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ABSTRACT 

This study investigates a three-dimensional single container loading problem, which aims to pack a 

given set of unequal-size rectangular boxes into a single container such that the length of the 

occupied space in the container is minimized. Motivated by the practical logistics instances in 

literature, the problem under study is formulated as a zero-one mixed integer linear programming 

model. Due to the NP-hardness of the studied problem, a simple but effective loading placement 

heuristic is proposed for solving large-size instances. The experimental results demonstrate that the 

developed heuristic is capable of solving the instances with more than two hundred boxes and more 

efficient than the state-of-the-art mixed integer linear program and existing heuristic methods. 
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1. Introduction 

The container loading problem (CLP), which is also referred to as the packing problem, plays a 

crucial role in logistics planning and scheduling, and widely arises in various real-world applications, 

such as electronic, steel, paper, textiles, manufacturing and transportation industries. In this paper, 

we consider the three-dimensional container loading problem (3DCLP), where a given set of 

nonuniform-size rectangular boxes is to be packed within an enveloping rectangular container such 

that the length of the occupied space in the container is minimized. All the boxes are assumed to be 

orthogonally positioned, i.e. each edge of the box is parallel to one axis of the container. The 

objective function addressed in this study is different from the criterion of minimizing the volume of 

the occupied space in that an occupied space with the minimum length unnecessarily retains the 

minimum volume. For example, a container with a length of 6-m, a width of 3-m, and a height of 

2-m is given for packing six cube boxes with a 1-m side length and one rectangular box with a 1-m 

length, 1-m width, and 0.5-m height. If minimizing the volume of the occupied space is considered, 

an optimal solution with the length equaling 3.5m and the volume equaling (3.5×2×1)=7m
3
 is shown 

in Figure 1(a). If the criterion is the minimization of the length, an optimal solution with the length 

equaling 1.5m and the volume equaling (1.5×3×2)=9m
3
 is depicted in Figure 1(b). Motivated by the 

practical instances in logistics (cf. Chen et al., 1995; Hu et al., 2012), the studied problem could arise 

from the container loading for a truck, which delivers goods or parcels of various types to several 

different shops or transshipment points along a route. To process the unloading efficiently, the 

container is divided into several sections, each of which is stacked with the goods ordered by an 

individual shop or the parcels to be transferred to a transshipment station. As shown in Figure 2, 

minimizing the length of the section required to pack goods for each shop yields the maximal 

number of shops or transshipment points to which a truck can make deliveries with a single trip, and 

thus reduces inventory and transportation costs. For each shop or transshipment station, i.e. each 

section in the container, the 3DCLP under study is considered. Furthermore, the generalized 
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assumption that the sizes of rectangular boxes are various and even customer-defined is not 

uncommon and actually practical in Taiwan’s logistics industries, such as Hsin-Chu Transportation 

Logistics, Kerry TJ Logistics, Taiwan Pelican Express, T-cat Takkyubin, Taiwan Post, etc (cf. Chou 

and Lu, 2009). 

 

 [Place Figure 1 in this location] 

Figure 1. Optimal solutions for the volume minimization (a) and the length minimization (b) 

 

 [Place Figure 2 in this location] 

Figure 2. Three container sections for three individual shops. 

 

In the past decades, the solution approaches proposed to cope with variants of CLPs can be 

divided into two classes: heuristic algorithms and deterministic methods. Owing to the great 

complexity of the CLPs in nature, most research has focused on the development of heuristic 

methods. Considering the two-dimensional pallet loading problem, Hodgson (1982) developed an 

integrated approach of dynamic programming and heuristic procedure to minimize the number of 

pallets for loading a given set of boxes. George and Robinson (1980) investigated a problem of 

packing a given set of boxes into a container with a fixed volume and proposed a heuristic for the 

sequencing and positioning such that all the boxes can be fitted in. Bischoff and Marriott (1990) 

presented a comparative analysis of fourteen heuristic rules for the CLP and examined the impact of 

the number of different item types in a load on the loading efficiency. Considering the weight and the 

load bearing abilities of the boxes in the CLP, Ratcliff and Bischoff (1998) proposed an approach to 

adapt the solution procedures in the literature to deal with fragility consideration. Faina (2000) 

developed a geometrical model that reduces the CLP to a finite enumeration scheme, and presented a 

statistical optimization algorithm based on simulated annealing. Eley (2002) designed a greedy 

heuristic coupled with a tree search procedure for the single-container and multiple-container 
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packing problems. Pisinger (2002) presented a heuristic algorithm to decompose the CLP into a 

number of layers, which are divided into a number of strips. Then the decomposed sub-problem of 

packing strips can be formulated as the well-known knapsack problem. Investigating the arbitrary 

m-dimensional CLP, Lins et al. (2002) proposed a recursive uniform algorithm to partition the 

container into various sub-containers, each of which can be recursively partitioned into further 

sub-containers. A parallel tabu search algorithm based on the multi-search threads for the CLP was 

presented by Bortfeldt et al. (2003). Then Hifi (2004) developed an integrated algorithm of dynamic 

