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Abstract: 

Randomized heuristics are widely used to solve large scale combinatorial optimization 

problems. Among the plethora of randomized heuristics, this paper reviews those that 

contain biased-randomized procedures (BRPs). A BRP is a procedure to select the next 

constructive ‘movement’ from a list of candidates in which their elements have different 

probabilities based on some criteria (e.g., ranking, priority rule, heuristic value, etc.). 

The main idea behind biased randomization is the introduction of a slight modification 

in the greedy constructive behavior that provides a certain degree of randomness while 

maintaining the logic behind the heuristic. BRPs can be categorized into two main 

groups according to how choice probabilities are computed: (i) BRPs using an empirical 

bias function; and (ii) BRPs using a skewed theoretical probability distribution. This 

paper analyzes the second group and illustrates, throughout a series of numerical 

experiments, how these BRPs can benefit from parallel computing in order to 

significantly outperform heuristics and even simple metaheuristic approaches, thus 

providing reasonably good solutions in ‘real time’ to different problems in the areas of 

transportation, logistics, and scheduling. 

Keywords: Heuristics, Biased Randomization, Real-time Decision Making, 

Combinatorial Optimization, Logistics, Transportation, Production. 

 

1. Introduction  

A number of complex decision-making processes in real-life transportation, logistics, 

and production systems can be modeled as combinatorial optimization problems (Faulin 

et al, 2012). Among many others, some typical examples include: vehicle routing 

problems (VRP) (Toth and Vigo, 2014), arc routing problems (Corberán and Laporte, 

2014), facility location problems (Chan, 2011), or scheduling problems (Pinedo, 2012). 

All these problems are NP-hard in nature, meaning that the space of potential solutions 

grows very fast (exponential explosion) as the instance size increases. Therefore, using 

exact methods is not always the most efficient strategy, especially when the size of the 

problem instance is large and reasonably good decisions are needed in negligible 

computing times. Under these circumstances, heuristic-based approaches constitute an 

excellent alternative to exact methods (Talbi, 2009). Accordingly, a large number of 

heuristic and metaheuristic algorithms have been developed during the last decades to 

solve large scale combinatorial optimization problems and, eventually, support 
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intelligent decision-making processes in a myriad of fields, including transportation, 

logistics, production, finance, telecommunication, Internet computing, health care, etc.  

A constructive heuristic is a computational method that employs an iterative process to 

generate a feasible solution of reasonable quality. At each iteration of the solution-

building process, the next ‘movement’ is selected from a list of potential candidates that 

has been sorted according to some criteria. Pure greedy heuristics always select the next 

‘most promising’ movement. As a result, these heuristics are expected to generate a 

reasonably good solution once the entire list is traversed. Notice, however, that this is a 

somewhat myopic behavior, since the heuristic selects the next movement without 

considering how the current selection will affect subsequent decisions as the list is 

processed downwards. Even worse, this property results in a deterministic procedure, 

i.e., the same solution is obtained every time the algorithm is run. Examples of such 

methods are the nearest neighbor for traveling salesman problems (Lawler et al, 1985), 

the shortest processing time dispatching rule for scheduling problems (Pinedo and 

Chao, 1999), or the savings algorithm for VRPs (Clarke and Wright, 1964). Although 

these methods are easy to implement and can be run almost instantaneously, the real-

time solutions they provide are usually far from being optimal. To improve the quality 

of these heuristic solutions –and as far as more time is available–, different types of 

local search methods can be used to explore the solution neighborhood (Aarts and 

Lenstra, 1997). Typically, the neighbor selection is based on a certain logic that tries to 

take advantage of the specific characteristics of the optimization problem being 

considered. This usually leads to local optimal solutions. As in the construction phase, if 

the neighbor chosen is always the next ‘most promising’ movement according to some 

criteria, the resulting searching process will be deterministic too. 

Randomization techniques are frequently used to escape from this local optimality trap 

and improve the overall quality of the solution. These techniques can be incorporated 

either in the construction phase and/or the local search. Randomization allows exploring 

alternative solutions by selecting an element other than the ‘most promising option on 

the short run’. This leads to different outputs each time the entire procedure is executed. 

Since running a heuristic might take only a few seconds –or even less in a modern 

computer if the heuristic is correctly implemented and the instance size is not extremely 

large–, one can execute it several times, either in sequential mode or in parallel mode by 

using different threads, and then select the best of the stochastic outputs. Countless 

metaheuristic algorithms include uniform randomization in their procedures. However, 

a uniform randomization of the list of candidate elements destroys the logic behind the 

heuristic greedy behavior. In order to maintain this logic, the randomization can be 

biased (i.e., oriented) so that higher probabilities are given to the most promising 

candidates. Thus, the main idea behind biased randomization is the introduction of a 

slight modification in the greedy constructive behavior that provides a certain degree of 

randomness while maintaining the main logic behind the heuristic. In a seminal paper 

on the Monte Carlo method, King (1953) already emphasized the enormous 

improvement of biasing probabilities on sampling efficiency. Different methods to bias 

the randomization have been used in multiple contexts thereafter (Figure 1). Among 

them, this paper pays special attention to the ones that use skewed (non-symmetric) 

theoretical probability distributions in order to introduce an appropriate bias in the 

process of selecting elements from the list during the constructive and/or local search 

stages. Some skewed theoretical distributions, such as the geometric or the decreasing 

triangular ones, offer at least two advantages over using empirical distributions: (i) they 

contain at most one simple parameter, which can be easily set; and (ii) they can be 
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sampled using well-known analytical expressions, which from a computational 

perspective is typically faster than other sampling techniques involving the use of loops. 

