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A joint chance-constrained programming approach for
call center workforce scheduling under uncertain call
arrival forecasts

Abstract

We consider a workforce management problem arising in call centers, namely
the shift-scheduling problem. It consists in determining the number of agents
to be assigned to a set of predefined shifts so as to optimize the trade-off
between manpower cost and customer quality of service. We focus on explic-
itly taking into account in the shift-scheduling problem the uncertainties in
the future call arrival rates forecasts. We model them as independent ran-
dom variables following a continuous probability distribution. The result-
ing stochastic optimization problem is handled as a joint chance-constrained
program and is reformulated as an equivalent large-size mixed-integer linear
program. One key point of the proposed solution approach is that this re-
formulation is achieved without resorting to a scenario generation procedure
to discretize the continuous probability distributions. Our computational re-
sults show that the proposed approach can efficiently solve real-size instances
of the problem, enabling us to draw some useful managerial insights on the
underlying risk-cost trade-off.

Keywords: Personnel planning, Call center shift scheduling, Customer
abandonment, Stochastic programming, Probabilistic constraints,
Mixed-integer linear programming

1. Introduction

Call centers can be broadly defined as facilities designed to support the
delivery of some interactive service via telephone communications ([9]). Ap-
plications include among others telemarketing, customer service, help desk
support and emergency dispatch. In most cases, the primary function of a
call center is to receive phone calls that have been initiated by customers.
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Such operations, known as ”inbound” call centers, are the topic of the present
paper.

Personnel planning is a key issue in call center management. Namely, as
reported in [1], call centers are labor-intensive operations in which the cost of
the staff members handling the phone calls (known as the agents) typically
accounts for 60% to 80% of all the operating expenses. An efficient workforce
management is thus crucial to achieve profitability in a call center.

Call center workforce management involves three main levels of decision-
making (see e.g. [23]). Long-term planning decisions (6-12 months ahead)
include the determination of how many agents to hire and train at what
times based on aggregate long-term forecasts of demand for services. Short-
term decisions (1-2 weeks ahead) involve the scheduling of an available pool
of agents over an horizon typically spanning one week. These decisions are
based on detailed short-term forecasts of agent requirements. Finally, real-
time adjustment decisions, such as agent schedule updating and call routing,
have to be made on a intra-day basis.

The present work is related to short-term workforce management deci-
sions in call centers. These decisions usually involve two main steps. First, a
range of possible shift patterns is defined and managers have to determine the
number of agents to be assigned to each shift. Second, a rostering procedure
combines shifts into rosters and assigns rosters to individual employees.

In the present paper, we focus on the first step of this process and consider
the shift scheduling problem. We thus seek to determine the number of agents
to be assigned to a set of predefined shifts so as to meet two potentially
conflicting objectives, namely minimizing the manpower cost and delivering
a high quality of service to the call center customers. To achieve this, we
will look for shift schedules where the supply of agent resources is matched
as closely as possible with the demand for services. Namely, understaffing
would lead to customer dissatisfaction due to a poor quality of service while
overstaffing would result in useless over-service to customers and higher than
needed operating costs.

One of the major difficulties to be tackled while trying to match supply
and demand in a call center is that the level of demand for services, i.e. the
workload, is highly variable. This is mainly due to the fact that the call ar-
rival rate (number of calls reaching the call center per unit of time) is subject
to strong fluctuations over the course of a day or a week. This difficulty is
usually handled in practice by dividing the scheduling horizon into a number
of time periods of 15 to 60 minutes. In each period, the call arrival pro-



cess is modeled as a Poisson process with a constant and deterministically
known arrival rate and the call center is treated as an independent queuing
system in stationary state (see e.g. [11]). This allows to determine the re-
quired staffing level for each period which is set to be the minimum number
of agents for which the target quality of service (expressed e.g. as the max-
imum allowed proportion of customers hanging up before being answered)
is reached. A deterministic optimization problem has then to be solved to
find the minimum-cost shift schedule ensuring that the required number of
agents is staffed in each period of the horizon.

However, as mentioned e.g. by [1], at the time when decision on shift
schedules is made, call arrival rates are most often not deterministically
known. We only have estimations obtained via a forecasting procedure whose
outcome is a point forecast and some probabilistic representation of the fore-
casting errors. The input data of the shift scheduling problem are thus
subject to uncertainty: not taking this into account while building the shift
schedule might lead to significant discrepancies between the call center per-
formance targeted at the time scheduling decisions are made and the one
actually obtained in practice (see [10]).

In the present paper, we propose a stochastic programming based ap-
proach to explicitly take into account the uncertainty on the call arrival rates
in the shift scheduling problem. Our contributions are threefold. First we
model the forecasting error on the call arrival rate in each period as a random
variable following a continuous probability distribution. This is in contrast
with most previously published approaches which rely on discrete probability
distributions through the use of a finite set of scenarios to represent the uncer-
tainty. Second, we propose to model the stochastic shift scheduling problem
as a one-stage stochastic program involving a joint chance constraint. Such
a model is particularly relevant when the call center is evaluated based on
its ability at reaching, on all periods of the scheduling horizon, the target
quality of service and when the call center management focuses on the risk
of not meeting this objective. Another advantage is that it does not re-
quire introducing a penalty cost to be incurred when the target quality of
service is not reached, the value of which might be difficult to estimate in
practice. Third we present an efficient solution approach based on the refor-
mulation of the stochastic program as an equivalent deterministic large-size
mixed-integer linear program. This approach relies on the assumption that
the random variables modeling the forecasting errors are independent from
one another and comprises two main steps: (1) the reformulation of the joint
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chance-constrained program into an equivalent deterministic program involv-
ing a series of non-linear terms, (2) the building of a numerical representation
for these non-linear terms exploiting the fact that their underlying mathe-
matical expressions involve non-increasing piecewise constant functions. Our
computational experiments show that the proposed solution approach is ca-
pable of solving real-size instances of the problem within computation times
compatible with an industrial use.

The remainder of the paper is organized as follows. We provide in Section
2 an overview of the related literature. We then introduce in Section 3
the proposed joint chance-constrained stochastic program. We explain how,
under the assumption of independence between the forecasting errors, it can
be reformulated as a stochastic program involving a set of individual chance
constraints. Section 4 is devoted to the presentation of the proposed solution
approach. Its main idea is to exploit the fact that, all other parameters being
fixed, the minimum number of agents needed to handle the phone calls is a
non-decreasing piecewise constant function of the call arrival rate. A small
illustrative example is discussed in Section 5. The results of computational
experiments carried out on real-size instances are provided in Section 6.

2. Literature review

Given the size of the call center industry and the complexity associated
with its operations, call centers have emerged as a fertile ground for Opera-
tions Research. We refer the reader to [1] and [9] for a general introduction to
this field and focus in what follows on the recently emerged research stream
on stochastic call center shift scheduling. We distinguish three main features
to classify the related papers: the call center setting, the representation of
the uncertainty and the risk management measures.

In terms of call center architecture, the simplest case consists in a setting
where a single pool of homogeneous agents handles a single class of infinitely
patient calls. This amounts to using an Erlang C model to represent the call
center in each period of the scheduling horizon (see [17] and [18]). However,
the importance of modeling customer impatience and abandonment in call
centers has been underlined in several papers such as [9] and [22]. Thus,
similarly to [10] and [27], we use in the present paper a representation of the
call center as an Erlang A model. For both the Erlang C and the Erlang
A models, the performance evaluation of the call center can be done by
exploiting analytical results available in the queuing theory literature. A
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more complicated setting corresponds to skill-based routing call centers. In
this case, the performance evaluation of the call center has to be made by
relying either on simulation or on approximations under various asymptotic
regimes. Stochastic shift scheduling for skill-based routing call centers has
been studied by [4], [12], [13] and [32].