programming and graph search procedure with depth-first search strategy for solving the weighted 

three-dimensional cutting problem, which is a variant of CLP. Considering the three-dimensional 

strip packing problem, Bortfeldt and Mack (2007) designed a heuristic algorithm which was derived 

from the layer-building approach proposed by Pisinger (2002). Almeida and Figueiredo (2010) 

presented an alternative non-linear formulation containing additional restrictions on the placement 

and designed a heuristic algorithm for the CLP. Fanslau & Bortfeldt (2010) presented a tree search 

algorithm for the 3DCLP, where a special form of tree search keeps the search effort low and ensures 

a suitable balance between search diversity and foresight during the search. Zhang et al. (2012) 

proposed a block-loading algorithm based on multi-layer search for the 3DCLP with depth-first and 

multi-layer search for determining the selected bock in each packing phase. The computational 

results in Zhang et al. (2012) showed that their developed algorithm outperforms the method 

presented by Fanslau & Bortfeldt (2010). Zhu et al. (2012) addressed the cost minimization in the 

multiple-container packing problem formulated as a set cover problem, and presented a prototype 

column generation scheme.  

In the relevant literature on deterministic methods, the CLPs are generally modeled as a 

mathematical program. Chen et al. (1995) considered the 3DCLP, which aims to select a number of 

containers to pack a given set of boxes. They proposed a mixed integer linear programming (MILP) 

formulation and solved the small-size problems by the LINGO package. Then Tsai and Li (2006) 
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first adapted the MILP model proposed by Chen et al. (1995) to present a mixed integer nonlinear 

programming (MINLP) model for the 3DCLP which aims to pack a given set of boxes into a 

container with the minimum volume. They modified the MINLP by reducing the number of binary 

variables and utilizing a piecewise linearization technique to find a global optimum within a tolerable 

error. Tsai et al. (2014), subsequently, converted the original MINLP into an MILP with an improved 

piecewise linearization technique using fewer extra zero-one variables and constraints to enhance the 

computational efficiency. On the other hand, Hu et al. (2012) developed a transformation method to 

convert the nonlinear objective function in the 3DCLP into an increasing function with single 

variable and two fixed parameters. A transformed MILP was then decomposed into several 

sub-problems, which were solved in parallel by a proposed distributed genetic algorithm.  

The NP-hardness of the studied 3DCLP, which is a generalization of the bin-packing problem, 

indicates that it is very unlikely to devise a polynomial-time exact algorithm for yielding an optimal 

solution to the 3DCLP unless P=NP. To cope with the medium- or large-scale 3DCLP, developing 

an effective heuristic is relatively applicable. We observe that most existing heuristics for the 3DCLP 

are based on the wall-building approach, which suffers from the following deficiencies in efficiency 

and effectiveness: (i) A backtracking probability is necessary for solution evolution, which could 

incur a considerable computation time; (ii) The generated solution would have numerous unutilized 

separated spaces and thus a low container space utilization. In this paper, we proposed a simple but 

effective loading placement heuristic for the studied 3DCLP. By comparison with the state-of-the-art 

deterministic MILP model and existing heuristic techniques, the developed heuristic algorithm is 

capable of generating quality solutions to the benchmark dataset efficiently. 

The rest of the paper is organized as follows. In Section 2, a reference MILP of the 3DCLP is 

introduced. A loading placement heuristic algorithm is proposed in Section 3. Numerical 

experiments are conducted in Section 4. Finally, some concluding remarks are made in Section 5.  
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2. Reference MILP model 

Assume that n nonuniform-size rectangular boxes, each of which has a specific length, width 

and height, are given. Denote the length, width, and height of the space required to pack all the n 

boxes into a container by x, y and z, respectively. Referring to Chen et al. (1995), Tsai and Li (2006), 

and Tsai et al. (2014), the 3DCLP model studied in this paper can be stated as follows:  

Min x 

s.t. 

 (i) All of the boxes are positioned without overlap; 

(ii) All of the boxes are loaded within the range of x, y, and z; 

(iii) The dimensions of the occupied space abide by the given upper bounds, i.e. the 

dimensions of the container.  

 

The notation used in the 3DCLP model (cf. Chen et al., 1995; Tsai and Li, 2006; Tsai et al., 

2014) is described below:  

Notation                                                                            

n  Total number of the given set of boxes to be loaded. 

N   1,2, , N n . 

M  max{ , , }M x y z , where x , y , and z  are the upper bounds of x , y , and z , i.e. 

the length, width, and height of the container, respectively. 

( , , )i i ip q r  Parameters indicating the length, width and height of box i , respectively. 

( , , )i i ix y z  Variables indicating the coordinates of the left-front-bottom corner of box i . 

( , , )xi yi zil l l  Binary variables indicating whether the length of box i  is parallel to the 

x-axis, y-axis or z-axis. For example, 1xil  if the length of box i is parallel 



  

7 

 

to the x-axis; otherwise, 0xil . 

