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In this study, we propose the use of simultaneous X charts to control bivariate processes with autocor-
related data. The first set of X charts is side-sensitive with regard to the same variable (SV X charts)
and the second one is side-sensitive with regard to both variables (BV X charts). The Markov chain
approach was used to obtain the steady-state properties of the X charts. In comparison with the standard
synthetic T2 chart, the SV and the BV charts signal faster in a wide variety of disturbances, except when
the variables are high correlated. The BV charts are simpler and signal faster than the SV charts.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The Hotelling T2 chart is the usual chart for detecting changes in
the mean vector of multivariate processes. However, it is not
always easy to convince practitioners accustomed to work with X
values to consider a more complex statistic. The T2 statistic is not
only more complex in terms of computation but also with regard
to its interpretation. If the statistical process control demands
the monitoring of only two quality characteristics, the practitioner
might prefer to work with two X charts, even knowing that the sin-
gle T2 chart was designed to control more than one quality charac-
teristic. In comparison with the bivariate T2 chart, the joint X charts
have a better overall performance in signaling changes in the mean
vector of correlated variables (Machado & Costa, 2008).

In a growing number of multivariate processes, the variables are
cross-correlated and their observations are autocorrelated. Leoni,
Machado, and Costa (2014) evaluated the effect of the cross-
correlation and the autocorrelation on the performance of two
combined X charts and on the performance of the Hotelling’s T2
chart. The overall conclusion is that the speed with which the
charts signal reduces when the variable affected by the assignable
cause is autocorrelated.

Leoni, Costa, and Machado (2015) obtained the cross covariance
matrix of the rational sample mean vectors and investigated the
joint effect of the correlation and autocorrelation on the T2 chart’s
performance. Leoni, Costa, Franco, and Machado (2015) and Leoni,
Machado, and Costa (in press), respectively, considered the skip-
ping and the mixed sampling strategies to reduce the negative
effect of the autocorrelation on the T2 chart’s performance. The
skipping strategy was proposed by Costa and Castagliola (2011),
and the mixed sampling strategy was proposed by Franco,
Castagliola, Celano, and Costa (2013).

Wu and Spedding (2000) proposed to change the standard X
chart’s signaling rule of one point in the action region by the syn-
thetic rule. Davis and Woodall (2002) obtained the steady-state
properties of the X chart with the synthetic rule with the aim to
prove its faster mean shift detection. The results of their studies
motivated other researchers to consider the synthetic rule as an
alternative to enhance the control charts’ performance. A recent
list includes the works of Haridy, Wu, Khoo, and Yu (2012),
Calzada and Scariano (2013), Khoo, Wu, Castagliola, and Lee
(2013), Haridy, Wu, Abhary, Castagliola, and Shamsuzzaman
(2014), Chong, Khoo, and Castagliola (2014), Lee and Khoo
(2014), Yeong, Khoo, Lee, and Rahim (2014), Guo, Wang, and
Cheng (2015), Chew, Khoo, Teh, and Castagliola (2015), and
Bajirao and Parasharam (2015). Machado and Costa (2014) proved
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that the side-sensitive version of the synthetic rule enhances the X
chart’s performance. Considering a wide range of mean shifts, the
side sensitive feature reduces in 23%, on average, the time to detect
the out-of-control condition. Costa and Machado (2015, 2016) con-
sidered the Markov chain approach to obtain the properties of the
double sampling X charts and the variable sample size X charts,
both with the synthetic and with the side sensitive synthetic rules.
Celano and Castagliola (2016) investigated the synthetic rules and
the gain in speed with which the charts, used to control the ratio of
two normal variables, signal an out-of-control condition. Haq,
Brown, and Moltchanova (2015, 2016) proposed new synthetic
charts for monitoring process mean and dispersion. You, Khoo,
Lee, and Castagliola (2015), Guo et al. (2015) and Yeong, Khoo,
Yanjing, and Castagliola (2015) investigated the performance of
several synthetic charts when the process parameters are
estimated.

In this article, we propose the following synthetic charts to con-
trol bivariate processes with autocorrelated data: the T2 chart and
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Fig. 2b. Two points in different warning regions.
two simultaneous univariate X charts (the joint X charts). We con-
sider the T2 chart with the standard synthetic rule ðSyn T2 chartÞ
and the X charts with two kinds of side-sensitive synthetic rules.
The first one is side-sensitive with regard to the same variable
(SV X charts) and the second one is side-sensitive with regard to
both variables (BV X charts). When the X charts are in use, the syn-
thetic rules depend on the values of the two sample means ðX1;X2Þ.
With the first side-sensitive rule (SV rule), the joint X charts signal
in two cases: case (I) when the X1 and the X2 values of the same
sample fall beyond their control limits; case (II) when the X1 or
the X2 values of two different samples, not far from each other, fall
beyond their control limits, except if the two points in the warning
region are from the same variable and located on opposite sides of
the center line. With the second side-sensitive rule (BV rule), the
joint X charts signal in two cases: case (I) when the X1 and the
X2 values of the same sample fall beyond their control limits; case
(II) when the X1 or the X2 values of two different samples, not far
from each other, fall beyond their upper (lower) control limits.

