
1

Biased Randomization of Heuristics using Skewed Probability

Distributions: applications to routing and other problems

Abstract:

Randomized heuristics are widely used to solve large scale combinatorial optimization

problems. Among the plethora of randomized heuristics, this paper reviews those that

contain biased-randomized procedures (BRPs). A BRP is a procedure to select the next

constructive ‘movement’ from a list of candidates in which their elements have different

probabilities based on some criteria (e.g., ranking, priority rule, heuristic value, etc.).

The main idea behind biased randomization is the introduction of a slight modification

in the greedy constructive behavior that provides a certain degree of randomness while

maintaining the logic behind the heuristic. BRPs can be categorized into two main

groups according to how choice probabilities are computed: (i) BRPs using an empirical

bias function; and (ii) BRPs using a skewed theoretical probability distribution. This

paper analyzes the second group and illustrates, throughout a series of numerical

experiments, how these BRPs can benefit from parallel computing in order to

significantly outperform heuristics and even simple metaheuristic approaches, thus

providing reasonably good solutions in ‘real time’ to different problems in the areas of

transportation, logistics, and scheduling.

Keywords: Heuristics, Biased Randomization, Real-time Decision Making,

Combinatorial Optimization, Logistics, Transportation, Production.

1. Introduction

A number of complex decision-making processes in real-life transportation, logistics,

and production systems can be modeled as combinatorial optimization problems (Faulin

et al, 2012). Among many others, some typical examples include: vehicle routing

problems (VRP) (Toth and Vigo, 2014), arc routing problems (Corberán and Laporte,

2014), facility location problems (Chan, 2011), or scheduling problems (Pinedo, 2012).

All these problems are NP-hard in nature, meaning that the space of potential solutions

grows very fast (exponential explosion) as the instance size increases. Therefore, using

exact methods is not always the most efficient strategy, especially when the size of the

problem instance is large and reasonably good decisions are needed in negligible

computing times. Under these circumstances, heuristic-based approaches constitute an

excellent alternative to exact methods (Talbi, 2009). Accordingly, a large number of

heuristic and metaheuristic algorithms have been developed during the last decades to

solve large scale combinatorial optimization problems and, eventually, support

2

intelligent decision-making processes in a myriad of fields, including transportation,

logistics, production, finance, telecommunication, Internet computing, health care, etc.

A constructive heuristic is a computational method that employs an iterative process to

generate a feasible solution of reasonable quality. At each iteration of the solution-

building process, the next ‘movement’ is selected from a list of potential candidates that

has been sorted according to some criteria. Pure greedy heuristics always select the next

‘most promising’ movement. As a result, these heuristics are expected to generate a

reasonably good solution once the entire list is traversed. Notice, however, that this is a

somewhat myopic behavior, since the heuristic selects the next movement without

considering how the current selection will affect subsequent decisions as the list is

processed downwards. Even worse, this property results in a deterministic procedure,

i.e., the same solution is obtained every time the algorithm is run. Examples of such

methods are the nearest neighbor for traveling salesman problems (Lawler et al, 1985),

the shortest processing time dispatching rule for scheduling problems (Pinedo and

Chao, 1999), or the savings algorithm for VRPs (Clarke and Wright, 1964). Although

these methods are easy to implement and can be run almost instantaneously, the real-

time solutions they provide are usually far from being optimal. To improve the quality

of these heuristic solutions –and as far as more time is available–, different types of

local search methods can be used to explore the solution neighborhood (Aarts and

Lenstra, 1997). Typically, the neighbor selection is based on a certain logic that tries to

take advantage of the specific characteristics of the optimization problem being

considered. This usually leads to local optimal solutions. As in the construction phase, if

the neighbor chosen is always the next ‘most promising’ movement according to some

criteria, the resulting searching process will be deterministic too.

Randomization techniques are frequently used to escape from this local optimality trap

and improve the overall quality of the solution. These techniques can be incorporated

either in the construction phase and/or the local search. Randomization allows exploring

alternative solutions by selecting an element other than the ‘most promising option on

the short run’. This leads to different outputs each time the entire procedure is executed.

Since running a heuristic might take only a few seconds –or even less in a modern

computer if the heuristic is correctly implemented and the instance size is not extremely

large–, one can execute it several times, either in sequential mode or in parallel mode by

using different threads, and then select the best of the stochastic outputs. Countless

metaheuristic algorithms include uniform randomization in their procedures. However,

a uniform randomization of the list of candidate elements destroys the logic behind the

heuristic greedy behavior. In order to maintain this logic, the randomization can be

biased (i.e., oriented) so that higher probabilities are given to the most promising

candidates. Thus, the main idea behind biased randomization is the introduction of a

slight modification in the greedy constructive behavior that provides a certain degree of

randomness while maintaining the main logic behind the heuristic. In a seminal paper

on the Monte Carlo method, King (1953) already emphasized the enormous

improvement of biasing probabilities on sampling efficiency. Different methods to bias

the randomization have been used in multiple contexts thereafter (Figure 1). Among

them, this paper pays special attention to the ones that use skewed (non-symmetric)

theoretical probability distributions in order to introduce an appropriate bias in the

process of selecting elements from the list during the constructive and/or local search

stages. Some skewed theoretical distributions, such as the geometric or the decreasing

triangular ones, offer at least two advantages over using empirical distributions: (i) they

contain at most one simple parameter, which can be easily set; and (ii) they can be

3

sampled using well-known analytical expressions, which from a computational

perspective is typically faster than other sampling techniques involving the use of loops.

Biased Randomized

Procedures (BRPs)

Empirical Bias Functions

Skewed Probability Distributions (geometric, decreasing triangular, etc.)

Biased Random Sampling (BRS)

Parameterized BRS

Probabilistic Tabu Search

Ant Colony Systems

Heuristic Biased Stochastic Sampling (HBSS)

Value Biased Stochastic Sampling (VBSS)

Figure 1: A classification of Biased Randomized Procedures.

In particular, the main contributions of this paper are: (i) to provide a review of the most

relevant biased randomized procedures (BRPs) used in the literature to solve

combinatorial optimization problems; (ii) to provide a general framework for BRPs that

use a skewed theoretical probability distribution to bias the selection of the next

movement during the constructive and/or local search processes; and (iii) to illustrate,

throughout a series of numerical experiments, how these BRPs can significantly

outperform heuristics, and even simple metaheuristic approaches, thus providing

reasonably good solutions in ‘real time’ (e.g., one or two seconds) to different

transportation, logistics, and scheduling problems.

The remainder of this paper is structured as follows: Section 2 introduces the concept of

randomized algorithms; Section 3 presents different BRPs that use empirical bias

functions; Section 4 provides a general framework for BRPs with a skewed theoretical

probability distribution, and discusses the advantages of this approach over the one

based on empirical bias functions; Section 5 analyzes different applications of BRPs to

the fields of logistics, transportation, and scheduling; Section 6 describes a series of

computational experiments that contribute to illustrate and quantify the potential of

BRPs; finally, Section 7 summarizes the main contributions of the paper.

