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Abstract:  

New trends in Knowledge-Based Engineering (KBE) highlight the need for decoupling the automation 

aspect from the knowledge management side of KBE. In this direction, some authors argue that KBE is 

capable of effectively capturing, retaining and reusing engineering knowledge. However, there are some 

limitations associated with some aspects of KBE that present a barrier to deliver the knowledge sourcing 

process requested by industry. To overcome some of these limitations this research proposes a new 

methodology for efficient knowledge capture and effective management of the complete knowledge life 

cycle. The methodology proposed in this research is validated through the development and 

implementation of a case study involving the optimisation of wing design concepts at an Aerospace 

manufacturer. The results obtained proved the extended KBE capability for fast and effective knowledge 

sourcing. This evidence was provided by the experts working in the development of the case study 

through the implementation of structured quantitative and qualitative analyses. 
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1. Introduction 

New trends in Knowledge-Based Engineering (KBE) highlight the need for decoupling the automation 

aspect from the knowledge management side of KBE. In this direction, some authors argue that KBE is 

capable of effectively capturing, retaining and reusing engineering knowledge. However, there are 

limitations associated with some aspects of KBE that present a barrier to deliver the knowledge sourcing 

process requested by industry. To overcome these limitations this research proposes a new methodology 

for efficient knowledge capture and effective management of the complete knowledge life cycle.  

The increasing competitiveness in the aerospace industry is forcing organisations to seek their profits 

beyond manufacturing. As a consequence, aerospace companies are changing from being providers of 

products to providers of Product Service Systems (PSS) (Selak et al. 2014). This new business model 

involves shifting efforts from manufacturing activities to those related to service systems such as 

Maintenance, Repair and Overhaul (MRO) (Stark et al., 2014), (Zhu et al., 2012). 

This new trend adopted by aerospace organisations led the authors to the identification of two major risks 

for future manufacturing. The first risk is associated to the reduced availability of manufacturing experts 

in the market. In many cases this implies the loss of relevant knowledge for the traditional aerospace 

leaders, most of this knowledge is now in hands of the few suppliers responsible for certain 

manufacturing activities. The second risk is the inefficient use of the knowledge for the development of 

future products and improvements, this may take form of: (i) decrease in existing engineering models 

(defining structure, behaviour of a system); (ii) increase of raw data from different manufacturers which 

require the use of advanced data mining tools in order to capture the required knowledge. In order to 

minimise the impact of these risks, the aerospace industry needs to source expert engineering knowledge 

in areas ranging from manufacturing to maintenance. 



Knowledge-Based Engineering (KBE) has traditionally been used to source engineering knowledge by 

integrating software and expertise, thus automating repetitive tasks and speeding up the engineering 

design process. The notion of “knowledge sourcing” here refers to the capacity to capture, retain and 

reuse engineering knowledge in KBE applications 

2. Literature Review 

Papers consulted as a background to this research were drawn from two key areas due to their relevance 

to Knowledge Based Engineering (KBE) and the remit of this work: 

x Knowledge management in engineering design. 

x Artificial intelligence for knowledge management in engineering design. 

Engineering design is usually defined as a systematic process where customer needs are the performance 

specifications and functions used to obtain optimised design solutions (Pahl and  Beitz, 1996), (Pugh, 

1991), (Hubka and Eder, 1988), (Dieter, 2000), (Hales, 1993), (Pahl and  Beitz, 1994). In the engineering 

design process there are four main steps (Pahl and  Beitz, 1996), (Mendes et al., 2009) : 

1. Clarification phase: Information captured encompassing design needs and constraints to be 

included as part of the solution. 

2. Conceptual design:  Definition of the functional structures, searching for suitable a solution 

principle or concept. This is the most important step of the engineering design process caused by the fact 

that around 80-90% of the production costs are determined at this stage (Robinson, 2012). 

3. Embodiment design: From the principle solution, the design is realised taking into consideration 

the technique, economic requirements and constraints.  



4. Detail design: At this stage further information is specified (such as the surface properties or part 

material) in order to complete the design description. Moreover, the technical and economic feasibility are 

re-checked. 

By observing 27 designers, while they were working, it was concluded that only 45% of the designers’ 

time is dedicated to perform the steps of the engineering design process (Hales, 1986). Moreover, it was 

observed that 21% of designer’s time was spent in tasks related with the management of engineering 

knowledge (Hales, 1986). These findings support the view of the engineering design process as a set of 

knowledge intensive activities (Chen et al., 2008). 

Each stage in the engineering design process requires technical knowledge and experience to be 

effectively captured, modelled and reused. This enhances the quality of the product development 

procedure while reducing time and costs of the production process (Chen et al., 2008). Knowledge 

management methods and tools have long been utilised to codify knowledge related to design issues 

(Hoegl & Schulze, 2005), (Huang, 2009), (Chapman & Pinfold, 1999). In the completion of this review a 

number of key concepts at the intersection between knowledge management and engineering design were 

identified and the requisite papers analysed in more detail. The concepts included: Knowledge capture; 

Knowledge modelling; Knowledge reuse.  

In relation to the second key area of literature sought, artificial intelligence for knowledge management in 

engineering design, a number of papers were pertinent. Artificial intelligence is usually defined by the 

research community as the art belonging to the field of computer science aiming to mimic human 

thinking, delivering a solution to problems such as decision making and problem optimisation (Luger, 

1999), (Deshpande, 2009), (Bellman, 1978), (Kurzweil, 1990), (Schalkoff, 1990). The role of AI in the 

knowledge management field can be summarised by the following two main contributions (Liebowitz, 

2001):  



x Knowledge sharing: knowledge is captured and stored in a database enabling the knowledge 

to be exploited across different engineering problems within the company.  

x Knowledge discovery: AI-based methods can be used to source knowledge by looking for 

patterns in company datasets, thus obtaining trends that could have been missed by experts, 

creating new knowledge as a result. 