The paper is organized as follows: Section 2 is devoted to the
presentation of the multivariate first order autoregressive model,
VAR (1), and the bivariate cross-covariance matrix of the sample
Table 1
The X1 and X2 positions and the corresponding sample codes (SV X charts).

Sample codes X1 position X2 position

2 LCL1 < X1 < UCL1 X2 < LCL2

1 X1 < LCL1 LCL2 < X2 < UCL2
0 LCL1 < X1 < UCL1 LCL2 < X2 < UCL2
1 X1 > UCL1 LCL2 < X2 < UCL2
2 LCL1 < X1 < UCL1 X2 > UCL2

Table 2
The probabilities of the transition matrix (7).

Probabilities

Ui ¼ Pr½Xi > UCLi; LCLj < Xj < UCLj�, i – j 2 f1;2g
Li ¼ Pr½Xi < LCLi; LCLj < Xj < UCLj�, i – j 2 f1;2g
C ¼ Pr½LCL1 < X1 < UCL1; LCL2 < X2 < UCL2�
A ¼ 1� ðC þ U1 þ U2 þ L1 þ L2Þ
Bi ¼ 1� ðC þ LiÞ, i 2 f1;2g
Di ¼ 1� ðC þ UiÞ, i 2 f1;2g

Table 3
The X1 and X2 positions and the corresponding sample codes (BV X charts).

Sample codes X1 position X2 position

1 LCL1 < X1 < UCL1 X2 < LCL2
X1 < LCL1 LCL2 < X2 < UCL2

0 LCL1 < X1 < UCL1 LCL2 < X2 < UCL2
1 X1 > UCL1 LCL2 < X2 < UCL2

LCL1 < X1 < UCL1 X2 > UCL2

Table 4
The probabilities of the transition matrix (8).

Probabilities

U ¼P2
i¼1Pr½Xi > LCLi; LCLj < Xj < UCLj �; j– i 2 f1;2g

L ¼P2
i¼1Pr½Xi < UCLi; LCLj < Xj < UCLj�; j – i 2 f1;2g

C ¼ Pr½LCL1 < X1 < UCL1; LCL2 < X2 < UCL2�
A ¼ 1� ðC þ U þ LÞ; B ¼ 1� ðC þ UÞ; D ¼ 1� ðC þ LÞ



Table 5
The SSARLs and the MEQL of the synthetic charts; a = b; L = 3.

q = 0.3

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 1.94157 k = 1.89838 k = 2.08558 k = 2.03919 k = 2.22027 k = 2.17088

0 0 n = 2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 126.63 132.51 130.49 142.27 147.81 146.04 156.19 161.36 159.85
0 1 24.14 27.07 25.63 29.73 33.23 31.54 35.5 39.51 37.6
0 1.5 7.25 8.02 7.65 8.9 9.91 9.42 10.7 11.97 11.34
0.5 0.5 92.34 67.28 57.21 106.39 77.98 66.36 119.36 88.12 75.11
0.5 1 26.03 21.07 18.53 31.99 25.69 22.47 38.12 30.42 26.51
0.5 1.5 8.27 7.44 6.87 10.2 9.12 8.35 12.3 10.94 9.94
1 1 14.58 11.47 10.24 18.1 14.01 12.39 21.82 16.67 14.65
1 1.5 6.82 5.74 5.3 8.35 6.95 6.36 10.03 8.26 7.5
1.5 1.5 4.64 3.89 3.65 5.57 4.65 4.32 6.59 5.46 5.04

MEQL 118.21 104.74 96.30 141.84 125.11 114.61 166.18 145.99 133.38

q = 0.5

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 1.99219 k = 1.96319 k = 2.13995 k = 2.10881 k = 2.27815 k = 2.24500

0 0 n = 2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 106.39 153.12 156.76 121.26 169.16 173.33 134.76 183.09 187.65
0 1 18.1 32.27 31.81 22.41 39.81 39.42 26.94 47.45 47.19
0 1.5 5.57 9.02 8.82 6.75 11.28 11.02 8.06 13.77 13.45
0.5 0.5 106.39 74.91 67.6 121.26 86.28 77.94 134.76 96.95 87.73
0.5 1 27.71 24.5 22.5 34 29.86 27.34 40.43 35.3 32.27
0.5 1.5 7.87 8.41 7.96 9.69 10.41 9.8 11.67 12.58 11.8
1 1 18.1 13.17 12.18 22.41 16.1 14.82 26.94 19.16 17.57
1 1.5 7.87 6.47 6.13 9.69 7.9 7.43 11.67 9.43 8.83
1.5 1.5 5.57 4.31 4.12 6.75 5.2 4.94 8.06 6.15 5.82

MEQL 174.25 132.74 121.91 203.77 156.56 143.73 232.72 180.24 165.55

q = 0.7

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 2.08360 k = 2.07057 k = 2.23814 k = 2.22415 k = 2.38268 k = 2.36779