 

Biased Randomized 

Procedures (BRPs)

Empirical Bias Functions 

Skewed Probability Distributions (geometric, decreasing triangular, etc.)

Biased Random Sampling (BRS)

Parameterized BRS

Probabilistic Tabu Search

Ant Colony Systems

Heuristic Biased Stochastic Sampling (HBSS)

Value Biased Stochastic Sampling (VBSS)

 

Figure 1: A classification of Biased Randomized Procedures. 

 

In particular, the main contributions of this paper are: (i) to provide a review of the most 

relevant biased randomized procedures (BRPs) used in the literature to solve 

combinatorial optimization problems; (ii) to provide a general framework for BRPs that 

use a skewed theoretical probability distribution to bias the selection of the next 

movement during the constructive and/or local search processes; and (iii) to illustrate, 

throughout a series of numerical experiments, how these BRPs can significantly 

outperform heuristics, and even simple metaheuristic approaches, thus providing 

reasonably good solutions in ‘real time’ (e.g., one or two seconds) to different 

transportation, logistics, and scheduling problems.  

The remainder of this paper is structured as follows: Section 2 introduces the concept of 

randomized algorithms; Section 3 presents different BRPs that use empirical bias 

functions; Section 4 provides a general framework for BRPs with a skewed theoretical 

probability distribution, and discusses the advantages of this approach over the one 

based on empirical bias functions; Section 5 analyzes different applications of BRPs to 

the fields of logistics, transportation, and scheduling; Section 6 describes a series of 

computational experiments that contribute to illustrate and quantify the potential of 

BRPs; finally, Section 7 summarizes the main contributions of the paper. 

 

2. Randomized Algorithms 

There is an enormous body of literature that study probabilistic or randomized 

algorithms and a review of that is far beyond the scope of this paper. The reader is 

referred to Collet and Rennard (2006) for a review, and to Clerc (2015) for a vast 

discussion about the stochastic aspects of optimization. The focus of this paper is in the 

subset of randomized algorithms that include some type of bias in any of their random 

processes. A randomized algorithm uses random bits to make random choices during its 

execution. Unlike deterministic algorithms, different solutions are obtained every time 

the procedure is executed. The most successful approaches to solve large combinatorial 

problems take advantage of this feature to perform several iterations and collect the best 
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overall output. These approaches are commonly known as multi-start methods (Martí et 

al, 2013). In general terms, they all contain two differentiated phases: a construction 

process and a local or neighborhood search. The former diversifies the search for 

solutions while the latter intensifies this search. These two phases are repeated until a 

stopping criterion is satisfied. Note that the randomized procedure can be applied at 

either phase because there is always a discrete choice that has to be made. 

Many randomized procedures found in the literature rely on uniform randomization, that 

is, they use the uniform probability distribution when selecting an element, neighbor, or 

solution. These could be categorized as uniformly-randomized algorithms. The main 

drawback of such approaches is that they do not benefit from the heuristic ‘common 

sense’: if candidate elements are ranked according to their ‘goodness’ on a given 

criterion, choosing one via a uniform random process fades away the advantages of the 

sorting. This is partially overcome by partially-randomized algorithms, that use uniform 

randomization but on a subset of candidates. The greedy randomized adaptive search 

procedure (GRASP) is the most representative and commonly used algorithm of this 

type. It was initially proposed by Feo and Resende (1995) and extensively used in 

multiple applications (Resende and Ribeiro, 2010). As a multi-start method, each 

GRASP iteration is composed of a construction phase and a local search. In the 

construction phase, all candidate elements are sorted according to a greedy evaluation 

function. The ‘best next’ elements, i.e., those whose addition represents the highest 

improvement on the objective function, are added to a restricted candidate list (RCL). 

The next element is chosen randomly (using a uniform distribution) from this RCL and 

added to the partial solution. This is performed iteratively until there are no more 

candidates. A local search is then applied until a local optimal is reached. Since only the 

elements in the RCL can be included in the partial solution, this method can be seen as a 

multi-start method with a partially random construction heuristic. A similar idea is the 

window random sampling by Valls et al (2003), used in a resource-constrained project 

scheduling problem. A window parameter is defined as the maximum difference 

allowed between the order of the candidate and the minimal order. In the field of genetic 

algorithms, there also exists heuristics with randomization partially guided according to 

some criteria. This is the case, for instance, of the biased random key genetic algorithm 

(Gonçalves and Resende, 2011). In this genetic algorithm, the population is partitioned 

into two groups: elite and non-elite individuals. When this population is evolved to 

obtain the next generation, some of the children are obtained by the process of mating 

two randomly selected individuals, one from the elite group and one from the non-elite 

group. Mating is done using parameterized uniform crossover, that is, the genes from 

the elite parents have larger probability of being selected. This way, the randomization 

is partially biased to favor elite parent’s characteristics over the non-elite parent’s ones. 

 

3. BRPs using Empirical Bias Functions 

A biased (oriented) randomized procedure aims at selecting the next element while 

capturing the best of two realms: exploitation and exploration. On the one hand, the 

procedure favors the most promising candidates to exploit the solution space; on the 

other hand, it introduces a weighted randomness degree to explore this solution space. 