( , , )xi yi ziw w w  Binary variables indicating whether the width of box i  is parallel to the 

x-axis, y-axis or z-axis. For example, 1xiw  if the width of box i is parallel 

to the x-axis; otherwise, 0xiw . 

( , , )xi yi zih h h  Binary variables indicating whether the height of box i  is parallel to the 

x-axis, y-axis or z-axis. For example, 1xih  if the height of box i is parallel 

to the x-axis; otherwise, 0xih . 

,( , )  ij ij ij  Binary variables indicating the relative positions of box i  and box j , such 

as  

(a) ( (0,, , 0,) 1)   ij ij ij  if box i  is on the left-hand side of box j ; 

(b) ( (0,, , 1,) 0)   ij ij ij  if box i  is on the right-hand side of box j ; 

(c) ( (1,, , 0,) 0)   ij ij ij  if box i  is behind box j ; 

(d) ( (0,, , 1,) 1)   ij ij ij  if box i  is in front of box j ; 

(e) ( (1,, , 0,) 1)   ij ij ij  if box i  is below box j ; 

(f) ( (1,, , 1,) 0)   ij ij ij  if box i  is above box j . 

                                                                                  

By simplifying the Model 2 in Tsai et al. (2014), we adopt the following MILP as the reference 

model.  

Reference MILP Model 

Min x (1) 

s.t. 
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(1 )i i xi i xi i xi j ij ij ijx p l q w rh x M           , , i j N , i j , (2) 

(1 )j j xj j xj j xj i ij ij ijx p l q w r h x M           , , i j N , i j , (3) 

(1 )         i i yi i yi i yi j ij ij ijy p l q w rh y M , , i j N , i j , (4) 

(2 )j j yj j yj j yj i ij ij ijy p l q w r h y M           , , i j N , i j , (5) 

(2 )         i i zi i zi i zi j ij ij ijz p l q w rh z M , , i j N , i j , (6) 

(2 )         j j zj j zj j zj i ij ij ijz p l q w r h z M , , i j N , i j , (7) 

1 2     ij ij ij , , i j N , i j , (8) 

   i i xi i xi i xix p l q w rh x ,  i N , (9) 

   i i yi i yi i yiy p l q w rh y ,  i N , (10) 

   i i zi i zi i ziz p l q w rh z ,  i N , (11) 

1  xi yi zil l l ,  i N , (12) 

1  xi yi ziw w w ,  i N , (13) 

1  xi yi zih h h ,  i N , (14) 

1  xi xi xil w h ,  i N , (15) 

1  yi yi yil w h ,  i N , (16) 

1  zi zi zil w h ,  i N , (17) 

where max{ , , }M x y z , , , 0i i ix y z  , 0  x x , 0  y y , 0  z z , and xil , yil , zil , xiw , yiw , ziw ,

xih , yih  and zih  are 0-1 variables. 

The objective function (1) of the reference MILP is to minimize the length of the required space 
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in the container for packing all boxes. Inequalities (2)-(8) are the constraints used to ensure that all 

these boxes are positioned without overlap. Constraints (9)-(11) make all boxes be packed within the 

required space in the container. Constraints (12) ((13), (14)) ensure that the length (width, height) of 

box i  is parallel to one of x-axis, y-axis and z-axis for all i ∈ N. Constraints (15) ((16), (17)) enforce 

that only one of the length, width and height of box i  is parallel to x-axis (y-axis, z-axis) for all i ∈ 

N. To the best of our knowledge, the above reference MILP model (1)-(17), is the state-of-the-art 

mathematical programming model for the studied 3DCLP. 

 

3. Proposed loading placement heuristic 

In the development of the loading placement heuristic, we generate loading patterns through an 

iterative process and propose a placement procedure to load all these boxes. The notions of the 

loading pattern representation, iteration, and evaluation stem from the fundamentals of evolutionary 

computation, such as genetic algorithm (GA) (Holland, 1975). The iterative loading placement 

procedure is comprised of the following seven components. 

(i) Coordinate expression is used to record the relative position of boxes in the container. 

(ii) Non-overlapping and non-overstepping conditions are utilized to avoid any overlap between 

boxes. 

(iii) Use a loading pattern to present a sequence for packing all boxes and the corresponding data 

structure.  

(iv) Evaluation function measures the solution qualities of loading patterns. 

(v) Load all boxes into the container by the loading process. 

(vi) Generate different loading patterns using two specific operators. 

(vii) A history bucket aims to avoid generating the same loading pattern. 

 

3.1 Coordinate expression 
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As the definition in the reference MILP model, the position of any box i in the container is recorded 

with its coordinates of the left-front-bottom corner. Take Figure 3 for an example. Parameter vector 

(0,0,0) indicates the coordinates of the left-front-bottom corner of box i  in the container. 

 

[Place Figure 3 in this location] 

Figure 3. The coordinates of the left-front-bottom corner of box i . 