0 0 n = 2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 70.86 195.69 205.8 83.15 211.94 222.31 94.8 225.49 235.88
0 1 10.14 44.91 46.19 12.56 55.84 57.79 15.16 66.77 69.46
0 1.5 3.53 11.27 11.3 4.12 14.43 14.51 4.79 17.97 18.12
0.5 0.5 119.36 88.64 85.02 134.76 101.04 97.01 148.58 112.52 108.14
0.5 1 24.82 31.87 30.73 30.54 38.73 37.34 36.44 45.59 43.95
0.5 1.5 5.98 10.49 10.23 7.28 13.24 12.89 8.71 16.23 15.79
1 1 21.82 16.46 15.89 26.94 20.15 19.42 32.25 23.97 23.06
1 1.5 8.26 7.96 7.75 10.19 9.84 9.55 12.28 11.85 11.49
1.5 1.5 6.59 5.12 5.01 8.06 6.26 6.11 9.67 7.49 7.3

MEQL 117.19 151.05 149.92 140.50 181.31 179.86 164.53 212.25 210.52

q = 0.3

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 1.36780 k = 1.33733 k = 1.60649 k = 1.57075 k = 1.88963 k = 1.84759

0 0 n = 5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 61.35 66.87 64.45 88.36 94.47 92.03 120.84 126.8 124.7
0 1 8.48 9.44 8.97 13.68 15.35 14.52 22.28 25 23.66
0 1.5 3.13 3.34 3.27 4.41 4.79 4.63 6.72 7.42 7.09
0.5 0.5 39.7 29.26 25.22 60.26 43.8 37.39 87.27 63.49 53.99
0.5 1 9.14 7.78 7.12 14.78 12.28 11.02 24.04 19.52 17.22
0.5 1.5 3.43 3.18 3.06 4.94 4.52 4.28 7.66 6.9 6.4
1 1 5.33 4.46 4.15 8.3 6.79 6.21 13.44 10.63 9.52
1 1.5 3.01 2.56 2.47 4.19 3.59 3.4 6.33 5.35 4.96
1.5 1.5 2.42 1.87 1.81 3.09 2.54 2.43 4.35 3.64 3.43

MEQL 49.50 44.45 41.75 73.13 65.47 60.89 110.34 97.90 90.18

(continued on next page)
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Table 5 (continued)

q = 0.5

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 1.40341 k = 1.38298 k = 1.64836 k = 1.62438 k = 1.93889 k = 1.91067

0 0 n = 5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 48.06 80.06 80.79 71.41 111.67 113.68 100.96 147.05 150.48
0 1 6.45 10.71 10.47 10.24 17.89 17.5 16.68 29.73 29.27
0 1.5 2.66 3.53 3.5 3.55 5.2 5.12 5.19 8.3 8.12
0.5 0.5 48.06 33.42 30.31 71.41 49.53 44.71 100.96 70.85 63.92
0.5 1 9.74 8.86 8.33 15.77 14.19 13.18 25.6 22.7 20.87
0.5 1.5 3.31 3.39 3.31 4.73 4.95 4.77 7.28 7.77 7.37
1 1 6.45 4.98 4.73 10.24 7.72 7.25 16.68 12.2 11.31
1 1.5 3.31 2.75 2.68 4.73 3.95 3.8 7.28 6.01 5.7
1.5 1.5 2.66 1.96 1.92 3.55 2.73 2.65 5.19 4.02 3.85

MEQL 50.72 49.79 48.12 75.26 74.19 71.29 113.82 111.77 106.77

q = 0.7

(a;b) (0.3;0.3) (0.5;0.5) (0.7;0.7)

d1 d2 T2 SV BV T2 SV BV T2 SV BV
k = 1.46780 k = 1.45863 k = 1.72400 k = 1.71322 k = 2.02786 k = 2.01518

0 0 n = 5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 28.21 111.05 116.93 44.18 149.99 158.34 66.51 189.34 199.3
0 1 3.97 13.63 13.7 5.92 23.91 24.24 9.36 41.21 42.29
0 1.5 2.14 3.94 3.95 2.55 6.1 6.11 3.34 10.27 10.3
0.5 0.5 56.4 41.28 39.59 82.15 60.12 57.6 113.67 84.16 80.7
0.5 1 8.72 11.14 10.83 14.07 18.3 17.7 22.91 29.53 28.48
0.5 1.5 2.78 3.81 3.76 3.76 5.84 5.73 5.56 9.61 9.39
1 1 7.69 5.97 5.83 12.35 9.5 9.23 20.13 15.23 14.71
1 1.5 3.42 3.11 3.07 4.94 4.65 4.56 7.64 7.35 7.17
1.5 1.5 2.95 2.13 2.11 4.07 3.1 3.05 6.12 4.75 4.65

MEQL 49.31 61.11 60.97 72.68 92.52 92.08 109.39 140.86 139.88
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mean vector. Section 3 describes the proposed synthetic charts.
Section 4 presents the Markov chain model used to compute the
steady state average run length. In Section 5, the proposed charts
are compared with the synthetic T2 chart, in terms of their statisti-
cal performance. Section 6 brings an example, and in Section 7 are
the concluding remarks.