To determine the balance between either one, a BRP may use a bias function. A bias 

function, , is a function that assigns a non-negative weight to all elements in the 

candidate list. These weights are then normalized to obtain an empirical probability 
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distribution that will define the set of probabilities. Note that two extreme cases can be 

constructed by giving the same weight to all elements (uniform distribution), or by 

giving a positive weight to the top element and zero weight to the rest (greedy). All 

other weight allocations provide intermediate bias configurations. This section presents 

different BRPs that include some sort of bias function to build the empirical probability 

distribution. The bias function is therefore an algorithm input that must be designed 

considering both the problem characteristics as well as the responsiveness of the chosen 

heuristic –in terms of performance– to different types of bias. 

3.1 Biased Random Sampling 

Biased random sampling (BRS) was one of the earliest BRPs employed in the literature. 

In these early heuristics, some specified criteria were used to bias the choice of 

randomly generated solutions. To the best of our knowledge, the first heuristics that 

incorporated BRS were used to solve assembly line balance problems (Arcus, 1965; 

Tonge, 1965), production scheduling problems (Giffler et al, 1963; Heller and 

Logeman, 1962), location problems (Mabert and Whybark, 1977; Nugent et al, 1968), 

and an inventory management problem (Berry et al, 1977).  

3.2 Parameterized Biased Random Sampling  

Parameterized BRS is a randomized method in which the probability values to select the 

next candidates are biased according to priority rules. Numerous priority rule-based 

heuristics have been designed to tackle resource-constrained project scheduling 

problems. For this vastly studied problem, Cooper (1976) presented the first BRS 

scheme that used nine different priority rules as weighting factor to bias the probability 

of choosing an activity. This probability was calculated by dividing the activity priority 

value by the sum of the priority values of all activities in the candidate list. Later, Drexl 

(1991) introduced regret based biased random sampling. This sampling technique uses 

the priority values indirectly via regret values. The regret of a job is the difference 

between its priority value and the lowest overall priority value. Probabilities are then 

calculated using a parameter that controls the bias degree. Schirmer and Riesenberg 

(1997) proposed BRS variants, dubbed the normalized BRS and the modified regret 

based BRS, to cope with some of the drawbacks of the existing sampling approaches. 

The authors stated that, in general, they always outperformed uniform random sampling 

approaches. In a similar line of research, Valls et al (2003) developed the β-BRS 

method. The β parameter establishes the probability of choosing the activity on top of 

the priority-rule based list. Lastly, Coelho and Tavares (2003) designed the global BRS 

method. Unlike previous sampling schemes, this one perturbs the priority values by 

adding a random value between 0 and 1. Activities are then scheduled in the order 

defined by the modified priority list. The reader is referred to Kolisch and Hartmann 

(1999) for a summary of some of these sampling techniques in the resource-constrained 

project scheduling problem. 

3.3 Probabilistic Tabu Search 

For search heuristics, Glover (1989) introduced the first big family of metaheuristics, 

the probabilistic tabu search (PTS), which incorporated a BRP –usually in the move 

acceptance function. Tabu search (Glover, 1990) is a “higher level heuristic designed to 

guide other methods to escape the trap of local optimality”. PTS is an extension of tabu 

search that includes a skewed probabilistic element within the search. Biasing is a way 

to control the diversity in the search, and can be achieved by considering: (i) move 
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attractiveness (i.e., the change in the objective function); (ii) tabu status (i.e., tenure on a 

tabu list); and/or (iii) aspiration level (i.e., the objective function value in relation to a 

historical standard). The probabilistic nature of the approach can be a substitute for 

memory when it is unclear how memory can be used to enhance the result. Some years 

later, Løkketangen and Glover (1996) adapted PTS to zero-one mixed integer 

programming problems with probabilistic measures that were both effective and easy to 

implement.  

3.4 Ant Systems and Ant Colony Systems 

Another family of probabilistic algorithms that uses a BRP is the ant system (Dorigo et 

al, 1996) and its subsequent variant, the ant colony system (Dorigo and Gambardella, 

1997). Inspired by the behavior of real ants, these algorithms mimic the pheromone 

trails that insects use to establish the shortest paths. The ant system was first applied to 

the traveling salesman problem. To complete a tour, the cities visited are chosen 

probabilistically via Monte Carlo sampling. The probabilities in the state transition are 

biased using the so-called random-proportional rule to favor shorter edges with a 

greater amount of pheromone. The ant colony system includes three main variants, one 

of which is in the state transition. The modified transition follows the pseudo-random-

proportional rule. This rule adds a previous step: it randomly selects a number 

uniformly distributed between 0 and 1; if it is below a given threshold the best edge is 

selected, otherwise an edge is selected according to the random-proportional rule. By 

calibrating the threshold, the algorithm determines the relative importance of 

exploitation (best next edge) versus exploration (biased random edge).  

3.5 Reactive GRASP 

In the previous section, GRASP was introduced as one of the most well-known 

partially-randomized algorithms. A variant of GRASP that includes a BRP is the so-

called reactive GRASP, first proposed by Prais and Ribeiro (2000). Unlike the original 

GRASP, the size of the restricted candidate list in a reactive GRASP is not fixed but 

self-adjusted according to the quality of the solutions found during the search. A BRP is 

used when selecting the restrictiveness, or size, of the candidate list (i.e., the parameter 

). The algorithm starts with a discrete set of predetermined list sizes, i. The 

probability of choosing a given i from this set is drawn initially from a uniform 

distribution. As the algorithm advances, these probabilities are biased using information 

collected during the search. One possible biasing strategy is to use the average values of 

the solutions obtained to recompute the probabilities of the different ’s. The values 

that lead to better solutions will be more frequently used in the construction phase of the 

GRASP procedure.    