A potential solution to tackle the engineering design challenges identified in this research and provide 

engineers with a solution to manage engineering knowledge  efficiently, is the use of knowledge 

management methods combined with tools belonging to Artificial Intelligence (AI) (Guo et al. 2011), 

(Cheung et al., 2011), (Lau, 2009), (Palmer et al., 2011), (Ruiz et al., 2014), (Yang, 2002). 

A further more focussed literature review allowed the authors to define the following functional roles 

linked to this research study: 

x Capture of Expert Knowledge: Use of methods and tools to elicit knowledge from experts via 

interviews.  

x Access to knowledge by KBE tool: implementations enabling the retrieval of information from an 

external data source that allows knowledge to be exploited by a KBE application. 

x Automated knowledge extraction from data: Employment of tools able to reason over large 

datasets extracting engineering rules, constraints and other correlations from data.  

x Advice on AI tool suitability: This refers to the use of applications to advise practitioners on the 

selection of AI tools to perform automated reasoning tasks.  

x Knowledge lifecycle management: Presence of methods and tools to enable the holistic 

management of engineering knowledge throughout the life cycle of its use. 

x AI extracted knowledge ready for reuse: Use of tools to automatically codify rules from 

knowledge in a way that is directly reusable by KBE applications (knowledge is in a computable 

format). 



The focussed literature search identified 63 research articles reporting on KBE implementations and 

classified within the functional roles defined by the authors.  

Table 1 Research priorities analysis. (Quintana-Amate et al. 2015) 

Functional 
roles  

Priority KBE experts 
assessment  

No. of 
Papers 

Literature Includes 

Capture of 
Expert 
Knowledge: 

Low Not a well 
understood tool in 
the context of KBE; 
its use results in a 
costly process so 
automated approach 
would be 
beneficial. 

 
62 (La Rocca, 2012), (Quintana-Amate et al., 2015), 

(Guo et al., 2011), (Chapman & Pinfold, 1999), 
(Cheung et al., 2011), (Lau et al., 2009), (Palmer et 
al., 2011), (Ruiz et al. 2014), (Yang, 2002), 
(Steenhuizen and van Tooren, 2012), (Yang et al., 
2012), (Kochan, 1999), (Amadori et al. 2012), 
(Dettmar et al.,  1998), (Dolšak and Novak, 2011), 
(Lou et al., 2004), (Naranje and Kumar, 2014), 
(Monticolo, et al.  2014) 

Access to 
knowledge 
by KBE 
tool: 

Med Well understood 
tool by mainstream 
software 
development as 
interoperability. 
Realisation in KBE 
is limited. 

57 (van der Elst and van Tooren, 2008), (Curi and Wang, 
2013), (Jong et al. 2014), (Chapman and Pinfold, 
2001), (Koini et al. 2009), (Naranje and Kumar, 
2012), (Ko et al. 2007),  (Choi, 2009), (Emberey and 
Milton, 2007), (Kumar and Singh, 2007), (La Rocca, 
2012), (Quintana-Amate et al., 2015), (Guo et al., 
2011), (Chapman & Pinfold, 1999) 

 

Automated 
knowledge 
extraction 
from data: 

High A common tool in 
environments 
where a large 
amount of data 
exists but no formal 
knowledge models 
are available. 

7 (Guo et al., 2011), (Cheung et al., 2011), (Lau et al., 
2009), (Palmer et al., 2011), (Ruiz et al. 2014), 
(Yang, 2002), (Kumar, 2014)     

Advice on 
AI tool 
suitability: 

High Choice of AI 
algorithms for 
engineering 
problems is based 
on the experience 
of experts.  

0  

Knowledge 
lifecycle 
manageme
nt: 

Med Changes to the 
knowledge used by 
KBE applications 
are common. 
Ability to modify 
engineering rule 
selection as an 
offline process has 
interest.  

60 (La Rocca, 2012), (Quintana-Amate et al., 2015), 
(Guo et al., 2011), (Chapman & Pinfold, 1999), 
(Skarka, 2007), (Hunter et al., 2006), (Gardan and 
Gardan, 2003), (Wu and Shaw, 2011),  



AI 
extracted 
knowledge 
ready for 
reuse: 

High Challenge in 
utilising extracted 
engineering 
knowledge. 

9 (Lau et al., 2009), (Palmer et al., 2011), (Ruiz et al. 
2014), (Yang,  2002), (Liao et al. 1999)  

 

In order to support the research opportunities obtained through the analysis of the literature 6 experts from 

various domains working in different organisations were selected to assess the importance of the 

functional roles identified in this study. The outcome of the expert review is shown in 1. Special attention 

was paid by the authors to some of the papers included at this stage such as (La Rocca, 2012), (Bermell-

Garcia, 2012), (Chapman & Pinfold, 1999) where the use of the three functional roles mentioned is 

clearly visible. 

From Table 1 it can be seen that while two of the functional roles “Automated knowledge extraction from 

data” and “AI extracted knowledge ready for reuse” provided papers, no papers could be found to address 

the need for “Advice on AI tool suitability”.  Initially, a research gap on knowledge sourcing was 

identified as a response to the current limitations of KBE systems. The research gap found represented an 

opportunity to extend the capabilities of current KBE systems often used only as inference 

implementations. From literature it is clear that despite the benefits provided by KBE, it still fails to 

provide an efficient approach for expert knowledge capture. It was also evident that although AI 

technology is capable of delivering a more efficient knowledge sourcing process, there is still a lack of 

integration of AI algorithms within a methodology supporting the management of the knowledge 

generated. Based on these findings, a knowledge sourcing methodology (encompassing the adoption of a 

generic methodology for managing the complete knowledge life cycle and the use of AI techniques for 

knowledge capture) was proposed. 