2. The autoregressive model

The multivariate autoregressive model for cross and serially
correlated data has been adopted in recent studies dealing with
control charts (Huang, Bisgaard, & Xu, 2013; Hwarng & Wang,
2010; Kim, Jitpitaklert, & Sukchotrat, 2010; Leoni, Costa,
Machado, et al., 2015):

Xt � l ¼ UðXt�1 � lÞ þ et ð1Þ
where Xt � Npðl;CÞ is the ðp� 1Þ vector of observations at time t (p
is the number of variables), l is the mean vector, et is an indepen-
dent multivariate normal random vector with a mean vector of
zeros and covariance matrix Re, andU is a ðp� pÞmatrix of autocor-
relation parameters. According to Kalgonda and Kulkarni (2004),
the cross covariance matrix of Xt has the following property:
C ¼ UCU0 þ Re. After some algebra we obtain:
CX ¼ f21 f12

f12 f22
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where � is the Kronecker product and Vec is the operator that
transform a matrix into a vector by stacking its columns.

To study the effects of the auto- and cross-correlation on the
performance of the synthetic charts we considered the bivariate
case (p = 2) with:

U ¼ diagða; bÞ ð3Þ

Re ¼
r2

e1
re12

re12 r2
e2

 !
¼

r2
e1

qre1re2

qre1re2 r2
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where a and b are the autocorrelation parameter and q is the corre-
lation of X1 and X2.

From (2), (3) and (4) it follows:

C ¼ r2
1 r12

r12 r2
2

 !
¼

ð1� a2Þ�1r2
e1

ð1� abÞ�1re12

ð1� abÞ�1re12 ð1� b2Þ�1
r2

e2

0
@

1
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Leoni, Costa, Machado, et al. (2015) obtained the cross covari-
ance matrix CX of the sample mean vector X when the sample
items are collected according to the rational subgroup concept:
where n is the size of the samples.



Table 6
The SSARLs and the MEQL of the synthetic charts; a – b; L = 3.

q = 0.3

(a;b) (0.3;0.7) (0.7;0.3) (0.3;0.7) (0.7;0.3)

d1 d2 T2 SV BV T2 SV BV T2 SV BV T2 SV BV
k = 2.08439 k = 2.04328 k = 2.08440 k = 2.04328 k = 1.65327 k = 1.63611 k = 1.65330 k = 1.63611

0 0 n = 2 370.4 370.4 370.4 370.4 370.4 370.4 n = 5 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 155.99 133.55 128.31 126.44 160.9 168.22 119.7 75.89 73.44 60.55 134.74 154.87
0 1 35.41 29.83 28.04 24.08 37.1 37.07 21.93 14.31 13.91 8.35 21.3 23.04
0 1.5 10.67 9.49 9.04 7.23 10.35 10.08 6.62 5.11 5.05 3.1 5.17 5.28
0.5 0 126.44 160.91 168.22 155.99 133.54 128.31 60.55 134.75 154.87 119.7 75.87 73.44
0.5 0.5 104.4 77.9 67.74 104.4 77.89 67.74 55.9 48.95 45.85 55.9 48.93 45.85
0.5 1 36.38 24.42 21.76 26.93 27.17 24.19 20.66 12.75 12.2 9.7 15.21 14.53
0.5 1.5 12.2 8.89 8.26 8.29 9.38 8.67 7.42 4.94 4.85 3.41 4.8 4.7
1 0 24.08 37.1 37.07 35.41 29.83 28.04 8.35 21.3 23.04 21.93 14.3 13.91
1 0.5 26.93 27.17 24.19 36.38 24.41 21.76 9.7 15.22 14.53 20.66 12.74 12.2
1 1 17.57 14.09 12.65 17.57 14.09 12.65 7.61 7.7 7.39 7.61 7.7 7.39
1 1.5 9.03 6.97 6.47 7.36 6.97 6.44 4.85 4.06 3.97 3.33 3.75 3.66
1.5 0 7.23 10.36 10.08 10.67 9.49 9.04 3.1 5.17 5.28 6.62 5.11 5.05
1.5 0.5 8.29 9.38 8.67 12.2 8.89 8.26 3.41 4.8 4.7 7.42 4.94 4.85
1.5 1 7.36 6.98 6.44 9.03 6.97 6.47 3.33 3.75 3.66 4.85 4.05 3.97
1.5 1.5 5.42 4.66 4.37 5.42 4.66 4.37 2.93 2.71 2.66 2.93 2.71 2.66

MEQL 225.91 208.00 195.40 225.91 207.96 195.40 MEQL 118.93 120.38 120.80 118.93 120.34 120.80

q = 0.5

(a;b) (0.3;0.7) (0.7;0.3) (0.3;0.7) (0.7;0.3)

d1 d2 T2 SV BV T2 SV BV T2 SV BV T2 SV BV
k = 2.13447 k = 2.10708 k = 2.13447 k = 2.10708 k = 1.67901 k = 1.66806 k = 1.67901 k = 1.66806

