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Abstract

In this work, we consider a scheduling problem faced by production companies with large electricity con-
sumption. Due to the contract with the electric utility, the production companies are obligated to comply
with the total energy consumption limits in the specified time intervals (usually 15-minutes long); other-
wise, the companies pay substantial penalty fees. Although it is possible to design production schedules
that consider these limits as hard constraints, uncertainties occurring during the execution of the schedules
are usually not taken into account. This may lead to situations in which the unexpected delays of the
operations cause the violations of the energy consumption limits. Our goal is to design robust production
schedules pro-actively guaranteeing that the energy consumption limits are not violated for the given set
of uncertainty scenarios. We consider scheduling on one machine with release times of the operations and
total tardiness as the objective function.

To tackle this problem, we first propose a pseudo-polynomial algorithm for finding the optimal robust
schedule for the given permutation of the operations. This algorithm is then utilised in three different
algorithms for finding the optimal permutation: two exact (Branch-and-Bound and logic-based Benders
decomposition) and one heuristic algorithm (tabu search). All the algorithms were experimentally evaluated
on random instances with different sizes of the uncertainty scenarios set. Using the tabu search algorithm,
we are able to solve large instances within one minute.

Keywords: robust production scheduling, energy consumption limits, uncertainty scenarios, maximum
power demand

1. Introduction

In the domain of scheduling energy-demanding production, it is no longer sufficient to consider only
traditional aspects such as due dates, machine capacities, tardiness, schedule length, etc. To produce
efficient schedules, the energy consumption of the operations has to be also considered [19] since significant
financial savings could be achieved if the utilisation of the energy is optimised. Although integration of the
energy-awareness into production scheduling is getting more and more attention [1, 18, 25], there is still a
gap between industrial needs and academic research [23].

One of the practical problems addressed in this work is uncertainty during production in relation to
the energy consumption limits. Based on the contract with the electric utility, the companies are obligated
to comply with the energy consumption limits in every 15 minutes intervals; otherwise, large penalty fees
have to be paid. However, due to the unpredictability of the operation’s preparation time, it often happens
that some of the operations are delayed and thus causing the violation of the contracted energy limits.
To guarantee compliance with the energy limits, reactive policies are usually employed on the shop floor.
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(Zdeněk Hanzálek)
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However, using only reactive policies may lead to sub-optimal schedules or long downtimes if the schedules
are not devised in a robust way (e.g. high and low energy-consuming operations are not alternating).

Therefore, we focus on constructing pro-active production schedules for one machine that guarantee com-
pliance with the contracted energy consumption limits if the operations’ start times are delayed within a pre-
determined range; we call this a Robust Scheduling with Energy Consumptions Limits problem (RSECLP).

1.1. Motivation for Robust Scheduling with Energy Consumption Limits

The motivation for our work comes from the manufacturing and production companies with significant
electricity consumption. Specifically, we were motivated by a glass tempering process during which glass
panels are heated to 620◦C in a furnace. In the considered scheduling problem, the furnace is a resource, and
the heating of the glass panels represent the operations to be scheduled. Due to technological requirements,
heating of the glass panels cannot be interrupted (i.e. preemption is not allowed). Although the production
process also contains pre-processing and post-processing stages, we consider only scheduling of the heating
stage because it is the most energy-demanding one. However, the pre-processing and the post-processing
production stages are not completely ignored since they appear as release times and due dates of the
operations, respectively. To ensure the smoothness of the production, it is reasonable to minimise the total
tardiness.

