
Accepted Manuscript

An effective placement method for the single container loading problem

Yao-Huei Huang, Feng-Jang Hwang, Hao-Chun Lu

PII: S0360-8352(16)30148-6

DOI: http://dx.doi.org/10.1016/j.cie.2016.05.008

Reference: CAIE 4332

To appear in: Computers & Industrial Engineering

Received Date: 9 August 2015

Revised Date: 14 March 2016

Accepted Date: 2 May 2016

Please cite this article as: Huang, Y-H., Hwang, F-J., Lu, H-C., An effective placement method for the single

container loading problem, Computers & Industrial Engineering (2016), doi: http://dx.doi.org/10.1016/j.cie.

2016.05.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cie.2016.05.008
http://dx.doi.org/10.1016/j.cie.2016.05.008
http://dx.doi.org/10.1016/j.cie.2016.05.008

1

An effective placement method for the single container loading problem

Yao-Huei Huanga, Feng-Jang Hwangb, Hao-Chun Luc,*

a School of Economics and Management, Southwest Jiaotong University, Chengdu, 610031, China.

b School of Mathematical Sciences, University of Technology Sydney, Australia.

c
Department of Information Management, Fu Jen Catholic University, New Taipei City 24205, Taiwan

ABSTRACT

This study investigates a three-dimensional single container loading problem, which aims to pack a

given set of unequal-size rectangular boxes into a single container such that the length of the

occupied space in the container is minimized. Motivated by the practical logistics instances in

literature, the problem under study is formulated as a zero-one mixed integer linear programming

model. Due to the NP-hardness of the studied problem, a simple but effective loading placement

heuristic is proposed for solving large-size instances. The experimental results demonstrate that the

developed heuristic is capable of solving the instances with more than two hundred boxes and more

efficient than the state-of-the-art mixed integer linear program and existing heuristic methods.

Keywords: Container loading problem; mixed integer linear program; heuristic; loading placement

2

1. Introduction

The container loading problem (CLP), which is also referred to as the packing problem, plays a

crucial role in logistics planning and scheduling, and widely arises in various real-world applications,

such as electronic, steel, paper, textiles, manufacturing and transportation industries. In this paper,

we consider the three-dimensional container loading problem (3DCLP), where a given set of

nonuniform-size rectangular boxes is to be packed within an enveloping rectangular container such

that the length of the occupied space in the container is minimized. All the boxes are assumed to be

orthogonally positioned, i.e. each edge of the box is parallel to one axis of the container. The

objective function addressed in this study is different from the criterion of minimizing the volume of

the occupied space in that an occupied space with the minimum length unnecessarily retains the

minimum volume. For example, a container with a length of 6-m, a width of 3-m, and a height of

2-m is given for packing six cube boxes with a 1-m side length and one rectangular box with a 1-m

length, 1-m width, and 0.5-m height. If minimizing the volume of the occupied space is considered,

an optimal solution with the length equaling 3.5m and the volume equaling (3.5×2×1)=7m
3
 is shown

in Figure 1(a). If the criterion is the minimization of the length, an optimal solution with the length

equaling 1.5m and the volume equaling (1.5×3×2)=9m
3
 is depicted in Figure 1(b). Motivated by the

practical instances in logistics (cf. Chen et al., 1995; Hu et al., 2012), the studied problem could arise

from the container loading for a truck, which delivers goods or parcels of various types to several

different shops or transshipment points along a route. To process the unloading efficiently, the

container is divided into several sections, each of which is stacked with the goods ordered by an

individual shop or the parcels to be transferred to a transshipment station. As shown in Figure 2,

minimizing the length of the section required to pack goods for each shop yields the maximal

number of shops or transshipment points to which a truck can make deliveries with a single trip, and

thus reduces inventory and transportation costs. For each shop or transshipment station, i.e. each

section in the container, the 3DCLP under study is considered. Furthermore, the generalized

3

assumption that the sizes of rectangular boxes are various and even customer-defined is not

uncommon and actually practical in Taiwan’s logistics industries, such as Hsin-Chu Transportation

Logistics, Kerry TJ Logistics, Taiwan Pelican Express, T-cat Takkyubin, Taiwan Post, etc (cf. Chou

and Lu, 2009).

 [Place Figure 1 in this location]

Figure 1. Optimal solutions for the volume minimization (a) and the length minimization (b)

 [Place Figure 2 in this location]

Figure 2. Three container sections for three individual shops.

In the past decades, the solution approaches proposed to cope with variants of CLPs can be

divided into two classes: heuristic algorithms and deterministic methods. Owing to the great

complexity of the CLPs in nature, most research has focused on the development of heuristic

methods. Considering the two-dimensional pallet loading problem, Hodgson (1982) developed an

integrated approach of dynamic programming and heuristic procedure to minimize the number of

pallets for loading a given set of boxes. George and Robinson (1980) investigated a problem of

packing a given set of boxes into a container with a fixed volume and proposed a heuristic for the

sequencing and positioning such that all the boxes can be fitted in. Bischoff and Marriott (1990)

presented a comparative analysis of fourteen heuristic rules for the CLP and examined the impact of

the number of different item types in a load on the loading efficiency. Considering the weight and the

load bearing abilities of the boxes in the CLP, Ratcliff and Bischoff (1998) proposed an approach to

adapt the solution procedures in the literature to deal with fragility consideration. Faina (2000)

developed a geometrical model that reduces the CLP to a finite enumeration scheme, and presented a

statistical optimization algorithm based on simulated annealing. Eley (2002) designed a greedy

heuristic coupled with a tree search procedure for the single-container and multiple-container