0 0 n = 2 370.4 370.4 370.4 370.4 370.39 370.4 n = 5 370.4 370.4 370.4 370.4 370.35 370.4
0 0.5 134.1 153.45 152.66 105.78 176.6 188.44 97.36 83.71 82.61 45.8 136.6 154.86
0 1 26.7 34.86 33.9 17.93 43.94 45.83 15.78 15.42 15.22 6.14 23.71 26.34
0 1.5 7.99 10.58 10.3 5.52 11.82 11.85 4.95 5.34 5.32 2.59 5.52 5.73
0.5 0 105.78 176.61 188.44 134.1 153.44 152.66 45.8 136.63 154.86 97.36 83.69 82.61
0.5 0.5 118.72 85.16 78.04 118.72 85.15 78.04 64.51 51.67 49.68 64.51 51.66 49.68
0.5 1 40.1 28.02 25.96 27.47 31 28.84 24.26 13.81 13.44 9.23 16.54 16.16
0.5 1.5 11.96 9.96 9.47 7.62 10.69 10.16 7.6 5.2 5.14 3.1 5.16 5.12
1 0 17.93 43.95 45.83 26.7 34.85 33.9 6.14 23.72 26.34 15.78 15.41 15.22
1 0.5 27.47 31 28.84 40.1 28.02 25.96 9.23 16.55 16.16 24.26 13.8 13.44
1 1 21.63 16.01 14.9 21.63 16 14.9 9.01 8.36 8.15 9.01 8.36 8.15
1 1.5 10.84 7.83 7.44 8.19 7.87 7.46 5.86 4.32 4.27 3.42 4.02 3.96
1.5 0 5.52 11.82 11.85 7.99 10.58 10.3 2.59 5.52 5.73 4.95 5.34 5.32
1.5 0.5 7.62 10.69 10.16 11.96 9.96 9.47 3.1 5.17 5.12 7.6 5.19 5.14
1.5 1 8.19 7.88 7.46 10.84 7.83 7.44 3.42 4.02 3.96 5.86 4.32 4.27
1.5 1.5 6.53 5.17 4.95 6.53 5.17 4.95 3.26 2.86 2.82 3.26 2.86 2.82

MEQL 224.23 235.77 228.92 224.23 235.73 228.92 MEQL 115.64 128.58 130.49 115.64 128.52 130.49

q = 0.7

(a;b) (0.3;0.7) (0.7;0.3) (0.3;0.7) (0.7;0.3)

d1 d2 T2 SV BV T2 SV BV T2 SV BV T2 SV BV
k = 2.22355 k = 2.21146 k = 2.22355 k = 2.21145 k = 1.72055 k = 1.71644 k = 1.72057 k = 1.71644

0 0 n = 2 370.4 370.4 370.4 370.4 370.4 370.4 n = 5 370.4 370.4 370.4 370.4 370.4 370.4
0 0.5 93.12 195.85 200.66 69.43 202.65 216.4 58.24 98.55 99.09 24.03 134.6 147.44
0 1 14.77 46.53 46.91 9.88 59.45 64.51 7.98 17.45 17.49 3.53 28.1 31.91
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The cross covariance matrix CX is important to study the perfor-
mance of the synthetic charts by using Markov chains approach.
Without loss of generalization, we consider an in-control mean
vector l0 ¼ ðl01;l02Þ ¼ ð0;0Þ, and after the assignable cause occur-
rence, the mean vector changes to l0 ¼ ðd1re1 ; d2re2 Þ.
3. The joint X charts with synthetic rules

In this article we propose the use of joint X charts with two kind
of synthetic rules to control the mean vector of bivariate processes.
These rules are based on the conforming run length (CRL) measure.
The CRL is the number of conforming samples between two con-
secutive nonconforming samples plus the ending nonconforming
one; in other words, the first of the two consecutive nonconform-
ing samples is the reference to compute the CRL. A CRL lower than
or equal to a specified positive integer L (CRL 6 L) triggers a signal.
The sample is conforming when the two means of the quality char-
acteristics ðX1;X2Þ fall in the central region of their control charts;
otherwise, the sample is nonconforming. The central regions of the
Xi charts, with i ¼ 1;2, are defined by the lower and upper control
limits ðLCLi ¼ l0i � kfi; UCLi ¼ l0i þ kfiÞ, where k is the width coef-
ficient of the control limits.

The first synthetic rule is side-sensitive with regard to the same
variable (SV rule). The joint X charts with the SV rule (SV X charts)
signal in two cases: case (I) when the sample is nonconforming
with both, the X1 and the X2, in the warning region; case (II) when
two consecutive nonconforming samples are not far from each
other (CRL 6 L), except when the X values beyond the control limits
are from the same quality characteristic and located on the oppo-
site sides of the center line. Fig. 1 illustrates a case where CRL 6 L
(CRL = 3 and L = 5) and doesn’t trigger a signal once the two points
in the opposite warning regions are from the same quality charac-
teristic, that is, from X1.

The second side-sensitive rule is side-sensitive with regard to
both variables (BV rule). The joint X charts with the BV rule (BV
X charts) signal in two cases: case (I) when the sample is noncon-
forming with both, the X1 and the X2, in the warning region; case
(II) when two consecutive nonconforming samples are not far from
each other (CRL 6 L), except when their X values beyond the con-
trol limits are located on the opposite sides of the center line.
Fig. 2 illustrates two cases where CRL 6 L (CRL = 3 and L = 5). The
set of mean values in Fig. 2a triggers a signal once the X2 from
the first nonconforming sample is above the upper control limit
(UCL2) and the X1 from the second nonconforming sample is also
above the upper control limit (UCL1). The set of mean values in
Fig. 2b doesn’t trigger a signal once the two points in the warning
regions are in opposite sides; the X2 from the first nonconforming
sample is above the upper control limit (UCL2) and the X1 from the
second nonconforming sample is below the lower control limit
(LCL1).