2. Randomized Algorithms

There is an enormous body of literature that study probabilistic or randomized

algorithms and a review of that is far beyond the scope of this paper. The reader is

referred to Collet and Rennard (2006) for a review, and to Clerc (2015) for a vast

discussion about the stochastic aspects of optimization. The focus of this paper is in the

subset of randomized algorithms that include some type of bias in any of their random

processes. A randomized algorithm uses random bits to make random choices during its

execution. Unlike deterministic algorithms, different solutions are obtained every time

the procedure is executed. The most successful approaches to solve large combinatorial

problems take advantage of this feature to perform several iterations and collect the best

4

overall output. These approaches are commonly known as multi-start methods (Martí et

al, 2013). In general terms, they all contain two differentiated phases: a construction

process and a local or neighborhood search. The former diversifies the search for

solutions while the latter intensifies this search. These two phases are repeated until a

stopping criterion is satisfied. Note that the randomized procedure can be applied at

either phase because there is always a discrete choice that has to be made.

Many randomized procedures found in the literature rely on uniform randomization, that

is, they use the uniform probability distribution when selecting an element, neighbor, or

solution. These could be categorized as uniformly-randomized algorithms. The main

drawback of such approaches is that they do not benefit from the heuristic ‘common

sense’: if candidate elements are ranked according to their ‘goodness’ on a given

criterion, choosing one via a uniform random process fades away the advantages of the

sorting. This is partially overcome by partially-randomized algorithms, that use uniform

randomization but on a subset of candidates. The greedy randomized adaptive search

procedure (GRASP) is the most representative and commonly used algorithm of this

type. It was initially proposed by Feo and Resende (1995) and extensively used in

multiple applications (Resende and Ribeiro, 2010). As a multi-start method, each

GRASP iteration is composed of a construction phase and a local search. In the

construction phase, all candidate elements are sorted according to a greedy evaluation

function. The ‘best next’ elements, i.e., those whose addition represents the highest

improvement on the objective function, are added to a restricted candidate list (RCL).

The next element is chosen randomly (using a uniform distribution) from this RCL and

added to the partial solution. This is performed iteratively until there are no more

candidates. A local search is then applied until a local optimal is reached. Since only the

elements in the RCL can be included in the partial solution, this method can be seen as a

multi-start method with a partially random construction heuristic. A similar idea is the

window random sampling by Valls et al (2003), used in a resource-constrained project

scheduling problem. A window parameter is defined as the maximum difference

allowed between the order of the candidate and the minimal order. In the field of genetic

algorithms, there also exists heuristics with randomization partially guided according to

some criteria. This is the case, for instance, of the biased random key genetic algorithm

(Gonçalves and Resende, 2011). In this genetic algorithm, the population is partitioned

into two groups: elite and non-elite individuals. When this population is evolved to

obtain the next generation, some of the children are obtained by the process of mating

two randomly selected individuals, one from the elite group and one from the non-elite

group. Mating is done using parameterized uniform crossover, that is, the genes from

the elite parents have larger probability of being selected. This way, the randomization

is partially biased to favor elite parent’s characteristics over the non-elite parent’s ones.

3. BRPs using Empirical Bias Functions

A biased (oriented) randomized procedure aims at selecting the next element while

capturing the best of two realms: exploitation and exploration. On the one hand, the

procedure favors the most promising candidates to exploit the solution space; on the

other hand, it introduces a weighted randomness degree to explore this solution space.

To determine the balance between either one, a BRP may use a bias function. A bias

function, , is a function that assigns a non-negative weight to all elements in the

candidate list. These weights are then normalized to obtain an empirical probability

5

distribution that will define the set of probabilities. Note that two extreme cases can be

constructed by giving the same weight to all elements (uniform distribution), or by

giving a positive weight to the top element and zero weight to the rest (greedy). All

other weight allocations provide intermediate bias configurations. This section presents

different BRPs that include some sort of bias function to build the empirical probability

distribution. The bias function is therefore an algorithm input that must be designed

considering both the problem characteristics as well as the responsiveness of the chosen

heuristic –in terms of performance– to different types of bias.

3.1 Biased Random Sampling

Biased random sampling (BRS) was one of the earliest BRPs employed in the literature.

In these early heuristics, some specified criteria were used to bias the choice of

randomly generated solutions. To the best of our knowledge, the first heuristics that

incorporated BRS were used to solve assembly line balance problems (Arcus, 1965;

Tonge, 1965), production scheduling problems (Giffler et al, 1963; Heller and

Logeman, 1962), location problems (Mabert and Whybark, 1977; Nugent et al, 1968),

and an inventory management problem (Berry et al, 1977).

3.2 Parameterized Biased Random Sampling

Parameterized BRS is a randomized method in which the probability values to select the

next candidates are biased according to priority rules. Numerous priority rule-based

heuristics have been designed to tackle resource-constrained project scheduling

problems. For this vastly studied problem, Cooper (1976) presented the first BRS

scheme that used nine different priority rules as weighting factor to bias the probability

of choosing an activity. This probability was calculated by dividing the activity priority

value by the sum of the priority values of all activities in the candidate list. Later, Drexl

(1991) introduced regret based biased random sampling. This sampling technique uses

the priority values indirectly via regret values. The regret of a job is the difference

between its priority value and the lowest overall priority value. Probabilities are then

calculated using a parameter that controls the bias degree. Schirmer and Riesenberg

(1997) proposed BRS variants, dubbed the normalized BRS and the modified regret

based BRS, to cope with some of the drawbacks of the existing sampling approaches.

The authors stated that, in general, they always outperformed uniform random sampling

approaches. In a similar line of research, Valls et al (2003) developed the β-BRS

method. The β parameter establishes the probability of choosing the activity on top of

the priority-rule based list. Lastly, Coelho and Tavares (2003) designed the global BRS

method. Unlike previous sampling schemes, this one perturbs the priority values by

adding a random value between 0 and 1. Activities are then scheduled in the order

defined by the modified priority list. The reader is referred to Kolisch and Hartmann

(1999) for a summary of some of these sampling techniques in the resource-constrained

project scheduling problem.

3.3 Probabilistic Tabu Search

For search heuristics, Glover (1989) introduced the first big family of metaheuristics,

the probabilistic tabu search (PTS), which incorporated a BRP –usually in the move

acceptance function. Tabu search (Glover, 1990) is a “higher level heuristic designed to

guide other methods to escape the trap of local optimality”. PTS is an extension of tabu

search that includes a skewed probabilistic element within the search. Biasing is a way

to control the diversity in the search, and can be achieved by considering: (i) move

6

attractiveness (i.e., the change in the objective function); (ii) tabu status (i.e., tenure on a

tabu list); and/or (iii) aspiration level (i.e., the objective function value in relation to a

historical standard). The probabilistic nature of the approach can be a substitute for

memory when it is unclear how memory can be used to enhance the result. Some years

later, Løkketangen and Glover (1996) adapted PTS to zero-one mixed integer

programming problems with probabilistic measures that were both effective and easy to

implement.