According to the negotiated contract with the electric utility, the companies are obligated to keep their
power demand below a contracted maximum power demand. Otherwise, the companies pay substantial
penalty fees; in the Czech Republic, the penalty is regulated, and it is approximately 10 000e per consumed
MW over the maximum power demand [6]. The measurement of the demand is taken in every 15 minutes
metering interval of a day, and it is measured as an average power demand during the corresponding metering
interval. Since the consumed energy can be computed as a product of the average power demand and the
length of the metering interval, an equivalent formulation is that in every metering interval the total energy
consumption cannot exceed the maximum energy consumption limit. By considering a proper order of the
energy-demanding operations or inserting short idle times, it is possible to design production schedules that
do not violate these energy limits, e.g. see Fig. 1.
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Figure 1: A baseline schedule of four operations {1, 2, 3, 4} on one machine which satisfies the energy consumption limits in
every metering interval {1, 2, 3}. The energy consumption limits are denoted by the dashed horizontal red lines.
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(a) An example of a realised schedule in
which operation 2 is delayed by 3 minutes
from its baseline start time (see Fig. 1) thus
increasing the total energy consumption in
metering interval 2 above the energy limit.
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(b) An application of a reactive policy on
schedule from Fig. 2a. Operation 4 is for-
cibly delayed so that the energy consumption
limit is not violated in metering interval 2.

Figure 2: Handling of operations’ delays by a reactive policy.

However, in reality, unexpected events can cause delays of the operations’ start times. In the glass
production example, the responsible worker has to carefully put the glass panels on the furnace conveyor,
mark the panels and set the furnace parameters before the glass panels are heated. This preparation process
may take minutes, and due to various reasons (inexperienced seasonal workers, delays in the preceding
production stages, etc.), it might happen that the heating of a glass panel starts later than expected. We
call the delayed start time a realised start time, whereas the initial non-delayed start time is referred to as a
baseline start time. The issue is that delaying an operation may cause an increase in the energy consumption
in some metering interval above the energy limit if the energy demanding operations are started consecutively
in the baseline schedule, e.g. see Fig. 2a. In such a situation, the company pays the penalty fee even though
the baseline schedule (see Fig. 1) does not violate the energy limits. Therefore, to design robust baseline
schedules, these uncertainties have to be considered so that the energy consumption limits are not violated
and the penalty fees are avoided.

One possible approach to tackling these uncertainties is to employ reactive scheduling policies, i.e. when
the total energy consumption approaches the energy limit, the remaining unfinished operations are delayed
until the start of the next metering interval. For example, in Fig. 2b the start time of operation 4 is forcibly
delayed by a worker responsible for monitoring the production process. However, relying only on the reactive
policies may cause long downtimes in the production if the order of the operations is not chosen reasonably in
a baseline schedule. A more viable approach is to combine the reactive policies with a pro-active scheduling,
i.e. the baseline schedule is designed in such a way that the hazardous situations are avoided if the deviations
of the operations are reasonably small. For example, if the order of the operations from Fig. 1 would be
(3, 2, 1, 4), as illustrated in Fig. 3a, then even if operation 2 is delayed by 3 minutes the energy consumption
limits are not violated (see Fig. 3b). However, longer production delays (e.g. furnace breakdown) are still
handled by reactive policies or by a complete rescheduling.
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(a) A robust baseline schedule of four oper-
ations {1, 2, 3, 4} on one machine which sat-
isfies the energy consumption limits in every
metering interval {1, 2, 3}.

0 5 10 15 20 25 30 35 40 45

time [min]

12
3

3 4

1 2 3
metering interval

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

en
er

gy
co

ns
um

pt
io

n
in

m
et

er
in

g
in

te
rv

al
s

[M
W

h]

(b) An example of a realised schedule in
which operation 2 is delayed by 3 minutes
from its baseline start time (see Fig. 3a).
Even though the total energy consumption
increased in metering interval 2, the energy
limit is not violated.

Figure 3: Handling of operations’ delays by a pro-active scheduling.

1.2. Related Work

The related work to the RSECLP can be categorised into two main groups: scheduling with energy
constraints and robust scheduling.

The problem of maximum power demand was studied in [7, 2], although the models presented in these
works do not consider 15-minutes intervals but rather complying with the maximum power demand at
every time instant. Another related problem to the maximum energy consumption limits is the problem of
electrical load tracking [22, 12, 11, 10], where the objective is to minimise the absolute difference between the
actual and pre-agreed energy consumption over all metering intervals w.r.t. penalty-free deviation range.
Contrary to the RSECLP, both over-consumption and under-consumption of the energy are penalised in
the load tracking problem.