Another important feature to be considered is the way the uncertainty
is described in the stochastic optimization model. In the present case, the
uncertainty comes from the difficulty in exactly forecasting the future call
arrival rates. The forecasting procedure provides a point estimate of the call
arrival rate for each scheduling period as well as a probabilistic description of
the forecasting error, e.g. in terms of a normal distribution with a zero mean
and a standard deviation reflecting the forecast quality. However, in most
cases, explicitly handling continuous probability distributions in a stochastic
optimization problem is very computationally challenging as it requires com-
puting multi-dimensional integrals during the solution procedure. Moreover,
in the specific case under study, one is faced with an additional difficulty:
the need to translate the probabilistic description of the uncertainty on the
call arrival rates into a probabilistic description of the uncertainty on the
agent requirements. Even for the simplest call center settings, there is no
known analytical expression to directly carry out such a translation. This
implies that the agent requirement in a given scheduling period is a random
variable, whose probability distribution cannot be described by an analyt-
ical mathematical expression. This might explain why, to the best of our
knowledge, all previously published approaches for stochastic call center shift
scheduling rely on the use of discrete probability distributions to represent
the uncertainty on the call arrival rates and translate each corresponding call
arrival rate scenario into an agent requirement scenario in a pre-optimization
step. Thus, [17] and [18] consider that the information on uncertainty is di-
rectly provided in the form of a discrete probability distribution. Scenario
generation to discretize a continuous probability distribution is carried out
by random sampling in [4], [12], [13], [27], [32] and by exploiting Gaussian
quadrature in [10]. As explained in [27], this discretization implies that the
obtained solution is a biased estimate of the true solution which would be
obtained using a continuous distribution. In the present work, we model the
forecasting errors as independent random variables, each following a contin-
uous probability distribution, and keep this representation throughout the
solution approach without resorting to a scenario generation procedure to
discretize the probability distributions.



Finally, one may also classify the papers based on how the consequences
of uncertainty are dealt with in the model. Namely, as the main shift schedul-
ing decisions have to be made prior the realization of the call arrival process,
we cannot guarantee that the workforce schedule will succeed in providing
the target quality of service for every possible realization of the call arrival
rates. Several modeling alternatives can be considered to account for this
in the optimization problem. Most existing approaches rely on single-stage
stochastic programming approaches where all scheduling decisions have to
be made prior to the realization of call arrival rates. [17] and [27] introduce
a penalty to be incurred when the target quality of service is not reached.
Similarly, the authors of [13] do not use a target quality of service but con-
sider a profit per answered call. All three approaches amount to finding the
shift schedule optimizing the expected cost or profit. Constraints ensuring
that the expected quality of service over the whole horizon is above a certain
limit are used in [10] and [18]. Finally joint chance-constrained programming
formulations have been used in [12] and [32]. Two-stage stochastic program-
ming approaches allowing for the use of recourse actions once the arrival rate
realization is known have been considered in [4] and [10]. In the present
paper, we propose a one-stage stochastic programming approach using joint
chance constraints. Our work thus shares some similarities with the one of
[12] and [32]. However, these two papers consider a single period staffing
problem for a multi-class multi-skill call center and focus on the probability
of reaching the target quality of service for every customer class while we
investigate a multi-period shift scheduling problem in a single-class single-
skill call center and focus on the probability of reaching the target quality of
service for every period of the scheduling horizon.

3. Joint chance-constrained programming model

This section is devoted to the detailed presentation of the problem un-
der study in the present paper: the stochastic shift scheduling problem in a
single-class single-skill call center. We first provide a description of the deter-
ministic variant of the problem which can be formulated as a mixed-integer
linear program. We then consider the stochastic variant of the problem and
introduce the proposed joint chance-constrained programming model. We
finally show how, under the assumption of statistical independence between
the random variables representing the forecasting errors on the future call
arrival rates, this model can be reformulated as an equivalent deterministic



mathematical program involving some non-linear terms.

3.1. Deterministic formulation

We consider the shift scheduling problem for a single-class single-skill call
center. The scheduling horizon consists of T" periods, the typical duration of
which is between 15 and 60 minutes.

We assume that a set of S predefined overlapping shifts is provided. A
shift s corresponds to a possible work schedule for an agent on the scheduling
horizon and define in which periods an agent assigned to it will be active.
Shifts are created based on work regulations (maximum number of hours per
day, lunch and coffee breaks...). We define A;s = 1 if an agent assigned to
shift s works in period ¢, 0 otherwise. The cost of an agent assigned to shift
s is denoted c;.

We first focus on the deterministic case where the mean call arrival rate
in period t, denoted ), is assumed to be deterministically known. The call
arrival process during a period ¢ is thus modeled as a Poisson process with
rate ;. Service times are assumed to be independent and exponentially dis-
tributed with rate u. Customers are served in the order of their arrivals, i.e.
under the First Come-First Served (FCFS) discipline of service. The queue
capacity is assumed to be infinite. Finally, customers patience is limited, i.e.
a customer placed in the queue might hang up before starting service. Pa-
tience times are assumed to follow an exponential distribution of parameter
7. This results in an Erlang A model (M/M/s+M).

Following the SIPP method (see [11]), we assume that each period is suf-
ficiently long to allow the queuing system to reach its stationary regime. We
measure the customer quality of service by the stationary fraction of cus-
tomers that abandon before service (i.e. the fraction of the customers that
hang up before being answered by an agent because they have reached their
patience threshold). Given a target value p* for the probability of abandon-
ment, a value for the service rate pu and the mean time before abandonment
1/7, we can compute n; = ¢, (A), the minimum number of agents needed
in period t to reach the target quality of service. Note that an analytical ex-
pression of the function ¢, . ,+ is not available. However, for a given value
of A\, we can obtain the corresponding value n; by resorting to an algorithm
exploiting known results on the performance evaluation of Erlang A systems:
see subsection 4.1 and [15] for more detail.

Finally we introduce the integer decision variables x, defined as the num-
ber of agents assigned to shift s.



With this notation, the deterministic shift scheduling problem has the
following mixed-integer linear programming (MILP) formulation:

5
Z = min Z CsTg (1)
s=1

S
ZAtSIS 2 Ny Vt=1...T (2)

s=1
(25 €Z" Vs =1...5. (3)

The objective function (1) corresponds to minimizing the total cost of the
shift schedule. Constraints (2) are quality-of-service constraints. They guar-
antee that, in each period ¢, the total number of working agents (Zle Ayss)
is greater than n; = ¢, -, (A¢), the minimum number of agents required to
ensure that the probability of abandonment is below the prescribed limit p*.
(3) are integrality constraints on the decision variables.

3.2. Joint chance-constrained programming formulation

In practice, the future call arrival rates (A1, ..., A, ..., A7), are not deter-
ministically known as the time when the decisions on the shift schedules have
to be made. Their value can only be estimated through a forecasting pro-
cedure relying e.g. on statistical methods. We assume in the present paper
that this forecasting procedure provides point estimates ()\_1, N\ E) as
well as a probabilistic description of the forecasting errors (ey, ..., €, ..., e7). It
amounts to modeling the call arrival rates as a random vector (Aq, ..., Ay, ..., A7)
whose multivariate probability distribution is assumed to be known.

This implies that the minimum number of agents required in each period ¢
to reach the target quality of service cannot be considered as deterministically
known. It is in fact a random variable (denoted by N, in what follows)
which is linked to the forecasting error ¢, through the expression: N, =
Oy p (/\_t+ €;). We first note that IV, represents an integer number of agents
and is thus a discrete random variable defined over the set of positive integer
numbers N. However, we would like to point out that, even if we have on
hand a probabilistic description of the random variable €,, deriving an explicit
mathematical description of the probability distribution of N; is not possible
due to the fact that an analytical expression of the function ¢, - does not
exist.



The deterministic parameter n; involved in constraints (2) has thus to be
replaced by the stochastic parameter N;. As a consequence, we will not be
able anymore to guarantee that these constraints will be respected, i.e. that
the target quality of service will be reached, for every possible realization of
the random variables (Ny, ..., Vy, ..., Nr). As mentioned in Section 2, a first
possible way to manage this situation is to allow the constraints to be vio-
lated for some realizations of the random variables and to limit the amount
of these violations either by penalizing them in the objective function or by
introducing constraints on their expected value. The present work relies on
another modeling alternative which consists in limiting the probability that
these violations occur. This leads to the introduction of a probabilistic con-
straint in the formulation which imposes a lower bound 7 on the probability
that the quality-of-service constraints are satisfied by the shift schedule. In
this case, the value 1 — 7 can be understood as the maximum acceptable risk
level, i.e. as the maximum acceptable likelihood that the target quality of
service is not met on all periods of the scheduling horizon. While setting the
value of 1 — 7, call center managers can trade-off between risk aversion and
cost minimization.