3.6 Heuristic-Biased Stochastic Sampling 

Bresina (1996) devised a BRP called heuristic-biased stochastic sampling (HBSS) to 

solve scheduling problems and other constrained optimization problems. The 

motivating idea again was to bias the probability of choosing the next partial solution. 

To avoid a complete random exploration, HBSS uses the search heuristic to guide this 

exploration. The guidance degree is determined by a given bias function. In the search, 

the elements of the candidate list are ranked according to the heuristic, and the bias 

function assigns a weight to each element. These weights are then normalized to be 
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transformed into probabilities. Thus, if  denotes the rank of the element , the 

probability of choosing  is given by: 

 

Usually, when the heuristic accuracy is high a stronger bias (weight) is set to increase 

the probabilities of selecting better solutions. On the contrary, when the heuristic 

accuracy is lower a weaker bias is set to widen the exploration of the solution space. 

Bresina et al (1994) experimented with the following bias functions in the telescope 

observation scheduling problem: 

• Logarithmic:     

• Linear:     

• Polynomial (n = 2, 3, 4):  

• Exponential:    

• Uniform:    

The best performing bias functions for the particular problem the authors analyzed were 

the exponential and the second degree polynomial, which were the two functions in the 

middle in terms of bias strength. The HBSS approach encompasses a family of search 

algorithms that can be modulated via a bias function ranging from a greedy search to a 

uniform random search. 

3.7 Value-Biased Stochastic Sampling  

Following a similar reasoning as in the HBSS, Cicirello and Smith (2005) proposed the 

value-biased stochastic sampling (VBSS) as a search heuristic. In HBSS, the bias 

function gives weight to the candidates solely based on their rank, ignoring completely 

their heuristic values. Alternatively, VBSS not only considers rank but it also 

incorporates the “discriminatory power inherent in the heuristic”. Thus, according to the 

VBSS approach, the probability of choosing element  is given by: 

 

The resulting probabilities from both BRPs (VBSS and HBSS), may differ considerably 

when the choices of the candidate list have very different heuristic values. Cicirello and 

Smith (2005) provided an illustration of such a case. The authors also tested their 

approach in the weighted tardiness scheduling problem with sequence-dependent 

setups. In their experiments, the VBSS approach was able to outperform the HBSS 

approach. 

 

4. BRPs with Skewed Theoretical Probability Distributions 

This section presents a general framework for BRPs that use a skewed theoretical 

probability distribution to bias the probabilities of the candidate elements. The BRPs 
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considered in the previous section share a common feature: they all rely on some kind 

of bias function to define the choice probabilities. Using a bias function, each element 

in the list was assigned a different weight based on some criteria (e.g., ranking, priority 

rule, heuristic value), and then an empirical probability distribution was built. A random 

number drawn from this distribution determined the choice of the next element. 

Alternatively, instead of using an empirically-constructed probability distribution, one 

could resort directly to a theoretical probability distribution that is already skewed or 

non-symmetric by definition. Examples of such distributions are the geometric or the 

decreasing triangular. In particular, in most of our previous work we have used the 

geometric distribution, since it only has one parameter which determines its specific 

shape. Also, this parameter varies between 0 and 1, thus facilitating its setting in most 

practical applications. As values of this parameter get closer to 0, the more uniform-

randomized the selection process will be. On the contrary, as these values get closer to 

1, the more greedy the selection will be (Juan et al, 2010). This type of distributions 

provides a natural bias for the candidate elements in the list. For instance, Figure 2 

compares the probabilities of selecting each of the twenty-five elements of a given 

sorted list using: a geometric distribution with parameter 0.2 (left part), and a 

discretized decreasing triangular distribution (right part). 

 

Figure 2: Use of skewed distributions to introduce randomness. 

 

Most heuristics iteratively perform a construction phase followed by a neighborhood 

search. As discussed above, BRPs can be employed in any of the two stages. Regardless 

of the stage, there is always a discrete choice that has to be made from a list of potential 

candidates. Potential candidates could be neighbor solutions, edges in traveling 

salesman problems and VRPs, jobs or machines in scheduling problems, or tasks or 

resources in resource-constrained project scheduling problems, for example. The list of 

candidates is sorted according to a problem-specific criterion, and probabilities are 

assigned to each element according to a skewed probability distribution. Figure 3 

displays a general pseudo-code for a BRP with a skewed distribution. The procedure 

requires the following inputs: (i) the list L of potential candidates, which is sorted 
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according to the criteria provided by the heuristic; (ii) the seed s for the (uniform) 

pseudo-random number generator; (iii) the skewed probability distribution PD; and (iv) 

the parametric values p of this distribution. The procedure returns the selected element 

l from the sorted list. 

 

Procedure BRP(L, s, PD, p) 

01 μ  using seed s, generate pseudo-random number in [0,1) 

02 ρ  using μ, generate random variate from distribution PD(p) 
03 l  select the ρ-th element of the sorted list L 
04 return l 

End 

Figure 3: Pseudocode to select the next element using a skewed distribution. 