Robust scheduling is a well-studied problem in the domain of resource constrained project scheduling [13,
16]. The robustness is obtained either by a robust resource allocation or inserting time buffers between
activities. In the domain of the resource constrained project scheduling, the closest problem to the RSECLP
is presented in [24]. The goal of this work is to find a partial-ordering of the activities so that if the
activities are arbitrarily delayed (w.r.t. to the ordering), the total demand of the resources in every time
instant is below the respective capacities. The difference from our problem is that we limit the integral of
the operations’ demands w.r.t. the intersection length of the operations with the metering intervals.

A particular interest for us is the modelling using uncertainty scenarios [5, 3], which are used when the
probability distribution of uncertain events is either not known or is uniform. An uncertainty scenario is
one realisation of uncertain events, e.g. a time occurrence of a machine breakdown. In general, the objective
of the scheduling with uncertainty scenarios is to mitigate the worst-case execution over all uncertainty
scenarios.

To the best of our knowledge, only few works deal with both robust scheduling and energy limits. One
of such works is [21], where the goal is to reduce the peak power consumption of flow shop schedules under
uncertain processing times of the operations. The method proposed by the authors inserts idle times into
the schedule to reduce the expected peak power demand. The time points for idle times are computed by
evaluating all the possible schedules originating from the set of possible scenarios and, therefore, the running
time of the algorithm can increase significantly with the size of this set.
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1.3. Contribution and Outline

Our work addresses an issue of integrating energy-awareness with robust production scheduling; we
argue that this is necessary so that scheduling algorithms can be used in practice. As seen from the related
literature section, no work considers this problem in its entirety.

The main contributions of this paper are:

1. A pseudo-polynomial algorithm that finds, for a given permutation of the operations, a robust and
optimal schedule w.r.t. the total tardiness objective function. The algorithm can be incorporated
into a wide variety of methods for solving the RSECLP that are based on searching the space of the
permutations of the operations. To demonstrate the universality of the algorithm we employ it in two
exact and one heuristic algorithms for solving the RSECLP (see Contributions 2 a 3).
The complexity of the algorithm is pseudo-polynomial since it is linear in the maximum deviation of
the operations (see Section 3.3).

2. Two exact algorithms (see Section 4) for solving the RSECLP: (i) a Branch-and-Bound algorithm and
(ii) a logic-based Benders decomposition algorithm with no-good cuts based on the optimal robust
schedules.

3. A tabu search heuristic (see Section 5) for solving the RSECLP. The experiments (see Section 6) show
that the heuristic can solve instances with 100 operations within a minute.

We partly studied this problem in the conference paper [20], where we introduced the RSECLP and
presented (i) a decomposition algorithm with simple cuts and (ii) a procedure for deciding whether the given
schedule is robust or not. Except for the master problem used in the logic-bases Benders decomposition
algorithm (see Section 4.2.1), all the proposed contributions of this paper, as specified above, are novel.

The paper is organised as follows. Section 2 states the problem in a formal way. Section 3 describes
how the optimal robust baseline schedule is constructed for the given permutation of the operations. The
next Section 4 is concerned with the exact algorithms, and Section 5 describes the heuristic algorithm. In
Section 6 the proposed algorithms are experimentally evaluated. Finally, the last section concludes the
paper.

2. Problem Statement

The production scheduling problem outlined above is formally defined in this section. First, the schedul-
ing problem considering only the energy consumption limits without robustness is described in Section 2.1.
This scheduling problem is then extended in Section 2.2 with the deviations of the start times.

In the rest of the text, we use the notation [a .. b] = [a, b] ∩ Z to denote the integer inter-
val for given a, b ∈ Z. Moreover, the length of intersection of two intervals will be denoted as
lenint([a1, b1], [a2, b2]) = max(0,min(b1, b2)−max(a1, a2)).