 

 



 

3. Knowledge Sourcing Platform  

In the development of the knowledge sourcing platform three elements, identified from the literature 

review, form the core guidance for the architecture. The three elements are shown in Table 2.  

 

 

Table 2 Core Elements of the Framework architecture 

3 Core Elements of the framework architecture 

Search, analysis and exploitation of machine learning methods to enhance knowledge capture. 

Adoption of an existing methodology enabling systematic knowledge life cycle management. 

Development of a platform where experts and machine learning algorithms can interact, create, review 
and validate new knowledge. The platform also allows access to relevant data, and the advanced 
analysis of information. 

 

The first task realised in the development of the proposed framework was to identify machine learning 

methods capable of generating an explicit model supporting the sourcing of engineering knowledge. In 

this task the guidance of the publications (Segaran, 2007), (Hall et al., 2011), (Abu-Mostafa and Magdon-

Ismail, 2012), (Bishop, 2007), (Murphy, 2012) proved valuable. 

3.1 Machine learning methods 

Two different ML libraries have been considered in this research: Weka and scikit-learn. The selection of 

the methods belonging to these libraries is based on:  

x The accuracy of the results obtained in the learning process. 

x The relevance of the rules used by the algorithm to generate the target class predictions.  



After the analysis is performed, the selected methods are encoded within the platform to allow their 

automated execution. In this research only supervised methods were used due to the characteristics of the 

problems faced in the case study implemented. From the analysis of Table 3 shown below it is observed 

that explicit rules can be only extracted from the use of a single technique. The existence of methods to 

provide the user with relevant information about the problem-logic, or the equations driving the target 

variable, represent an opportunity to carry out the knowledge elicitation process more efficiently. 

Table 3 Classification of common supervised machine learning methods. 

Method Solve 
Classification 
Problems 

Solve 
Regression 
Problems 

Explicit 
Rules:  
directly 
extracted 

Level of rule’s 
understanding 

References 

C4.5: 
Decision trees 

Yes No Yes Low / Medium (Tso and Yau, 
2007), (Elouedi et 
al. 2001) 

Random 
Forest 

Yes Yes No - (Chen and 
Ishwaran, 2012) 

Naive Bayes Yes No No - (Kang et al., 2012), 
(Pérez et al., 2009) 

Logistic 
Regression 

Yes No No - (Gusnanto et al., 
2013),  (Dreiseitl 
and Ohno-
Machado, 2002) 

Support 
Vector 
Machines 

Yes Yes No - (Mountrakis and 
Ogole, 2011), 
(Barakat and 
Bradley, 2010)  

Linear 
Regression 

Yes Yes Yes It depends on 
the problem’s 
complexity 

(Koç and Barkana,  
2014) 

Gaussian 
Processes 

No Yes No - (Mackay, 1998) 

Rule methods No Yes Yes Medium / High (Holmes et al., 
1999), (Quinlan, 



(M5R) 1992), (Wang and 
Witten, 1996) 

Neural 
Networks 

Yes Yes No - (Barakat and 
Bradley, 2010), 
(Paliwal and 
Kumar, 2009) 

Regression 
Trees (REP) 

Yes Yes Yes Low / Medium (Portnoy and 
Koenker, 1997) 

 

3.2 Adoption of an existing methodology to manage the knowledge life cycle 

Two key features are considered as the foundations of this work; the use of AI knowledge-based 

applications to source knowledge and the use of methodological support to adequately manage the 

knowledge generated. The adopted methodology allows for the integration of KBE applications into 

engineering workflows, thus facilitating the adoption of the proposed framework in industry. 

Over the last 20 years, several methodologies supporting the development and maintenance of Knowledge 

Based Systems (KBS) have been realised. In this context, three methodologies were analysed and one was 

selected as the most suitable to be adopted in this research.  The three methodologies studied are: MOKA 

(Methodology and Software tools Oriented to Knowledge-based engineering Applications), 

CommonKADS (Common Knowledge Acquisition and Documentation Structuring) and KNOMAD 

(Knowledge Nurture for Optimal Multidisciplinary Analysis and Design). MOKA methodology is based 

on eight KBE life cycle steps which are classified within 3 different stages as shown in Table 4.  

Table 4 MOKA methodology 

Stages Life cycle steps Description 

Stage 1 Identify Knowledge identification and 
management approval to 
continue with the process. Justify 

Stage 2 Capture Knowledge collection using 



Formalise elicitation methods and 
representation of the knowledge 
captured in a formal, consistent 
and standard manner. 

Stage 3 Package Design and implementation of 
the KBE system. 

Distribute 

Introduce 

Use 

 

MOKA and CommonKADS have been acknowledged by the research community as the most relevant 

methodologies when talking about KBE development (Verhagen, 2013). However there are some 

challenges remaining related to a number of limitations as described in Verhagen (2013).  In this context, 

CommonKADS provides the user with a set of guidelines and templates to complete the tasks so 

improving repeatability. Nevertheless, the use of these guidelines and templates decreases its flexibility of 

the CommonKADS approach. Users also complain that there are not enough templates to cover most of 

their current tasks. The main drawback of MOKA is identified in Verhagen (2013) where it is argued that 

this methodology is more focused on supporting knowledge engineers than the end user. Moreover, a 

common limitation to both approaches (MOKA and CommonKADS) is the inability to deal with 

knowledge change, namely being unable to account for knowledge origin and the repercussions in its 

transformation.  

Due to the limitations described, it is observed that a set of challenges in terms of developing KBE 

systems still remain open. A potential solution adopted in this research to overcome these challenges is 

the use of an updated version of KNOMAD methodology. A description of the KNOMAD methodology 

together with an explanation of why it was chosen for this study is described below. 