4

packing problems. Pisinger (2002) presented a heuristic algorithm to decompose the CLP into a

number of layers, which are divided into a number of strips. Then the decomposed sub-problem of

packing strips can be formulated as the well-known knapsack problem. Investigating the arbitrary

m-dimensional CLP, Lins et al. (2002) proposed a recursive uniform algorithm to partition the

container into various sub-containers, each of which can be recursively partitioned into further

sub-containers. A parallel tabu search algorithm based on the multi-search threads for the CLP was

presented by Bortfeldt et al. (2003). Then Hifi (2004) developed an integrated algorithm of dynamic

programming and graph search procedure with depth-first search strategy for solving the weighted

three-dimensional cutting problem, which is a variant of CLP. Considering the three-dimensional

strip packing problem, Bortfeldt and Mack (2007) designed a heuristic algorithm which was derived

from the layer-building approach proposed by Pisinger (2002). Almeida and Figueiredo (2010)

presented an alternative non-linear formulation containing additional restrictions on the placement

and designed a heuristic algorithm for the CLP. Fanslau & Bortfeldt (2010) presented a tree search

algorithm for the 3DCLP, where a special form of tree search keeps the search effort low and ensures

a suitable balance between search diversity and foresight during the search. Zhang et al. (2012)

proposed a block-loading algorithm based on multi-layer search for the 3DCLP with depth-first and

multi-layer search for determining the selected bock in each packing phase. The computational

results in Zhang et al. (2012) showed that their developed algorithm outperforms the method

presented by Fanslau & Bortfeldt (2010). Zhu et al. (2012) addressed the cost minimization in the

multiple-container packing problem formulated as a set cover problem, and presented a prototype

column generation scheme.

In the relevant literature on deterministic methods, the CLPs are generally modeled as a

mathematical program. Chen et al. (1995) considered the 3DCLP, which aims to select a number of

containers to pack a given set of boxes. They proposed a mixed integer linear programming (MILP)

formulation and solved the small-size problems by the LINGO package. Then Tsai and Li (2006)

5

first adapted the MILP model proposed by Chen et al. (1995) to present a mixed integer nonlinear

programming (MINLP) model for the 3DCLP which aims to pack a given set of boxes into a

container with the minimum volume. They modified the MINLP by reducing the number of binary

variables and utilizing a piecewise linearization technique to find a global optimum within a tolerable

error. Tsai et al. (2014), subsequently, converted the original MINLP into an MILP with an improved

piecewise linearization technique using fewer extra zero-one variables and constraints to enhance the

computational efficiency. On the other hand, Hu et al. (2012) developed a transformation method to

convert the nonlinear objective function in the 3DCLP into an increasing function with single

variable and two fixed parameters. A transformed MILP was then decomposed into several

sub-problems, which were solved in parallel by a proposed distributed genetic algorithm.

The NP-hardness of the studied 3DCLP, which is a generalization of the bin-packing problem,

indicates that it is very unlikely to devise a polynomial-time exact algorithm for yielding an optimal

solution to the 3DCLP unless P=NP. To cope with the medium- or large-scale 3DCLP, developing

an effective heuristic is relatively applicable. We observe that most existing heuristics for the 3DCLP

are based on the wall-building approach, which suffers from the following deficiencies in efficiency

and effectiveness: (i) A backtracking probability is necessary for solution evolution, which could

incur a considerable computation time; (ii) The generated solution would have numerous unutilized

separated spaces and thus a low container space utilization. In this paper, we proposed a simple but

effective loading placement heuristic for the studied 3DCLP. By comparison with the state-of-the-art

deterministic MILP model and existing heuristic techniques, the developed heuristic algorithm is

capable of generating quality solutions to the benchmark dataset efficiently.

The rest of the paper is organized as follows. In Section 2, a reference MILP of the 3DCLP is

introduced. A loading placement heuristic algorithm is proposed in Section 3. Numerical

experiments are conducted in Section 4. Finally, some concluding remarks are made in Section 5.

6

2. Reference MILP model

Assume that n nonuniform-size rectangular boxes, each of which has a specific length, width

and height, are given. Denote the length, width, and height of the space required to pack all the n

boxes into a container by x, y and z, respectively. Referring to Chen et al. (1995), Tsai and Li (2006),

and Tsai et al. (2014), the 3DCLP model studied in this paper can be stated as follows:

Min x

s.t.

 (i) All of the boxes are positioned without overlap;

(ii) All of the boxes are loaded within the range of x, y, and z;

(iii) The dimensions of the occupied space abide by the given upper bounds, i.e. the

dimensions of the container.

The notation used in the 3DCLP model (cf. Chen et al., 1995; Tsai and Li, 2006; Tsai et al.,

2014) is described below:

Notation

n Total number of the given set of boxes to be loaded.

N  1,2, , N n .

M max{ , , }M x y z , where x , y , and z are the upper bounds of x , y , and z , i.e.

the length, width, and height of the container, respectively.

(, ,)i i ip q r Parameters indicating the length, width and height of box i , respectively.

(, ,)i i ix y z Variables indicating the coordinates of the left-front-bottom corner of box i .

(, ,)xi yi zil l l Binary variables indicating whether the length of box i is parallel to the

x-axis, y-axis or z-axis. For example, 1xil if the length of box i is parallel

7

to the x-axis; otherwise, 0xil .