2.1. Non-robust Scheduling with Energy Consumption Limits Problem

Let J = [1 .. n] be a set of operations that have to be scheduled on a single machine without preemption.
For each operation j ∈ J we define release time rj ∈ Z≥0, processing time pj ∈ Z>0 and due date dj ∈ Z≥0.
Moreover, for each operation j ∈ J we also define Pj ∈ R≥0 representing the power consumption of the
machine when processing operation j, i.e. it is the constant rate at which the energy is consumed in every
time instant. Therefore, the total consumed energy by each operation j is pj · Pj .

The operations have to be scheduled on a single machine within scheduling horizon H ∈ Z≥0, i.e. the
operations must complete at most at time H. The scheduling horizon is divided into a set of metering
intervals Ω =

[
1 .. HD

]
with equal length of D ∈ Z>0 (it is assumed that H is a multiple of D). For each

metering interval ω ∈ Ω, an energy consumption limit is denoted as Emax
ω , which represents the upper bound

on the total energy consumption of the operations in metering interval ω. Moreover, let us denote a start
of interval ω as τω = (ω − 1) ·D and its end as τω +D.

Baseline schedule bs ∈ Zn≥0 is a vector, where each element bsj represents the baseline start time of oper-
ation j ∈ J and the operations are not overlapping in bs. If operation j starts at time bsj , then a tardiness
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of operation j is defined as Tj = max(0, (bsj + pj)− dj). Moreover, the intersection length between metering
interval ω ∈ Ω and operation j ∈ J starting at time t is denoted as p(ω, j, t) = lenint([τω , τω +D], [t, t+ pj ]).

The goal of this scheduling problem is to find baseline schedule bs such that

min
∑
j∈J

Tj (1)

s.t. rj ≤ bsj , j ∈ J (2)

bsj + pj ≤ H, j ∈ J (3)∑
j∈J

p(ω, j, bsj) · Pj ≤ Emax
ω , ω ∈ Ω (4)

where Constraint (4) enforces that the energy consumption limit is not violated in any metering interval.
We describe this problem in Graham’s notation [9] as 1|rj , Emax

ω |∑Tj .

2.2. Robust Scheduling with Energy Consumption Limits Problem (RSECLP)

Since unexpected events may occur during the execution of a baseline schedule, the actual start times
of the operations may be delayed from their baseline start times; we call the carried out schedule a realised
schedule. The goal of the robust scheduling is to guarantee that the energy consumption limits are not
violated in any possible realised schedule.

To formally define the realised schedules, the notion scenarios and the maximum deviation has to be
introduced. Let δmax ∈ Z≥0 be a maximum deviation of any operation. Then ∆ = [0 .. δmax]

n
is a set of all

scenarios such that scenario δ ∈ ∆ is a vector where each element δj represents the deviation of operation
j ∈ J . The maximum deviation is a user parameter which can be set according to the required range of the
covered realised schedules.

Let π : [1 .. n] → J be a bijective function representing a permutation of the operations. Operation on
k-th position in permutation π is denoted as π(k). We will say that π is the corresponding permutation of
bs if the order of operations in bs is the same as in π .

From baseline schedule bs, its corresponding permutation π and arbitrary scenario δ ∈ ∆, one can derive
a realised schedule using recursive vector function RS as

RS (bs, δ)π(k) =

{
bsπ(1) + δπ(1) k = 1

max(bsπ(k),RS (bs, δ)π(k−1) + pπ(k−1)) + δπ(k) otherwise.
(5)

Please notice that the definition of the realised schedules implies δπ(k) ≤ RS (bs, δ)π(k) − bsπ(k); to make
the distinction clear, the value of RS (bs, δ)π(k) − bsπ(k) is called a delay. To summarise, deviation δj of
operation j is independent of the deviations of the other operations, whereas the delay is not.

To ensure that no operation completes outside of horizon H even if all operations are delayed, a maximum
start time is defined as bsmax = H − (n · δmax + maxj∈J pj) where value n · δmax represents the maximum
possible delay of any operation in any realised schedule from its baseline start time. Although bsmax is a
pessimistic bound w.r.t. horizon H, it is simple to compute and can be incorporated into algorithms requiring
a solution-independent upper bound on the baseline start times. Moreover, since bsmax increases with the
scheduling horizon (which is a user-provided parameter), setting the horizon large enough will loosen bsmax.

