . 0 0 E F
0 0 0 0 . . . 0 0 G 0 0 0 0 0 . . . 0 0 E F
0 0 0 0 . . . 0 0 G F E 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 G F E 0 0 0 . . . 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
ð7Þ
4.2. The synthetic X chart with variable sample size (SVSS X chart)

The synthetic chart combined with the VSS X chart signals when
a sample point falls in the action region or two points, not far from
each other, fall in the warning region-two. As the two points might
be on opposite sides of the centerline, the event ‘‘1” is not necessary
anymore, and the event ‘‘1” has now the following meaning
wc < jZiðniÞj < k. The transition matrix (5) reduces to matrix (8).
ð8Þ



Table 3
The 4L elements of SC and N.

i SCðiÞ i = 1, . . . ,L � 1 NðiÞ
1, 4L F � (E + F)L�2 2L � 2i n1

2, 4L � 1 E � (E + F)L�2 2L + 2 + 2i
3, 4L � 2 F � (E + F)L�3

4, 4L � 3 E � (E + F)L�3 2L – 1 � 2i n2

. . . . . . 2L + 3 + 2i
2L � 5, 2L + 6 F � (E + F)
2L � 4, 2L + 5 E � (E + F) i NðiÞ
2L � 3, 2L + 4 F 2L + 1 n1

2L � 2, 2L + 3 E
2L � 1, 2L + 2 1 2L � 1
2L 2FðEþ FÞL�1 þ B0ðEþ FÞL=C0 2L n2

2L + 1 2EðEþ FÞL�1 þ A0ðEþ FÞL=C0 2L + 2

Table 4
Effect of L on the SSARL of the SSVSS X chart (k = 3.5, w = 0.672 n1 = 2, n2 = 6, n = 4).

L 1 2 3 4 5 6
wc 1.822 1.965 2.044 2.098 2.138 2.171
d
0 370.4 370.4 370.4 370.4 370.4 370.4
0.2 132.5 132.7 131.8 131.0 130.3 129.9
0.4 33.1 32.5 32.1 32.0 31.7 31.9
0.6 11.1 10.7 10.7 10.7 10.8 10.9
0.8 5.2 5.0 5.1 5.1 5.2 5.3
1 3.2 3.2 3.2 3.2 3.3 3.3
1.2 2.4 2.4 2.4 2.4 2.4 2.5
1.4 1.9 2.0 2.0 2.0 2.0 2.0
1.6 1.7 1.7 1.7 1.7 1.7 1.7
1.8 1.5 1.5 1.5 1.5 1.5 1.5
2 1.4 1.4 1.4 1.4 1.4 1.4
EQL 21.63 21.50 21.49 21.54 21.60 21.66

Table 5
Effect of k on the SSARL of the SSVSS X chart (L = 3, w = 0.672, n1 = 2, n2 = 6, n = 4).

k 3.1 3.2 3.3 3.4 3.5 4 8
wc 2.239 2.141 2.092 2.062 2.044 2.012 2.007
d
0 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.2 158.0 144.8 138.0 134.2 131.8 128.9 128.9
0.4 40.5 35.9 33.9 32.8 32.1 31.5 31.5
0.6 12.7 11.5 11.0 10.8 10.7 10.7 10.7
0.8 5.5 5.2 5.1 5.1 5.1 5.2 5.2
1 3.2 3.2 3.2 3.2 3.2 3.3 3.3
1.2 2.3 2.3 2.3 2.4 2.4 2.5 2.5
1.4 1.9 1.9 1.9 1.9 2.0 2.1 2.1
1.6 1.6 1.6 1.6 1.7 1.7 1.9 1.9
1.8 1.4 1.5 1.5 1.5 1.5 1.7 1.7
2 1.3 1.4 1.4 1.4 1.4 1.5 1.5
EQL 22.53 21.71 21.45 21.42 21.49 22.41 25.03
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Again, the ZðniÞ ¼ ðX � l0Þ
ffiffiffiffi
ni