3.4 Ant Systems and Ant Colony Systems

Another family of probabilistic algorithms that uses a BRP is the ant system (Dorigo et

al, 1996) and its subsequent variant, the ant colony system (Dorigo and Gambardella,

1997). Inspired by the behavior of real ants, these algorithms mimic the pheromone

trails that insects use to establish the shortest paths. The ant system was first applied to

the traveling salesman problem. To complete a tour, the cities visited are chosen

probabilistically via Monte Carlo sampling. The probabilities in the state transition are

biased using the so-called random-proportional rule to favor shorter edges with a

greater amount of pheromone. The ant colony system includes three main variants, one

of which is in the state transition. The modified transition follows the pseudo-random-

proportional rule. This rule adds a previous step: it randomly selects a number

uniformly distributed between 0 and 1; if it is below a given threshold the best edge is

selected, otherwise an edge is selected according to the random-proportional rule. By

calibrating the threshold, the algorithm determines the relative importance of

exploitation (best next edge) versus exploration (biased random edge).

3.5 Reactive GRASP

In the previous section, GRASP was introduced as one of the most well-known

partially-randomized algorithms. A variant of GRASP that includes a BRP is the so-

called reactive GRASP, first proposed by Prais and Ribeiro (2000). Unlike the original

GRASP, the size of the restricted candidate list in a reactive GRASP is not fixed but

self-adjusted according to the quality of the solutions found during the search. A BRP is

used when selecting the restrictiveness, or size, of the candidate list (i.e., the parameter

). The algorithm starts with a discrete set of predetermined list sizes, i. The

probability of choosing a given i from this set is drawn initially from a uniform

distribution. As the algorithm advances, these probabilities are biased using information

collected during the search. One possible biasing strategy is to use the average values of

the solutions obtained to recompute the probabilities of the different ’s. The values

that lead to better solutions will be more frequently used in the construction phase of the

GRASP procedure.

3.6 Heuristic-Biased Stochastic Sampling

Bresina (1996) devised a BRP called heuristic-biased stochastic sampling (HBSS) to

solve scheduling problems and other constrained optimization problems. The

motivating idea again was to bias the probability of choosing the next partial solution.

To avoid a complete random exploration, HBSS uses the search heuristic to guide this

exploration. The guidance degree is determined by a given bias function. In the search,

the elements of the candidate list are ranked according to the heuristic, and the bias

function assigns a weight to each element. These weights are then normalized to be

7

transformed into probabilities. Thus, if denotes the rank of the element , the

probability of choosing is given by:

Usually, when the heuristic accuracy is high a stronger bias (weight) is set to increase

the probabilities of selecting better solutions. On the contrary, when the heuristic

accuracy is lower a weaker bias is set to widen the exploration of the solution space.

Bresina et al (1994) experimented with the following bias functions in the telescope

observation scheduling problem:

• Logarithmic:

• Linear:

• Polynomial (n = 2, 3, 4):

• Exponential:

• Uniform:

The best performing bias functions for the particular problem the authors analyzed were

the exponential and the second degree polynomial, which were the two functions in the

middle in terms of bias strength. The HBSS approach encompasses a family of search

algorithms that can be modulated via a bias function ranging from a greedy search to a

uniform random search.

3.7 Value-Biased Stochastic Sampling

Following a similar reasoning as in the HBSS, Cicirello and Smith (2005) proposed the

value-biased stochastic sampling (VBSS) as a search heuristic. In HBSS, the bias

function gives weight to the candidates solely based on their rank, ignoring completely

their heuristic values. Alternatively, VBSS not only considers rank but it also

incorporates the “discriminatory power inherent in the heuristic”. Thus, according to the

VBSS approach, the probability of choosing element is given by:

The resulting probabilities from both BRPs (VBSS and HBSS), may differ considerably

when the choices of the candidate list have very different heuristic values. Cicirello and

Smith (2005) provided an illustration of such a case. The authors also tested their

approach in the weighted tardiness scheduling problem with sequence-dependent

setups. In their experiments, the VBSS approach was able to outperform the HBSS

approach.

4. BRPs with Skewed Theoretical Probability Distributions

This section presents a general framework for BRPs that use a skewed theoretical

probability distribution to bias the probabilities of the candidate elements. The BRPs

8

considered in the previous section share a common feature: they all rely on some kind

of bias function to define the choice probabilities. Using a bias function, each element

in the list was assigned a different weight based on some criteria (e.g., ranking, priority

rule, heuristic value), and then an empirical probability distribution was built. A random

number drawn from this distribution determined the choice of the next element.

Alternatively, instead of using an empirically-constructed probability distribution, one

could resort directly to a theoretical probability distribution that is already skewed or

non-symmetric by definition. Examples of such distributions are the geometric or the

decreasing triangular. In particular, in most of our previous work we have used the

geometric distribution, since it only has one parameter which determines its specific

shape. Also, this parameter varies between 0 and 1, thus facilitating its setting in most

practical applications. As values of this parameter get closer to 0, the more uniform-

randomized the selection process will be. On the contrary, as these values get closer to

1, the more greedy the selection will be (Juan et al, 2010). This type of distributions

provides a natural bias for the candidate elements in the list. For instance, Figure 2

compares the probabilities of selecting each of the twenty-five elements of a given

sorted list using: a geometric distribution with parameter 0.2 (left part), and a

discretized decreasing triangular distribution (right part).

Figure 2: Use of skewed distributions to introduce randomness.

Most heuristics iteratively perform a construction phase followed by a neighborhood

search. As discussed above, BRPs can be employed in any of the two stages. Regardless

of the stage, there is always a discrete choice that has to be made from a list of potential

candidates. Potential candidates could be neighbor solutions, edges in traveling

salesman problems and VRPs, jobs or machines in scheduling problems, or tasks or

resources in resource-constrained project scheduling problems, for example. The list of

candidates is sorted according to a problem-specific criterion, and probabilities are

assigned to each element according to a skewed probability distribution. Figure 3

displays a general pseudo-code for a BRP with a skewed distribution. The procedure

requires the following inputs: (i) the list L of potential candidates, which is sorted

9

according to the criteria provided by the heuristic; (ii) the seed s for the (uniform)

pseudo-random number generator; (iii) the skewed probability distribution PD; and (iv)

the parametric values p of this distribution. The procedure returns the selected element

l from the sorted list.

Procedure BRP(L, s, PD, p)

01 μ using seed s, generate pseudo-random number in [0,1)

02 ρ using μ, generate random variate from distribution PD(p)
03 l select the ρ-th element of the sorted list L
04 return l

End

Figure 3: Pseudocode to select the next element using a skewed distribution.

To the best of our knowledge, the first heuristic algorithms including BRPs with a

skewed theoretical probability distribution were introduced in Juan et al (2010, 2011) in

order to solve the VRP. The authors developed a hybrid algorithm that combined the

classical savings heuristic (Clarke and Wright, 1964) with Monte Carlo simulation. At

each step of the solution-construction process, eligible edges were sorted in a non-

increasing savings list. Edges enjoyed (quasi-) exponentially diminishing probabilities

that were variable and based upon a geometric distribution. Consequently, the next

element was selected by a guided random sampling. The procedure continued until there

were no more edges to be selected.