The goal of the RSECLP is to find baseline schedule bs such that

min
∑
j∈J

Tj (6)

s.t. rj ≤ bsj , j ∈ J (7)

bsj ≤ bsmax, j ∈ J (8)∑
j∈J

p(ω, j,RS (bs, δ)j) · Pj ≤ Emax
ω , ω ∈ Ω, δ ∈ ∆ (9)

7



where Constraint (9) enforces that energy consumption limit is not violated in any metering interval in any
realised schedule (or, equivalently, in no scenario). Notice that Constraint (9) reduces to Constraint (4)
when δ = (0, 0, . . . , 0). A baseline schedule which does not violate Constraint (9) is called a robust baseline
schedule. We describe the RSECLP in Graham’s notation as 1|rj , Emax

ω , δmax
j = δmax|∑Tj .

The RSECLP is illustrated on the following simple example with 5 operations J = {1, 2, 3, 4, 5}. Let
D = 15, Ω = [1 .. 5], δmax = 3 and Emax

ω = 1200, where ω ∈ Ω. The parameters of the operations are provided
in Tab. 1. One particular baseline schedule bs is shown in Tab. 2 and realised schedule rs = RS (bs, δ) for
scenario δ = (3, 0, 3, 2, 0) is provided in Tab. 3. The visualisation of the baseline and the realised start times
is in Fig. 4. Notice that rs4 − bs4 = 5 > δmax due to the delay of operation 3. Moreover, rs5 − bs5 > 0
even though δ5 = 0; this is due to the delays of the preceding operations. The total tardiness in the baseline
schedule equals to 4 and the total energy consumption in the realised schedule in metering intervals 1 and
2 are 2 · 50 + 2 · 70 + 3 · 150 + 0 · 120 + 0 · 30 = 690 and 0 · 50 + 0 · 70 + 4 · 150 + 4 · 120 + 3 · 30 = 1170,
respectively. Therefore, the energy consumption limits are not violated in rs (the energy consumption in
every other metering interval is 0).

Table 1
Parameters of the operations.

j rj dj pj Pj

1 0 5 2 50
2 6 10 2 70
3 8 15 7 150
4 10 17 4 120
5 18 30 3 30

Table 2
Baseline schedule bs.

j bsj

1 0
2 6
3 9
4 16
5 20

Table 3
Realised schedule rs for δ = (3, 0, 3, 2, 0).

j rsj p(1, j, rsj) · Pj p(2, j, rsj) · Pj
1 3 2 · 50 0 · 50
2 6 2 · 70 0 · 70
3 12 3 · 150 4 · 150
4 21 0 · 120 4 · 120
5 25 0 · 30 3 · 30

1

bs

rs

2 3 4 5

1 2 3 4 5

25 26231 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 24 27 time

δ1 δ3 δ4

25 26231 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 24 27 time

τ1 τ2

0

0

15

15 28 29 30 31

28 29 30 31

τ3

Figure 4: A visualisation of the example.

The NP-hardness of the RSECLP was shown in [20], which follows from the underlying problem 1||∑Tj .
Moreover, even checking the robustness of a given baseline schedule is not an easy problem at first sight
since a näıve algorithm would check all (δmax + 1)

n
scenarios.

3. Algorithm for Finding Optimal Robust Schedule for Fixed Permutation

As it has been shown at the end of the previous section, the RSECLP is a difficult combinatorial problem.
To solve it, we first focus on a simpler, related problem: is it possible to find an optimal robust schedule
(i.e. satisfying Constraints (7)-(9)) for a fixed permutation π of the operations quickly? If the answer is
“yes”, then the RSECLP can be solved by a natural decomposition into two parts: (i) search the space of
the permutations and (ii) for the given permutation, find the optimal robust schedule.