p
=r values, shortly Z values, of the

last L samples define the transient states; ‘‘0c” means jZj < w, ‘‘0w”
means w < jZj < wc , and ‘‘1” means wc < jZj < k. With large
samples, the events ‘‘0w”, ‘‘0c” and ‘‘1” occur with probabilities,
Bþ; Aþ and Cþ; with small samples, they occur with probabilities
B�; A� and C�. All these probabilities are the ones given in Table 2,
except that Cþ ¼ Pr½wc < jZðn2Þ þ d

ffiffiffiffiffi
n2

p j < k� and C� ¼ Pr½wc <

jZðn1Þ þ d
ffiffiffiffiffi
n1

p j < k�. The remaining calculations to determine the
steady-state ARLs of the synthetic X with variable sample size
are similar to those presented for the side-sensitive version of
the synthetic VSS X chart.
4.3. The performance and the design of the VSS synthetic charts

Table 4 presents the SSARLs and the EQL of the SSVSS X chart for
ARL0 = 370.4, k = 3.5, dmax = 2.0 and L varying from 1 to 6. The ARL0
is the in-control value of the steady state ARL. In Table 4, each row
corresponds to a specified mean shift and, in each row, the num-
bers in bold correspond the lowest SSARLs. The parameter L
enhances the detection of small shifts (d ffi 0.5). The EQL decreases
as L increases from 1 to 3; after that, the EQL increases with L. The
lowest EQL is reached with L = 3 (EQL = 21.49).

Table 5 presents the SSARLs and the EQL of the SSVSS-X chart for
ARL0 = 370.4, L = 5, dmax = 2.0 and different values of k. In Table 5,
each row corresponds to a specified mean shift and, in each row,
the numbers in bold correspond the lowest SSARLs. A larger value
of k enhances the detection of small shifts. The EQL decreases as
the value of k increases from 3.1 to 3.4; after that, the EQL
increases. The lowest EQL is reached with k = 3.4 (EQL = 21.42).

Tables 6 and 7 compare the SSARL and the SSANOS of the stan-
dard VSS chart, that is, the one proposed by Costa (1994), with
the SVSS X and the SSVSS X charts. These Tables also contain the
EQL values for dmax = 2.0. In Tables 6 and 7, the lowest SSARLs,



Table 6
The steady state ARL and ANOS of the VSS charts (L = 3, ARL0 = 370.4).

n = 2 n1 = 1 n2 = 3 ANOS0 = 740.8 n = 4 n1 = 2 n2 = 6 ANOS0 = 1481.6

wc 2.179 2.044 2.179 2.044
w 0.672 0.672 0.672 0.672 0.672 0.672
k 3.0 3.0 3.5 3.5 3.0 3.0 3.5 3.5

X VSS SVSS SVSS X VSS SVSS SVSS

d ARL ANOS ARL ANOS ARL ANOS ARL ANOS ARL ANOS ARL ANOS
0.2 263 261 521 244 497 202 410 200 195 781 173 714 132 544
0.4 131 122 244 98.7 210 71.6 152 71.6 61.0 243 43.8 196 32.1 143
0.6 63.4 52.8 105 37.2 84 27.6 62 27.8 19.9 78 13.3 65 10.7 52
0.8 32.4 23.8 47 15.9 38 12.6 30 12.4 7.9 31 5.8 29 5.1 26
1 17.7 11.8 23 8.1 20 6.9 17 6.3 4.1 15 3.4 18 3.2 16
1.2 10.4 6.6 12 5.0 13 4.4 11 3.6 2.6 9.4 2.5 12 2.4 12
1.4 6.5 4.2 7.9 3.5 8.9 3.2 8.2 2.4 1.9 6.9 2.0 9.8 2.0 9.6
1.6 4.3 3.0 5.4 2.7 6.9 2.6 6.5 1.7 1.6 5.6 1.7 8.2 1.7 8.1
1.8 3.1 2.3 4.1 2.3 5.6 2.2 5.5 1.4 1.4 5.0 1.5 7.1 1.5 7.1
2 2.3 1.9 3.4 2.0 4.8 1.9 4.7 1.2 1.3 4.7 1.4 6.5 1.4 6.5
EQL 75.4 58.2 46.8 39.2 33.6 27.1 24.1 21.5