(, ,)xi yi ziw w w Binary variables indicating whether the width of box i is parallel to the

x-axis, y-axis or z-axis. For example, 1xiw if the width of box i is parallel

to the x-axis; otherwise, 0xiw .

(, ,)xi yi zih h h Binary variables indicating whether the height of box i is parallel to the

x-axis, y-axis or z-axis. For example, 1xih if the height of box i is parallel

to the x-axis; otherwise, 0xih .

,(,)  ij ij ij Binary variables indicating the relative positions of box i and box j , such

as

(a) ((0,, , 0,) 1)   ij ij ij if box i is on the left-hand side of box j ;

(b) ((0,, , 1,) 0)   ij ij ij if box i is on the right-hand side of box j ;

(c) ((1,, , 0,) 0)   ij ij ij if box i is behind box j ;

(d) ((0,, , 1,) 1)   ij ij ij if box i is in front of box j ;

(e) ((1,, , 0,) 1)   ij ij ij if box i is below box j ;

(f) ((1,, , 1,) 0)   ij ij ij if box i is above box j .

By simplifying the Model 2 in Tsai et al. (2014), we adopt the following MILP as the reference

model.

Reference MILP Model

Min x (1)

s.t.

8

(1)i i xi i xi i xi j ij ij ijx p l q w rh x M           , , i j N , i j , (2)

(1)j j xj j xj j xj i ij ij ijx p l q w r h x M           , , i j N , i j , (3)

(1)         i i yi i yi i yi j ij ij ijy p l q w rh y M , , i j N , i j , (4)

(2)j j yj j yj j yj i ij ij ijy p l q w r h y M           , , i j N , i j , (5)

(2)         i i zi i zi i zi j ij ij ijz p l q w rh z M , , i j N , i j , (6)

(2)         j j zj j zj j zj i ij ij ijz p l q w r h z M , , i j N , i j , (7)

1 2     ij ij ij , , i j N , i j , (8)

   i i xi i xi i xix p l q w rh x ,  i N , (9)

   i i yi i yi i yiy p l q w rh y ,  i N , (10)

   i i zi i zi i ziz p l q w rh z ,  i N , (11)

1  xi yi zil l l ,  i N , (12)

1  xi yi ziw w w ,  i N , (13)

1  xi yi zih h h ,  i N , (14)

1  xi xi xil w h ,  i N , (15)

1  yi yi yil w h ,  i N , (16)

1  zi zi zil w h ,  i N , (17)

where max{ , , }M x y z , , , 0i i ix y z  , 0  x x , 0  y y , 0  z z , and xil , yil , zil , xiw , yiw , ziw ,

xih , yih and zih are 0-1 variables.

The objective function (1) of the reference MILP is to minimize the length of the required space

9

in the container for packing all boxes. Inequalities (2)-(8) are the constraints used to ensure that all

these boxes are positioned without overlap. Constraints (9)-(11) make all boxes be packed within the

required space in the container. Constraints (12) ((13), (14)) ensure that the length (width, height) of

box i is parallel to one of x-axis, y-axis and z-axis for all i ∈ N. Constraints (15) ((16), (17)) enforce

that only one of the length, width and height of box i is parallel to x-axis (y-axis, z-axis) for all i ∈

N. To the best of our knowledge, the above reference MILP model (1)-(17), is the state-of-the-art

mathematical programming model for the studied 3DCLP.

3. Proposed loading placement heuristic

In the development of the loading placement heuristic, we generate loading patterns through an

iterative process and propose a placement procedure to load all these boxes. The notions of the

loading pattern representation, iteration, and evaluation stem from the fundamentals of evolutionary

computation, such as genetic algorithm (GA) (Holland, 1975). The iterative loading placement

procedure is comprised of the following seven components.

(i) Coordinate expression is used to record the relative position of boxes in the container.

(ii) Non-overlapping and non-overstepping conditions are utilized to avoid any overlap between

boxes.

(iii) Use a loading pattern to present a sequence for packing all boxes and the corresponding data

structure.

(iv) Evaluation function measures the solution qualities of loading patterns.

(v) Load all boxes into the container by the loading process.

(vi) Generate different loading patterns using two specific operators.

(vii) A history bucket aims to avoid generating the same loading pattern.

3.1 Coordinate expression

10

As the definition in the reference MILP model, the position of any box i in the container is recorded

with its coordinates of the left-front-bottom corner. Take Figure 3 for an example. Parameter vector

(0,0,0) indicates the coordinates of the left-front-bottom corner of box i in the container.

[Place Figure 3 in this location]

Figure 3. The coordinates of the left-front-bottom corner of box i .

3.2 Non-overlapping and non-overstepping conditions

Referring to Constraints (2)-(8), the proposed heuristic adopts the following six conditions to

check whether any pair of boxes i and j , , i j N , i j overlap:

i j ix x p  ;

j i jx x p  ;
i j iy y q  ;

j i jy y q  ;
i j iz z r  ;

j i jz z r  . (18)

If and only if all the conditions in Eq. (19) are violated, the box i and box j overlap. The

non-overstepping conditions ensuring that each box i N is positioned inside the container are

  i ix p x ;  i iy q y ;  i iz r z . (19)

3.3 Loading pattern

Assume that at each iteration r of the heuristic the boxes are loaded into the container in

accordance with a packing sequence ([1],[2],…,[n]), the loading pattern of which can be represented

by an array

 [1] [2] [](, , ,) r nB b b b , where (20)

 [] [] [] [] [] [] [](, , , , ,)h h h h h h hb p q r x y z ,  h N . (21)

Each element []hb in the loading pattern rB corresponds to the box which is arranged in the h-th

position in the packing sequence, and denotes the parameter vector of box [h].