In this section, we introduce an algorithm with pseudo-polynomial complexity of O(n3 · δmax + n · |Ω|)
that creates an optimal robust schedule from the given permutation π of the operations. This algorithm is
the cornerstone of the exact and the heuristic approaches described in Section 4 and Section 5, respectively.
To better explain the main concepts behind the algorithm, the description is split into several subsections.
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3.1. Latest start time and right-shift schedules

Before we explain the algorithm, the notions of latest start times and right-shift schedules have to be
defined. Both definitions assume some fixed baseline schedule bs and its corresponding permutation π .

Latest start time schedule ls is defined using vector function LS as

LS (bs)π(k) = RS (bs, (δmax, δmax, . . . , δmax))π(k), k ∈ [1 .. n] (10)

It represents the maximum possible starting time over all realised schedules for fixed baseline schedule bs.
Let π(k′) be some operation and t ∈

[
bsπ(k′) ..LS (bs)π(k′)

]
its arbitrary realised start time. Then

right-shift schedule rss is defined using recursive vector function RSS as

RSS (bs, k′, t)π(k) =

{
t k = k′

min(LS (bs)π(k),RSS (bs, k′, t)π(k+1) − pπ(k)) k ∈ [1 .. k′ − 1]
(11)

Informally, a right-shift schedule is obtained from bs by fixing the start time of operation π(k′) to t and
shifting all the operations on positions k < k′ to the right as much as possible while respecting the latest
start times and the no-overlap constraint. Notice that a right-shift schedule defines starting times only for
the operations on positions [1 .. k′].

An important property of the right-shift schedules is that they are also realised schedules, i.e. for each
right-shift schedule rss there exists scenario δ ∈ ∆ whose corresponding realised schedule rs is the same as
rss (see Lemma 2 in Appendix).

3.2. Earliest robust baseline schedule

The algorithm for finding the optimal robust schedule is based on the iterative computation of the earliest
robust baseline start time for each operation in the order given by π . Robust baseline start time of π(k)
is a baseline start time such that there is no realised schedule of operations π(1), π(2), . . . , π(k) in which
some energy consumption limit is violated. More formally, bsπ(k) is robust relative to baseline start times
bsπ(1), bsπ(2), . . . , bsπ(k−1) if

k∑
k=1

p(ω, π(k),RS (bs, δ)π(k)) · Pπ(k) ≤ Emax
ω , ω ∈ Ω, δ ∈ ∆ (12)

The earliest robust baseline start time is simply a robust baseline start time that is the smallest possible
relative to the baseline start times of the preceding operations. It can be proven (see Theorem 2 in Ap-
pendix) that baseline schedule bs is robust and optimal w.r.t. the total tardiness objective function if every
operation starts at its earliest robust time in bs. Since the earliest robust start time of π(k) depends only
on the baseline start times of π(1), π(2), . . . , π(k − 1), the earliest robust start times can be computed
one-by-one according to the ascending order of the positions in the given permutation π , see Algorithm 1.

1 Function ComputeOptimalRobustBaselineSchedule(π)
2 bs ← (∞,∞, . . . ,∞)
3 ls ← (∞,∞, . . . ,∞)

4 foreach k = 1, . . . , n do

5 /* Computation of the earliest robust baseline start time of π(k). */

6 if ComputeEarliestRobustStartTime(π, k, bs, ls) = INFEASIBLE PERMUTATION then
7 return INFEASIBLE PERMUTATION, ∅

8 return OK, bs

Algorithm 1: Optimal Robust Baseline Schedule for Fixed Permutation

Algorithm 1 terminates either with computing the earliest robust baseline schedule (indicated
by return value OK) or concluding that permutation π is infeasible (indicated by return value

9



INFEASIBLE PERMUTATION), i.e. for the given permutation π , it is not possible to find a robust baseline
start time for some operation.

The algorithm for computing the earliest robust baseline start time of π(k) is presented in the following
subsections.