Table 7
The steady state ARL and ANOS of the VSS charts (L = 3, ARL0 = 700.0).

n = 2 n1 ¼ 1 n2 ¼ 3 ANOS0 = 1400.0 n = 4 n1 ¼ 2 n2 ¼ 6 ANOS0 = 2800.0

wc 2.345 2.217 2.345 2.217
w 0.674 0.673 0.674 0.673 0.673 0.674
k 3.189 3.189 3.5 3.5 3.189 3.189 3.5 3.5

X VSS SVSS SVSS X VSS SVSS SVSS

d ARL ANOS ARL ANOS ARL ANOS ARL ANOS ARL ANOS ARL ANOS
0.2 479 474 949 441 897 367 746 356 346 1383 302 1246 233 961
0.4 225 208 416 164 348 120 255 118 98.4 392 67.2 302 49.6 222
0.6 104 84.3 168 56.2 128 41.8 95 42.8 29.2 116 17.9 88 14.3 70
0.8 50.4 35.5 71 21.8 53 17.2 42 17.8 10.7 42 7.0 36 6.1 31
1 26.3 16.5 32 10.3 26 8.6 22 8.5 5.0 19 3.8 20 3.5 18
1.2 14.7 8.7 17 5.9 15 5.2 13 4.6 3.0 11 2.6 13 2.5 13
1.4 8.8 5.2 9.9 3.9 10 3.6 9.3 2.9 2.1 7.6 2.1 10 2.0 10
1.6 5.6 3.5 6.5 2.9 7.5 2.8 7.1 2.0 1.7 6.0 1.8 8.4 1.7 8.3
1.8 3.8 2.6 4.7 2.4 6.0 2.3 5.8 1.5 1.5 5.2 1.6 7.2 1.6 7.2
2 2.8 2.1 3.7 2.0 5.0 2.0 4.9 1.3 1.4 4.8 1.4 6.5 1.4 6.5
EQL 114 85.1 63.9 52.9 47.9 37.6 30.4 26.2

Table 8
VSS EWMA and SSVSS charts.

n1=�n ¼ 0:6 n2=�n ¼ 4:0 n1 = 3, n2 = 20, nbar = 20
H = 0.372 H = 0.629 wc = 1.781
h = 0.280 h = 0.430 w = 1.554
k = 0.044 k = 0.099 k = 5.000

d VSS EWMA VSS EWMA SSVSS

0 370.4 370.4 370.4
0.50 24.68 35.18 54.17
0.75 14.50 14.50 20.85
1.00 10.36 9.18 10.05
1.50 6.68 5.51 4.32
2 4.99 4.03 3.01
EQL 29.8 27.3 28.5
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ANOSs and EQLs are in bold. The SSVSS X chart always has smaller
EQLs than the VSS and the SVSS X charts. However, the VSS chart
requires less observations than the SSVSS chart to signal mean
shifts larger than one standard deviation. The use of the SSVSS X
chart is highly recommended when the rate of inspection and
the false alarm risk are low; the highest EQL reductions are
observed with �n = 2 and ARL0 = 700.0.

Table 8 compares the SSVSS X chart with the VSS EWMA chart
proposed by Reynolds and Arnold (2001). They considered the
EWMA control statistic

Yk ¼ ð1� kÞYk�1 þ kZk ð9Þ
where

Zk ¼
ffiffiffi
�n

p Xk � l0

r
ð10Þ

The EWMA signals that the process mean has changed when
jYkj P H, where H is the control limit. With the VSS scheme, the
next sample will be small if jYkj < h, or large if h 6 jYkj < H. The pair
of design parameters (H,k) = (0.372,0.044) is the optimal one for
detecting a shift d = 0.5 while the pair of design parameters (H,k)
= (0.629,0.099) is the optimal one for detecting a shift d = 0.5. The
EWMA chart is very fast in signaling small mean shifts, but slower
than the SSVSS chart in signaling larger disturbances. The EQLs in
Table 8 were computed for dmax = 2.0.