This leads to the reformulation of the problem (1)-(3) as the following
chance-constrained program JCCP.

( S
Z = min Z CsTs (4)
s=1
s
Pr(d Auz,> N, Vt=1.T) > (5)
s=1
(7, € ZT Vs. (6)

We note that in the probabilistic constraint (5), the deterministic values
n; have been replaced by their random counterparts N;. Moreover, we point
out that (5) is a joint chance constraint: it imposes a lower bound 7 on the
probability that all quality-of-service constraints are satisfied simultaneously,
i.e. on the probability that in all periods ¢t = 1...T", the number of working
agents is sufficient to meet the target quality of service.

One of the main advantages of the use of chance-constraints in the present
case is that it avoids the need to introduce a penalty cost to be incurred when
the quality-of-service constraints are violated. Namely, it might be difficult



for the call center management to estimate the value of such a penalty cost.
Moreover, as mentioned in [12], the use of a constraint on the expected value
of the quality of service over the whole scheduling horizon such as it is done
in [10] and [18] is relevant in the situations where the evaluation of the call
center performance is based on the average value of the quality of service over
the course of a day or a week. In this case, shortfalls in the quality of service
in some periods can be compensated by a quality of service higher than
the target value in other periods. On the contrary, a chance-constrained
programming model such as model JCCP is particularly adequate in the
situations where the call center performance is assessed on each period of
the scheduling horizon and where high quality-of-service periods cannot be
used to make it up for low quality-of-service periods. In this case, the call
center management will focus on reaching the target quality of service in
every period of the scheduling horizon and on managing the risk of failing to
meet this objective.

Except for a few exceptions, mathematical programs involving a joint
probabilistic constraint such as (5) are still largely intractable. We refer the
reader to [30] for a general introduction to the field of chance-constrained
programming. In terms of solution approaches, a variety of tractable ap-
proximations have been proposed to handle general joint chance-constrained
problems. They mostly rely on conservative convex approximations (see e.g.
28], [25]) or on a discretization of the probability distribution through sam-
pling (see e.g. [6], [19]). Stability of the solution with respect to perturbations
of the probability distribution has been investigated among others by [5].

The present work is mostly related to a specific class of joint chance-
constraint programs, namely those involving separable probabilistic con-
straints. This corresponds to the case where the probabilistic constraint
features inequalities where only the right hand sides are subject to uncer-
tainty. A key concept in this area is the p-efficiency introduced by [26]. This
concept has been widely used to develop methods to solve chance-constraint
problems in which the random right hand sides have discrete probability dis-
tributions. Those methods require the generation of a subset of the p-efficient
points of the probability distribution through an enumeration scheme (see e.g.
8], [3] and [16]). The present work belongs to this line of research. However,
we assume that the random variables Ny, ..., Ny are statistically independent
from one another. In this case, there is an explicit characterization of the set
of p-efficient points (see lemma 2.7 in [8]), which we exploit in our solution
approach (see reformulation EDetF below) to avoid generating them through
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a computationally intensive enumeration.

3.3. Equivalent individual chance-constrained programming formulation

In what follows, we assume that the random variables representing the
forecasting errors on the future call arrival rates are statistically independent
from one another. Note that this is consistent with the use of a simple call
arrival forecasting method such as the fixed-effects model investigated in
[14]. This method allows to take into account both the intra-day and the
intra-week seasonality in the call arrivals and makes use of independent and
identically normally distributed random variables with mean 0 to represent
the forecasting residuals. In the simulation carried out in [14] on data coming
from real case studies, the fixed-effects forecasting model is shown to be quite
efficient at providing two-week-ahead and one-week-ahead forecasts, which
typically corresponds to the lead time with which shift schedules are built in
practice. We thus focus on the case where the forecasting errors are modeled
as independent random variables and leave the development of a solution
approach capable of explicitly handling the statistical dependencies between
the forecasting errors open for further work.

We now show how, under the assumption of statistically independent fore-
casting errors, problem JCCP can be reformulated as a stochastic program
involving a set of individual chance constraints and explain how an equiv-
alent deterministic mathematical program involving some non-linear terms
can be obtained.

The fact that the forecasting errors (e, ..., €, ..., ér) are independent ran-
dom variables implies that the random events (F; : Zle Apsrs > Ny, t =
1..T) are independent from one another. We thus have: Pr(N_, E)) =
HtT:1 Pr(Ey).

This leads to the following equivalent formulation for problem JCCP:

( s
7 = min Z CsTs (7)
s=1

T S
[P Auz=N) > (8)
t=1 =1

\ 2, € ZF Vs, (9)

A first possible way to handle constraint (8) is by decomposing the joint
chance constraint into a series of 7" individual chance constraints and by
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pre-allocating to each individual chance constraint the same fraction % of
the risk. This leads to the following formulation which provides a feasible
solution of problem JCCP.

( S
Z = min Z Csg (10)
s=1
5
Pr(> " Ayz, > Ny = 7'/" vt (11)
s=1
(25 € Z7F Vs. (12)

By using FJQtl the inverse cumulative probability distribution of the ran-
dom variable N;, problem (10)-(12) has a deterministic equivalent formu-

lation in the form of the following mixed-integer linear program denoted
EDetB.

( S
Z = min Z CsTg (13)
s=1
s
Z Ayzs > Fy! (VT i (14)
s=1
|2, € Z* Vs. (15)

However, deciding a priori to allocate the same fraction % of the risk to all
the periods of the scheduling horizon is somewhat arbitrary and might lead
to a solution of problem JCCP significantly more expensive than the optimal
one. Hence, as proposed in [7], instead of preallocating the risk between
the periods before solving the optimization problem, one can introduce the
portion of the risk allocated to period ¢ as a decision variable (denoted by y;
in what follows) and impose that Zthl y¢ = 1 to ensure that the maximum
allowed risk level is not greater than 7. This additional flexibility in the risk
management enables us to come up with a minimum-cost feasible solution of
JCCP.

This leads to the following individual chance-constraint program whose
feasible region is the same as the one of problem JCCP.
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( S
Z = min Z Csg (16)
s=1
s
Pr(d " Auz, > N) =7Vt (17)
s=1
T
Z ye =1 (18)
=1
xs € LT Vs (19)
L e €]0; 1] Vt. (20)

Similarly to problem (10)-(12), problem (16)-(20) can be reformulated as
the following equivalent deterministic program EDetF.

( s
Z = min Z CsTs (21)
s=1
s
> Ay, > Fyl(a) vt (22)
s=1
T
> m=1 (23)
=1
xs € LT Vs (24)
Lyt €]0; 1] vt. (25)

We first note that both problem EDetB and problem EDetF make use of
F ]Qtl, the inverse cumulative probability distribution of the discrete random
variable Ny, for which no analytical expression is known. A first step towards
solving these two problems thus consists in building a numerical representa-
tion of Fjgtl by exploiting the relation Ny = ¢,, - ,~(A;+¢;). This is the purpose
of Subsections 4.1 and 4.2 below. This should be enough to solve problem
EDetB as it only involves computing the value of Fjgtl for a given value 7!/
However, solving problem EDetF requires handling a set of terms F' ]Q;(ﬂyt)
whose value depends on the decision variables y; and therefore cannot be
computed in a preprocessing step. In subsection 4.3, we show that the func-
tions Wy : [y, — Fy!(7%)] are non-increasing piecewise constant functions.
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This enables us to reformulate problem EDetF as a large size mixed-integer
linear program (see subsection 4.4).

4. Solution approach

4.1. Minimum number of agents required as a function of the call arrival rate

The first step of our solution approach consists in building a numerical
representation of the inverse cumulative probability distribution F' &tl of the
random variable NV, representing the minimum number of agents required in
period t to reach the target quality of service. As N, is linked to the random
call arrival rate \; + ¢; through the relationship N; = ¢, (A + &), we
first focus on studying the basic mathematical properties and on obtaining
a numerical description of function ¢, , ,+.