3.4 Evaluation function

11

The evaluation function shown in Eq. (22) is used to measure the solution quality of the loading

pattern rB :

 max i i

i N
r

x p
f

x




 . (22)

The loading pattern rB is feasible if 0 1rf  . Otherwise, rB is infeasible.

3.5 Loading process

For each iteration r of the heuristic procedure, the loading process is performed for all boxes in

N according to the sequence ([1],[2],…,[n]). Denote the set of loaded boxes by lN N . The loading

process is initialized by positioning box [1] in the left-front-bottom corner (0,0,0) (cf. Figure 3 for

i=[1]) and setting {[1]}lN and h=2. Then the loading process is run with the following steps.

Step 1: Load box i=[h] by attaching the left-front-bottom corner of box i to the right-front-bottom

corner of some loaded box k such that k kx p is the smallest among all loaded boxes and

box i is non-overlapping with any loaded box and does not exceed the dimension of the

container (cf. Figure 4).

(1a) Define ' ': ii ix x p , ':i iy y and ':i iz z .

(1b) Find 1
'

argmin{ Eq. (18) \{ '}; Eq. (19)}
l

i l
i N

k x j N i


   ;

(1c) If 1 k null , set
1 1

 k kix px ,
1

 kiy y and
1

 kiz z .

[Place Figure 4 in this location]

Figure 4. Box i adjoining box k.

Step 2: Move box i by attaching the left-front-bottom corner of box i to the left-behind-bottom corner

12

of some loaded box k such that k ky q is the smallest among all loaded boxes and box i is

non-overlapping with any loaded box and does not exceed the dimension of the container.

(2a) Define ': iix x , ' ': i i iy y q and ':i iz z .

(2b) Find 2
'

argmin{ Eq. (18) \{ '}; Eq. (19)}
l

i l
i N

k y j N i


   ;

(2c) If 2 k null , set
2

 kix x ,
2 2

 k kiy y q and
2

 kiz z .

Step 3: Move box i by attaching the left-front-bottom corner of box i to the left-front-top corner of

some loaded box k such that k kz r is the smallest among all loaded boxes and box i is

non-overlapping with any loaded box and does not exceed the dimension of the container.

(3a) Define ': iix x , ':i iy y and ' ': i i iz z r .

(3b) Find 3
'

arg min{ Eq. (18) \{ '}; Eq. (19)}


  
l

i l
i N

k z j N i ;

(3c) If 3 k null , set
3

 kix x ,
3

 kiy y and
3 3

 k kiz z r .

Step 4: If 1 2 3  k k k null , return  rf .

 Otherwise, set { }l lN N i , h=h+1 and check if h n . If yes, go to Step 1. If no, return

 max





i i
i N

r

x p
f

x
.

3.6 Two specific operators

There are two specific operators, the position-swap operator and rotation operator, which

perform the data alteration for a loading pattern to generate a new loading pattern. The position-swap

operator is equipped with two random number generators. One is used to produce a random number

 in  0,1 , and the other can produce the random 2-tuple (κ, λ) with 1     n . If 0.5   ,

13

then elements
[]b and

[]b in a loading pattern swap positions to produce a new loading pattern as

shown in Figure 5, where κ=2 and λ =4. The value 0.5  is determined based on a hundred rounds

of pre-testing.

[Place Figure 5 in this location]

Figure 5. A position swap occurring in position 2 and 4.

The rotation operator is employed to rotate the boxes in a loading pattern, each of which

obviously has six types of rotations. The rotation operator is also equipped with a random number

generator which produces a probability  , 0 1  , How each box in a loading pattern is rotated

depends on the generated probability as follows (cf. Figure 6):

(a) 0 0.167  : The box is not rotated.

(b) 0.167 0.333  : The length, width and height of box i are parallel to x-axis, z-axis and

y-axis, respectively.

(c) 0.333 0.5  : The length, width and height of box i are parallel to z-axis, x-axis and

y-axis, respectively.

(d) 0.5 0.667  : The length, width and height of box i are parallel to y-axis, x-axis and

z-axis, respectively.

(e) 0.667 0.833  : The length, width and height of box i are parallel to y-axis, z-axis and

x-axis, respectively.

(f) 0.833 1  : The length, width and height of box i are parallel to z-axis, y-axis and

x-axis, respectively.

[Place Figure 6 in this location]

Figure 6. Six types of rotations for a rectangular box.

3.7 History bucket

The history bucket denoted by set H records the loading structure in each iteration so that the

loading patterns generated in the previous iterations can be avoided. Given the current loading

14

pattern rB , the previous loading patterns can be expressed as tB for 1, , 1t r   . Initially we have

H . In each iteration r, the loading pattern rB is included in 1 2 1{ , , , }rH B B B   .

3.8 Algorithm procedure

After introducing all the algorithm components, we propose the algorithm procedure as follows.