 

3.2 Non-overlapping and non-overstepping conditions 

Referring to Constraints (2)-(8), the proposed heuristic adopts the following six conditions to 

check whether any pair of boxes i  and j , , i j N , i j  overlap: 

 
i j ix x p  ; 

j i jx x p  ; 
i j iy y q  ; 

j i jy y q  ; 
i j iz z r  ; 

j i jz z r  . (18) 

If and only if all the conditions in Eq. (19) are violated, the box i  and box j  overlap. The 

non-overstepping conditions ensuring that each box i N  is positioned inside the container are  

  i ix p x ;  i iy q y ;  i iz r z . (19) 

 

3.3 Loading pattern 

Assume that at each iteration r of the heuristic the boxes are loaded into the container in 

accordance with a packing sequence ([1],[2],…,[n]), the loading pattern of which can be represented 

by an array 

 [1] [2] [ ]( , , , ) r nB b b b , where (20) 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ]( , , , , , )h h h h h h hb p q r x y z ,  h N . (21) 

Each element [ ]hb  in the loading pattern rB  corresponds to the box which is arranged in the h-th 

position in the packing sequence, and denotes the parameter vector of box [h]. 

 

3.4 Evaluation function 
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The evaluation function shown in Eq. (22) is used to measure the solution quality of the loading 

pattern rB : 

 
 max i i

i N
r

x p
f

x




 . (22) 

The loading pattern rB  is feasible if 0 1rf  . Otherwise, rB  is infeasible. 

 

3.5 Loading process 

For each iteration r of the heuristic procedure, the loading process is performed for all boxes in 

N according to the sequence ([1],[2],…,[n]). Denote the set of loaded boxes by lN N . The loading 

process is initialized by positioning box [1] in the left-front-bottom corner (0,0,0) (cf. Figure 3 for 

i=[1]) and setting {[1]}lN  and h=2. Then the loading process is run with the following steps. 

Step 1: Load box i=[h] by attaching the left-front-bottom corner of box i to the right-front-bottom 

corner of some loaded box k such that k kx p  is the smallest among all loaded boxes and 

box i  is non-overlapping with any loaded box and does not exceed the dimension of the 

container (cf. Figure 4). 

(1a) Define ' ': ii ix x p , ':i iy y  and ':i iz z .  

(1b) Find 1
'

argmin{ Eq. (18)  \{ '}; Eq. (19)}
l

i l
i N

k x j N i


   ; 

(1c) If 1 k null , set 
1 1

 k kix px , 
1

 kiy y  and 
1

 kiz z . 

 

[Place Figure 4 in this location] 

Figure 4. Box i  adjoining box k. 

 

Step 2: Move box i by attaching the left-front-bottom corner of box i to the left-behind-bottom corner 
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of some loaded box k such that k ky q  is the smallest among all loaded boxes and box i  is 

non-overlapping with any loaded box and does not exceed the dimension of the container. 

(2a) Define ': iix x , ' ': i i iy y q  and ':i iz z .  

(2b) Find 2
'

argmin{ Eq. (18)  \{ '}; Eq. (19)}
l

i l
i N

k y j N i


   ; 

(2c) If 2 k null , set 
2

 kix x , 
2 2

 k kiy y q  and 
2

 kiz z . 

Step 3: Move box i by attaching the left-front-bottom corner of box i to the left-front-top corner of 

some loaded box k such that k kz r  is the smallest among all loaded boxes and box i  is 

non-overlapping with any loaded box and does not exceed the dimension of the container. 

(3a) Define ': iix x , ':i iy y  and ' ': i i iz z r .  

(3b) Find 3
'

arg min{ Eq. (18)  \{ '}; Eq. (19)}


  
l

i l
i N

k z j N i ; 

(3c) If 3 k null , set 
3

 kix x , 
3

 kiy y  and 
3 3

 k kiz z r . 

Step 4: If 1 2 3  k k k null , return  rf . 

      Otherwise, set { }l lN N i , h=h+1 and check if h n . If yes, go to Step 1. If no, return 

 max





i i
i N

r

x p
f

x
. 

 

3.6 Two specific operators 

There are two specific operators, the position-swap operator and rotation operator, which 

perform the data alteration for a loading pattern to generate a new loading pattern. The position-swap 

operator is equipped with two random number generators. One is used to produce a random number 

  in  0,1 , and the other can produce the random 2-tuple (κ, λ) with 1     n . If 0.5   , 
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then elements 
[ ]b  and 

[ ]b  in a loading pattern swap positions to produce a new loading pattern as 

shown in Figure 5, where κ=2 and λ =4. The value 0.5   is determined based on a hundred rounds 

of pre-testing. 

 

[Place Figure 5 in this location] 

Figure 5. A position swap occurring in position 2 and 4. 

The rotation operator is employed to rotate the boxes in a loading pattern, each of which 

obviously has six types of rotations. The rotation operator is also equipped with a random number 

generator which produces a probability  , 0 1  , How each box in a loading pattern is rotated 

depends on the generated probability as follows (cf. Figure 6):  

(a) 0 0.167  : The box is not rotated.  

(b) 0.167 0.333  : The length, width and height of box i  are parallel to x-axis, z-axis and 

y-axis, respectively.  