 

 



3.3. KNOMAD Methodology 

As with MOKA and CommonKADS, KNOMAD (Knowledge Nurture for Optimal Multidisciplinary 

Analysis and Design) is a methodology created to support the development of KBE systems. This 

methodology encompasses a set of steps that might be repeated in order to achieve a proper management 

of the knowledge life cycle. It consists of the following steps (detailed in Verhagen (2013)) and illustrated 

in Fig. 1) : 

x Knowledge capture.  

x Normalisation.  

x Organisation.  

x Modelling.  

x Analysis.  

x Delivery.  



 

Fig 1. KNOMAD methodology by Verhagen (2013). 

KNOMAD has been selected as the KBE methodology for use in this research as it integrates the best 

practices employed by MOKA and CommonKADS. KNOMAD uses an ontology to account for 

knowledge change, improving its applicability and transparency. There are two areas in which this 

methodology is appreciably superior to others: 

Applicability:  the methodology is simple enough to promote its use across different engineering 

problems within the organisation, thus enabling the transfer and reuse of engineering knowledge. 

Moreover, the use of an ontology enables a wider applicability of the developed capability across 

different engineering problems. 

Supports knowledge change: In the context of this work, this is the most important feature of this 

methodology. For instance, new data is often generated causing changes in the rules modelling a problem. 



Therefore, in order to allow the machine learning algorithm to create better quality rules, the effective 

management of knowledge update is a must. It is acknowledged by researchers that the knowledge 

created by machine learning methods is only as good as the data used in the learning process. Therefore, 

keeping knowledge updated enables machine learning algorithms to deliver predictions with increased 

accuracy. 

To improve knowledge transparency and support knowledge change and traceability, conceptual models 

were used to create a KLC ontology. This ontology was created in Verhagen (2013) as part of the updated 

KNOMAD methodology and it has been adopted in this research. The reason to re-use this ontology is 

due to the similarities in research context.  

A knowledge sourcing platform has been realised with the aim of achieving an efficient knowledge 

acquisition process while enabling the systematic creation, capture and reuse of engineering knowledge. 

The main elements of the Knowledge Sourcing Framework (KSF) architecture integrated within the 

platform are: 

x Content repository. It is a web-based content management system built on top of a database 

allowing the storage, access and modification of captured knowledge.  

x Scripts. Most of the scripts were developed with the aim of automating ML libraries. In this 

regard, the use of Java and python scripts was required to automate the Weka and scikit-learn 

libraries respectively.  

x Machine learning libraries. Two different ML libraries have been considered in this research: 

Weka and scikit-learn. The selection of the methods belonging to these libraries is based on:  

o The accuracy of the results obtained in the learning process. 

o The meaningfulness and understanding of the rules provided which will be used by the 

algorithm to generate the target class predictions.  



After the analysis is performed, the selected methods are encoded within the platform to allow their 

automated execution.  

 

Fig 2. Service creation within KBE Platform: Process flow.  

The framework proposed was developed using a web-based open source content management system 

built on top of a database. This system contains two different interfaces named as “administrator 

interface” and “user interface”.  

The procedure to be followed in order to create a new service and obtain the predicted results is divided in 

two main phases: offline and online stages (Fig. 2). In this work, a service is considered as any process 

containing three EKR elements: knowledge, tools and case reports. The aim of a service is to predict a 

particular event by combining machine learning algorithms and expert knowledge (this will be 

demonstrated later on in this paper with a manufacturing based case study drawn from the aerospace 

industry).  

Offline and Online Phases review 

In summary, the capture and pre-processing of the data together with the creation of the EKR models are 

classified as offline processes. The automated generation of AI rules, the review and validation of the 

rules, and automated prediction of new design configurations are included in the online phase. 



In summary the main contributions of this framework are: 

x Efficient creation of new knowledge. – AI algorithms are utilised in the capture of knowledge 

from experts in a more time efficient manner (in addition the framework enables the user to select 

the most appropriate algorithm for the problem to be solved)  

x Enhanced KBE Reliability – as every aspect of the model generated by the tool may be reviewed 

the generation process may be fine-tuned by users 

x Reduced reliance on experts – knowledge is captured once then reused many times with only 

limited time involvement of experts 

x Effective knowledge reuse – the domain ontology utilised allows for the creation of knowledge 

packages which may be stored and reused at a later stage 

x Integration of KBE tools into engineering workflows – the tool’s integration into a content 

management system allows for its use across a wide range of engineering problems 

 

 

4. Case study: Predicting Manufacturing Cycle Time in the Aerospace Industry 

The case study has been developed in the context of an aerospace organisation with the aim of improving 

an existing cost modelling capability by realising a more efficient source of expert knowledge.  

The cost modelling tool was built to provide Airbus with improved manufacturing systems supporting the 

conceptual design evaluation of wing designs; in summary, manufacturing processes and products were 

optimised considering a specific driving parameter such as cost, time, etc. Initially, the number of 

parameters and operations considered in the cost model was small enough to allow the tacit knowledge, 

included in the tool, to be easily understood. However, the increasing growth of the cost model, composed 

of more than 300 driving parameters and in excess of 1000 intermediate calculations, resulted in too many 

combinations and possible iterations of knowledge elements. As a consequence of the cost model 



complexity, tacit knowledge became impossible to understand by those people not involved in the 

creation of the tool. Therefore, the costing capability became a “black box” application making 

knowledge transfer and reuse difficult to achieve. Challenges linked to the research problem, caused by 

the cost model evolution, motivated engineering teams within AGI to propose solutions to decompose the 

knowledge encompassed in the costing application (Fig. 3); converting implicit knowledge into explicit 

allowing the knowledge to be retained and transferred. In this direction, two different approaches 

addressing the knowledge sourcing process were undertaken as described below.   

 

Fig. 3. Cost model evolution  

From previous research into KBE within the aerospace industry the following limitations were identified 
as detailed Table 5. 