We defined ¢, -+ in subsection 3.2 as the function of the call arrival rate
A providing the minimum number of servers n needed to reach the target
service level p* when the service and patience threshold rates are p and 7,
respectively.

An analytical expression of function ¢, ,+ is not available. However, it is
possible to compute ¢, ,+(A) for a given value of A by resorting to a simple
algorithm.

This algorithm exploits previously published results on the performance
evaluation of Erlang A systems (see e.g. [15] and [21]). In particular, given
a call arrival rate A\, a service rate u, a patience threshold rate v and a
number of agents C' in the call center, the probability of abandonment p, i.e.
the fraction of customers abandoning before being served, is given by the
following formula (see [15]):

“+o00

PO 7 C) =1 Y (k= Ca. (26)

k=C+1

In Equation (26), g is defined as the stationary probability that there
are k customers in the system and the term >, %, | (k — C)gx computes the
expected number of customers in the queue.

For k > C + 1, g is given by:

- A § 1
o k—C . C )\ \C +oo \i—C :
Ol (Cu+n) Yicoda + e Limont Tt cprin

gk (27)
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Note that both Equations (26) and (27) involve infinite summations, con-
sistently with the assumption that the queue capacity is infinite. In order to
be able to numerically estimate p, we truncated these infinite summations
and considered a finite number of terms in the summation. In our numerical
experiments, the truncation point K,,.,, was set to a value large enough to
ensure that its impact on the accuracy of the numerical evaluation of p was
below 0.001.

Moreover, for given values of A\, i and 7, the abandonment probability p
is known to be non-increasing in the number of agents C' (see e.g. [2] and
10]).

This allows us to compute the value of ¢, , p«(A) = min{C € N|p(\, p,v,C) <
p*} through the following simple iterative procedure. For fixed values of A,
1 and v, we first start with evaluating the abandonment probability for a
call center setting involving C' = 1 agent (note that our call center model is
stable for any v > 0 ) and iteratively adds one agent (C' = C + 1) until the
abandonment probability falls below the target value. When the procedure
stops, the value of C' is equal to the ¢, ().

This provides us with a point estimation of function ¢, - for a given
value of A. However, in order to develop our solution approach, we need to
study some of the basic mathematical properties of this function. In partic-
ular, we will make use of the following proposition.

Proposition 1

Function ¢, - is a piecewise-constant, non-decreasing function of \.
Let | € N and denote by N, the value of the X such that p(A;, p, 7, 1) = p*.
We have:

, 0 = 0 forA=0
pYPIAN Y for A 6]5\1—1; S\I]

Proof. See appendix. ]

The current state of the art on Erlang A models does not provide us
with an analytical expression to compute the threshold values )\, involved
in the definition of function ¢, ,-. We thus use in what follows a numeri-
cal description of ¢, , ,+ over a finite interval [0; \,q,;] Which is obtained by
computing conservative estimations of the threshold values \,. To achieve
this, we go through interval [0; \,,,4.] by using small steps A\ and record the
values \; where function ®u~p- changes level.
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ALG
Set )\0 =0.
Set A=AXand [ =1.
While X < A0
compute n = @+ (A).

dfn=1014+1:
N=A— A\
l=1+1

A=A+ AX

Running algorithm ALG can be time-consuming depending on the values
of AX and \,,.,. However, for given values (u,7,p*), it has to be done
only once in a preprocessing step before optimization. The corresponding
computation time is thus not included in the numerical results presented in
Section 6.

4.2. Inverse cumulative probability distribution of random variables Ny

We now study Fl,, the cumulative probability distribution of the random
variable N; = ¢, - (A + €;). We first note that, as IV, is a discrete random

variable, Fly, is a non-decreasing piecewise-constant function defined over R
by:

0 forx <0

FNt(,’Jj‘):PI‘<Nt§x): {FNt([$—‘) forz >0 .

Function Fy, is thus fully described by giving its values for the set of
positive integer values of x. We therefore focus on computing the value of
Fy, over the set N*.

Let [ € N*. As ¢, is a non-decreasing piecewise constant function of
A (see Proposition 1), there is a bi-univocal correspondence between the two
random events {N; < [} and {\, + ¢ < 5\1} Besides, we assume that the
forecasting error €, follows a normal distribution N(0, o). We thus have:

5\l_>\_t>

Ot

Fy,() =Pr(N, < 1) =Pr(\ + & < X)) = Fsma( (28)

where Fgsqc denotes the cumulative probability distribution of the stan-
dard normal distribution.
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N=Ae

ot

By denoting a;; = F; Sth( ), we obtain the following description of

F &tl, the inverse cumulative probability distribution of the discrete random
variable V.

0 ifa=o00=0

Fit =
v (@) { l if a €lay;—1;a4], VI € N*. (29)

The quantity Fy'(a) can be understood as the minimum number of agents
required in period ¢ to ensure that the risk of not reaching the target quality
of service p* is less than 1 — a. We note that Fyy' is defined over [0;1[ and
that its limit when a approaches 1 is +o0o. In the numerical experiments
presented in Section 5, we thus limit ourselves to a description of F&tl on the
interval [0; amaz] With e < 1.

As mentioned at the end of subsection 3.3, by setting a = 7'/*, we can
use the expression (29) to compute the right hand side value of the con-
straints (14) involved in problem EDetB in a pre-optimization step. Solving
the resulting mixed-integer linear program then provides us with a feasible
solution of problem JCCP.

1T

4.8. Punctions U, : [y, — Fyl (7))

However, solving problem EDetF is more complex as it requires han-
dling a set of terms F ]QTl (w¥%) where y, is a decision variable of the opti-
mization problem representing the portion of the total allowed risk allocated
to period t. This subsection is thus devoted to the study of the functions
Uy : [y = Fl(a¥)], for t = 1..T. Note that Wy(y,) can be understood as
the minimum number of agents required in period ¢ to ensure that the risk
of not reaching the target quality of service p* is below 1 — 7¥".

Proposition 2
Function U, is a piecewise-constant, non-increasing function defined over
interval |0; 1].

Proof. See appendix. m

There thus exist B0 =1 > Bi1 > -..0tm—1 > Bim > Brms1... > 0 such
that W;(y;) is constant over each interval [B;,+1; Bim[- We denote vy, the
integer value of W,(y;) over the interval [Bpmi1; Bl

This leads to the following description of W;:
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V0 if y; € [Be1; Brol

W] =
t(yt) { Vtm if Y € [ﬁt,m+1; 5t,m[, Vm € N*. (30)

The numerical value of v, can be computed by the following simple
mathematical induction on m:

{ vio = i(1) = F ()
Vtm+1 = Vim +1 ¥Ym € N*, (31)

As for the threshold value f3;,,, its value can be deduced from:

‘I’t(yt) = Vtm < Fﬁ: (Wyt) = Vim (32)
o Q1 < T <y, (33)

In(ay,,) In(cvp,,,—1)
A tm) M tnt) 34

which leads to:
I, 1)

In(m)

Note that ¥, is not defined for ; = 0 and that its limit when y, approaches
0 is is +00. In our numerical description of W¥,, we therefore introduce a value
Ymin (Ymin > 0) representing the smallest value for which W, is numerically
defined. We denote M; = Uy (Ymin) — V¢ (0) the finite number of steps involved
in the numerical description of function ¥, and we set ¢ a,+1 = Ymin-

Bim = (35)

4.4. Reformulation of problem EDetF as a large-size MILP

Proposition 2 implies that the right hand side of constraints (22) is a non-
increasing piecewise constant function of y;. In this subsection, we exploit
this result to reformulate problem EDetF as a mixed-integer linear program
(MILP) involving a large number of binary variables and constraints.