(c) 0.333 0.5  : The length, width and height of box i  are parallel to z-axis, x-axis and 

y-axis, respectively.  

(d) 0.5 0.667  : The length, width and height of box i  are parallel to y-axis, x-axis and 

z-axis, respectively.  

(e) 0.667 0.833  : The length, width and height of box i  are parallel to y-axis, z-axis and 

x-axis, respectively.  

(f) 0.833 1  : The length, width and height of box i  are parallel to z-axis, y-axis and 

x-axis, respectively.  

 

[Place Figure 6 in this location] 

Figure 6. Six types of rotations for a rectangular box. 

 

3.7 History bucket 

The history bucket denoted by set H records the loading structure in each iteration so that the 

loading patterns generated in the previous iterations can be avoided. Given the current loading 
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pattern rB , the previous loading patterns can be expressed as tB  for 1, , 1t r   . Initially we have 

H . In each iteration r, the loading pattern rB  is included in 1 2 1{ , , , }rH B B B   . 

 

3.8 Algorithm procedure 

After introducing all the algorithm components, we propose the algorithm procedure as follows. 

First, to initiate the algorithm procedure all the given data, including the dimensions of n boxes and 

the container, and threshold values T1 and T2 respectively for limiting the number of iterations and 

the run time are input. Subsequently, a loading pattern rB  for r=1 is generated in the preprocessing 

step. Then the algorithm performs the iterative procedure by checking whether the same loading 

pattern rB  exists in history bucket H, running the loading process, updating the incumbent solution 

*B , and then generating a new loading pattern rB  for r=r+1. The detail steps of the designed 

heuristic algorithm are expressed below:  

Initialization  

Step 1: Input n, T1, T2, ( , , )x y z , and ( , , )i i ip q r ,  i N . 

Preprocessing 

Step 2: Set H  , 
*B  , 

* 1f  , 1r  , ( , , ) ( , , )i i i i ix y z x y q z r   ,  i N , and 

[1] [2] [ ]( , , , ) r nB b b b , [ ] [ ] [ ] [ ] [ ] [ ] [ ]( , , , , , )h h h h h h hb p q r x y z ,  h N . 

Iterative Procedure 

Step 3 (Checking the history bucket): 

      If rB H , set { }rH H B  and run the loading process to generate the evaluation value 

rf . 

      Otherwise, go to Step 5.  
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Step 4 (Updating the incumbent solution): 

      If 
*rf f , then *

rB B . 

Step 5 (Checking the stop condition): 

      If 1r T  and the run time is no greater than 2T , then set 1r r   and 
1r rB B .  

      Otherwise, go to the Output phase.  

Step 6 (Altering the loading pattern):  

      Run the position-swap operator and rotation operator for rB , and go to Step 3. 

Output: If 
*B  , the best solution 

*B  is yielded. Otherwise, no feasible solution is found. 

The flowchart of the proposed loading placement heuristic is depicted in Figure 7. 

 

[Place Figure 7 in this location] 

Figure 7. Flowchart of the proposed loading placement heuristic. 

 

3.9 Computational complexity analysis 

For each iteration, the proposed algorithm procedure needs 
3

( 1)
2

n n  steps for checking all 

the considered locations for positioning boxes. Since the threshold of the iteration number is T1, the 

total steps in the worst case are 1

3
( 1)

2
T n n . Therefore the run time of the proposed heuristic 

algorithm is 2

1( )O T n , which is polynomial-time if T1 is not a part of input, i.e. a constant.  

 

4. Numerical experiments 

To demonstrate the effectiveness and efficiency of proposed heuristic, we implemented it on 

two classes of experiments, which were conducted on the benchmark problem datasets in Tsai et al. 

(2014) and a real-world instance of packing different types of desktop equipment. Then a 
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comprehensive comparison between the proposed loading placement heuristic and the following 

three solution techniques was presented: 

(i) Integer programming method (Reference MILP): Utilizing the reference MILP model introduced 

in Section 2, we adopted GUROBI (2014) as the mathematical programming solver, and the 

instance run times solved by MILP were limited to 6,000 seconds. 

(ii) The strip-layer placement method (SL): The strip-layer placement procedure referring to 

Pisinger (2002) and Bortfeldt & Mack (2007) was utilized to solve the 3DCLP through an 

iterative process. To make the computational comparison fair, a similar evolutionary process is 

set for SL. We designed the random position-swap and rotation mutations as the recombination 

operators to produce offspring for mating in the next generation and to enlarge the diversity of 

new chromosomes, where the population size was set to be 50. Additionally, the probability of 

introducing the random position-swap and rotating mutations in the evolutionary process was set 

as 0.5, which is based on a hundred rounds of iterative pre-testing. 

(iii) The block-loading placement method (BL): A block-loading placement procedure based on 

multi-layer search (Zhang et al., 2012) was utilized to solve the 3DCLP through the same 

evolutionary process as SL. 

 The heuristics SL, BL, and the proposed algorithm were implemented in Java version 6.0. All 

the experiments were run on a PC equipped with Intel Core i5 CPU, 8GB RAM and Windows 7 

64-bit operating system.  