First, to initiate the algorithm procedure all the given data, including the dimensions of n boxes and

the container, and threshold values T1 and T2 respectively for limiting the number of iterations and

the run time are input. Subsequently, a loading pattern rB for r=1 is generated in the preprocessing

step. Then the algorithm performs the iterative procedure by checking whether the same loading

pattern rB exists in history bucket H, running the loading process, updating the incumbent solution

*B , and then generating a new loading pattern rB for r=r+1. The detail steps of the designed

heuristic algorithm are expressed below:

Initialization

Step 1: Input n, T1, T2, (, ,)x y z , and (, ,)i i ip q r ,  i N .

Preprocessing

Step 2: Set H  ,
*B  ,

* 1f  , 1r  , (, ,) (, ,)i i i i ix y z x y q z r   ,  i N , and

[1] [2] [](, , ,) r nB b b b , [] [] [] [] [] [] [](, , , , ,)h h h h h h hb p q r x y z ,  h N .

Iterative Procedure

Step 3 (Checking the history bucket):

 If rB H , set { }rH H B and run the loading process to generate the evaluation value

rf .

 Otherwise, go to Step 5.

15

Step 4 (Updating the incumbent solution):

 If
*rf f , then *

rB B .

Step 5 (Checking the stop condition):

 If 1r T and the run time is no greater than 2T , then set 1r r  and
1r rB B .

 Otherwise, go to the Output phase.

Step 6 (Altering the loading pattern):

 Run the position-swap operator and rotation operator for rB , and go to Step 3.

Output: If
*B  , the best solution

*B is yielded. Otherwise, no feasible solution is found.

The flowchart of the proposed loading placement heuristic is depicted in Figure 7.

[Place Figure 7 in this location]

Figure 7. Flowchart of the proposed loading placement heuristic.

3.9 Computational complexity analysis

For each iteration, the proposed algorithm procedure needs
3

(1)
2

n n steps for checking all

the considered locations for positioning boxes. Since the threshold of the iteration number is T1, the

total steps in the worst case are 1

3
(1)

2
T n n . Therefore the run time of the proposed heuristic

algorithm is 2

1()O T n , which is polynomial-time if T1 is not a part of input, i.e. a constant.

4. Numerical experiments

To demonstrate the effectiveness and efficiency of proposed heuristic, we implemented it on

two classes of experiments, which were conducted on the benchmark problem datasets in Tsai et al.

(2014) and a real-world instance of packing different types of desktop equipment. Then a

16

comprehensive comparison between the proposed loading placement heuristic and the following

three solution techniques was presented:

(i) Integer programming method (Reference MILP): Utilizing the reference MILP model introduced

in Section 2, we adopted GUROBI (2014) as the mathematical programming solver, and the

instance run times solved by MILP were limited to 6,000 seconds.

(ii) The strip-layer placement method (SL): The strip-layer placement procedure referring to

Pisinger (2002) and Bortfeldt & Mack (2007) was utilized to solve the 3DCLP through an

iterative process. To make the computational comparison fair, a similar evolutionary process is

set for SL. We designed the random position-swap and rotation mutations as the recombination

operators to produce offspring for mating in the next generation and to enlarge the diversity of

new chromosomes, where the population size was set to be 50. Additionally, the probability of

introducing the random position-swap and rotating mutations in the evolutionary process was set

as 0.5, which is based on a hundred rounds of iterative pre-testing.

(iii) The block-loading placement method (BL): A block-loading placement procedure based on

multi-layer search (Zhang et al., 2012) was utilized to solve the 3DCLP through the same

evolutionary process as SL.

 The heuristics SL, BL, and the proposed algorithm were implemented in Java version 6.0. All

the experiments were run on a PC equipped with Intel Core i5 CPU, 8GB RAM and Windows 7

64-bit operating system.

4.1 Experiment 1

In Experiment 1, we used the benchmark dataset in Tsai et al. (2014) as small-scale instances

with 10n  (cf. Table 1, 2 and 3) to compare the computational times and solution qualities

required by the reference MILP model, SL, BL and the proposed loading placement heuristic.

17

Table 1 Dataset in Instances 1-4 (cf. Problem 1-4 of Tsai et al., 2014).

[Place Table 1 in this location]

Table 2 Dataset in Instances 5-6 (cf. Problem 5-6 of Tsai et al., 2014).

[Place Table 2 in this location]

Table 3 Dataset in Instances 7-10 (cf. Problem 7-10 of Tsai et al., 2014).

[Place Table 3 in this location]

The results of Experiment 1 solved with the reference MILP, SL, BL and the proposed

heuristic were reported in Table 4 and Table 5. Table 4 shows that for small-scale 3DCLPs (10n )

optimal solutions can be obtained in a reasonable time (less than 360 seconds) by the reference MILP.

Subsequently, in order to compare the efficiencies of SL, BL and the proposed heuristic, the stopping

criterion of all the three methods is set as “if the objective value of the yielded solution is equal to

that of the optimal solution obtained by MILP”. All three heuristic algorithms were run 50 times for

each benchmark instance, and the best, worst, and median results among these 50 runs are tabulated

in Table 4. Compared with the reference MILP, SL and BL, the proposed heuristic needs much less

CPU time (in seconds) to reach the optimal objective values for all instances 1-10.

On the other hand, the stopping criterion for comparing the effectiveness of all the three

methods is set as “if the run time (T2) reaches 10 seconds”. Table 5 shows the computational results

of SL, BL and the proposed heuristic in Experiment 1. For Instance 1, the solutions of all the best,

worst, and median cases yielded by BL and the proposed heuristic are optimal, and SL obtains an

optimal solution in the best case while it fails to obtain an optimal solution within the time limit in

the median and worst cases. SL even fails to obtain optimal solutions for Instances 8, 9 and 10, and

BL also fails to obtain optimal solutions for Instance 9 and 10. The proposed heuristic only fails to

get an optimum in Instance 10. The computational results reveal that for small-size 3DCLPs the

proposed heuristic is not only effective but also efficient.