3.2.1. Näıve algorithm for computing the earliest robust baseline start time of π(k)

From now on, assume that bs is a baseline schedule where operations π(1), π(2), . . . , π(k − 1) start at
their earliest robust baseline start time, and we want to find the earliest robust baseline start time for π(k)
(all other operations are not yet assigned to any start time). A näıve algorithm (see Algorithm 2) directly
applies the definition of the earliest robust baseline start time: iterate over every possible baseline start time

bsπ(k) ∈
[
max(rπ(k), bsπ(k−1) + pπ(k−1)) .. bsmax

]
in increasing order and select the earliest baseline start

time such that Eq. (12) is not violated. However, such algorithm is inefficient since the number of realised
schedules of bs is exponential in n.

1 Function ComputeEarliestRobustStartTime(π, k, bs)
2 if k = 1 then
3 bsπ(k) ← rπ(k)
4 else
5 bsπ(k) ← max(rπ(k), bsπ(k−1) + pπ(k−1))

6 while bsπ(k) ≤ bsmax do

7 energyLimitViolated← false
8 foreach (δ, ω) ∈ ∆× Ω do
9 rs ← RS (bs, δ)

10 if
∑k
k=1 p(ω, π(k), rsπ(k)) · Pπ(k) > Emax

ω then
11 energyLimitViolated← true
12 break

13 if energyLimitViolated = false then
14 break
15 else
16 bsπ(k) ← bsπ(k) + 1

17 if bsπ(k) > bsmax then

18 return INFEASIBLE PERMUTATION
19 else
20 return OK

Algorithm 2: Earliest Robust Baseline Start Time of π(k) for Fixed Permutation: näıve version

3.2.2. Increasing the efficiency of the näıve algorithm: energy consumption dominance of the right-shift
schedules

The first key observation for obtaining an efficient algorithm is the “energy consumption dominance”
of the right-shift schedules, which is illustrated in Fig. 5. Let rs be some realised schedule of operations
π(1), π(2), . . . , π(k− 1), then it can be proven that the energy consumption in the metering intervals inter-
sected by π(k − 1) in rss = RSS (bs, k − 1, rsπ(k−1)) is not less than in rs, i.e.

p(ω, π(k − 1), rsπ(k−1)) > 0 =⇒
k−1∑
k=1

p(ω, π(k), rsπ(k)) · Pk ≤
k−1∑
k=1

p(ω, π(k), rssπ(k)) · Pk, ∀ω ∈ Ω (13)
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Figure 5: The right-shift schedule maximises the energy consumption, δmax = 2.

Therefore, it suffices to consider only the right-shift schedules since if some energy
limit is violated in rs then it will also be violated in rss (see Theorem 1 in Ap-
pendix). Lines 8-12 in Algorithm 2 can be replaced with the following pseudo-code

1 if k = 1 then
2 foreach (δπ(k), ω) ∈ [0 .. δmax]× Ω do

3 rsπ(k) ← bsπ(k) + δπ(k)
4 if p(ω, π(k), rsπ(k)) · Pπ(k) > Emax

ω then

5 energyLimitViolated← true
6 break

7 else

8 foreach (t, δπ(k), ω) ∈
[
bsπ(k−1) ..LS (bs)π(k−1)

]
× [0 .. δmax]× Ω do

9 rs ← RSS (bs, π(k − 1), t)
10 rsπ(k) ← max(bsπ(k), rsπ(k−1) + pπ(k−1)) + δπ(k)

11 if
∑k
k=1 p(ω, π(k), rsπ(k)) · Pπ(k) > Emax

ω then
12 energyLimitViolated← true
13 break

Although such algorithm does not have exponential complexity anymore, it is still not very efficient since
it asymptotically depends on the length of the horizon.

3.2.3. Increasing the efficiency of the näıve algorithm: maximum possible intersection of the operations with
the metering intervals

As was noted at the end of the previous subsection, the complexity of the näıve algorithm depends on
the length of the horizon since whenever a realised schedule violating any energy consumption limit is found,
the baseline start time of π(k) is increased by 1, see line 16 in Algorithm 2. The question is whether it is
possible to identify a range of non-robust baseline start times of π(k) and, therefore, “jump” by more than
1 time unit on line 16 in Algorithm 2. This is possible by considering a maximum possible intersection of
operation π(k) with metering intervals.