 

To the best of our knowledge, the first heuristic algorithms including BRPs with a 

skewed theoretical probability distribution were introduced in Juan et al (2010, 2011) in 

order to solve the VRP. The authors developed a hybrid algorithm that combined the 

classical savings heuristic (Clarke and Wright, 1964) with Monte Carlo simulation. At 

each step of the solution-construction process, eligible edges were sorted in a non-

increasing savings list. Edges enjoyed (quasi-) exponentially diminishing probabilities 

that were variable and based upon a geometric distribution. Consequently, the next 

element was selected by a guided random sampling. The procedure continued until there 

were no more edges to be selected.  

Even for large-size instances, heuristics with this type of BRPs can generate a large 

number of promising solutions in a few seconds, with some of these solutions 

outperforming the one provided by the original heuristic (Figure 4). Moreover, just by 

employing different threads the computation can be trivially parallelized by assigning a 

different seed to each thread, i.e., the BRP allows to generate solutions in real-time that 

outperform the one provided by the original heuristic. Notice that this might be 

especially interesting in online optimization problems, where only one or two seconds 

are allowed before taking a decision –which invalidates the use of time-consuming local 

search processes. This is the case, for instance, of the mobile cloud computing 

application analyzed in Mazza et al (2016), where mobile users require immediate 

assignment but, at the same time, some intelligence must be incorporated into the 

assignment process to optimize the use of shared telecommunication and computing 

resources. Also, in De Armas et al (2016), the authors propose the use of BRPs for fast 

generation of crew rostering plans in airline companies under realistic conditions. As 

discussed in Juan et al (2014b), another interesting application of these BRPs is the 

quick generation of a diversified population of starting ‘promising’ solutions for 

metaheuristics. 
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Figure 4: Using skewed distributions to generate alternative solutions. 
 

From a computational perspective, the generation of random variates coming from 

probability distributions other than the uniform is always more time-consuming than the 

generation of pseudo-random numbers. Fortunately, there exist analytical expressions 

that allow fast generation of random observations from most theoretical distributions. 

Figure 5 shows an example of Java code that makes use of these analytical expressions 

to efficiently generate random positions in a sorted list, with these random positions 

following either a geometric probability distribution or a triangular distribution. Since a 

large number of such random positions is usually required during the BRP execution, 

not using such analytical expressions might significantly increase the computational 

time required by the algorithm. This is, in our opinion, one of the main advantages of 

using skewed theoretical probability distributions over empirical bias functions, since 

the latter typically requires more computational time and also more parameter fine-

tuning processes than the former.  

 

private static int getRandomPosGeom(double beta, Random rng, int n) 

{  // Returns random position between 0 and n-1 based on Geometric(beta) 

   int index = (int) (Math.log(rng.nextDouble()) / Math.log(1 - beta)); 

   pos = pos % n; 

   return pos; 

} 

 

 

private static int getRandomPosTriang(Random rng, int n)  

{  // Returns random position between 0 and n-1 based on decreasing Triangular 

   pos = (int) (n * (1 - Math.sqrt(rng.nextDouble()))); 

   return pos; 

} 

 

Figure 5: Efficient generation of random positions using skewed distributions. 
 



11 

 

5. Areas of Application 

This section illustrates the use of BRPs with skewed theoretical probability distributions 

through some examples of applications to different combinatorial optimization 

problems.  

5.1 Vehicle Routing Problem 

In a VRP, a set of customers’ demands must be satisfied by a fleet of capacitated 

vehicles that typically depart from a central depot. Moving vehicles between any two 

nodes (customers or depots) in the map has a distance-based cost. The goal is to find the 

set of vehicle routes that minimizes the delivery cost while serving all demands and 

taking into consideration the vehicle capacity constraints. One popular procedure for 

solving this problem is the aforementioned savings heuristic. In the savings heuristic, an 

initial dummy solution is constructed by sending a virtual vehicle from the depot to 

each customer. Then, the list of edges connecting each pair of nodes is considered. This 

list is sorted according to the ‘savings’ criterion that would be obtained by using the 

corresponding edge to merge two routes in the dummy solution. Thus, merging edges 

associated with higher savings are located at the top of the list, while edges with lower 

savings are located at its bottom. At this point, the sorted list of edges is traversed from 

the top to the bottom, and new route merges are carried out whenever the corresponding 

edge can be used to merge the two routes it connects without violating any constraint. 

The diversification of the savings heuristic is rather old, reaching many variants very 

soon (Toth and Vigo, 2014). As far as we know, the first randomization of the savings 

heuristic was done by Buxey (1979), who made a random selection of one shortlist of 

savings according to a probability distribution built taking the savings themselves as 

weights. Afterwards, Fernández de Córdoba et al (1998, 2000) developed two 

procedures using randomization to solve a real version of the Capacitated VRP and the 

Rural Postman Problem. Subsequently, the ALGACEA-1 method for the Capacitated 

VRP included the control of the randomization using an entropy function (Faulin and 

Juan, 2008). 

Nevertheless, as stated above, the first implementations of a BRP with a skewed 

theoretical distribution was carried out by Juan et al (2010). Later, Juan et al (2011) 

improved the algorithm by incorporating some splitting and cache (memory-based) 

techniques. This conceptual idea was generalized in Juan et al (2013a) to the multi-start 

biased randomization of classical heuristics with adaptive local search (MIRHA). This 

solution approach was able to handle, in an efficient way, realistic vehicle routing 

problems under more complex scenarios dominated by non-smooth/non-convex 

objective functions and non-convex regions. 