 

 

 

 

 

 



Table 5 limitations regarding the identified KBE challenges 

KBE challenge  Limitations associated with Case 1 
(Encoding expert knowledge) 

Limitations associated with Case 
2 (Decoding knowledge from a 
“black box” capability) 

Need  for a more 
generic and reliable 
methodology 

Lack of an established methodology, such as MOKA (Methodology and 
Software tools Oriented to Knowledge-based engineering Applications) or 
KNOMAD (Knowledge Nurture for Optimal Multidisciplinary Analysis and 
Design), to systematically source knowledge 

 No expert involvement in the 
validation process. This 
characteristic is the main cause of 
the capability’s low reliability. 

A more efficient way 
of sourcing 
knowledge (especially 
capturing expert 
knowledge) is 
required. 

Highly time consuming approach: it 
encompasses the use of an EKM 
methodology to realise the 
knowledge retention and reuse 
aspects of knowledge sourcing more 
efficiently, and the use of an 
inference tool to automate repetitive 
tasks, integrating KBE applications 
into engineering workflows. 
However it becomes an unaffordable 
solution when considering expert 
availability. 

 

 

4.1 Case Study: Manufacturing Cycle Time Prediction of Composite Wing Covers 

This use case intends to carry out the design optimisation of wing covers made of Carbon Fibre 

Reinforced Plastics (CFRP). To do this, a Knowledge Sourcing platform has been developed enabling the 

design improvement of composite wing covers by predicting the manufacturing time of different wing 

design concepts. The objective of this platform is the creation, capture and reuse of engineering 

knowledge by integrating expert knowledge together with knowledge provided by artificial intelligent 

methods. By achieving this objective, designers will make informed decisions reducing the time required 

to select an optimal design.  



From this perspective, the case study shows in practice: (i) the main research challenges associated with 

the process of sourcing engineering knowledge; (ii) how the reliable source of engineering knowledge can 

be efficiently achieved by enabling the collaboration between experts and automated machine learning 

algorithms. The domain of this use case is the aerospace industry, and more precisely the lay-up process 

involved in the manufacture of CFRP wing covers.  

The general context of this use case is the development of a new aircraft generation (Airbus A30X) that 

will substitute the current A320 model. Although manufacturing the A30X model will not commence for 

another 20 years, there is a need to investigate in advance technologies and capabilities that will be 

required to achieve the objectives of the A30X program. 

More precisely, the Airbus research team involved in the development of this use case is focused on the 

systematic application of Design For Manufacturing (DFM) knowledge into working KBE applications 

predicting the performance of designs from the manufacturing perspective. In this context, engineers are 

facing two major challenges in order to develop efficient KBE systems: 

To obtain an optimal design in the shortest amount of time (decreasing the number of design iterations 

required to achieve it), decisions must be made based on relevant information. For instance, descriptions 

of the aircraft wing design are often given through analytical models. For example, some models 

describing the structural properties of a wing use Excel-based models rather than detailed CAD data. 

Technologies that will be used to manufacture the A30X aircraft are still under development. Therefore, 

knowledge used in the KBE applications is constantly changing and even the technologies to be used are 

often modified. For instance, in the context of manufacture of CFRP parts Automated Fibre Placement 

(AFP) is progressively replacing Automated Tape Layup (ATL) since AFP is able to manufacture more 

complex parts and reduce the amount of scrap material produced.  This change of technologies provokes 

the need for updating, reviewing and validating the knowledge used by the KBE system efficiently. 



The objective of the extended KBE system developed in this case study is to predict the manufacturing 

time of Carbon Fibre Reinforced Plastics (CFRP) wing parts. The CFRP parts employed in this use case 

are composed of a finite number of plies which are laid one on the top of the other using a roller. In this 

domain, design practitioners use 3D design data to obtain mass estimation of the parts. In parallel, 3D 

simulations are also used to make machine layup simulations of the design in order to predict 

manufacturing time. However, in conceptual design 3D data is generally unavailable. Additionally, 

existing machine time simulation tools lack automation and need a week of dedicated work from an 

engineer to estimate the manufacturing cycle time of a new design. The uncertainties and the need for fast 

evaluation of designs in conceptual studies make the use of 3D simulations unaffordable in this context. 

Therefore, the approach for this use case was to produce a fast and accurate solution to evaluate design 

concepts.  

In order to achieve an effective and more efficient sourcing of engineering knowledge, the solution to be 

developed must meet the following requirements: 

x It must be simple enough to foster further use. 

x Deliver fast and accurate predictions allowing the optimisation of a wing cover design. 

x Enable the analysis of the knowledge and results obtained by the user to increase transparency 

and reliability. 

4.2 The Application 

The aim of this case study is to permit the user to efficiently perform the process of predicting the 

manufacturing cycle time of composite wing covers supporting the selection of an optimal design, saving 

time and costs. The approach proposed is realised in the form of a web-based platform, facilitating access 

to different teams based in multiple locations. The process of predicting the manufacturing cycle time of 

wing covers is modelled in Fig. 4 using IDEF0 representation. The illustration in Fig. 4 is focused on the 



overall process of presenting the requirements to obtain the manufacturing cycle time predictions. These 

requirements are:  

Input data from designs and simulations. This refers to design data corresponding to a set of design 

descriptors defined by experts, and the machine time output values provided by a simulation software 

application. 

Resources in the form of expert involvement. Experts are required to initially define the parameters they 

believe are driving the manufacturing time. They are also needed to evaluate and validate the knowledge 

generated by the machine learning tool. 

Set of specific applications. This refers to the tools developed to enable the automated extraction of input 

data, selection of the machine learning process (including learning and prediction activities) and the 

advanced visualisation of the results provided by the knowledge sourcing capability. 

 



 

Fig. 4. IDEF0 - Main process. 