The SV rule takes into account the assumption that the assign-
able cause shifts the mean of the first variable, or the mean of
the second variable, or simultaneously shifts the mean of both
variables, moving them from their target positions to higher or
lower positions; after that, the two means remain unchanged
until the assignable cause is eliminated. Because of that, the SV
rule does not signal when the two X values, beyond the control
limits and in opposite sides, are sample means of the same vari-
able. This signaling constraint reduces the type I error without
affecting, at least significantly, the power of the control chart,
that is, the type II error. The following comments are useful to
prove the type I error reduces without changing, at least signifi-
cantly, the type II error. When the mean of the first variable
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moves to a higher position, the sample means computed with
observations of the first variable have unbalanced probabilities
to fall above the upper control limit and to fall below the lower
control limit, being much higher the probability of falling above
the upper control limit. By other hand, when the mean of the
first variable moves to a lower position, the samples means also
have unbalanced probabilities to fall above the upper control
limit and to fall below the lower control limit, being much higher
the probability of falling below the lower control limit. These
comments extend to the second variable.

The BV rule was proposed under the assumption that, if the
two variables are affected by the assignable cause, then the
assignable cause always shifts the mean of the two variables,
moving them, from their target positions, to a higher (lower)
position. Because of that, if a CRL 6 L is reached, then the BV rule
signals if and only if the two X values, beyond the control limits,
are also on the same side of the center line, that is, both of them
are above their upper control limits, or both of them are below
their lower control limits. This signaling constraint, similarly to
the SV case, reduces the type I error without affecting, at least
significantly, the power of the control chart, that is, the type II
error.

In comparison with the SV X charts, the BV X charts signal faster
assignable causes that increase (decrease) the two means of the
mean vector or only increase (decrease) the mean of one variable,
holding the other mean unaltered.
100 . . .0 . . . 0 . . .010 0 . . .001 100 . . .0 . . . 0 . . .010 0 . . .001 0 . . .0

100 . . .0 0 . . . 0 0 0 . . . 0 L1 C

010 . . .0 C . . . 0 0 0 . . . 0 L1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . .001 0 . . . C 0 0 . . . 0 L1 0

100 . . .0 0 . . . 0 U1 0 . . . 0 0 C

010 . . .0 0 . . . 0 U1 C . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . .001 0 . . . 0 U1 0 . . . C 0 0

0 . . .0 0 . . . 0 U1 0 . . . 0 L1 C

0 . . .002 0 . . . 0 0 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

020 . . .0 0 . . . 0 0 0 . . . 0 0 0

200 . . .0 0 . . . 0 0 0 . . . 0 0 C

0 . . .002 0 . . . 0 0 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

020 . . .0 0 . . . 0 0 0 . . . 0 0 0

200 . . .00 0 . . . 0 0 0 . . . 0 0 C

Signal 0 . . . 0 0 0 . . . 0 0 0
4. The SSARLs of the proposed synthetic charts

The construction of the transition probabilities matrix (TP
matrix) is the first step to obtain the steady-state ARLs (SSARLs) of

the SV and BV X charts. The SSARL is given by S0ðI� RÞ�11, where
S is the vector with the stationary probabilities of being in each non-
absorbing state, I is an (hL + 1) by (hL + 1) identity matrix, R is the
transition matrix, with the last row and last column removed, and
1 is an (hL + 1) by one vector of ones. If the X chart is side-
sensitive with regard to the same variable (SV), h = 4 and R is in
(7), however, if the X chart is side-sensitive with regard to both vari-
ables (BV), h = 2 and R is in (8). As was first observed by Wu and
Spedding (2000), the speed with which the synthetic charts signal
is slightly affected by the input parameter L; based on that, and tak-
ing into account the operational simplicity, we adopted L = 3.

4.1. The SSARLs of the SV X charts

Table 1 presents the relation between the X1 and X2 positions
on the SV charts and the sample codes. The codes of the last L sam-
ples define the transient states of the transition matrix (7). If the
current state is state (00 . . .0 i), (0 . . .0 i0) . . . (00 i . . .0), (0 i0 . . .0),
or (i00 . . .0), where i = 1, 2, and the code of the next sample is

\i", the Markov chain moves to state (0 . . .00 i). The same way, if

the current state is state (0 . . .00 i ), (0 . . .0 i0) . . . (00 i . . .0),

(0 i0 . . .0), or (i00 . . .0) and the code of the next sample is \i", the
Markov chain moves to state (0 . . .00 i). Table 2 presents the prob-
abilities of the transition matrix (7).
0:002 0 . . .020 . . . 200 . . .0 0 . . .002 0 . . .020 . . . 200 . . .0 Signal

0 0 . . . 0 0 0 . . . 0 B1

0 0 . . . 0 0 0 . . . 0 B1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 B1