 

4.1 Experiment 1 

In Experiment 1, we used the benchmark dataset in Tsai et al. (2014) as small-scale instances 

with 10n   (cf. Table 1, 2 and 3) to compare the computational times and solution qualities 

required by the reference MILP model, SL, BL and the proposed loading placement heuristic.  
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Table 1 Dataset in Instances 1-4 (cf. Problem 1-4 of Tsai et al., 2014). 

[Place Table 1 in this location] 

 
Table 2 Dataset in Instances 5-6 (cf. Problem 5-6 of Tsai et al., 2014). 

[Place Table 2 in this location] 

 
Table 3 Dataset in Instances 7-10 (cf. Problem 7-10 of Tsai et al., 2014). 

[Place Table 3 in this location] 

The results of Experiment 1 solved with the reference MILP, SL, BL and the proposed 

heuristic were reported in Table 4 and Table 5. Table 4 shows that for small-scale 3DCLPs ( 10n  ) 

optimal solutions can be obtained in a reasonable time (less than 360 seconds) by the reference MILP. 

Subsequently, in order to compare the efficiencies of SL, BL and the proposed heuristic, the stopping 

criterion of all the three methods is set as “if the objective value of the yielded solution is equal to 

that of the optimal solution obtained by MILP”. All three heuristic algorithms were run 50 times for 

each benchmark instance, and the best, worst, and median results among these 50 runs are tabulated 

in Table 4. Compared with the reference MILP, SL and BL, the proposed heuristic needs much less 

CPU time (in seconds) to reach the optimal objective values for all instances 1-10. 

On the other hand, the stopping criterion for comparing the effectiveness of all the three 

methods is set as “if the run time (T2) reaches 10 seconds”. Table 5 shows the computational results 

of SL, BL and the proposed heuristic in Experiment 1. For Instance 1, the solutions of all the best, 

worst, and median cases yielded by BL and the proposed heuristic are optimal, and SL obtains an 

optimal solution in the best case while it fails to obtain an optimal solution within the time limit in 

the median and worst cases. SL even fails to obtain optimal solutions for Instances 8, 9 and 10, and 

BL also fails to obtain optimal solutions for Instance 9 and 10. The proposed heuristic only fails to 

get an optimum in Instance 10. The computational results reveal that for small-size 3DCLPs the 

proposed heuristic is not only effective but also efficient. 

 

Table 4. Efficiency comparison of Instances 1-10 in Experiment 1. 
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[Place Table 4 in this location] 

Table 5. Effectiveness comparison of Instances 1-10 in Experiment 1 (within 10-sec run time). 

[Place Table 5 in this location] 

 

4.2 Experiment 2 

Experiment 2 was conducted on the large-scale instances with n up to 240, where the datasets 

were generated by referring to an online desktop computer retailer (cf. Tables 6 and 7). The 

following data are investigated from an online desktop computer retailer in Taiwan (PChome, 

http://shopping.pchome.com.tw/). There are eight types of boxes used for loading different types of 

PC equipment. Table 6 lists the size of each type of boxes and Table 7 shows the arrangement of 

boxes to be allocated in Instances 11-16. In each instance, the listed boxes are to be shipped by a 

container with a single trip. For example, in Instance 11 there are five sets of identical host cases, 

mice and scatters with wires and drivers, keyboards, 22” LCD monitors, 24” LCD monitors, 27” 

LCD monitors, 29” LCD monitors and 32” LCD monitors. A container with the volume 

(500,150,150) as listed in Table 7 is used by Hsin-Chu Transportation Logistics in Taiwan for 

shipment. In order to evaluate the solution quality in a reasonable time, the stopping criterion is set 

as “if the run time (T2) reaches 180 seconds” for these three heuristic methods. In addition to the 

objective function, the volume utilization rate was used to identify the effectiveness. 

All three heuristic algorithms were run 50 times for each instance. The best and worst results 

are tabulated in Table 8. Table 8 demonstrates that the reference MILP fails to produce optimal 

solutions within 6,000 CPU seconds for those six instances, and the proposed heuristic is dominant 

in solution quality and computation time for all experimental instances. Taking Instance 11 for 

example, we can see that the best solution, worst solution, and volume utilization rate of SL are 

(140,149,150), (182,148,150), and 54.19. Those of BL are (137,148,150), (182,149,150), and 55.75. 

The proposed heuristic produces (120,148,149), (136,150,150), and 64.07. The graphical 

representation of the solution generated by the proposed heuristic in Instance 11 is depicted in Figure 
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8. The computational results imply that the proposed heuristic can yield a solution not only with the 

best objective value but also a highest container space utilization. 

The changes of the objective values over time for Instances 11-16 are shown in Figure 9, where 

the x -axis stands for the computation time (in seconds) and the y -axis represents the objective 

value. The diamond, cross, and triangle represent the objective values yielded by SL, BL, and the 

proposed heuristic, respectively. From the tendency of the diagrams, we observe that proposed 

heuristic outperforms SL and BL from the starting point to the end point (CPU time in 180 seconds) 

for all the instances. The results imply that our proposed algorithm could avoid the aforementioned 

deficiencies in efficiency and effectiveness observed in the existing heuristics. 