Table 4. Efficiency comparison of Instances 1-10 in Experiment 1.

18

[Place Table 4 in this location]

Table 5. Effectiveness comparison of Instances 1-10 in Experiment 1 (within 10-sec run time).

[Place Table 5 in this location]

4.2 Experiment 2

Experiment 2 was conducted on the large-scale instances with n up to 240, where the datasets

were generated by referring to an online desktop computer retailer (cf. Tables 6 and 7). The

following data are investigated from an online desktop computer retailer in Taiwan (PChome,

http://shopping.pchome.com.tw/). There are eight types of boxes used for loading different types of

PC equipment. Table 6 lists the size of each type of boxes and Table 7 shows the arrangement of

boxes to be allocated in Instances 11-16. In each instance, the listed boxes are to be shipped by a

container with a single trip. For example, in Instance 11 there are five sets of identical host cases,

mice and scatters with wires and drivers, keyboards, 22” LCD monitors, 24” LCD monitors, 27”

LCD monitors, 29” LCD monitors and 32” LCD monitors. A container with the volume

(500,150,150) as listed in Table 7 is used by Hsin-Chu Transportation Logistics in Taiwan for

shipment. In order to evaluate the solution quality in a reasonable time, the stopping criterion is set

as “if the run time (T2) reaches 180 seconds” for these three heuristic methods. In addition to the

objective function, the volume utilization rate was used to identify the effectiveness.

All three heuristic algorithms were run 50 times for each instance. The best and worst results

are tabulated in Table 8. Table 8 demonstrates that the reference MILP fails to produce optimal

solutions within 6,000 CPU seconds for those six instances, and the proposed heuristic is dominant

in solution quality and computation time for all experimental instances. Taking Instance 11 for

example, we can see that the best solution, worst solution, and volume utilization rate of SL are

(140,149,150), (182,148,150), and 54.19. Those of BL are (137,148,150), (182,149,150), and 55.75.

The proposed heuristic produces (120,148,149), (136,150,150), and 64.07. The graphical

representation of the solution generated by the proposed heuristic in Instance 11 is depicted in Figure

19

8. The computational results imply that the proposed heuristic can yield a solution not only with the

best objective value but also a highest container space utilization.

The changes of the objective values over time for Instances 11-16 are shown in Figure 9, where

the x -axis stands for the computation time (in seconds) and the y -axis represents the objective

value. The diamond, cross, and triangle represent the objective values yielded by SL, BL, and the

proposed heuristic, respectively. From the tendency of the diagrams, we observe that proposed

heuristic outperforms SL and BL from the starting point to the end point (CPU time in 180 seconds)

for all the instances. The results imply that our proposed algorithm could avoid the aforementioned

deficiencies in efficiency and effectiveness observed in the existing heuristics.

Table 8 Computational results for Instances 11-16 of Experiment 2

[Place Table 8 in this location]

[Place Figure 9 in this location]

Figure 8. The graphical representation of the proposed heuristic solution in Instance 11.

[Place Figure 10 in this location]

Figure 9. The evolution diagrams of objective values in Instances 11-16.

5. Conclusions

This study has proposed a simple but effective polynomial-time loading placement heuristic

algorithm to solve the 3DCLP. Numerical experiments on the benchmark instances derived from

Tsai et al. (2014) have demonstrated that the reference MILP is incapable for large-size 3DCLPs

while the proposed heuristic yields quality solutions and is more efficient and effective than two

state-of-the-art heuristic methods. The effectiveness of the proposed heuristic could be attributed to

the placement approach, which employs three-dimensional space searching and utilizes the space

20

close to boundaries in the early stage. Also, the proposed heuristic is efficient due to its simplicity of

design.

Future research could be conducted by designing an advanced heuristic and making the

theoretical analyses such as error bound and reliability to enhance solving time and solution quality.

Another direction for further study could be the development of advanced solution technique for the

nonlinear-objective 3DCLP considered in literature (cf. Tsai and Li, 2006; Hu et al., 2012; Tsai et al.,

2014). According to the preliminary test, the fundamental of the proposed heuristic procedure has the

potential for dealing with the nonlinear objective function. Other directions are to take more logistic

factors and transportation situations and into consideration, such as strong heterogeneity of box sizes,

the weights of boxes, the transportation costs, the delivery times, and to integrate the concept of

deterministic method into the proposed heuristic to enhance the solution quality.

Acknowledgments

The authors are grateful to the editors and the anonymous referees for providing insightful comments

and suggestions, which have helped improve the quality of the paper. The first author was supported

by the Fundamental Research Funds for the Central Universities of China 268SWJTU15WCX01.

The third author was supported by the National Science Council of Taiwan under grants NSC

102-2410-H-030-063-MY3.

References

Almeida, A., & Figueiredo, M.B. (2010). A particular approach for the three-dimensional packing

problem with additional constraints. Computers & Operations Research, 37, 1968-1976.

Bischoff, E.E., & Marriott, M.D. (1990). A comparative evaluation of heuristics for container

loading. European Journal of Operational Research, 44, 267-276.