Tables 9 and 10 deal with the design of the control charts, the
SSVSS X charts in these Tables were designed to detect a specified
mean shift with an in-control SSARL of 370.4 and an in-control rate
of inspected items per sampling of 2 (Table 9) or 4 (Table 10).
These Tables present two sets of SSVSS charts and in the last row
the standard X chart. In the first set n2 is fixed and slightly larger
than �n; in Table 9, n2 is equal to 3 and, in Table 10, n2 is equal to
6. In the second set, n2 is free of restrictions. The first set deals with
the cases where operational constraints do not allow working with
large samples. Regarding to the first set of charts, smaller distur-
bances require larger L values for the quickest detection of the
specified mean shift. With respect to the second set, the fastest



Table 9
The optimal design parameters for the SSVSS X chart, n = 2, ARL0 = 370.4.

d EQL

L n1 n2 w wc k d⁄ 0.25 0.50 0.75 1.00 1.25 1.50
7 1 3 0.67 2.17 4.2 0.5 150 41.9 15.0 7.23 4.44 3.22 49.7
4 2.07 3.8 0.75 153 42.4 14.8 6.93 4.18 3.01 48.7
3 2.03 3.6 1.00 155 43.2 15.0 6.87 4.08 2.91 48.7
2 2.02 3.3 1.50 164 46.4 15.8 7.01 4.02 2.80 50.3

1 1 14 1.75 1.78 5.0 0.5 79.7 18.7 8.12 5.26 4.04 3.32 33.3
1 12 1.68 1.80 3.7 0.75 88.5 19.9 7.97 4.93 3.75 3.09 32.7
1 8 1.46 1.88 3.3 1.00 119 26.0 8.61 4.57 3.27 2.67 34.5
1 6 1.28 1.93 3.2 1.25 141 32.8 10.1 4.80 3.18 2.51 38.1
1 5 1.15 2.04 3.1 1.50 165 41.5 12.3 5.35 3.28 2.48 43.7
X 2 2 3 223 90.1 37.6 17.2 8.68 4.77

Table 10
The optimal design parameters for the SSVSS X chart, n = 4, ARL0 = 370.4.

d EQL

L n1 n2 w wc k d⁄ 0.25 0.50 0.75 1.00 1.25 1.50
5 1 6 0.53 2.11 4.0 0.5 88.2 17.3 6.09 3.44 2.50 2.04 25.2
3 1 0.53 2.04 3.5 0.75 91.6 17.6 5.90 3.21 2.29 1.85 24.4
2 2 0.67 2.02 3.3 1.00 96.4 18.6 5.99 3.12 2.17 1.75 24.5
1 3 0.96 2.04 3.1 1.50 113 22.7 6.82 3.24 2.12 1.66 26.9

1 1 24 1.50 1.82 3.5 0.5 45.8 8.83 4.95 3.79 3.13 2.70 22.6
1 1 14 1.19 1.93 3.2 0.75 69.9 10.5 4.24 2.97 2.46 2.18 22.1
1 1 12 1.28 2.04 3.1 1.00 87.1 13.1 4.33 2.68 2.12 1.84 21.3
1 1 10 1.46 2.04 3.1 1.25 96.0 16.3 4.95 2.73 2.02 1.70 22.6
1 3 6 0.96 2.04 3.1 1.50 113 22.7 6.82 3.24 2.12 1.66 26.9
X 4 4 3.0 155 43.4 14.5 5.80 2.74 1.50

Table 11
The sample observations of the illustrative example.