We introduce binary variables z;,, defined for t = 1.7 and m = 1...M,

1 ify <Bim
Ztm =
! 0 otherwise.
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and reformulate EDetF as:

¢ s
Z = min Z CsTg (36)
s=1
S My
Z Atsxs Z Vt,O + Z Ztm Vt (37)
s=1 m=1
My
Y > Bea + Z(ﬁt,mﬂ — Bim)zm VYt (38)
m=1
Ztm S Ztm—1 Vt7vm (39)
T
Z ye =1 (40)
t=1
xs € LT Vs (41)
y €]0; 1] Vi (42)
Zim € {051} Vi, Ym. (43)

Note that the non-linear constraints (22) have been replaced by the large
set of linear constraints (37)-(39) which can be understood as follows. In
constraints (37), the non-linear term Fy,' (7¥") has been replaced by the linear

expression v + Z%’;l Zim- Vio Tepresents the minimum number of agents
required in period ¢ to ensure that the risk of not reaching the target quality
of service is below 1 — . Zﬂm/[‘ﬂ Ztm provides the number of additional agents
needed to decrease the risk in period ¢ from its maximum acceptable value
1 — 7 to a smaller value 1 — 7%,

Now, to ensure that v,o + S0 2,, = F N, (), the value of the binary
variables z:,, has to be linked to the value of ;. This is the purpose of
constraints (38)-(39) which impose that y; stays above a lower bound, the
value of which depends on the values of the z:,, variables. Thus, in case
no additional agent is staffed in ¢, i.e. in case all variables z,,, are set to
0, constraints (38) impose that y, stays above the lower bound f;;, which
corresponds to the first threshold value appearing in the definition of function
U, (see expression 30). In case A > 0 additional agents are staffed in t,
constraints (39) ensure that z,; = ... =24 =1land 2411 = ... = 21, = 0
so that constraints (38) are equivalent to y; > [; a41. Note that the values
of B are strictly decreasing with m, i.e. B, 441 < ;1. Thus by staffing A
additional agents in period ¢, we allow a potential decrease of y; from 3, to

19



Bt.a+1, which corresponds to allowing a potential decrease of the risk from
1 —mPt1 to 1 —mPe4. In other works, constraints (38)-(39) make sure that the
more additional agents are staffed in period ¢, the larger the allowed decrease
of y; and consequently of the risk level 1 — 7% assigned to period t.

5. A small illustrative example

We introduce a small instance of the call center shift scheduling problem
in order to illustrate the solution approach and compare between the two
formulations EDetB and EDetF discussed in Section 4.

We consider a scheduling horizon of T" = 10 periods, corresponding to a
single day (8:00 to 18:00) divided into 1-hour periods. The expected service
time is £ = 1 minute and the mean time before abandonment is 2 = 1.25
minute. The target quality of service is defined as the maximum allowed
abandonment probability: p* = 5%. Point forecasts (i, ..., Ay, ...Ap) for the
expected call arrival rates are provided for the scheduling horizon. They
display an intra-day seasonality as frequently encountered in call centers (see
e.g. [9]) with peak hours in the late morning and early afternoon and off-
peak hours in the early morning, midday and late afternoon. The forecasting
errors (€y, ..., €, ...,er) are modeled as independent random variables, each
one following a normal distribution N (0,0;). We set o, = 0.5\,. S =5
predefined overlapping shifts are available: 3 correspond to full-time positions
working 7 hours a day, 2 correspond to half-time positions working 4 hours a
day. Each full-time position shift involves a one-hour lunch break scheduled
between 12:00 and 14:00. Table 1 displays the values of \;, and o; as well as
the shift matrix A. The maximum acceptable risk level 1 — 7 is set to 10%.

The solution approach proposed to solve problems EDetB and EDetF
comprises four main steps. First, we build a numerical representation of
function ¢, by using algorithm ALG with K, = 10000, Ape. = 2000
and AX = 0.001. Second, for each period t, we build a numerical repre-
sentation of function F' ]Qtl with e = 0.999999 and use it to compute the
right hand side value Fiy'(1 — 7/T) of the constraints (14) involved in prob-
lem EDetB. Third, we set 4, = 0.0001 and compute for each period ¢ the
threshold values (3, used in the description of function ¥, by relying on ex-
pression (35): see Figure 1 for a graphical representation of function ¥, for
the illustrative example. This provides the input data needed to define prob-
lem EDetF. Four, we solve the mixed-integer linear programs corresponding
to problems EDetB and EDetF using a mathematical solver.
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Figure 1: Illustrative example: function ¥,
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Time slot t )\t ¢ At,l At72 At73 Aa At75
8:00-9:00 1 |36 18 1 0 0 0 0
9:00-10:00 2 |75 375 | 1 1 0 1 0
10:00-11:00 3 | 80 40 1 1 1 1 0
11:00-12:00 4 |39 19.5 1 1 1 1 0
12:00-13:00 5 |15 7.5 0 1 1 1 0
13:00-14:00 6 |51 265 | 1 0 0 0 0
14:00-15:00 7 |73 365 | 1 1 1 0 1
15:00-16:00 8 |62 31 1 1 1 0 1
16:00-17:00 9 |51 26.5| 0 1 1 0 1
17:00-18:00 10 | 20 10 0 0 1 0 1
Table 1: Illustrative example: input data
0,100 0,200 0,300 0,400 0,500 0,500 0,700 0,800




Solving problem EDetB to optimality provides the shift schedule 2% ., 5 =
(110,57,0,0,53) with Z3, ., 5 = 1381 whereas solving problem EDetF to opti-
mality provides the shift schedule x%; ., = (100, 50,0,0,49) with Z},pp =
1246. A detailed description of the corresponding solutions is provided in
Table 2.

We note how the use of a flexible sharing out of the risk between the
scheduling periods, as is done in problem EDetF, leads to a cost reduction
by 10.8% as compared to the use of a predefined allocation of the risk, as
is done in problem EDetB. This can be mainly explained as follows. In
formulation EDetB, the portion of risk allocated to period t is arbitrarily
fixed to y; = % in a pre-optimization step and as a consequence, there is no
possibility to adjust the required number of agents needed in period ¢ during
the optimization step. The value of the total number of agents assigned to
each shift will thus be driven mainly by the number of agents needed in a
few ”difficult to staff” periods. These periods typically corresponds either to
peak hours where the mean call arrival rate is large or to off-peak periods
where only a few shifts are working. This leads to a significant overstaffing
in many periods as the agents used to staff these few difficult periods will
also be working on the other periods defined by their assigned shifts. Thus,
we note that in the optimal solution of problem EDetB displayed in Table 2,
we have ZSS:1 Ay = Fyl(7¥) in the 7 difficult to staff”’ periods 3, 6 and 9
whereas ZL At >> F]@l (m¥%) in the "easy to staff” periods 1, 4, 5, 7, 8,
10. In contrast, by using formulation EDetF, we do not pre-allocate the risk
to the scheduling periods and let the optimization problem decide how to
share it out so as to minimize the total cost. This means in particular that
a level of risk higher than 1 — T might be accepted in "difficult to staft”
periods while a much smaller level of risk (sometimes as low as 1 — 7¥min)
will be imposed in "easy to staff” periods. Thus, note how, in the optimal
solution of EDetF displayed in Table 2, y3, yg and yg are significantly greater
than % = 0.1 whereas y7, vi, ¥2, y5, ys and yj, are significantly smaller than
7 =0.1.

6. Numerical results

We carried out some computational experiments on real data coming from
an anonymous health insurance company in order to evaluate the solution
approach presented in Section 4 and to compare it with a scenario-based
approach. The results of this computational study are then used to derive
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EDetB EDetF
Time slot |y Fy'(a¥%) ZSSZI Ayt yr Fyl(m%) ZSSZI Agsat
8:00- 9:00 1 |0.1 77 110 0.0092 100 100
9:00-10:00 2 | 0.1 156 167 0.1544 150 150
10:00-11:00 3 | 0.1 167 167 0.2876 150 150
11:00-12:00 4 | 0.1 83 167 0.0001 119 150
12:00-13:00 5 | 0.1 34 o7 0.0001 48 50
13:00-14:00 6 | 0.1 110 110 0.2513 100 100
14:00-15:00 7 | 0.1 152 220 0.0011 199 199
15:00-16:00 8 | 0.1 130 220 0.0001 187 199
16:00-17:00 9 | 0.1 110 110 0.2759 99 99
17:00-18:00 10 | 0.1 44 53 0.0202 49 49

Table 2: Illustrative example: optimal solutions of problems EDetB and EDetF

some managerial insights on the risk-cost trade-off in stochastic call center
shift-scheduling.