Even for large-size instances, heuristics with this type of BRPs can generate a large

number of promising solutions in a few seconds, with some of these solutions

outperforming the one provided by the original heuristic (Figure 4). Moreover, just by

employing different threads the computation can be trivially parallelized by assigning a

different seed to each thread, i.e., the BRP allows to generate solutions in real-time that

outperform the one provided by the original heuristic. Notice that this might be

especially interesting in online optimization problems, where only one or two seconds

are allowed before taking a decision –which invalidates the use of time-consuming local

search processes. This is the case, for instance, of the mobile cloud computing

application analyzed in Mazza et al (2016), where mobile users require immediate

assignment but, at the same time, some intelligence must be incorporated into the

assignment process to optimize the use of shared telecommunication and computing

resources. Also, in De Armas et al (2016), the authors propose the use of BRPs for fast

generation of crew rostering plans in airline companies under realistic conditions. As

discussed in Juan et al (2014b), another interesting application of these BRPs is the

quick generation of a diversified population of starting ‘promising’ solutions for

metaheuristics.

10

Figure 4: Using skewed distributions to generate alternative solutions.

From a computational perspective, the generation of random variates coming from

probability distributions other than the uniform is always more time-consuming than the

generation of pseudo-random numbers. Fortunately, there exist analytical expressions

that allow fast generation of random observations from most theoretical distributions.

Figure 5 shows an example of Java code that makes use of these analytical expressions

to efficiently generate random positions in a sorted list, with these random positions

following either a geometric probability distribution or a triangular distribution. Since a

large number of such random positions is usually required during the BRP execution,

not using such analytical expressions might significantly increase the computational

time required by the algorithm. This is, in our opinion, one of the main advantages of

using skewed theoretical probability distributions over empirical bias functions, since

the latter typically requires more computational time and also more parameter fine-

tuning processes than the former.

private static int getRandomPosGeom(double beta, Random rng, int n)

{ // Returns random position between 0 and n-1 based on Geometric(beta)

 int index = (int) (Math.log(rng.nextDouble()) / Math.log(1 - beta));

 pos = pos % n;

 return pos;

}

private static int getRandomPosTriang(Random rng, int n)

{ // Returns random position between 0 and n-1 based on decreasing Triangular

 pos = (int) (n * (1 - Math.sqrt(rng.nextDouble())));

 return pos;

}

Figure 5: Efficient generation of random positions using skewed distributions.

11

5. Areas of Application

This section illustrates the use of BRPs with skewed theoretical probability distributions

through some examples of applications to different combinatorial optimization

problems.

5.1 Vehicle Routing Problem

In a VRP, a set of customers’ demands must be satisfied by a fleet of capacitated

vehicles that typically depart from a central depot. Moving vehicles between any two

nodes (customers or depots) in the map has a distance-based cost. The goal is to find the

set of vehicle routes that minimizes the delivery cost while serving all demands and

taking into consideration the vehicle capacity constraints. One popular procedure for

solving this problem is the aforementioned savings heuristic. In the savings heuristic, an

initial dummy solution is constructed by sending a virtual vehicle from the depot to

each customer. Then, the list of edges connecting each pair of nodes is considered. This

list is sorted according to the ‘savings’ criterion that would be obtained by using the

corresponding edge to merge two routes in the dummy solution. Thus, merging edges

associated with higher savings are located at the top of the list, while edges with lower

savings are located at its bottom. At this point, the sorted list of edges is traversed from

the top to the bottom, and new route merges are carried out whenever the corresponding

edge can be used to merge the two routes it connects without violating any constraint.

The diversification of the savings heuristic is rather old, reaching many variants very

soon (Toth and Vigo, 2014). As far as we know, the first randomization of the savings

heuristic was done by Buxey (1979), who made a random selection of one shortlist of

savings according to a probability distribution built taking the savings themselves as

weights. Afterwards, Fernández de Córdoba et al (1998, 2000) developed two

procedures using randomization to solve a real version of the Capacitated VRP and the

Rural Postman Problem. Subsequently, the ALGACEA-1 method for the Capacitated

VRP included the control of the randomization using an entropy function (Faulin and

Juan, 2008).

Nevertheless, as stated above, the first implementations of a BRP with a skewed

theoretical distribution was carried out by Juan et al (2010). Later, Juan et al (2011)

improved the algorithm by incorporating some splitting and cache (memory-based)

techniques. This conceptual idea was generalized in Juan et al (2013a) to the multi-start

biased randomization of classical heuristics with adaptive local search (MIRHA). This

solution approach was able to handle, in an efficient way, realistic vehicle routing

problems under more complex scenarios dominated by non-smooth/non-convex

objective functions and non-convex regions.

BRPs of this type were also used in some VRP extensions, namely, the heterogeneous

fleet VRP (Juan et al, 2014c), the heterogeneous fleet VRP with multi-trips (Caceres-

Cruz et al, 2014; Grasas et al, 2013), the VRP with asymmetric costs and heterogeneous

fleets (Herrero et al, 2014), the VRP with multiple driving ranges –i.e., heterogeneous

fleet with respect to maximum route lengths– (Juan et al, 2014d), the multi-depot VRP

with a limited number of identical vehicles per depot (Juan et al, 2015b), and the two-

dimensional loading capacitated VRP with homogeneous fleet (Dominguez et al, 2014),

with heterogeneous fleet (Dominguez et al, 2016b), with heterogeneous fleet and

sequential loading and items rotation (Dominguez et al, 2016c), and with backhauls

(Dominguez et al, 2016a).

12

A similar ‘savings-based’ heuristic, called SHARP, was developed by González et al

(2012) for solving the arc routing problem. The arc routing problem is similar to the

previously described VRP, but it differs in several details: first, demands are not located

on the nodes, but on the edges connecting these nodes; second, only some nodes are

directly connected among them (i.e., the underlying graph or network connecting the

nodes in the problem is not complete). Again, the SHARP heuristic makes use of a

dummy initial solution and a sorted list of connecting edges to merge those routes that

provide the highest possible savings at each step without violating any problem

constraint (e.g., vehicle capacity). The edges are selected with biased probabilities

according to a geometric distribution with a parameter randomly selected between 0.10

and 0.25.

5.2 Scheduling Problem

Another well-known optimization problem is the permutation flow-shop problem

(PFSP). This is a problem frequently encountered in production processes, where a

sequence of jobs or tasks has to be processed in a set of machines. Each job requires a

given time to be processed by each machine, and the goal here is to find the permutation

of jobs that minimizes the makespan, i.e., the total time necessary to complete the

processing of all the jobs in all the machines. The NEH heuristic (Nawaz et al, 1983) is

probably the best well-known heuristic for solving this problem. In the NEH heuristic,

the list of jobs is sorted according to the total time each job would require to be

processed by all the machines if it were the only job in the set. Then, the sorted list of

jobs is traversed from top to bottom, and a new emerging solution (permutation of jobs)

is constructed by locating each new job extracted from the list in the position that

minimizes the makespan of the jobs considered so far. Juan et al (2014e) employed a

BRP with a discretized version of the decreasing triangular distribution during the

solution–construction process to select the jobs. This way, eligible jobs were assigned

linearly diminishing probabilities according to their corresponding total processing

time. In Juan et al (2014a), the former BRP was combined with simulation in order to

deal with the PFSP with stochastic processing times.