21

Bortfeldt, A., Gehring, H., & Mack, D. (2003). A parallel tabu search algorithm for solving the

container loading problem. Parallel Computing, 29, 641-662.

Bortfeldt, A., & Mack, D. (2007). A heuristic for the three-dimensional strip packing problem.

European Journal of Operational Research, 183, 1267-1279.

Burer, S., & Letchford, A.N. (2012). Non-convex mixed-integer nonlinear programming: A survey.

Surveys in Operations Research and Management Science, 17, 97-106.

Chen, C.S., Lee, S.M., & Shen, Q.S. (1995). An analytical model for the container loading problem.

European Journal of Operational Research, 80, 68-76.

Chou, P.-F., & Lu, C.-S. (2009). Assessing service quality, switching costs and customer loyalty in

home‐delivery services in Taiwan. Transport Reviews, 29, 741-758.

Eley, M. (2002). Solving container loading problems by block arrangement. European Journal of

Operational Research, 141, 393-409.

Faina, L. (2000). A global optimization algorithm for the three-dimensional packing problem.

European Journal of Operational Research, 126 (2), 340-354.

Fanslau, T., & Bortfeldt, A. (2010). A tree search algorithm for solving the container loading

problem. INFORMS Journal on Computing, 22(2), 222-235.

George, J.A., & Robinson, D.F. (1980). A heuristic for packing boxes into a container. Computers &

Operations Research, 7, 147-156.

GUROBI (2014). Gurobi Optimizer 5.6.2. Reference Manual. www.groubi.com.

Hifi, M. (2004). Exact algorithms for unconstrained three-dimensional cutting problems: A

comparative study. Computers & Operations Research, 31, 657-674.

Hu, N.Z., Li, H.L., & Tsai, J.F. (2012). Solving packing problems by a distributed global

optimization algorithm. Mathematical Problems in Engineering, DOI:10.1155/2012/931092.

Hodgson, T.J. (1982). A combined approach to the pallet loading problem. IIE Transactions, 14,

175-182.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.

http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/

22

Lins, L., Lins, S., & Morabito, R. (2002). An n-tet graph approach for non-guillotine packings of

n-dimensional boxes into an n-container. European Journal of Operational Research, 141,

421-439.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal of Operational

Research, 141, 382-392.

Ratcliff, M.S.W., & Bischoff, E.E. (1998). Allowing for weight considerations in container loading.

OR Spektrum, 20, 65-71.

Tsai, J.F., & Li, H.L. (2006). A global optimization method for packing problems. Engineering

Optimization, 38, 687-700.

Tsai, J.F., Wang, P.C., & Lin, M.H. (2014). A global optimization approach for solving

three-dimensional open dimension rectangular packing problems. Optimization,

DOI:10.1080/02331934.2013.877906.

Zhang, D., Peng, Y., & Leung, S.C.H. (2012). A heuristic block-loading algorithm based on

multi-layer search for the container loading problem. Computers & Operations Research, 39,

2267-2276.

Zhu, W., Huang, W., & Lim, A. (2012). A prototype column generation strategy for the multiple

container loading problem. European Journal of Operational Research, 223, 27-39.

http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/
http://www.journals.elsevier.com/european-journal-of-operational-research/

23

Table 1. Dataset in Instances 1-4 (cf. Problem 1-4 in Tsai et al., 2014)
Instance

Box sizes

n (, ,)x y z
(25,8,6) (20,10,5) (16,7,3) (15,12,6) (22,8,3) (20,10,4)

1 1 1 1 1 0 0 4 (35, 26, 6)
2 1 1 1 1 1 0 5 (35, 28, 6)
3 1 1 1 1 1 1 6 (50, 28, 6)
4 2 1 1 1 1 1 7 (50, 22, 14)

Table 2. Dataset in Instances 5-6 (cf. Problem 5-6 in Tsai et al., 2014)
Instance

Box sizes

n (, ,)x y z
(2,2,2) (3,3,3) (4,4,4) (5,5,5)

5 3 3 1 1 8 (20, 8, 5)
6 3 3 2 1 9 (20, 8, 6)

Table 3. Dataset in Instances 7-10 (cf. Problem 7-10 in Tsai et al., 2014)
Instance

Box sizes

n (, ,)x y z
(56,50,29) (57,43,25) (39,34,30) (51,19,4) (61,45,25) (67,48,27)

7 1 1 1 1 0 0 4 (150, 57, 30)
8 1 1 1 1 1 0 5 (120, 95, 30)
9 2 1 1 1 1 0 6 (100, 81, 50)
10 2 1 1 1 1 1 7 (120, 89, 50)

Table 4. Efficiency comparison of Instances 1-10 in Experiment 1

Instance #
of

boxes
(n)

Optima
l Obj.