Sample number Sample size Sample observations X value Z value Sample classification Symbol

1 Small 125.18 125.18 �1.41 Conforming 4
2 Large 129.29 127.76 128.07 128.37 0.32 Conforming s

3 Small 127.72 127.72 �0.14 Conforming 4
4 Small 130.72 130.72 1.36 Conforming 4
5 Large 124.32 126.60 124.32 125.08 �2.53 Nonconforming d

6 Large 126.56 129.68 127.94 128.06 0.05 Conforming s

7 Small 133.68 133.68 �0.33 Conforming 4
8 Small 162.08 162.08 2.84 Nonconforming N
9 Large 132.13 128.92 127.66 129.57 1.36 Conforming s

10 Large 129.46 130.49 133.92 131.29 2.85 Nonconforming d
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detection of the specified mean shifts is always with L = 1. The two
sets of SSVSS charts present the values of their parameters: L, n1,
n2, w, wc and k; in each row, they are the optimal values for the
fastest detection of a specified shift d = d⁄. The lowest SSARLs are
in bold. Considering the two sets of SSVSS charts, the optimal k
value always decreases as the specified mean shift increases.

5. An example illustrating the use of the SSVSS X chart

A textile company controls the tensile strength of fibers used in
manufacturing cloths, by taking samples of size two from the pro-
cess and plotting the sample means on a X chart with control limits
of three standard deviations. The target value (l0) of the tensile
strength is 128 psi. Historical studies have shown that the process
standard deviation (r) is 2 psi; see Mahadik and Shirke (2009).

The quality department is considering the joint use of the VSS
scheme with the side-sensitive synthetic rule to reduce the SSARL,
that is, the delay with which the X signals moderate mean shifts
(l � l0 ± dr = 130 psi, that is, d = 1.00). The engineering and
administrative requirements have specified three units as the
maximum sample size. Table 9 shows that the matched SSVSS X
chart with (L, n1, n2, k) = (3, 1, 3, 3.6) reduces the delay by more
than 60%, from 17.2 to 6.87.

With the SSVSS chart in use, the observations of ten samples,
including their X values, Z values, classifications and corresponding
symbols were registered in Table 11. The points in Fig. 2 are the Z
values of these samples. The sample observations were simulated
from a normal distribution with standard deviation equal to 2
and the mean equal to 128 (for the first seven samples) or 130
(for the last three samples).

The point position not only classifies the sample but also
defines the size of the next sample. If the point falls in any of the
two warning regions, the next sample will be large; otherwise, it
will be small. The two warning regions serve to distinguish con-
forming and nonconforming samples. The conforming sample
points are in the warning region-one (or in the central region),
whereas the nonconforming sample points are in the warning
region-two.

In Fig. 2, the size of the first sample was randomly chosen to be
small and the CRLwas equated to one. As the first Z value fell in the
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Fig. 2. The SSVSS X chart – an illustrative example.
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lower-warning region-one, the second sample size was chosen to
be large. The second Z value fell in the central region, consequently,
the third sample was chosen to be small and the CRL increased by
one unit (CRL = 2). The third and fourth Z values fell, respectively,
in the central region and in the upper warning region-one, conse-
quently the CRL increased by two units (CRL = 4). Sample five is a
nonconforming sample because its Z value fell in the lower warn-
ing region-two. After the occurrence of a nonconforming sample,
the CRL is compared with L. The CRL (=5) was observed to be larger
than L (=3); consequently, the CRL returned to zero. The second
point to fall in the warning region-two was the one corresponding
to sample eight, but it fell on the opposite side, that is, in the upper
warning region-two; this time the CRL returned to zero due to the
fact that the proposed chart is side-sensitive. The third point to fall
in the warning region-two was the one corresponding to sample
ten; as it fell on the same side of the second one, that is, in the
upper warning region-two, the CRL was again compared with L.
Now the CRL (=2) is smaller than L (=3); consequently, the SSVSS
X chart triggered a signal.

6. Conclusions

In this article, we investigated the performance of the
side-sensitive synthetic chart combined with a VSS X chart. The
side-sensitive feature always improves the synthetic chart’s
performance. This is explained by the fact that the occurrence of
signals given by a second point beyond the warning limit – not
far from the first one but plotted on the opposite side of the center
line – reduces as the process mean shifts. This fact is also observed
with the VSS scheme, that is, the SSVSS X chart always outperforms
the SVSS X chart. As expected, the VSS EWMA chart signals small
mean shifts faster than the SSVSS X chart. The SSVSS X chart is
highly recommended to detect process mean shifts when the aim
is to work with low risks of false alarms and very low rates of
inspected items.
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