5.3 Facility Location Problem

The facility location problem (FLP), sometimes referred to as the location-allocation

problem, consists of deciding the location of facilities and allocating demand points to

one or multiple facilities (Reese, 2006). The objectives can be manifold: minimizing the

cost of serving all customers (p-median problem), minimizing the longest distance

between any customer and its assigned facility (p-center problem), minimizing the sum

of fixed setup costs and variable costs of serving the customers (uncapacitated facility

location problem), minimizing a total cost that is a function of the distance and flow

between the facilities plus the fixed cost of placing a facility (quadratic assignment

problem), among others.

Cabrera et al (2014) modeled a telecommunications problem as an uncapacitated

facility location problem, in which web-servers (facilities) needed to be placed in a

distributed network to provide some service to a given set of customers. The authors

developed a probabilistic algorithm that combined an iterated local search framework

with a BRP with a geometric distribution. The use of a biased distribution led to shorter

convergence times than those of a uniform distribution.

13

Similarly, De Armas et al (2017) propose a new heuristic for the uncapacitated FLP,

and then extend this heuristic to a BRP. They show the efficiency of this approach in

solving very large-scale instances in low computing times and, then, they extend the

BRP into a simheuristic (Juan et al 2015a) able to deal with the stochastic version of the

problem.

6. Computational Experiments

In order to provide some empirical evidences on the use of BRP techniques to enhance

classical heuristics and quantify the gains obtained, a series of experiments have been

developed for five well-known combinatorial optimization problems. The problems,

heuristics, and benchmarks selected, as well as the results achieved, are described and

analyzed in the next subsections.

6.1 Selected Problems and Heuristics

Five well-known optimization problems have been chosen to illustrate the

improvements that can be reached by the introduction of BRPs in constructive

heuristics: the VRP, the ARP, the PFSP, the uncapacitated FLP (UFLP), and the 2D

strip packing problem (2DSPP).

For the first three problems the following heuristics have been selected: the savings

heuristic (Clarke and Wright, 1964) for the VRP, the SHARP heuristic (González et al,

2012) for the ARP, and the NEH heuristic (Nawaz et al, 1983) for the PFSP. These

three heuristics make use of a sorted list that is traversed from the top to the bottom.

Thus, at each iteration the next element in the list is chosen without knowing how this

selection will condition future decisions during the solution building process. To avoid

this greedy behavior, we use a skewed probability distribution to select the next element

from the list.

Regarding the UFLP, this is a location problem which involves locating an

undetermined number of facilities to minimize the sum of the setup costs of these

facilities and the costs of serving the customers from these facilities. It is assumed that

there is no limit on the number of customers that can be served from each single facility.

In order to solve this problem, we have used the constructive heuristic proposed in De

Armas et al (2017). This heuristic works as follows: for a given instance, a scenario

with all facilities open is considered; then, the marginal savings or loses obtained when

each facility is closed in this “all-open” scenario are computed. This way, we obtain a

list of possible closures that can be sorted by the savings value. Afterwards, starting

from the “all-open” scenario, the savings list is traversed from the beginning, and the

next closure is performed as far as it reduces the total cost. After each closure, the

savings/losses associated with closing each open facility are updated to take into

account the new scenario, and the list is re-sorted accordingly. Obviously, since this

heuristic also uses a dynamically-sorted saving list, a BRP technique can be introduced

using a skewed probability distribution.

Finally, the 2DSPP –also referred to as the Open Dimension Problem (Wäscher et al,

2007)– involves packing items into a single bin or strip of fixed width and infinite

height, with the objective of minimizing the total height of the packing within the strip.

For this problem we have selected the ‘best-fit decreasing height decreasing width’

heuristic (Mumford–Valenzuela et al, 2001; Ntene and Vuuren, 2009). This heuristic is

a variation of the ‘first fit decreasing height’ heuristic (Coffman et al, 1980). Initially,

14

all rectangles to be packed are sorted by decreasing height (or decreasing width in case

of rectangles with equivalent height). Again, a BRP can be applied regarding this sorted

list of rectangles to be processed.

6.2 A First Experiment Regarding Parallelization and Computing Times

We have implemented in Java 8 the previously described heuristics and their

corresponding multi-start biased-randomized versions for each of the five optimization

problems. For all experiments we have used a geometric distribution with a beta

parameter adapted to each problem. A series of classical benchmarks were then run on a

desktop computer (Intel Core i5 CPU @2.7GHz with 8GB on OS X). Each instance was

run 100 times with different seeds as parallel agents, so that each agent is running a

certain time. Different time steps have been taken as references to compare the quality

of the solutions. In order to compare the heuristic value, h, and the best value obtained

with the biased-randomized version, rh, the percentage gap between both solutions,

computed as gap = (rh – h) / h, has been used.

More specifically, the benchmark used for the VRP was the classical Kelly instances

(Golden et al, 1998). This benchmark, available at http://neo.lcc.uma.es/vrp/vrp-

instances/capacitated-vrp-instances/, is composed of 20 large-scale instances, using

from 200 customers to 480. Some instances have restrictions on the maximum length of

every route. The benchmark used for the ARP was the classical Egl instances (Li and

Eglese, 1996). This set of instances, available at http://logistik.bwl.uni-

mainz.de/benchmarks.php, was constructed using as underlying graph regions of the

road network of the county of Lancashire, UK. Costs and demands are proportional to

the length of the edges, except for non-required edges that have zero demand. The

Taillard benchmark is the most used benchmark in the literature for the PFSP (Taillard,

1993). This set of instances, which is available at http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html, is composed of

120 different instances ranging from 20 jobs and 5 machines to 500 jobs and 20

machines. For the UFLP we have selected the Fpp17 benchmark, available at

http://www.math.nsc.ru/LBRT/k5/Kochetov/bench.html. It is a set of medium-sized

instances introduced by Kochetov and Ivanenko (2003). It consists of 30 instances with

307 customers and 307 facilities. Finally, the Zdf benchmark (Leung and Zhang, 2011;

Zhang et al, 2013) has been used for the 2DSPP. This benchmark, available at

http://paginas.fe.up.pt/~esicup/datasets, is composed of large instances that were

generated by combining zero-waste and non-zero waste instances.

Figures 6 to 10 show the gaps for selected instances belonging to each of the

benchmarks. The points identify the gaps between the heuristic solution (the highest

point) and the different solutions obtained using the randomized version of the heuristic

–without any local search added– as the number of parallel agents (executions) and the

computing time increases. The lower the point the better the solution and the larger the

gap with respect to the original solution provided by the heuristic. For each problem, the

graphs clearly show that the quality of the results increases (i.e., the negative gap

increases in size) as the number of parallel executions and the total time spent for each

of them increase. Therefore, in general, the most promising area of the surfaces

corresponds to the corner with the highest number of agents and highest time spent for

each agent. Note that the maximum time spent is just a few seconds and there are many

cases in which the improvement regarding the original heuristic is between 5% and

10%, so that a big leap in quality is obtained really fast. Being probabilistic algorithms

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://logistik.bwl.uni-mainz.de/benchmarks.php
http://logistik.bwl.uni-mainz.de/benchmarks.php
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://www.math.nsc.ru/LBRT/k5/Kochetov/bench.html
http://paginas.fe.up.pt/~esicup/datasets

15

driven by pseudo-random numbers, these biased-randomized algorithms could be easily

run in parallel using multiple threads or computers, each of these employing a different

seed for the generation of the random variates associated with the different skewed

probability distributions. Consequently, investing the same time that the original

constructive heuristic (i.e., real-time) it is possible to obtain much better solutions by

simply combining BRPs with parallelization and multi-agent strategies, as shown in

Juan et al (2013b) and Martin et al (2016), respectively. Of course, if more time (in the

range of seconds) is permitted the quality of the solution improves even further.