The main process is divided in six sub-tasks as observed in Fig. 5. As a starting point the identification of 

the design descriptors that drive the manufacturing cycle times are required. To do that, experts must 

intervene using their experience and input data (simulation and design data) to understand and identify 

which parameters, from the wing cover design, affect the manufacturing time the most. As a result, a list 

of design descriptors driving manufacturing times were defined and stored within the Content 

Management System (CMS). A feature extraction tool then generated a file named as “Training Set”. This 

document is obtained as a result of retrieving, from the design input file, the values corresponding to the 

design descriptors (input values) and manufacturing time values (output values) from simulation log files. 

The “Training Set” file is employed by the machine learning algorithm to create a set of rules describing 

the system behaviour. 



 

Fig. 5. IDEF0 Subtasks. 

4.3 Adoption of KNOMAD methodology for the case study 

The need for a generic methodology in charge of performing the systematic management of engineering 

knowledge has been established as one of the main challenges of this research. Moreover, due to the 

disruptive nature of the solution proposed, methodological support is required in order to effectively 

integrate the developed methods and tools within a common framework.  From this perspective, 

KNOMAD has been adopted in this study to provide the necessary methodological support.  This 

methodology is based on six main phases: Knowledge Capture (K), Normalisation (N), Organisation (O), 

Modelling (M) and Implementation, Analysis (A) and Delivery (D) as presented in Fig. 6. 



 

 

Fig. 6. KNOMAD -  process flow



 
The knowledge used to obtain the manufacturing cycle time predictions is sourced by experts and 

Machine Learning (ML) algorithms. Expert knowledge was initially extracted through interviews 

which enabled the creation of a list of design descriptors. Expert knowledge was also provided in the 

evaluation of the explicit model generated by the AI algorithm. The acquisition of expert knowledge 

started with the interview of two experts with more than 15 years of experience on KBE systems. 

Once the design descriptors are defined (Fig. 7), an application was developed to enable the extraction 

(from wing designs) of the information required to create the “Training Set”. The “Training Set” is the 

input file used by the machine learning algorithm to create a set of rules which emulate the problem 

behaviour. This input file contains data corresponding to the design descriptors of each sample and 

their respective manufacturing cycle time obtained from simulations. The ML algorithm searches for 

data correlations using the “Training Set” producing as a result a set of rules or an explicit model.  

Finally, the explicit model is captured and stored within the knowledge repository. 

 

 
 
Fig. 7. List of Design Descriptors  



 
 
 
 

Normalisation: At this stage, knowledge previously captured is transformed to comply with the 

standards established by the stakeholders. This step enhances the data retrieval and facilitates the 

implementation of the KNOMAD ontology.  

Normalising knowledge enables the storage of the knowledge extracted within formal and informal 

models, thus improving knowledge accessibility and maintainability. In this study, informal models 

contain context data such as article owner, creation date and general information; all presented in a 

human readable language. In parallel, formal models contain machine code in the format of “IF 

(condition) THEN” rules which are encoded, thus enabling their automated execution. 

Organisation: The main task realised in the organisation phase is the data structure definition. An 

ontology defines a common vocabulary for engineers. Its use makes knowledge understandable by 

automated search applications, thus enhancing the accessibility and traceability of the knowledge 

stored while facilitating its update. KNOMAD fosters the use of an ontology to achieve the 

knowledge architecture. In this regard, a domain specific ontology is constructed in accordance with 

the main Knowledge Life Cycle (KLC) ontology which specifies the domain concepts and their 

relationships. The design of a domain specific ontology defines the class hierarchies, relationships 

and, their attributes and behaviours. Three main classes were used to annotate domain knowledge.  

These classes are named as “Product”, “Process” and “Resource”. 

Modelling and Implementation: This stage of the KNOMAD methodology encompasses the 

modelling and implementation of the EKR’s.  

Modelling: The EKR’s created under the scope of this study have been annotated and modelled using 

the specific domain ontology. More precisely, the modelling step is focused on: 

x Enabling knowledge elements to be independently stored from its application, thus 

fostering the use of this knowledge across different engineering problems. 



x Providing users with a simple system which facilitates its usability and maintenance. 

x Permitting knowledge to be easily updated by allowing the review and validation of 

ML rules. 

The EKR classes modelled are:  

x EKR Knowledge. This class contains knowledge elements that can be used in multiple 

processes or problems. In this case study, the knowledge elements are the wing cover design 

descriptors identified by experts in the knowledge capture stage. Within this class, reports or 

articles utilised to create the list of design descriptors are also included. 

x EKR Process. In this class, three models are used: 

x Input data model. This allows user to upload data into the content management system. 

x Execution model. This retrieves data from the CMS and executes a script that triggers ML 

algorithms belonging to WEKA and scikit-learn, thus generating the required predictions.  

x Data Analysis Model. This enables the visualisation and review of the ML rules that were 

used in the prediction process. 

x EKR Case. This class contains knowledge elements stored as reports which are 

automatically created when the process is executed. 

4.4 Implementation 

The implementation process involved the creation of a knowledge-based platform that is built on top 

of a content management repository. The CMS, containing the knowledge, applications and case 

reports elements, enables the implementation of the KNOMAD methodology and the consequent 

development of the KBE system. In fact, the CMS permits the data capture from experts and ML 

algorithms, the knowledge execution by the KBE applications, and the systematic storage of data. All 

these activities are possible thanks to the integration of a set of offline and online tasks within a 

common environment. The elements belonging to the “Process” EKR class are integrated within the 

system architecture as shown in Fig. 8.  



 

Fig. 8. KBE system architecture 
 
 
 
 
 

5. Results and Discussion 

Prior to obtaining an appropriate set of rules modelling a problem, it is required to pre-process raw 

data and define a set of features which drive the problem objective (e.g. area or curvature changes 

have an impact on manufacturing time prediction of CFRP wing covers). This task is essential to 

create a good quality dataset, containing meaningful features and low noise level, enabling ML 

algorithms to accurately predict the target values.  