6.1. Instances

To carry out our computational experiments, we generated 400 instances
based on real data coming from an anonymous health insurance company.
More precisely, the various instances tested have the following features.

The call center under study is open on Monday to Friday from 8:30 to
18:30 and on Saturday from 8:30 to 12:00. The scheduling horizon corre-
sponds to a week and is divided into 30-min periods. It thus comprises
T = 107 periods.

The expected service time is /% = 1 minute and the mean time before
abandonment is % = 1.25 minute. The target quality of service is defined as
the maximum allowed abandonment probability: p* = 5%.

Point forecasts (Xl, o A ...XT) for the expected call arrival rates are pro-
vided for the scheduling horizon. They display an intra-day seasonality sim-
ilar to the one featured by the illustrative example presented in Section 5.

We investigated 5 different cases:

1. the reference case provided by our case study where ); is comprised
between 4 and 84 calls per minute,
2. a case where ); is divided by 2 in every period t,
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3. a case where ), is multiplied by 2 in every period t,

4. a case where in each period ¢, ), is multiplied by a randomly generated
coefficient belonging to [0.75;1.25],

5. a case where in each period ¢, \; is multiplied by a randomly generated
coefficient belonging to [0.50; 1.50].

The forecasting errors (ey, ..., €, ..., er) are modeled as independent ran-
dom variables, each one following a normal distribution N(0, ;). The value
of the standard deviation o; reflects the quality of the forecasts: the smaller
the value of oy, the better and the more reliable the forecasts. We considered
4 levels for the quality of the forecasts: o, = 0.5\, 0 = A, 0y = 1.5\, and
or = 2.

The call center under study uses a set of S = 19 predefined overlapping
shifts. 5 shifts correspond to part-time positions working 21 hours a week,
4 shifts correspond to part-time positions working 28 hours a week and 10
shifts correspond to full-time positions working 39 hours a week. Each shift
involves a one-hour lunch break per working day scheduled between 12:00
and 14:00. We used these data to generate a larger set of S = 120 shifts:
these shifts correspond to part-time and full-time positions similar to the ones
used in our case study, but with more flexibility to place half-days and/or
days off within the week. In both cases, the cost of a shift s is set to the
corresponding number of worked hours, i.e. ¢, = Zthl Ay

For each expected call arrival rate profile, each forecast quality level and
each set of predefined shifts, we generated 10 instances by varying the ac-
ceptable risk level 1 — 7 from 50% to 1% (i.e. m varies from 0.5 to 0.99).

6.2. Numerical assessment of the proposed solution approach

We use the solution approach presented in Section 4 (with the values of
the parameters Koz, Amaz, AN, Qmae and Y, provided in Section 5) to
solve problems EDetB an EDetF.

The corresponding mixed-integer linear programs were solved using the
mathematical programming solver CPLEX 12.6. We implemented our algo-
rithms in C++, using the ILOG Concert Technology libraries as an interface
with the solver. We used the solver default settings except for the relative
MIP gap tolerance which we increased from 0.01% to 0.1%. Our preliminary
computational experiments namely showed that this enabled to significantly
decrease the computation time while providing near optimal solutions guar-
anteed to lie within 0.1% of the optimal value. All tests were carried out on
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an Intel Core i5 (2.6 GHz) with 4 Go of RAM, running under Windows 7 *.

The numerical results obtained on the 400 studied instances with formu-
lation EDetB are provided in Table 3 while those obtained with formulation
EDetF are provided in Tables 4-7. As the level of the forecasts quality, $t,
appears to have a strong impact on the computation time needed to solve
problem EDetF, we chose to group the instances into 4 subsets, each one cor-
responding to a given value of t, and to display the corresponding results
in 4 different tables.

We provide, for each set of instances:

e VV and C': the average number of binary variables and constraints C'
involved in the MILP formulation,

e GG and mazG: the average and maximum values (expressed as percent-
ages) of the integrality gap, i.e. of the relative difference between the
value of the linear relaxation of the problem and the value of an optimal
integer solution,

e N and maxzN: the average and maximum number of nodes explored
by the Branch & Bound algorithm,

e CT and maxCT: the average and maximum computation time in sec-
onds.

Results from Table 3 show that solving problem EDetB does not pose
any numerical difficulties: all the considered instances could be solved in
less than 30 seconds. This might be explained by the medium size of the
corresponding mixed-integer linear programs (involving S integer variables
and T constraints) and by the tightness of the integrality gap (0.25% on
average).

In contrast, the mixed-integer linear programs corresponding to prob-
lem EDetF involve, in addition to the S integer variables and T quality-
of-service constraints, a large number of binary variables z;,, and related
constraints (39). However, results from Tables 4-7 show that, despite their
size, these mixed-integer linear programs could be solved within a reasonable
computation time for all the considered instances generated from our real-life

LAll data related to our experiments (description of the instances, C++ source files
and numerical results) are available upon request from the corresponding author.
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s 0.99 0.98 0.97 0.96 0.95 0.90 0.80 0.70 0.60 0.50
\% 70 70 70 70 70 70 70 70 70 70
C 107 107 107 107 107 107 107 107 107 107
G 0.20% 0.18% 0.20% 0.23% 0.21% 0.25% 0.26% 0.26% 0.20% 0.20%
maxG | 0.67% 0.68% 0.54% 0.65% 0.48% 0.59% 0.93% 0.84% 1.08% 1.33%
N 0 0 0 0 0 0 0 0 0 0
maxN 0 0 0 0 0 0 0 0 0 0
CcT 2.2 2.4 2.5 2.6 2.6 2.9 3.6 4.2 4.7 5.1
maxC'T 10.2 114 12.4 12.2 12.9 15.0 18.5 20.7 24.7 28.0
Table 3: Resolution of problem EDetB - instances with % € {0.5;1;1.5;2}
s 0.99 0.98 0.97 0.96 0.95 0.90 0.80 0.70 0.60 0.50
\%4 6407 6747 6970 7144 7298 7832 8527 9064 9544 10018
C 6622 6962 7185 7359 7513 8047 8742 9279 9759 10233
G 0.06% 0.04% 0.05% 0.06% 0.06% 0.06% 0.06% 0.06% 0.06% 0.07%
maxG | 0.25% 0.09% 0.14% 0.15% 0.13% 0.17% 0.12% 0.12% 0.12% 0.24%
N 139 0 1 8 1 21 10 641 2 84
maxN | 1390 4 8 67 14 200 79 6387 9 680
cr 1.1 0.9 1.0 1.2 1.2 1.5 2.6 3.8 1.8 3.9
maxCT 3.6 2.3 2.3 2.3 4.7 3.7 10.3 12.0 2.2 10.4
Table 4: Resolution of problem EDetF - instances with ‘/{—: =05
s 0.99 0.98 0.97 0.96 0.95 0.90 0.80 0.70 0.60 0.50
\% 12710 13392 13840 14190 14471 15543 16945 18013 18979 19918
C 12925 13607 14055 14405 14686 15758 17160 18228 19194 20133
G 0.04% 0.06% 0.05% 0.06% 0.05% 0.06% 0.05% 0.06% 0.05% 0.06%
maxG | 0.07% 0.12% 0.08% 0.10% 0.09% 0.09% 0.10% 0.10% 0.10% 0.12%
N 0 52 0 24 0 40 88 34 0 37
maxN 2 473 0 244 0 400 599 288 0 318
CcT 4.7 13.1 4.4 4.6 4.6 14.3 16.9 13.5 7.1 17.7
maxCT | 24.5 98.7 29.3 23.3 16.0 1179 1046 90.5 16.7  124.5

Table 5: Resolution of problem EDetF - instances with K—f =
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T 0.99 0.98 0.97 0.96 0.95 0.90 0.80 0.70 0.60 0.50

\% 19021 20030 20711 21232 21677 23283 25371 26971 28416 29821

C 19236 20245 20926 21447 21892 23498 25586 27186 28631 30036

G 0.03% 0.04% 0.02% 0.05% 0.06% 0.05% 0.04% 0.05% 0.06% 0.04%

maxG | 0.05% 0.08% 0.04% 0.10% 0.10% 0.09% 0.10% 0.09% 0.08% 0.08%

N 0 63 42 26 0 46 72 83 0 58
maxrN 4 627 413 259 0 448 367 647 0 578
CcT 6.7 31.3 24.5 22.2 7.0 25.8 33.5 34.9 12.6 34.8
maxCT | 21.0 258.8 196.6 152.5 17.1 188.1 171.9 214.2 29.6 245.6
Table 6: Resolution of problem EDetF - instances with K—f =1.5