Figure 6: Gap evolution for a VRP instance (Kelly03).

Figure 7: Gap evolution for an ARP instance (egl-s2-B).

16

Figure 8: Gap evolution for a PFSP instance (tai110_200_20).

Figure 9: Gap evolution for an UFLP instance (20Fpp17).

Figure 10: Gap evolution for a 2DSPP instance (zdf3).

17

6.3 A Second Experiment Comparing BRPs with GRASP-like Approaches

The previous subsection illustrates how biased-randomized and parallelized versions of

different heuristics clearly outperform the heuristics themselves in a real-time

optimization environment. Here, we compare the performance, also in a real-time

optimization environment, of BRPs versus the traditional GRASP randomization

process described in Section 2. Thus, for each of the five instances selected (one for

each optimization problem considered), both the BRP and the GRASP strategies have

been executed using four different parameters (i.e., four different values of the

geometric-distribution beta in the case of BRP and four different sizes of the RCL in the

case of GRASP). Each of these executions consisted of ten runs (using a different seed

for the random number generator at each run), allowing a maximum time of two

seconds per run. For each problem, the best value obtained using each approach is

shown in Table 1. This table also contains the original value provided by the heuristic as

well as the best value obtained after running forty times a uniformly-randomized

process (i.e., similar to a GRASP but without restricting the candidate list). The

associated gaps of BRP, GRASP, and pure-uniform with respect to the heuristic value

are also included (the more negative the gap, the higher the improvement).

Table 1: Comparison of BRPs vs. GRASP randomization in real-time optimization.

Problem Heuristic

(a)

BRP

(b)

GRASP

(c)

Uniform

(d)

Gap

(a) - (b)

Gap

(a) - (c)

Gap

(a) - (d)

VRP (kelly03) 12,594 11,718 11,860 91,181 -6.96% -5.83% 624.00%

ARP (egl-S2-B) 14,124 13,476 13,692 33,118 -4.59% -3.06% 134.48%

PFSP (tai110_200_20) 11,869 11,644 11,737 11,784 -1.90% -1.11% -0.72%

UFLP (20FPP17) 123,245 114,327 114,330 123,349 -7.24% -7.23% 0.08%

2DSPP (zdf3) 213 197 197 219 -7.51% -7.51% 2.82%

Averages -- -- -- -- -5.64% -4.95% 152.13%

The first thing to be noticed is that, even in real-time, both BRP and GRASP strategies

are able to clearly improve the value provided by the original heuristic approach, with

negative gaps ranging from -1.11% in the PFSP to the -7.51% in the 2DSPP. The

relatively low improvement in the case of the PFSP is probably due to the fact that the

NEH heuristic used in this problem employs a simple but efficient local search

mechanism. This local search might compensate from ‘bad’ decisions in the order in

which jobs are selected -from the list of potential candidates- during the constructive

process. Another interesting observation is related to the extremely poor performance of

the uniformly-randomization process. As expected, applying a pure-uniform selection

process will completely destroy the logic behind the heuristic, thus leading to

suboptimal solutions -frequently of lower quality than the one provided by the original

heuristic itself-, even for large computational times. Finally, observe that BRP seems to

have a superior performance than GRASP, both in average values (-5.64% vs. -4.95%)

as well as in the number of significant differences. As shown in Figure 11, BRP clearly

outperforms GRASP in three out-of five experiments, while showing a similar behavior

18

in the remaining two (the more external the curve the lower the improvement gap with

respect to the solution provided by the associated heuristic).

Figure 11: Visual comparison between BRP and GRASP.

7. Conclusions

This work reviews biased randomized procedures (BRPs), their different

implementations, and some of their main applications in logistics, transportation, and

production. The paper focuses on an emergent family of BRPs that rely on the use of

skewed theoretical probability distributions, such as the geometric and the decreasing

triangular distributions. These BRPs have two main advantages over more traditional

BRPs based on empirical bias functions: (i) they are computationally faster, since they

benefit from analytical expressions to generate random variates from theoretical

probability distributions; and (ii) they use at most one parameter that does not require

complex and time-consuming setting processes.

By combining skewed probability distributions with random sampling, the logic behind

the heuristic can be slightly randomized without losing its good properties. This strategy

allows transforming deterministic heuristic procedures into probabilistic algorithms that

can be run several times (either sequentially or in parallel) to obtain different promising

solutions to the original problem, thus increasing the probability of obtaining better and

diversified solutions. As the computational experiments show, the use of BRPs based on

skewed probability distributions can easily and noticeably improve the performance of

already existing or new heuristics.

Due to their relative simplicity, their fast execution times, and their ability to be

parallelized, BRPs constitute an excellent alternative to the use of simple heuristics

without incurring in the computational, implementation, and fine-tuning efforts required

by most metaheuristics. This is especially the case in online optimization or whenever

decisions must be made in real-time even for large-size instances, something that is

19

becoming more frequent due to the growing dynamism, complexity, and responsiveness

requirements of most real-life systems in areas such as logistics, transportation,

production, telecommunication, finance, Internet computing, health care, etc.

Acknowledgements

TO BE COMPLETED AFTER BLIND PEER-REVIEW PROCESS

References

Aarts E and Lenstra JK (1997). Local Search in Combinatorial Optimization. John

Wiley & Sons: New York.

Arcus AL (1965). A computer method of sequencing operations for assembly lines.

International Journal of Production Research, 4(4), 259–277.

Berry WL, Marcus M and Williams JG (1977). Inventory Investment Analysis Using

Biased Sampling Techniques. Management Science, 23(12), 1295–1306.

Bresina J, Drummond M, Swanson K and Edgington W (1994). Automated

Management and Scheduling of Remote Automatic Telescopes.In: Pyper DM and

Angione RJ (eds).Optical Astronomy from the Earth and Moon, ASP Conference

Series, Vol. 55.Astronomical Society of the Pacific: San Francisco, pp 216–233.

Bresina JL (1996). Heuristic-Biased Stochastic Sampling. In Proceedings of the

Thirteenth National Conference on Artificial Intelligence- Volume 1. AAAI Press:

Portland, OR, pp 271–278.

Buxey GM (1979). The vehicle scheduling problem and Monte Carlo simulation.

Journal of the Operational Research Society, 30(6), 563–573.

Cabrera G, Gonzalez-Martin S, Juan AA, Marquès JM and Grasman SE (2014).