 

Table 8 Computational results for Instances 11-16 of Experiment 2 

[Place Table 8 in this location] 

 

[Place Figure 9 in this location] 

Figure 8. The graphical representation of the proposed heuristic solution in Instance 11. 

 

[Place Figure 10 in this location] 

Figure 9. The evolution diagrams of objective values in Instances 11-16. 

 

5. Conclusions 

This study has proposed a simple but effective polynomial-time loading placement heuristic 

algorithm to solve the 3DCLP. Numerical experiments on the benchmark instances derived from 

Tsai et al. (2014) have demonstrated that the reference MILP is incapable for large-size 3DCLPs 

while the proposed heuristic yields quality solutions and is more efficient and effective than two 

state-of-the-art heuristic methods. The effectiveness of the proposed heuristic could be attributed to 

the placement approach, which employs three-dimensional space searching and utilizes the space 
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close to boundaries in the early stage. Also, the proposed heuristic is efficient due to its simplicity of 

design. 

Future research could be conducted by designing an advanced heuristic and making the 

theoretical analyses such as error bound and reliability to enhance solving time and solution quality. 

Another direction for further study could be the development of advanced solution technique for the 

nonlinear-objective 3DCLP considered in literature (cf. Tsai and Li, 2006; Hu et al., 2012; Tsai et al., 

2014). According to the preliminary test, the fundamental of the proposed heuristic procedure has the 

potential for dealing with the nonlinear objective function. Other directions are to take more logistic 

factors and transportation situations and into consideration, such as strong heterogeneity of box sizes, 

the weights of boxes, the transportation costs, the delivery times, and to integrate the concept of 

deterministic method into the proposed heuristic to enhance the solution quality. 
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Table 1. Dataset in Instances 1-4 (cf. Problem 1-4 in Tsai et al., 2014)  
Instance 

# 
Box sizes 

n ( , , )x y z  
(25,8,6) (20,10,5) (16,7,3) (15,12,6) (22,8,3) (20,10,4) 

1 1 1 1 1 0 0 4 (35, 26, 6) 
2 1 1 1 1 1 0 5 (35, 28, 6) 
3 1 1 1 1 1 1 6 (50, 28, 6) 
4 2 1 1 1 1 1 7 (50, 22, 14) 

 

Table 2. Dataset in Instances 5-6 (cf. Problem 5-6 in Tsai et al., 2014)  
Instance 

# 
Box sizes 

n ( , , )x y z  
(2,2,2) (3,3,3) (4,4,4) (5,5,5) 

5 3 3 1 1 8 (20, 8, 5) 
6 3 3 2 1 9 (20, 8, 6) 

 

Table 3. Dataset in Instances 7-10 (cf. Problem 7-10 in Tsai et al., 2014) 
Instance 

# 
Box sizes 

n ( , , )x y z  
(56,50,29) (57,43,25) (39,34,30) (51,19,4) (61,45,25) (67,48,27) 

7 1 1 1 1 0 0 4 (150, 57, 30) 
8 1 1 1 1 1 0 5 (120, 95, 30) 
9 2 1 1 1 1 0 6 (100, 81, 50) 
10 2 1 1 1 1 1 7 (120, 89, 50) 

 

Table 4. Efficiency comparison of Instances 1-10 in Experiment 1  

Instance # 
# of 

boxes 
(n) 

Optima
l Obj. 

(x*) 

Reference 

MILP 
(CPU Times) 

SL 

CPU Times 
(Best/Median/Worst) 

BL 

CPU Times 
(Best/ Median/Worst) 

Proposed algorithm 

CPU Times 
(Best/Median/Worst) 

1 4 28 10.8 (2.3/7.3/15.5) (3.1/9.0/12.1) (1.1/3.1/5.1) 

2 5 30 35.3 (3.0/7.9/14.5) (3.0/8.5/14.6) (2.1/5.6/7.5) 

3 6 35 180.5 (3.9/9.6/18.5) (3.9/10.6/14.3) (2.3/7.1/9.3) 

4 7 28 355.2 (5.3/17.5/22.5) (6.7/15.5/22.5) (3.1/5.3/11.3) 

5 8 9 99.3 (2.2/13.1/15.5) (2.1/6.5/9.1) (2.0/4.6/7.8) 

6 9 10 190.5 (3.1/11.3/20.5) (3.4/8.7/13.6) (2.1/6.7/8.1) 

7 4 127 11.4 (4.1/8.8/15.4) (5.4/7.9/13.6) (2.9/3.1/4.5) 

8 5 102 25.1 (4.3/10.3/19.5) (4.9/11.7/17.8) (4.5/6.9/9.5) 

9 6 92 75.4 (15.1/19.4/25.5) (16.5/17.7/25.3) (5.9/8.3/12.3) 

10 7 101 301.3 (32.5/49.1/55.8) (31.6/46.3/55.1) (18.2/21.7/25.9) 

 

Table 5. Effectiveness comparison of Instances 1-10 in Experiment 1 (within 10-sec run time). 