ML algorithm selection: The ML algorithms used in the learning process were selected after the 

realisation of a filtering process where only those ML techniques providing interpretative information 

where chosen.  The selection method starts with the upload of a “Training Set” file into the system. 

Once the data is uploaded, the ML engine runs a set of algorithms previously selected. In this 

research, the evaluation of the prediction accuracy of the ML algorithms follows a common criterion 

acknowledged by the research community (Tüfekci, 2014) (Kavaklioglu, 2011). This criterion is 

based on using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) as scoring values 

to rate the ML algorithms. Moreover, expert intervention is needed to analyse the performance and the 

level of understanding of the explicit models. In this case study three experts in the problem domain 

reviewed the ML scoring values (MAE and RMSE) and the level of understanding of each explicit 



model created.  Table 6 shows MAE, RMSE delivered by the ML algorithm utilised. This table also 

displays an average of the level of understanding of each of the models generated.  MAE and RMSE 

were automatically produced by the ML algorithm whereas the level of understanding was input by 

the users of the KSF platform.  

Table 6 Explicit models displayed by the KSF platform 

ML 
method 

MAE  RMSE  Understanding of the model 

Level of 
understanding 

Description 

Linear 
Regression 

25.68 32.45 Medium Although the low number of parameters used in 
the model facilitates its understanding, experts 
believe that modelling such a complex problem 
into a single equation decreases the method’s 
reliability.  

REPTree 22.45 26.57 Medium The use of a model containing conditional 
operators helps the users to better understand 
which parameters are affecting the 
manufacturing time. However, the tree format 
used by these types of algorithm makes it 
difficult to quantify the impact of each 
parameter.   

M5R 21.07 27.44 High The use of a familiar method employing “IF 
THEN...” rules and linear equations to model the 
problem facilitate the understanding of the rules. 

 

Manufacturing time predictions initially provided by the algorithm selected (M5R) had high accuracy 

rates (measured using MAE and RMSE scoring parameters) but still worse than the values considered 

as acceptable by the experts in the domain. Therefore, expert review and validation was required in 

order to allow engineers to rely on the model automatically generated. In this direction, three experts 

in the area of design for manufacturing reviewed and validated the created ML rules using the Rules 

Management Application (RMA) encompassed by the KSF platform. RMA enables experts to 

evaluate and validate the explicit model generated with the help of a visual analytical tool. The use of 

such a tool, employing charts and tables, allowed experts to: 

x Identify trends in the data. 

x Understand the importance and generality of each of the rules generated. 



x Trace back the results thanks to the information displayed on the line chart relating to the 

output values with their corresponding rules. 

x Understand the cause of existing inaccuracies by comparing similar samples (e.g. using a 

table containing the input values used in the learning process). 

The ability to iteratively review and modify the rules together with the benefits brought by the visual 

analytical representations allowed experts to add new knowledge. This activity often increases the 

accuracy and reliability of the model. Indeed, experts are more confident to base their decisions on the 

results provided by this capability. 

The review and validation activities are part of an iterative process realised by experts consisting of 

the following (and shown in Fig. 9): 

x Modification of the ML model if required. 

x Use of the visual analytical tool (e.g. charts, tables...) to better understand the model 

generated. It is also employed to identify trends in data and understand how the changes 

realised in the model affect the ML scoring values. 

x Pre-validation of the ML model if MAE and RMSE values delivered by Cross Validation 

(CV) process are acceptable from an engineering point of view. The meaningfulness of the 

model is also a key factor to be taken into account for the pre-validation process. 

x Use of the pre-validated model to predict the values of new samples contained in the “Test 

Set” file. If the values of MAE and RMSE delivered using the “Test Set” as input are 

considered as satisfactory the model is validated. Otherwise, if the model is not validated the 

user can select a new algorithm and continue with the review and validation activities. 

 



 
 
Fig. 9. Procedure followed to validate the model 

The use in the validation process of the pre-validated rules of the M5R algorithm (obtained after 

expert review and modification of the model) showed a substantial reduction of the MAE and RMSE 

values (Table 7). The machine learning scoring values obtained in the validation phase were 

considered by the experts in the domain as acceptable from an engineering point of view.  

The pre-validated rules were also considered by the experts as meaningful. In this regard, experts 

realised that rule 5 in Fig. 10 did not account for the impact caused by the direction the material is 

being laid (represented by the “orientation” parameter). This particular event identified by experts was 

causing some data inaccuracies which are visually shown in the charts displayed in the RMA user 

interface. As observed in Fig. 11 the modifications realised regarding rule 5 provided better accuracy 

values (MAE and RMSE) and the deviations represented in the line chart were considerably reduced. 

Therefore, using the RMA, experts are able to correlate physical events coming from their experience 

with the results represented in the visualisations.  

 

 



Table 7. Summary of M5R results. 