BRPs of this type were also used in some VRP extensions, namely, the heterogeneous 

fleet VRP (Juan et al, 2014c), the heterogeneous fleet VRP with multi-trips (Caceres-

Cruz et al, 2014; Grasas et al, 2013), the VRP with asymmetric costs and heterogeneous 

fleets (Herrero et al, 2014), the VRP with multiple driving ranges –i.e., heterogeneous 

fleet with respect to maximum route lengths– (Juan et al, 2014d), the multi-depot VRP 

with a limited number of identical vehicles per depot (Juan et al, 2015b), and the two-

dimensional loading capacitated VRP with homogeneous fleet (Dominguez et al, 2014), 

with heterogeneous fleet (Dominguez et al, 2016b), with heterogeneous fleet and 

sequential loading and items rotation (Dominguez et al, 2016c), and with backhauls 

(Dominguez et al, 2016a). 



12 

 

A similar ‘savings-based’ heuristic, called SHARP, was developed by González et al 

(2012) for solving the arc routing problem. The arc routing problem is similar to the 

previously described VRP, but it differs in several details: first, demands are not located 

on the nodes, but on the edges connecting these nodes; second, only some nodes are 

directly connected among them (i.e., the underlying graph or network connecting the 

nodes in the problem is not complete). Again, the SHARP heuristic makes use of a 

dummy initial solution and a sorted list of connecting edges to merge those routes that 

provide the highest possible savings at each step without violating any problem 

constraint (e.g., vehicle capacity). The edges are selected with biased probabilities 

according to a geometric distribution with a parameter randomly selected between 0.10 

and 0.25. 

5.2 Scheduling Problem  

Another well-known optimization problem is the permutation flow-shop problem 

(PFSP). This is a problem frequently encountered in production processes, where a 

sequence of jobs or tasks has to be processed in a set of machines. Each job requires a 

given time to be processed by each machine, and the goal here is to find the permutation 

of jobs that minimizes the makespan, i.e., the total time necessary to complete the 

processing of all the jobs in all the machines. The NEH heuristic (Nawaz et al, 1983) is 

probably the best well-known heuristic for solving this problem. In the NEH heuristic, 

the list of jobs is sorted according to the total time each job would require to be 

processed by all the machines if it were the only job in the set. Then, the sorted list of 

jobs is traversed from top to bottom, and a new emerging solution (permutation of jobs) 

is constructed by locating each new job extracted from the list in the position that 

minimizes the makespan of the jobs considered so far. Juan et al (2014e) employed a 

BRP with a discretized version of the decreasing triangular distribution during the 

solution–construction process to select the jobs. This way, eligible jobs were assigned 

linearly diminishing probabilities according to their corresponding total processing 

time. In Juan et al (2014a), the former BRP was combined with simulation in order to 

deal with the PFSP with stochastic processing times. 

5.3 Facility Location Problem 

The facility location problem (FLP), sometimes referred to as the location-allocation 

problem, consists of deciding the location of facilities and allocating demand points to 

one or multiple facilities (Reese, 2006). The objectives can be manifold: minimizing the 

cost of serving all customers (p-median problem), minimizing the longest distance 

between any customer and its assigned facility (p-center problem), minimizing the sum 

of fixed setup costs and variable costs of serving the customers (uncapacitated facility 

location problem), minimizing a total cost that is a function of the distance and flow 

between the facilities plus the fixed cost of placing a facility (quadratic assignment 

problem), among others. 

Cabrera et al (2014) modeled a telecommunications problem as an uncapacitated 

facility location problem, in which web-servers (facilities) needed to be placed in a 

distributed network to provide some service to a given set of customers. The authors 

developed a probabilistic algorithm that combined an iterated local search framework 

with a BRP with a geometric distribution. The use of a biased distribution led to shorter 

convergence times than those of a uniform distribution. 
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Similarly, De Armas et al (2017) propose a new heuristic for the uncapacitated FLP, 

and then extend this heuristic to a BRP. They show the efficiency of this approach in 

solving very large-scale instances in low computing times and, then, they extend the 

BRP into a simheuristic (Juan et al 2015a) able to deal with the stochastic version of the 

problem.  

6. Computational Experiments 

In order to provide some empirical evidences on the use of BRP techniques to enhance 

classical heuristics and quantify the gains obtained, a series of experiments have been 

developed for five well-known combinatorial optimization problems. The problems, 

heuristics, and benchmarks selected, as well as the results achieved, are described and 

analyzed in the next subsections. 

6.1 Selected Problems and Heuristics 

Five well-known optimization problems have been chosen to illustrate the 

improvements that can be reached by the introduction of BRPs in constructive 

heuristics: the VRP, the ARP, the PFSP, the uncapacitated FLP (UFLP), and the 2D 

strip packing problem (2DSPP). 

For the first three problems the following heuristics have been selected: the savings 

heuristic (Clarke and Wright, 1964) for the VRP, the SHARP heuristic (González et al, 

2012) for the ARP, and the NEH heuristic (Nawaz et al, 1983) for the PFSP. These 

three heuristics make use of a sorted list that is traversed from the top to the bottom. 

Thus, at each iteration the next element in the list is chosen without knowing how this 

selection will condition future decisions during the solution building process. To avoid 

this greedy behavior, we use a skewed probability distribution to select the next element 

from the list. 

Regarding the UFLP, this is a location problem which involves locating an 

undetermined number of facilities to minimize the sum of the setup costs of these 

facilities and the costs of serving the customers from these facilities. It is assumed that 

there is no limit on the number of customers that can be served from each single facility. 