(x*)

Reference

MILP
(CPU Times)

SL

CPU Times
(Best/Median/Worst)

BL

CPU Times
(Best/ Median/Worst)

Proposed algorithm

CPU Times
(Best/Median/Worst)

1 4 28 10.8 (2.3/7.3/15.5) (3.1/9.0/12.1) (1.1/3.1/5.1)

2 5 30 35.3 (3.0/7.9/14.5) (3.0/8.5/14.6) (2.1/5.6/7.5)

3 6 35 180.5 (3.9/9.6/18.5) (3.9/10.6/14.3) (2.3/7.1/9.3)

4 7 28 355.2 (5.3/17.5/22.5) (6.7/15.5/22.5) (3.1/5.3/11.3)

5 8 9 99.3 (2.2/13.1/15.5) (2.1/6.5/9.1) (2.0/4.6/7.8)

6 9 10 190.5 (3.1/11.3/20.5) (3.4/8.7/13.6) (2.1/6.7/8.1)

7 4 127 11.4 (4.1/8.8/15.4) (5.4/7.9/13.6) (2.9/3.1/4.5)

8 5 102 25.1 (4.3/10.3/19.5) (4.9/11.7/17.8) (4.5/6.9/9.5)

9 6 92 75.4 (15.1/19.4/25.5) (16.5/17.7/25.3) (5.9/8.3/12.3)

10 7 101 301.3 (32.5/49.1/55.8) (31.6/46.3/55.1) (18.2/21.7/25.9)

Table 5. Effectiveness comparison of Instances 1-10 in Experiment 1 (within 10-sec run time).

Instance # # of boxes

(n)

SL BL Proposed algorithm

Objective value (x)

(Best/Median/Worst)

Objective value (x)

(Best/Median/Worst)

Objective value (x)

(Best/Median/Worst)

1 4 (28
*
, 34, 37) (28

*
, 28

*
, 28

*
) (28

*
, 28

*
, 28

*
)

2 5 (30
*
, 37, 43) (30

*
, 30

*
, 30

*
) (30

*
, 30

*
, 30

*
)

24

3 6 (35
*
, 40, 45) (35

*
, 35

*
, 35

*
) (35

*
, 35

*
, 35

*
)

4 7 (28
*
, 30, 33) (28

*
, 29, 29) (28

*
, 28

*
, 28

*
)

5 8 (9
*
, 12, 12) (9

*
, 9

*
, 9

*
) (9

*
, 9

*
, 9

*
)

6 9 (10
*
, 14, 14) (10

*
, 10

*
, 10

*
) (10

*
, 10

*
, 10

*
)

7 4 (127
*
, 127

*
, 127

*
) (127

*
, 127

*
, 127

*
) (127

*
, 127

*
, 127

*
)

8 5 (107, 135, 145) (102
*
, 102

*
, 145) (102

*
, 102

*
, 102

*
)

9 6 (112, 122, 142) (112, 113, 113) (92
*
, 92

*
, 92

*
)

10 7 (113, 127, 127) (113, 113, 113) (105, 105, 105)

Table 6. Types of boxes for an online desktop computer retailer.

Type of boxes Equipment packed into box Box size (, ,i i ip q r)

1 Host case (57, 53, 24)

2 Mouse and Scatter of Wire and Driver (39, 34, 30)

3 Keyboard (51, 19, 4)

4 22” LCD Monitor (58, 12, 39)

5 24” LCD Monitor (63, 12, 41)

6 27” LCD Monitor (69, 16, 45)

7 29” LCD Monitor (80, 13, 39)

8 32” LCD Monitor (86, 51, 17)

Table 7. Dataset in Instance 11-16 (referring to an online desktop computer retailer)
Instance

Box type No. of

Boxes (n)
Volume of Container

(, ,)x y z 1 2 3 4 5 6 7 8
11 5 5 5 5 5 5 5 5 40 (500,150,150)
12 10 10 10 10 10 10 10 10 80 (500,150,150)
13 15 15 15 15 15 15 15 15 120 (500,200,200)
14 20 20 20 20 20 20 20 20 160 (500,200,200)
15 25 25 25 25 25 25 25 25 200 (500,200,200)
16 30 30 30 30 30 30 30 30 240 (500,250,200)

25

Table 8. Computational results for Instances 11-16 of Experiment 2

In
st

an
ce

#

MILP SL BL Proposed algorithm

Optimal

solution
(, ,)x y z

Best

solution
(, ,)x y z

Worst

solution
(, ,)x y z

VU

rate

(%)

Best

solution
(, ,)x y z

Worst

solution
(, ,)x y z

VU

rate

(%)

Best

solution
(, ,)x y z

Worst

solution
(, ,)x y z

VU

rate

(%)

11 -
(140,149,150

)
(182,148,150) 54.19

(137,148,150

)
(182,149,150) 55.75

(120,148,149

)

(136,150,150

)
64.07

12 -
(295,150,150

)
(310,150,150) 51.09

(265,149,150

)
(295,150,150) 57.25

(258,148,148

)

(275,150,150

)
60.00

13 -
(295,200,200

)
(318,200,200) 43.11

(245,200,200

)
(295,200,200) 51.90

(195,198,195

)

(206,200,200

)
67.56

14 -
(330,200,195

)
(389,199,195) 52.70

(248,199,195

)
(300,199,195) 70.47

(234,194,195

)

(234,200,195

)
76.61

15 -
(405,200,200

)
(454,198,195) 52.33

(307,198,195

)
(405,198,195) 71.52

(293,200,195

)

(293,200,195

)
74.19

16 -
(410,250,200

)
(458,250,200) 49.62

(282,247,200

)
(410,247,200) 73.03

(278,246,195

)

(280,246,195

)
76.28

※Volume Utilization (VU) rate =  () () 100%i i ii
p q r xyz  , where xyz means the best solution.

26

Highlights

 The 3D container loading problem is usually formed as a mixed integer programming.

 Since of the NP-hardness, we propose a simple but effective loading heuristic.

 The experiments demonstrate that proposed heuristic outperforms reference methods.

 Proposed heuristic is capable of solving large-scale instances efficiently.