 Learning Process Validation Process 

ML model used MAE RMSE MAE RMSE 

Initial model provided by M5R 21.07 27.44 20.26 27.31 

Model reviewed and validated by experts 10.31 15.23 13.91 19.83 
 
 
 

 
   

Model 
Errors 

  

RMSE    MAE 
27.44    21.07 

 
                                                                         Input Data 
 

Area Aspect 
Ratio 

Packaging Jumps Orientation Perimeter Machine Time 
 

60.5056 5.517241379 1.008426667 1 -45 60 76.65406177 
60.5056 5.517241379 1.008426667 1 45 60 74.63771948 
60.5056 5.517241379 1.008426667 1 0 60 35.73037868 
60.5056 5.517241379 1.008426667 1 0 60 35.73037868 

 

 
Fig. 10. R esults generated in the CV process by non-reviewed rules 



 
   

Model 
Errors 

  

RMSE    MAE 
27.44    21.07 

 
                                                                         Input Data 
 

Area Aspect 
Ratio 

Packaging Jumps Orientation Perimeter Machine Time 
 

60.5056 5.517241379 1.008426667 1 -45 60 76.65406177 
60.5056 5.517241379 1.008426667 1 45 60 74.63771948 
60.5056 5.517241379 1.008426667 1 0 60 35.73037868 
60.5056 5.517241379 1.008426667 1 0 60 35.73037868 

 

 
 
 
Fig. 11. Results generated in the CV process using the rules reviewed and modified by 
experts 
 
 
 
 
 
 
 



5.1 Key findings from the case study  

The potential of the methodology proposed is evaluated in this case study, showing the benefits of 

adopting a generic framework for knowledge management, and integrating machine and expert 

knowledge in a common environment. The use case was developed following the KNOMAD steps 

with the aim of sourcing knowledge in a systematic manner. In this context, special attention was paid 

to the data preparation activity, carried out as part of the knowledge capture process. Indeed, the data 

preparation is considered as the most time consuming task in the development of the KSF service 

(Mlynarski, 2006) (Alcala-Fdez, 2009).  

To support the assumptions made in this study, the validation of the case study was a must. The use 

case verification was carried out through the acceptance of the ML model initially provided by the 

data mining tool and reviewed by experts. To validate the ML model, it was required to use testing 

data obtained under the same conditions as the training data. In this direction, the feature recognition 

tool and the simulation software used in the knowledge capture process to generate “Training Set” and 

“Test Set” did not go through any modification.  

The ML methods included in the KSF were executed using data contained in the “Training Set” to 

generate a set of ML models (one model per algorithm). The machine time predictions captured varies 

from 20 to 300. Considering this, experts established a MAE and RMSE lower than 20 as acceptable 

for the manufacturing cycle time prediction problem.  

The models automatically generated in the Cross Validation (CV) process did not contain low error 

values as shown in Table 6. However, after the experts selected M5R algorithm and modified its 

model, the error of the predictions obtained in the CV was considerably reduced from MAE of 21.07 

and RMSE of 27.44 to MAE of 10.31 and RMSE of 15.23. 

To avoid over-fitting the model to the data, a validation process was performed using the pre-

validated model to predict the samples of a new data set named as “Test Set”. The “Test Set” did not 

contain data utilised in the learning process. Therefore, the use of different samples in the validation 

process increased the reliability of the model. MAE and RMSE values obtained using the “Test Set” 



were lower than 20 units, taking into account the maximum allowance for MAE and RMSE (using a 

confidence level of 95%). 

 

6. Conclusions 

The creation of a service for fast prediction of manufacturing cycle times of wing composite 

structures has been presented in this paper. The work reported through the implementation of this 

service proves the foundations for the delivery of a more efficient approach for sourcing engineering 

knowledge.  

Prior the development of this research, knowledge associated with the manufacturing cycle time 

estimation problem was kept in the minds of the experts or in documents locally stored. These 

practices provoked knowledge leaks in the case of experts leaving the organisation. Therefore, it 

became apparent that there was a need for an effective approach for managing engineering 

knowledge. In this regard, the research presented in this paper proved to be an effective solution for 

managing engineering knowledge by providing experts with a methodology fostering the systematic 

capture, retention and reuse of knowledge. Using the proposed framework, experts are now asked to 

store the knowledge used in their particular practice in a human readable format within independent 

knowledge packages placed in a centralised web-based platform. In doing so, knowledge becomes 

accessible for application to different engineering problems across the organisation.   

In parallel, the previous approach used for time estimation lacks a model of the problem due to 

complexity issues. Much of the complexity in the process is due to the use of new technologies, with 

highly interdependent parts, in the manufacture of CFRP wing covers. Experts did not have enough 

knowledge to create an accurate model capable of predicting the manufacturing cycle time of wing 

covers. Any relevant knowledge used for the time estimation was not accessible for the experts as it 

was hard coded within the simulation software application. Based on these issues regarding the 

knowledge capture activity, the proposed knowledge sourcing capability proved to be capable of 

efficiently capturing relevant and meaningful knowledge from company data assets and experts. In 



this context, the knowledge sourcing platform integrates methods and tools supporting the capture of 

expert knowledge, and automating the knowledge creation using AI algorithms. Therefore, this 

research delivers a methodology for fast knowledge capture, thus providing a more efficient 

knowledge sourcing process. This approach is also a potential solution for problems which are 

knowledge intensive, complex and have poor theoretical understanding.  

The results provided by the knowledge sourcing capability highlight its ability for delivering fast, 

accurate and reliable evaluations of design concepts. The proposed methodology provides 

manufacturing time estimations in just a few seconds whereas the technology commonly used to do 

the same activity (fidelity simulation software tools) requires more than a week of work to generate 

the machine time estimates. Therefore, the knowledge sourcing framework developed is considered 

more efficient compared to current approaches as it provides faster manufacturing time estimations 

with accuracy levels considered as acceptable by experts in the domain.  

In future work a more intuitive way of modelling knowledge could be achieved by using knowledge 

representation formalisms such as semantic networks and conceptual graphs. By representing 

knowledge using these formalisms, various type of knowledge could be expressed apart from 

inference rules, thus providing better expressiveness and a deployable inference process. Further work 

is also planned with the aim of facilitating further understanding of the knowledge automatically 

generated by ML methods.  In this direction, more advanced visual analytical tools would be 

beneficial, providing the user with more intuitive formats of visualising the information related to the 

ML rules. The use of unstructured databases (in common use with big data sets) would allow the KSF 

to deal with larger amounts of data, composed of both structured and non-structured information sets 

such as the contents of manuals and emails respectively.  
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