Instance # # of boxes 

(n) 

SL BL Proposed algorithm 

Objective value (x) 

(Best/Median/Worst) 

Objective value (x) 

(Best/Median/Worst) 

Objective value (x) 

(Best/Median/Worst) 

1 4 (28
*
, 34, 37) (28

*
, 28

*
, 28

*
) (28

*
, 28

*
, 28

*
) 

2 5 (30
*
, 37, 43) (30

*
, 30

*
, 30

*
) (30

*
, 30

*
, 30

*
) 
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3 6 (35
*
, 40, 45) (35

*
, 35

*
, 35

*
) (35

*
, 35

*
, 35

*
) 

4 7 (28
*
, 30, 33) (28

*
, 29, 29) (28

*
, 28

*
, 28

*
) 

5 8 (9
*
, 12, 12) (9

*
, 9

*
, 9

*
) (9

*
, 9

*
, 9

*
) 

6 9 (10
*
, 14, 14) (10

*
, 10

*
, 10

*
) (10

*
, 10

*
, 10

*
) 

7 4 (127
*
, 127

*
, 127

*
) (127

*
, 127

*
, 127

*
) (127

*
, 127

*
, 127

*
) 

8 5 (107, 135, 145) (102
*
, 102

*
, 145) (102

*
, 102

*
, 102

*
) 

9 6 (112, 122, 142) (112, 113, 113) (92
*
, 92

*
, 92

*
) 

10 7 (113, 127, 127) (113, 113, 113) (105, 105, 105) 

 

Table 6. Types of boxes for an online desktop computer retailer. 

Type of boxes Equipment packed into box Box size ( , ,i i ip q r ) 

1 Host case (57, 53, 24) 

2 Mouse and Scatter of Wire and Driver (39, 34, 30) 

3 Keyboard (51, 19, 4) 

4 22” LCD Monitor (58, 12, 39) 

5 24” LCD Monitor (63, 12, 41) 

6 27” LCD Monitor (69, 16, 45) 

7 29” LCD Monitor (80, 13, 39) 

8 32” LCD Monitor (86, 51, 17) 

 

Table 7. Dataset in Instance 11-16 (referring to an online desktop computer retailer) 
Instance 

# 
Box type No. of 

Boxes (n) 
Volume of Container 

( , , )x y z  1 2 3 4 5 6 7 8 
11 5 5 5 5 5 5 5 5 40 (500,150,150) 
12 10 10 10 10 10 10 10 10 80 (500,150,150) 
13 15 15 15 15 15 15 15 15 120 (500,200,200) 
14 20 20 20 20 20 20 20 20 160 (500,200,200) 
15 25 25 25 25 25 25 25 25 200 (500,200,200) 
16 30 30 30 30 30 30 30 30 240 (500,250,200) 
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Table 8. Computational results for Instances 11-16 of Experiment 2 

In
st

an
ce

 

#
 

MILP SL BL Proposed algorithm 

Optimal 

solution 
( , , )x y z  

Best 

solution 
( , , )x y z  

Worst 

solution 
( , , )x y z  

VU 

rate 

(%) 

Best 

solution 
( , , )x y z  

Worst 

solution 
( , , )x y z  

VU 

rate 

(%) 

Best 

solution 
( , , )x y z  

Worst 

solution 
( , , )x y z  

VU 

rate 

(%) 

11 - 
(140,149,150

) 
(182,148,150) 54.19 

(137,148,150

) 
(182,149,150) 55.75 

(120,148,149

) 

(136,150,150

) 
64.07 

12 - 
(295,150,150

) 
(310,150,150) 51.09 

(265,149,150

) 
(295,150,150) 57.25 

(258,148,148

) 

(275,150,150

) 
60.00 

13 - 
(295,200,200

) 
(318,200,200) 43.11 

(245,200,200

) 
(295,200,200) 51.90 

(195,198,195

) 

(206,200,200

) 
67.56 

14 - 
(330,200,195

) 
(389,199,195) 52.70 

(248,199,195

) 
(300,199,195) 70.47 

(234,194,195

) 

(234,200,195

) 
76.61 

15 - 
(405,200,200

) 
(454,198,195) 52.33 

(307,198,195

) 
(405,198,195) 71.52 

(293,200,195

) 

(293,200,195

) 
74.19 

16 - 
(410,250,200

) 
(458,250,200) 49.62 

(282,247,200

) 
(410,247,200) 73.03 

(278,246,195

) 

(280,246,195

) 
76.28 

※Volume Utilization (VU) rate =  ( ) ( ) 100%i i ii
p q r xyz  , where xyz  means the best solution. 
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Highlights 

 The 3D container loading problem is usually formed as a mixed integer programming. 

 Since of the NP-hardness, we propose a simple but effective loading heuristic. 

 The experiments demonstrate that proposed heuristic outperforms reference methods. 

 Proposed heuristic is capable of solving large-scale instances efficiently. 

 

 