T 0.99 0.98 0.97 0.96 0.95 0.90 0.80 0.70 0.60 0.50

\% 25340 26687 27591 28291 28880 30998 33797 35930 37861 39732

C 25555 26902 27806 28506 29095 31213 34012 36145 38076 39947

G 0.05% 0.06% 0.04% 0.03% 0.04% 0.04% 0.05% 0.05% 0.05% 0.05%

maxG | 0.09% 0.07% 0.09% 0.10% 0.07% 0.09% 0.08% 0.08% 0.09% 0.08%
N 0 52 40 121 78 125 54 147 113 142
maxrN 0 797 404 420 432 506 535 855 722 951
cr 7.8 13.1 23.9 50.0 41.2 66.2 40.4 95.0 87.7 97.6

maxCT | 19.0 283.7 162.3 56.6 182.2 2474 286.7 435.1 402.7 445.0

Table 7: Resolution of problem EDetF - instances with K—: =2
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case-study data. Indeed, the average computation time over all considered
instances is less than 23s while its worst-case value is 445s (i.e. less than 8
minutes). This is mainly explained by the fact that the integrality gap of the
MILP formulation (36)-(43) is nearly equal to 0% (0.05% on average). This
means that the linear relaxation of the formulation provides an excellent
approximation of the integer optimal solution value so that the Branch &
Bound procedure embedded in CPLEX 12.6 has to explore a limited number
of nodes of the search tree before finding a solution guaranteed to be within
0.1% of the optimal value.

Moreover, results from Tables 4-7 also show that two features seem to
have a strong impact on the computation times, namely the forecast quality
and the maximum acceptable risk level. The main reason for this is that they
both have a significant influence on the MILP size, in terms of the number of
involved binary variables z, and the number of the related constraints (39).
Indeed, the poorer the forecast quality, the larger the standard deviation o,
of the probability distributions of random variables N; and the more steps
(M; = Fy!(w¥min) — Fy!(m)) are involved in the description of functions ;.
Similarly, the smaller the probability 7, the smaller the value of F’ ]Qtl(ﬂ) and
the more steps M, are involved in the description of functions W,.

6.3. Comparison with a scenario-based solution approach

In order to further assess the proposed solution approach, we compare it
with a scenario-based approach, namely the sample approximation approach
presented in [19]. This approach aims at providing approximate solutions
for joint chance-constrained programs. Its main idea consists in replacing
the original continuous probability distribution of the random vector by an
empirical discrete finite probability distribution obtained by Monte Carlo
sampling. This approximation enables to reformulate the stochastic problem
as a large-size mixed-integer linear program.

Let A', ..., A%, ... A! be a Monte Carlo sample of the random vector
A. Each scenario ¢ describes a possible realization of the call arrival rates
over the scheduling horizon, i.e. A" = (A%, ...,A% ..., A%). The correspond-
ing minimum numbers of agents N* = (N}, ..., N}, ..., N%) can be computed
in a pre-optimization step as N/ = ¢, ,(Al) thanks to the simple itera-
tive procedure presented in Subsection 4.1. As the I sampled scenarios are
independent and identically distributed observations of the vector A, the
probability of each scenario 7 is assumed to be equal to %
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The sample approximation approach relies on the idea that the value of
the probability featured in the joint chance-constraint (5) can be approxi-
mately computed by:

5 1 S i
Pr (;Atsxs > Nt,Vt) ~ S ;H<;Atsxs > N, w), (44)

where ]I() denotes the indicator function taking the value 1 when . is true
and 0 otherwise.

By introducing a set of binary variables defined as v* = 1 if at least
one of the quality-of-service constraints is violated in scenario i and v = 0
otherwise, the approximation (44) enables to reformulate problem JCCP as
the following mixed-integer linear program denoted by SA:

( S
Z = min Z CsTs (45)
s=1
5
> Ar, > Ni(1-v') Vi (46)
s=1
I
S v < [1(1— 7)) (47)
i=1
T, € LT Vs (48)
(v’ € {0,1} Vit Vi. (49)

Constraints (46) make sure that, if v* = 0, the T quality-of-service con-
straints corresponding to scenario ¢ are respected. Constraint (47) is the
joint probability constraint: it limits the number of violated scenarios to
|1(1 — )], thus ensuring that the ratio %ZLI ]I( S Az > N Vt) is
above .

We note that the formulation (45)-(49) involves I binary variables and
T big-M type constraints (46). Hence, in practice, for large sample size I,
its resolution by a mathematical programming solver is likely to pose some
computational difficulties. The authors of [20] investigated several alternative
formulation strengthening techniques for this mixed-integer linear program
and showed that the strong extended reformulation they proposed led to sig-
nificantly reduced computation times. We thus used it in our computational
experiments.
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In order to compare the solution approach presented in Section 4 with
the sample approximation approach, we carried out additional computational
experiments on the 100 instances which were shown to be the most difficult
to solve using formulation EDetF, i.e. on the instances corresponding to the
level of forecast quality i—z = 2. We considered 4 possible values for the sample
size: I € {100,500, 1000, 5000}. For each sample size, we randomly generated
a sample assuming that each random variable A! is normally distributed
with mean \; and standard deviation o;. The mixed-integer linear programs
corresponding to each solution approach were solved using CPLEX 12.6. We
implemented our algorithms in C++, using the ILOG Concert Technology
libraries as an interface with the solver. We used the solver default settings
except for the relative MIP gap tolerance which we increased from 0.01% to
0.1%. All tests were carried out on an Intel Core 15 (2.6 GHz) with 4 Go of
RAM, running under Windows 7.

The numerical results are displayed in Table 8. For each considered so-
lution approach and each set of 10 instances, we provide:

e ('t: the average cost of the optimal integer solution.

e P: the average value of the probability Pr <Zf:1 At > Nt,Vt>

where 2% denotes the optimal integer solution of the corresponding
mixed-integer linear program. P is computed in a post-optimization

. T S *
step using: P = [[,_; Fin, (O _; Awsxl).
e C'T: the average computation time in seconds.

Results from Table 8 show that, for the considered sample sizes, the sam-
ple approximation approach fails at providing feasible solutions of problem
JCCP. Namely, we note that the average value of P is significantly below 7 for
I € {100,500, 1000} and that its value gets close to 7 only for the large sam-
ple size I = 5000. This means that the shift schedules #* obtained through
this approach are not feasible with respect to the joint chance-constraint
(5). This can be explained by the fact that formulation SA relies on an ap-
proximate representation of this constraint. There is therefore no definite
guarantee to it will provide a feasible solution to problem JCCP. The au-
thors of [19] showed that, under certain conditions, the optimal value of SA
converges to the optimal solution of JCCP with probability 1 when I tends
to infinity. However, it seems that, for the problem under study here, the
sample size required to get such a near-optimal solution of JCCP is too large
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7 1099 008 007 096 095 090 080 070 060 050
o Ct | 31726 30388 29543 28085 28506 26050 25246 24115 23125 22417
E P 0998 0996 0995 0993 0991 0979 0955 0927 0803 0.848
3 CT| 28 23 32 33 33 39 47 55 62 67
= Ct | 27330 25916 25052 24423 23923 22306 20541 19389 18481 17692
Z P 0990 0980 0970 0960 0.950 0900 0.801 0701 0.602 0.502
@ CT| 78 131 239 500 412 662 404 950 8.7 976
o Cv | 23774 23088 22543 22150 21965 20783 19378 18346 17548 16810
S P 0853 0845 0824 0810 0804 0738 0619 0502 0402 0312
S CT| 01 02 02 03 03 11 104 1356 8125 13345
o Ct | 26638 25000 24283 23623 23160 21708 20146 - - -
Z P 0963 0946 0935 0916 0908 0849 0746 ] ]
% CT| 03 07 11 14 26 403 12127 . ] ]
= Ct | 26351 25172 24429 23862 23387 21850  _ - - -
S P 0973 0956 0949 0937 0924 0867  _ ] ] ]
= CT| 05 14 41 98 172 2268 ] ] ]
S Ct | 26605 25501 24730 24157 23707 - - - - -
S P 0985 0974 0963 0953 0943  _ ] ] ] ]
S oCr| 71 198 472 1700 2525 i i i i

T

ndicates that no guaranteed optimal solution could be found within one hour of computation.