In order to solve this problem, we have used the constructive heuristic proposed in De 

Armas et al (2017). This heuristic works as follows: for a given instance, a scenario 

with all facilities open is considered; then, the marginal savings or loses obtained when 

each facility is closed in this “all-open” scenario are computed. This way, we obtain a 

list of possible closures that can be sorted by the savings value. Afterwards, starting 

from the “all-open” scenario, the savings list is traversed from the beginning, and the 

next closure is performed as far as it reduces the total cost. After each closure, the 

savings/losses associated with closing each open facility are updated to take into 

account the new scenario, and the list is re-sorted accordingly. Obviously, since this 

heuristic also uses a dynamically-sorted saving list, a BRP technique can be introduced 

using a skewed probability distribution. 

Finally, the 2DSPP –also referred to as the Open Dimension Problem (Wäscher et al, 

2007)– involves packing items into a single bin or strip of fixed width and infinite 

height, with the objective of minimizing the total height of the packing within the strip. 

For this problem we have selected the ‘best-fit decreasing height decreasing width’ 

heuristic (Mumford–Valenzuela et al, 2001; Ntene and Vuuren, 2009). This heuristic is 

a variation of the ‘first fit decreasing height’ heuristic (Coffman et al, 1980). Initially, 
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all rectangles to be packed are sorted by decreasing height (or decreasing width in case 

of rectangles with equivalent height). Again, a BRP can be applied regarding this sorted 

list of rectangles to be processed. 

6.2 A First Experiment Regarding Parallelization and Computing Times 

We have implemented in Java 8 the previously described heuristics and their 

corresponding multi-start biased-randomized versions for each of the five optimization 

problems. For all experiments we have used a geometric distribution with a beta 

parameter adapted to each problem. A series of classical benchmarks were then run on a 

desktop computer (Intel Core i5 CPU @2.7GHz with 8GB on OS X). Each instance was 

run 100 times with different seeds as parallel agents, so that each agent is running a 

certain time. Different time steps have been taken as references to compare the quality 

of the solutions. In order to compare the heuristic value, h, and the best value obtained 

with the biased-randomized version, rh, the percentage gap between both solutions, 

computed as gap = (rh – h) / h, has been used. 

More specifically, the benchmark used for the VRP was the classical Kelly instances 

(Golden et al, 1998). This benchmark, available at http://neo.lcc.uma.es/vrp/vrp-

instances/capacitated-vrp-instances/, is composed of 20 large-scale instances, using 

from 200 customers to 480. Some instances have restrictions on the maximum length of 

every route. The benchmark used for the ARP was the classical Egl instances (Li and 

Eglese, 1996). This set of instances, available at http://logistik.bwl.uni-

mainz.de/benchmarks.php, was constructed using as underlying graph regions of the 

road network of the county of Lancashire, UK. Costs and demands are proportional to 

the length of the edges, except for non-required edges that have zero demand. The 

Taillard benchmark is the most used benchmark in the literature for the PFSP (Taillard, 

1993). This set of instances, which is available at http://mistic.heig-

vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html, is composed of 

120 different instances ranging from 20 jobs and 5 machines to 500 jobs and 20 

machines. For the UFLP we have selected the Fpp17 benchmark, available at 

http://www.math.nsc.ru/LBRT/k5/Kochetov/bench.html. It is a set of medium-sized 

instances introduced by Kochetov and Ivanenko (2003). It consists of 30 instances with 

307 customers and 307 facilities. Finally, the Zdf benchmark (Leung and Zhang, 2011; 

Zhang et al, 2013) has been used for the 2DSPP. This benchmark, available at 

http://paginas.fe.up.pt/~esicup/datasets, is composed of large instances that were 

generated by combining zero-waste and non-zero waste instances. 

Figures 6 to 10 show the gaps for selected instances belonging to each of the 

benchmarks. The points identify the gaps between the heuristic solution (the highest 

point) and the different solutions obtained using the randomized version of the heuristic 

–without any local search added– as the number of parallel agents (executions) and the 

computing time increases. The lower the point the better the solution and the larger the 

gap with respect to the original solution provided by the heuristic. For each problem, the 

graphs clearly show that the quality of the results increases (i.e., the negative gap 

increases in size) as the number of parallel executions and the total time spent for each 

of them increase. Therefore, in general, the most promising area of the surfaces 

corresponds to the corner with the highest number of agents and highest time spent for 

each agent. Note that the maximum time spent is just a few seconds and there are many 

cases in which the improvement regarding the original heuristic is between 5% and 

10%, so that a big leap in quality is obtained really fast. Being probabilistic algorithms 

http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
http://logistik.bwl.uni-mainz.de/benchmarks.php
http://logistik.bwl.uni-mainz.de/benchmarks.php
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://www.math.nsc.ru/LBRT/k5/Kochetov/bench.html
http://paginas.fe.up.pt/~esicup/datasets
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driven by pseudo-random numbers, these biased-randomized algorithms could be easily 

run in parallel using multiple threads or computers, each of these employing a different 

seed for the generation of the random variates associated with the different skewed 

probability distributions. Consequently, investing the same time that the original 

constructive heuristic (i.e., real-time) it is possible to obtain much better solutions by 

simply combining BRPs with parallelization and multi-agent strategies, as shown in 

Juan et al (2013b) and Martin et al (2016), respectively. Of course, if more time (in the 

range of seconds) is permitted the quality of the solution improves even further. 