Combining Biased Random Sampling with Metaheuristics for the Facility Location

Problem in Distributed Computer Systems.In: Tolk A, Diallo SY, Ryzhov IO,

Yilmaz L, BuckleyS and Miller JA (eds). Proceedings of the 2014 Winter

Simulation Conference. IEEE Press: Savannah, GA, pp 3000–3011.

Cáceres-Cruz J, Grasas A, Ramalhinho H and Juan AA (2014). A savings-based

randomized heuristic for the heterogeneous fixed fleet vehicle routing problem

with multi-trips. Journal of Applied Operational Research, 6(2), 69–81.

Chan Y (2011). Location Theory and Decision Analysis: Analytics of Spatial

Information Technology (2nd ed.). Springer Berlin Heidelberg: Berlin.

Cicirello VA and Smith SF (2005). Enhancing Stochastic Search Performance by

Value-Biased Randomization of Heuristics. Journal of Heuristics, 11(1), 5–34.

Clarke G and Wright J (1964). Scheduling of vehicles from a central depot to a number

of delivering points. Operations Research, 12(4), 568–581.

Clerc M (2015). Guided Randomness in Optimization, Volume 1. Wiley-ISTE: London.

Coelho J and Tavares L (2003). Comparative analysis of metaheuristics for the resource

constrained project scheduling problem. Technical report, Department of Civil

Engineering, Instituto Superior Tecnico, Portugal.

Coffman EG, Garey DS and Tarjan RE (1980). Performance bounds for level oriented

two-dimensional packing algorithms. SIAM Journal on Computing, 9(4), 808–826.

Collet P and Rennard JP (2006). Stochastic Optimization Algorithms.In: Rennard JP

(ed).Handbook of Research on Nature Inspired Computing for Economics and

Management. Idea Group Inc.: Hershey, PA, pp 28–44.

20

Cooper DF (1976) Heuristics for Scheduling Resource-Constrained Projects: An

Experimental Investigation. Management Science, 22(11), 1186–1194.

Corberán A and Laporte G (2014). Arc Routing: Problems, Methods, and Applications.

SIAM: Philadelphia, PA.

De Armas J, Cadarso, L, Juan AA and Faulin J (2016). A multi-start randomized

heuristic for real-life crew rostering problems in airlines with work-balancing

goals. Annals of Operations Research, doi:10.1007/s10479-016-2260-y.

De Armas J, Juan AA, Marques JM and Pedroso J (2017). Solving the Deterministic

and Stochastic Uncapacitated Facility Location Problem: from a heuristic to a

simheuristic. Journal of the Operational Research Society, doi: 10.1057/s41274-

016-0155-6.

Dominguez O, Guimarans D, Juan AA and Nuez I (2016a). A Biased-Randomised

Large Neighbourhood Search for the Two-Dimensional Vehicle Routing Problem

with Backhauls. European Journal of Operational Research, doi:

doi:10.1016/j.ejor.2016.05.002.

Dominguez O, Juan AA, Barrios B, Faulin J and Agustin A (2016b). Using biased

randomization for solving the two-dimensional loading vehicle routing problem

with heterogeneous fleet. Annals of Operations Research, 236(2), 383–404.

Dominguez O, Juan AA, and Faulin J (2014). A biased-randomized algorithm for the

two-dimensional vehicle routing problem with and without item rotations.

International Transactions in Operational Research, 21(3), 375–398.

Dominguez O, Juan AA, Nuez I De, and Ouelhadj D (2016c). An ILS-Biased

Randomization algorithm for the Two-dimensional Loading HFVRP with

Sequential Loading and Items Rotation. Journal of the Operational Research

Society, 67(1), 37–53.

Dorigo M and Gambardella LM (1997). Ant Colony System: A Cooperative Learning

Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary

Computation, 1(1), 53–66.

Dorigo M, Maniezzo V and Colorni A (1996). The ant system: optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics--Part

B, 26(1), 29–41.

Drexl A (1991). Scheduling of project networks by job assignment. Management

Science, 37(12), 1590– 1602.

Faulin J and Juan AA (2008). The ALGACEA-1 method for the capacitated vehicle

routing problem. International Transactions in Operational Research, 15(5), 599–

621.

Faulin J, Juan AA, Grasman SE and Fry MJ (2012). Decision Making in Service

Industries: A Practical Approach. CRC Press: Boca Raton, FL.

Feo T and Resende M (1995). Greedy Randomized Adaptive Search Procedures.

Journal of Global Optimization, 6(2), 109–133.

Fernández de Córdoba P, Garcı́a Raffi LM and Sanchis JM (1998). A heuristic

algorithm based on Monte Carlo methods for the Rural Postman Problem.

Computers & Operations Research, 25(12), 1097–1106.

Fernández de Córdoba P, García-Raffi LM, Mayado A and Sanchis JM (2000). A real

delivery problem dealt with Monte Carlo Techniques. Top, 8(1), 57–71.

Giffler B, Thompson GL and Van Ness V (1963). Numerical experience with the linear

and Monte Carlo algorithm for solving production scheduling problems. In: Muth

JF and Thompson GL (eds). Industrial Scheduling. Prentice-Hall, Inc: Englewood

Cliffs, NJ.

Glover F (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3), 190–206.

21

Glover F (1990). Tabu Search: A Tutorial. Interfaces, 20(4), 74–94.

Golden B, Wasil E, Kelly J and Chao I. (1998). The impact of metaheuristics on solving

the vehicle routing problem: algorithms, problem sets, and computational results.

In: Crainic TG and Laporte G (eds). Fleet management and logistics. Springer:

New York, pp. 33–56

Gonçalves JF and Resende MGC (2011). Biased random-key genetic algorithms for

combinatorial optimization. Journal of Heuristics, 17(5), 487–525.

González S, Juan AA, Riera D, Castellà Q, Muñoz R and Pérez A (2012). Development

and Assessment of the SHARP and RandSHARP algorithms for the Arc Routing

Problem. AI Communications, 25(2), 173–189.

Grasas A, Caceres-Cruz J, Lourenço HR, Juan AA and Roca M (2013). Vehicle routing

in a Spanish distribution company: Saving using a savings-based heuristic. OR

Insight, 26(3), 191–202.

Heller J and Logemann G (1962). An Algorithm for the Construction and Evaluation of

Feasible Schedules. Management Science, 8(2), 168–183.

Herrero R, Rodríguez A, Cáceres-Cruz J and Juan AA (2014). Solving vehicle routing

problems with asymmetric costs and heterogeneous fleets. International Journal of

Advanced Operations Management, 6(1), 58–80.

Juan AA, Barrios B, Vallada E, Riera D and Jorba J (2014a). SIM-ESP: A simheuristic

algorithm for solving the permutation flow-shop problem with stochastic

processing times. Simulation Modelling Practice and Theory, 46: 101–117.

Juan AA, Cáceres-Cruz J, González-Martín S, Riera D and Barrios BB (2014b). Biased

Randomization of Classical Heuristics. In: Wang J (ed). Encyclopedia of Business

Analytics and Optimization, Vol. 1. IGI Global Books: Hershey, PA, pp. 314–324.