0 0 . . . 0 0 0 . . . 0 D1

0 0 . . . 0 0 0 . . . 0 D1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 D1

L2 0 . . . 0 U2 0 . . . 0 A

0 C . . . 0 U2 0 . . . 0 D2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . C U2 0 . . . 0 D2

0 0 . . . 0 U2 0 . . . 0 D2

L2 0 . . . 0 0 C . . . 0 B2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

L2 0 . . . 0 0 0 . . . C B2

L2 0 . . . 0 0 0 . . . 0 B2

0 0 . . . 0 0 0 . . . 0 1

ð7Þ
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The S vector is obtained by solving the system of linear equa-
tions S0Radj = S, constrained to S0 1 = 1. The matrix Radj is an
adjusted version of R, where the probabilities in each row are
divided by the complement of the last row probability,
that is, the one in the ‘‘Signal” column; after that, the last row
and the last column are removed. It follows that S = d�1N, where

d ¼ 4f L þ 4
PL

i¼1 f
i�1ð1� gÞ, and N = [f L�1(1 � g), f L�2(1 � g), . . . , f 0

(1 � g), f L�1(1 � g), f L�2(1 � g), . . . , f 0(1 � g), 4f L, f 0(1 � g), . . . , f L�2

(1 � g), f L�1(1 � g), f 0(1 � g), . . . , f L�2(1 � g), f L�1(1 � g)]. When
the process is in control B1 = B2 = D1 = D2, f = C/(1 � B1) and g = C/
(1 � A).

4.2. The SSARLs of the BV X charts

Table 3 presents the relation between the X1 and X2 positions
on the BV charts and the sample codes. The codes of the last L
samples define the transient states of the transition matrix (8).
If the current state is state (00 . . .01), (0 . . .010) . . . (001 . . .0),

(010 . . .0), or (100 . . .0), and the code of the next sample is 1,

the Markov chain moves to state (0 . . .001). The same way, if the

current state is state (0 . . .001), (0 . . .010) . . . (001 . . .0),

(010 . . .0), or (100 . . .0) and the code of the next sample is \1",
the Markov chain moves to state (0 . . .001). Table 4 presents the
probabilities of the transition matrix (8).
100 . . .0 010 . . .0 . . . 0 . . .010 0 . . .001 00 . . .00 0 . . .001 0 . . .010 . . . 010 . . .0 100 . . .0 Signal

100 . . .0 0 0 . . . 0 0 C U 0 . . . 0 0 B

010 . . .0 C 0 . . . 0 0 0 U 0 . . . 0 0 B

001 . . .0 0 C . . . 0 0 0 U 0 . . . 0 0 B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 001 0 0 . . . C 0 0 U 0 . . . 0 0 B

00 . . .00 0 0 . . . 0 L C U 0 . . . 0 0 A

0 . . . 001 0 0 . . . 0 L 0 0 C . . . 0 0 D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

001 . . .0 0 0 . . . 0 L 0 0 0 . . . C 0 D

010 . . .0 0 0 . . . 0 L 0 0 0 . . . 0 C D

100 . . .0 0 0 . . . 0 L C 0 0 . . . 0 0 D

Signal 0 0 . . . 0 0 0 0 0 . . . 0 0 1

ð8Þ
When the process is in control B = D, and the stationary probabil-

ity vector is given by S = d�1N, with ½N ¼ f L�1(1� g), f L�2(1� g), . . . ,

f 0(1� g), 2f L, f 0(1� g), . . . , f L�2(1� g), f L�1(1 � g)], and d = 2f L

+ 2
PL

i¼1 f
ði�1Þð1� gÞ, being f = C/(1 � B) and g = C/(1� A).
5. Comparing the synthetic charts

According to Davis and Woodall (2002) the proper parameter to
measure the performance of a synthetic chart is the steady-state
average run length (SSARL), that is, the ARL value obtained when
the process remains in-control for a long time before the occur-
rence of the assignable cause. When the process is in-control, the
SSARL measures the rate of false alarms. A chart with a larger in-
control SSARL (SSARL0) has a lower false alarm rate than other
charts. A chart with a smaller out-of-control SSARL has a better
ability to detect process changes than other charts. The in-
control SSARL is an input parameter, and the chart’s parameter k
is the adjusting parameter to obtain to the desired in-control
SSARL, see Machado and Costa (2014).

There are other parameters to measure the performance of the
control charts. For example, Reynolds and Stoumbos (2004) and
Wu, Yang, Jiang, and Khoo (2008) used the Extra Quadratic Loss
(EQL) to measure and compare the performance of the charts.
The smaller the EQL value of a chart, the better the overall perfor-
mance of the chart in the detection of process changes. The EQL
was used in the literature only for the univariate case. We adapted
the EQL for the multivariate case (MEQL):

MEQL ¼ 1
dmax � dmin

Z dmax

dmin

E2SSARLðEÞdE ð9Þ

where E2 is the Euclidian distance based on d1 and d2;
dmax ¼ 4:5ðdmin ¼ 0:25Þ is the square root of the maximum (mini-
mum) Euclidian distance; SSARLðEÞ is the steady state ARL computed
with d1 and d2, being E2 ¼ d21 þ d22.