 

Figure 6: Gap evolution for a VRP instance (Kelly03). 
 

 

Figure 7: Gap evolution for an ARP instance (egl-s2-B). 
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Figure 8: Gap evolution for a PFSP instance (tai110_200_20). 
 

 

Figure 9: Gap evolution for an UFLP instance (20Fpp17). 
 

 

Figure 10: Gap evolution for a 2DSPP instance (zdf3). 
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6.3 A Second Experiment Comparing BRPs with GRASP-like Approaches 

The previous subsection illustrates how biased-randomized and parallelized versions of 

different heuristics clearly outperform the heuristics themselves in a real-time 

optimization environment. Here, we compare the performance, also in a real-time 

optimization environment, of BRPs versus the traditional GRASP randomization 

process described in Section 2. Thus, for each of the five instances selected (one for 

each optimization problem considered), both the BRP and the GRASP strategies have 

been executed using four different parameters (i.e., four different values of the 

geometric-distribution beta in the case of BRP and four different sizes of the RCL in the 

case of GRASP). Each of these executions consisted of ten runs (using a different seed 

for the random number generator at each run), allowing a maximum time of two 

seconds per run. For each problem, the best value obtained using each approach is 

shown in Table 1. This table also contains the original value provided by the heuristic as 

well as the best value obtained after running forty times a uniformly-randomized 

process (i.e., similar to a GRASP but without restricting the candidate list). The 

associated gaps of BRP, GRASP, and pure-uniform with respect to the heuristic value 

are also included (the more negative the gap, the higher the improvement).  

Table 1: Comparison of BRPs vs. GRASP randomization in real-time optimization. 

Problem Heuristic 

(a) 

BRP    

(b) 

GRASP 

(c) 

Uniform 

(d) 

Gap  

(a) - (b) 

Gap  

(a) - (c) 

Gap    

(a) - (d) 

VRP (kelly03) 12,594 11,718 11,860 91,181 -6.96% -5.83% 624.00% 

ARP (egl-S2-B) 14,124 13,476 13,692 33,118 -4.59% -3.06% 134.48% 

PFSP (tai110_200_20) 11,869 11,644 11,737 11,784 -1.90% -1.11% -0.72% 

UFLP (20FPP17) 123,245 114,327 114,330 123,349 -7.24% -7.23% 0.08% 

2DSPP (zdf3) 213 197 197 219 -7.51% -7.51% 2.82% 

Averages -- -- -- -- -5.64% -4.95% 152.13% 

 

The first thing to be noticed is that, even in real-time, both BRP and GRASP strategies 

are able to clearly improve the value provided by the original heuristic approach, with 

negative gaps ranging from -1.11% in the PFSP to the -7.51% in the 2DSPP. The 

relatively low improvement in the case of the PFSP is probably due to the fact that the 

NEH heuristic used in this problem employs a simple but efficient local search 

mechanism. This local search might compensate from ‘bad’ decisions in the order in 

which jobs are selected -from the list of potential candidates- during the constructive 

process. Another interesting observation is related to the extremely poor performance of 

the uniformly-randomization process. As expected, applying a pure-uniform selection 

process will completely destroy the logic behind the heuristic, thus leading to 

suboptimal solutions -frequently of lower quality than the one provided by the original 

heuristic itself-, even for large computational times. Finally, observe that BRP seems to 

have a superior performance than GRASP, both in average values (-5.64% vs. -4.95%) 

as well as in the number of significant differences. As shown in Figure 11, BRP clearly 

outperforms GRASP in three out-of five experiments, while showing a similar behavior 
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in the remaining two (the more external the curve the lower the improvement gap with 

respect to the solution provided by the associated heuristic). 

 

Figure 11: Visual comparison between BRP and GRASP. 

 

7. Conclusions 

This work reviews biased randomized procedures (BRPs), their different 

implementations, and some of their main applications in logistics, transportation, and 

production. The paper focuses on an emergent family of BRPs that rely on the use of 

skewed theoretical probability distributions, such as the geometric and the decreasing 

triangular distributions. These BRPs have two main advantages over more traditional 

BRPs based on empirical bias functions: (i) they are computationally faster, since they 

benefit from analytical expressions to generate random variates from theoretical 

probability distributions; and (ii) they use at most one parameter that does not require 

complex and time-consuming setting processes.  

By combining skewed probability distributions with random sampling, the logic behind 

the heuristic can be slightly randomized without losing its good properties. This strategy 

allows transforming deterministic heuristic procedures into probabilistic algorithms that 

can be run several times (either sequentially or in parallel) to obtain different promising 

solutions to the original problem, thus increasing the probability of obtaining better and 

diversified solutions. As the computational experiments show, the use of BRPs based on 

skewed probability distributions can easily and noticeably improve the performance of 

already existing or new heuristics.  

Due to their relative simplicity, their fast execution times, and their ability to be 

parallelized, BRPs constitute an excellent alternative to the use of simple heuristics 

without incurring in the computational, implementation, and fine-tuning efforts required 

by most metaheuristics. This is especially the case in online optimization or whenever 

decisions must be made in real-time even for large-size instances, something that is 
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becoming more frequent due to the growing dynamism, complexity, and responsiveness 

requirements of most real-life systems in areas such as logistics, transportation, 

production, telecommunication, finance, Internet computing, health care, etc. 
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