Juan AA, Faulin J, Caceres-Cruz J, Barrios BB and Martinez E (2014c). A successive

approximations method for the heterogeneous vehicle routing problem: analysing

different fleet configurations. European J. Industrial Engineering, 8(6), 762–788.

Juan AA, Faulin J, Ferrer A, Lourenço HR and Barrios B (2013a). MIRHA: multi-start

biased randomization of heuristics with adaptive local search for solving non-

smooth routing problems. Top, 21(1), 109–132.

Juan AA, Faulin J, Grasman S, Rabe M and Figueira G (2015a). A review of

Simheuristics: extending metaheuristics to deal with stochastic optimization

problems. Operations Research Perspectives, 2: 62–72.

Juan AA, Faulin J, Jorba J, Caceres J and Marques J (2013b). Using Parallel &

Distributed Computing for Solving Real-time Vehicle Routing Problems with

Stochastic Demands. Annals of Operations Research, 207. 43–65

Juan AA, Faulin J, Jorba J, Riera D, Masip D and Barrios B (2011). On the use of

Monte Carlo simulation, cache and splitting techniques to improve the Clarke and

Wright savings heuristics. Journal of the Operational Research Society, 62(6),

1085–1097.

Juan AA, Faulin J, Ruiz R, Barrios B and Caballé S (2010). The SR-GCWS hybrid

algorithm for solving the capacitated vehicle routing problem. Applied Soft

Computing, 10(1), 215–224.

Juan AA, Goentzel J and Bektaş T (2014d). Routing fleets with multiple driving ranges:

Is it possible to use greener fleet configurations? Applied Soft Computing, 21, 84–

94.

Juan AA, Lourenço HR, Mateo M, Luo R and Castellà Q (2014e). Using iterated local

search for solving the flow-shop problem: Parallelization, parametrization, and

randomization issues. International Transactions in Operational Research, 21(1),

103–126.

22

Juan AA, Pascual I, Guimarans D and Barrios BB (2015b). Combining biased

randomization with iterated local search for solving the multidepot vehicle routing

problem. International Transactions in Operational Research, 22(4), 647–667.

King GW (1953). The Monte Carlo Method as a Natural Mode of Expression in

Operations Research. Operations Research, 1(2), 46–51.

Kochetov Y and Ivanenko D (2003). Computationally difficult instances for the

Uncapacitated Facility Location Problem. In: Proceedings of the 5th Metaheuristics

International Conference (MIC): 41:1 – 41:6.

Kolisch R and Hartmann S (1999). Heuristic Algorithms for the Resource-Constrained

Project Scheduling Problem: Classification and Computational Analysis.In:

Weglarz J (ed).Project Scheduling: Recent Models, Algorithms and Applications.

Kluwer Academic Publishers: Dordrecht, The Netherlands, pp 147–178.

Lawler EL, Lenstra JK, Rinnooy Kan AHG and Shmoys DB (1985). The Traveling

Salesman Problem. Wiley & Sons: Chichester.

Leung SCH and Zhang D (2011). A fast layer-based heuristic for non-guillotine strip

packing. Expert Systems with Applications, 38(10), 13032–13042.

Li LYO and Eglese RW (1996). An Interactive Algorithm for Vehicle Routeing for

Winter-Gritting. Journal of the Operational Research Society, 47(2), 217–228.

Løkketangen A and Glover F (1996). Probabilistic Move Selection in Tabu Search for

Zero-One Mixed Integer Programming Problems. In: Osman IH and Kelly JP

(eds). Meta-heuristics: Theory & Applications. Kluwer Academic Publishers:

Boston, MA, pp 467–487.

Mabert VA and Whybark DC (1977). Sampling as a solution methodology. Decision

Sciences, 8(1), 167–179.

Martí R, Resende MGC and Ribeiro CC (2013). Multi-start methods for combinatorial

optimization. European Journal of Operational Research, 226(1), 1–8.

Martin S, Ouelhadj D, Beullens P, Ozcan E, Juan AA and Burke E (2016). A Multi-

Agent Based Cooperative Approach to Scheduling and Routing. European Journal

of Operational Research, 254(1), 169–178

Mazza D, Pages A, Tarchi D, Juan AA and Corazza G (2016). Supporting Mobile

Cloud Computing in Smart Cities via Randomized Algorithms. IEEE Systems

Journal.

Mumford–Valenzuela C, Wang PY and Vick J (2001). Heuristic for large strip packing

problems with guillotine patterns: An empirical study. In: Proc. 4th Metaheuristics

Int. Conference, pp. 417–421.

Nawaz M, Enscore EE and Ham I (1983). A heuristic algorithm for the m-machine, n-

job flow-shop sequencing problem. Omega, 11(1), 91–95.

Ntene N and Vuuren JH van (2009). A survey and comparison of guillotine heuristics

for the 2D oriented offline strip packing problem, Discrete Optimization, 6(2).

174-188.

Nugent CE, Vollmann TE and Ruml J (1968). An Experimental Comparison of

Techniques for the Assignment of Facilities to Locations. Operations Research,

16(1), 150–173.

Pinedo M and Chao X (1999). Operations scheduling with applications in

manufacturing and services. Irwin/McGraw-Hill: Boston, MA.

Pinedo ML (2012). Scheduling: Theory, Algorithms, and Systems (4th ed.). Springer

Science & Business Media: New Jersey.

Prais M and Ribeiro CC (2000). Reactive GRASP: An application to a matrix

decomposition problem in TDMA traffic assignment. INFORMS Journal on

Computing, 12(3), 164–176.

23

Reese J (2006). Solution methods for the p-median problem: An annotated

bibliography. Networks, 48(3), 125–142.

Resende MGC and Ribeiro CC (2010). Greedy Randomized Adaptive Search

Procedures: Advances, Hybridizations, and Applications. In: Gendreau M and

Potvin JY (eds). Handbook of Metaheuristics. Springer US: New York, pp 283–

319.

Schirmer A and Riesenberg S (1997). Parameterized Heuristics for Project Scheduling -

Biased Random Sampling Methods. Technical Report 456, Manuskripte aus den

Instituten für Betriebswirtschaftslehre der Universität Kiel.

Taillard E (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64(2), 278–285.

Talbi E-G (2009). Metaheuristics: From Design to Implementation. Wiley Publishing:

New Jersey.

Tonge FM (1965). Assembly Line Balancing Using Probabilistic Combinations of

Heuristics. Management Science, 11(7), 727–735.

Toth P and Vigo D (2014). Vehicle Routing: Problems, Methods, and Applications (2nd

ed.). SIAM: Philadelphia, PA.

Valls V, Quintanilla S and Ballestı́n F (2003). Resource-constrained project scheduling:

A critical activity reordering heuristic. European Journal of Operational Research,

149(2), 282–301.

Wäscher G, Haußner H and Schumann H (2007). An improved typology of cutting and

packing problems. European Journal of Operational Research, 183(3), 1109–

1130.

Zhang D, Wei L, Leung SCH and Chen Q (2013). A Binary Search Algorithm base on

Randomized local Search for the Rectangular Strip Packing Problem. INFORMS

Journal on Computing, 25(2), 332–345.