Tables 5 and 6 present the SSARLs and theMEQL of the synthetic
T2 chart (Syn T2 chart), and the synthetic X charts with the SV and
with the BV rules (SV X and BV X charts) for ARL0 = 370.4, n = 2 or 5
and L = 3. The SSARL values of the best strategy are in bold. We
considered variables with low ðq ¼ 0:3Þ, moderate ðq ¼ 0:5Þ and
high correlation (q ¼ 0:7Þ. Table 5 considers the cases where the
two variables have the same level of autocorrelation, that is,
a = b, and Table 6 considers the cases where a– b.

From Table 5, when the correlation is low or moderate (q = 0.3
or 0.5), the BV charts has the best overall performance, that is, the
lowest MEQL. However, considering the particular case where only
one variable is affected by the assignable cause, the Syn T2 chart is
faster than the Syn X charts. For instance, if ða; b; d1; d2;nÞ ¼
ð0:7;0:7;0;1:5;2Þ, and the variables are moderate correlated
(q = 0.5), the Syn T2 chart requires, on average, 8.06 samples to sig-
nal. The correspondent SSARL of the BV and SV charts are 13.45 and
13.77, respectively. When the two variables are high correlated
(q = 0.7), the Syn T2 chart has the lowest MEQL, that is, the high
correlation enhances the Syn T2 chart’s overall performance.
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However, considering the particular case where d1 ¼ d2 or d1 P 1:0
and d2 P 1:0, the BV charts are the best option. For instance, if
ða; b; d1; d2;nÞ ¼ ð0:7;0:7;1:0;1:5;2Þ , and the variables are high
correlated (q = 0.7), the BV charts require, on average, 11.49 sam-
ples to signal. The correspondent SSARL of the Syn T2 chart and
the SV charts are 12.28 and 11.85, respectively. The charts’ perfor-
mance always improves with larger samples.

From Table 6, when the correlation is low (q = 0.3), the Syn X
charts have a better overall performance. Figs. 3 and 4 present
the contour plots for n = 2 and q ¼ 0:3 and 0.7. According to these
Figures, the BV charts perform better than the Syn T2 chart when
d1 ffi 0:5 and d2 ffi 0:5.
6. Illustrative example

Leoni et al. (in press) give an interesting example of a bivariate
process with autocorrelated data. In their example, X1 and X2 are
the amount of milk injected in milk containers of 990 mL by a fill-
ing machine with two filling heads. With the aim to illustrate the
control of such processes with the SV and BV charts, let
ðZi ¼ ðXi � l0iÞ=fi; i ¼ 1;2Þ be the standardized mean vector from
samples with observations fitting to the autoregressive model
=
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Fig. 3. The contour plots of SSA
described in Section 2. According to Table 5, if L = 3, q = 0.7,
a = b = 0.5 and the signaling rule is the SV rule, then the k value that
leads to an in-control SSARL of 370.4 is 1.724; switching to the BV
rule the width coefficient k slightly decreases to 1.713. Figs. 5 and 6
illustrate, respectively, the joint X charts with the SV and with BV
rules. The Z1 and Z2 values from 7 samples of size 5 are in Table 7.

The SV chart is depicted in Fig. 5 with a signal given by two non-
conforming samples; the first one with a Z2 value above the upper
control limit, and the second one with a Z1 value below the lower
control limit. This kind of signal suggests that the two variables
were affected by the assignable cause, that is, the mean of X1

decreased and the mean of X2 increased. The BV chart is depicted
in Fig. 6 with a signal given by two nonconforming samples; now
the first one and also the second one with Z2 values above the
upper control limit. This kind of signal suggests that only the sec-
ond variable was affected by the assignable cause.
7. Conclusions

The aim of the proposed side-sensitive X charts was to offer a
simpler charting method to control bivariate processes with auto-
correlated data. The overall conclusion is that the side-sensitive
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Fig. 4. The contour plots of SSARL with n = 2 and q ¼ 0:7.

Fig. 5. The joint X charts with the SV rule.
Fig. 6. The joint X charts with the BV rule.

Table 7
The standardized sample means.

Sample
number

Z1 Z2 Sample CRL (SV
rule)

CRL (BV
rule)

1 0.5377 �0.1092 Conforming 1 1
2 �0.7767 �0.3688 Conforming 2 2
3 0.3741 �0.4808 Conforming 3 3
4 �0.7776 1.7879 Nonconforming 4 4

5 �0.0025 �0.4476 Conforming 1 1
6 �1.9027 0.7192 Nonconforming Signal 2

7 0.8591 2.0685 Nonconforming Signal

Falls above (below) the upper (lower) warning region.
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rules reduce the delay with which the X charts signal an out-of-
control condition. Consequently, the side-sensitive rules restore
part of the lost performance of the X charts due to the autocorrela-
tion. The BV X charts are the best option in terms of simplicity
and overall performance, except when the variables are high
correlated. The correlation has a negative effect on the perfor-
mance of the side-sensitive X charts; their competitiveness with
the synthetic T2 chart is drastically affected by highly correlated
variables.
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