Table 8: Comparison with the sample approximation approach - instances with K—f =2
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to allow a resolution of formulation SA within reasonable computation time,
especially for the small values of 7.

In contrast, the solution approach presented in Section 4 consistently
provides feasible solutions of problem JCCP. Namely, for both formulations
EDetB and EDetF, the average value of P is above 7 for every considered
set of instances. However, we note that the shift schedules obtained with
formulation EDetB are overly conservative. This can be seen by the fact
that, in this case, the average value of P is significantly greater that = and
that the cost of the corresponding optimal solutions is on average significantly
larger than the cost of the optimal solutions provided by formulation EDetF.
This shows the interest of using formulation EDetF to solve problem JCCP
as it is capable of providing near-optimal feasible solutions of the problem
within reasonable computation times, and this for all considered values of 7.

6.4. Discussion and managerial insights

We now seek to derive from the results of our computational study some
useful insights for call center managers faced with the problem of scheduling
workforce under uncertain call arrival forecasts.

We first compare the two variants of the proposed solution approach:
the one based on problem EDetB and the one based on formulation EDetF.
Our numerical results show that the cost of the shift schedule obtained by
solving problem EDetB is significantly higher that the cost of the shift sched-
ule obtained by solving formulation EDetF. Namely, for the 400 considered
instances, the total number of worked hours is reduced on average by 19%
thanks to the use of the optimal sharing out of the risk between the schedul-
ing periods carried out in problem EDetF. Furthermore, we note that this
reduction is particularly significant (on average 23.5% for the corresponding
200 instances) when there is a small number of available shifts (S = 19), i.e.
when there is a rather low flexibility in terms of workforce management. This
clearly shows the benefit of using a variable level of risk in each scheduling
period as it is done in the proposed model EDetF', especially when there are
strong constraints on the workforce availability.

A second outcome of our computational study that could be of interest
for call center managers is the possibility to quantify to some extent the risk-
cost trade-off. We mentioned in subsection 3.2 that by setting the value of
the maximum acceptable risk level 1 — 7, call center managers should seek
to reach a trade-off between risk aversion and cost minimization. Setting
small values for 1 —, i.e. adopting a risk-conservative approach, will lead to
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Figure 2: General risk-cost trade-off analysis

expensive shift schedules. On the contrary, increasing the value of 1 —m might
lead to significant cost savings. Thus, Figure 2 displays, for each maximum
acceptable risk level 1 — 7, the average value of the total number of worked
hours for the corresponding 40 instances. We note in particular that, in the
present case, decreasing the acceptable risk level from 50% to 20% leads to
a relatively limited increase in the total number of worked hours (+14%).
However, decreasing it from 50% to 1% leads to a much more significant
cost increase (+49%). Providing call center managers with such a quantified
representation of the risk-cost trade-off might help them decide upon the risk
level that they are ready to accept.

Finally, our results also show the strong impact of forecast quality on
this risk-cost trade-off. Thus, Figure 3 displays, for each forecast quality
level (0.5, 1, 1.5 et 2) and each maximum acceptable risk level 1 — 7, the
average value of the total number of worked hours for the corresponding 10
instances. We note how, for a given maximum acceptable risk level 1 — 7,
the cost of the corresponding shift schedule is significantly decreased when
the quality of the forecasts is improved. For instance, improving the forecast
quality from o; = 2)\; to 0, = \; leads on average to a cost reduction of
42%. This information could serve as a useful incentive to invest in more
powerful forecasting tools enabling call center managers to improve, as much
as possible, the quality of the forecasts on future call arrival rates.
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7. Conclusion and research perspectives

We studied the shift scheduling problem for a single-class single-skill call
center with impatient customers and focused on explicitly taking into ac-
count in the related optimization problem the impact of the uncertainties in
the call arrival rates forecasts. We proposed to model this stochastic opti-
mization problem using a joint chance-constrained program and presented a
solution approach where the forecasting errors are represented as independent
random variables, each one following a continuous probability distribution.
Our computational results show that the proposed approach can efficiently
solve real-size instances of the problem, enabling us to draw some managerial
insights on the underlying risk-cost trade-off.

A first interesting direction for further research could consist in relax-
ing the assumption of statistical independence between the forecasting er-
rors. Namely, the fact that there exist significant correlations between the
call arrival volumes in different periods of the scheduling horizon has been
highlighted in several works and forecasting models seeking to exploit this
knowledge to improve the forecast quality have been proposed (see e.g. [10],
[31] and [14]). Developing a solution approach capable of explicitly handling
correlations between the forecasting errors in different periods could thus
prove useful. Moreover, one might also question the assumption that over a
finite-length scheduling period, the call center can be modeled as a queuing
system in stationary state and that its performance can be measured based
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on the long-term expected value of the service level. In their recent work, [29]
namely show that, all other parameters being constant, there is a significant
variability in the quality of service of a call center observed over a finite-
length time interval and propose to model the quality of service as a random
variable following a normal distribution. It might be worth proposing an
extension of the present work where this additional source of uncertainty is
accounted for.
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Appendix
Proof of Proposition 1

Proof of Proposition 1 comprises two steps.
1. We show that ¢, ,,+ is a non-decreasing function of \.

Let \,, Ay be two values of the call arrival rate such that A, < ;.

For given values of u, v and C, p is known to be an increasing function of
A, i.e. with all the other parameters fixed, the abandonment probability is
known to be increasing in the arrival rate (see e.g. [12]).

This implies that:

P(Aas 11,7, 1,C) < p(Ny, p1,7,1,C)  VC €N, (50)

Now, as with all the other parameters fixed, p is non-increasing in the
number of agents C', we have:

min{C € N|p(Aa, 11,7,1,C) < p*} <min{C € N[p(\s, 1,7,1,C) < p*}.
(51)
Hence:
Aa <X = Qbump* (Aa) < ¢ump*()‘b)~ (52)

2. We show that ¢, -~ is a piecewise-constant function of A.
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Let [ € N be a number of agents. We define:

-\, the value of the call arrival rate such that p(\, 7y, 1) = p*,

- Ai_1, the value of the call arrival rate such that p(S\l_l, w7y, —1) =p*
Note that 5\1,1 and 5\1 exist and are unique thanks to the fact that the prob-
ability of abandonment is continuous and strictly monotone in the arrival
rate.

Moreover, with all the other parameters fixed, the abandonment probability
p is known to be non-increasing in the number of agents.

This implies:

PNy 11,7, 1= 1) > p
p<)‘l7/’6777l - 1) > p
p()\h,u’a/)/vl - 1) Z p<)\l717,u777l - 1) (53)

As, with all the other parameters fixed, the abandonment probability is
known to be increasing in the arrival rate, we can deduce from inequality
(53) that: N < S\l, i.e. that [5\1,1; 5\1[ is a non-empty interval in R.

We now show that ¢, -+ is constant and equal to [ over interval N1 M.
We again use the fact that, with all the other parameters fixed, the abandon-
ment probability is known to be increasing in the arrival rate. This gives:
VA <N pO 1,7, 1) < pfie YA SN, G (V) <

VA > Ny, p(A 7y, L=1) > p*ies VA > Ny, @pype(A) > 1 — 1.

This shows that: ¢, =1, V|15 \].

Proof of Proposition 2

Function W, : [y, — F ]QTI(W%)] is a composite function of the form F]§T1 og
where:

e ¢ is the exponential function defined by ¢ : [y, — 7¥] with 7 € [0, 1].
g is a strictly decreasing function of ;.

) FJQTl is the inverse cumulated probabibility distribution of the discrete
random variable NV;. It is thus is a non-decreasing piecewise constant
function defined on the interval [0; 1].

Function W, is thus a non-increasing piecewise-constant function of variables
y; defined on the interval ]0; 1].
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