Assume that rs is some realised schedule of operations π(1), π(2), . . . , π(k) such that the energy con-
sumption limit is violated in some metering interval ω ∈ Ω. One of the following two cases occurs:

Case 1 p(ω, π(k − 1), rsπ(k−1)) > 0: since the baseline start times of π(1), π(2), . . . , π(k − 1) are robust,

p(ω, π(k), rsπ(k)) > 0 must hold. We may ask what is the maximum possible intersection of π(k) in ω

relative to realised start times rs of π(1), π(2), . . . , π(k − 1) without violating the energy limit

maxPossibleIntersectionω =

⌊
Emax
ω −∑k−1

k=1 p(ω, π(k), rsπ(k)) · Pπ(k)
Pπ(k)

⌋
(14)
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It can be proven (see Lemma 5 in Appendix) that all baseline start times[
max(rπ(k), bsπ(k−1) + pπ(k−1)) .. τω +D −maxPossibleIntersectionω − 1

]
of π(k) are not robust, i.e.

τω +D −maxPossibleIntersectionω ≤ bsπ(k) must hold, otherwise Emax
ω is violated.

Case 2 p(ω, π(k− 1), rsπ(k−1)) = 0: in this case, π(k) is the only operation having a non-zero intersection

with ω in rs. Therefore, it holds that p(ω, π(k), rsπ(k)) ·Pπ(k) > Emax
ω . We can compute the maximum

possible intersection of π(k) with ω

maxPossibleIntersectionω =

⌊
Emax
ω

Pπ(k)

⌋
(15)

which represents the maximum intersection length between ω and π(k) without violating the energy

consumption limit. Assuming that all baseline start times
[
max(rπ(k), bsπ(k−1) + pπ(k−1)) .. bsπ(k) − 1

]
of π(k) are not robust, it is easy to see that τω +D −maxPossibleIntersectionω ≤ bsπ(k) must

hold to assure that the intersection of π(k) with ω in any realised schedule is not larger than
maxPossibleIntersectionω .

Due to these two cases, the computation of the earliest robust baseline start time can be split into two
consecutive steps (corresponding to the cases described above)

Step 1 the earliest robust baseline start time relative to π(1), π(2), . . . , π(k−1): for each right-shift schedule

RSS (bs, π(k− 1), t), where t ∈
[
bsπ(k−1) ..LS (bs)π(k−1)

]
, find the earliest baseline start time of π(k)

using the maximum possible intersection which does not violate Emax
ω , where ω ∈ Ω is the last metering

interval having a non-zero intersection with π(k − 1). Notice, that due to Lemma 5 it is efficient to
check t in decreasing order since if some energy consumption limit is violated for some rsπ(k), then
all baseline start times bsπ(k) ≤ rsπ(k) cannot be robust and the algorithm can continue directly with
the second step.

Step 2 the earliest robust baseline start time relative to only π(k): After the first step, it is easy to see

that for every baseline start time
[
bsπ(k) .. bsmax

]
of π(k) there is no realised schedule of operation

π(1), π(2), . . . , π(k) in which both π(k − 1), π(k) have a non-zero intersection with some metering
interval ω ∈ Ω and Emax

ω would be violated. However, the energy limits can still be violated in

metering intervals in which only π(k) have a non-zero intersection.

Consider the example from Fig. 6. For each t ∈
[
bsπ(k) .. lsπ(k)

]
, there exists a realised schedule rs

of operations π(1), π(2), . . . , π(k) such that rsπ(k) = t. Therefore, the maximum intersection of π(k)

with every metering interval ω ≥
⌊
bsπ(k)

D

⌋
is

maxIntersectionω = min(pπ(k), lenint([τω , τω +D], [bsπ(k), lsπ(k) + pπ(k)])) (16)

Then, bsπ(k) is not robust if there exists metering interval ω such that the maximum intersection is
larger than the maximum possible intersection in ω, i.e.

maxPossibleIntersectionω =

⌊
Emax
ω

Pπ(k)

⌋
< maxIntersection (17)

If this is the case, then the earliest baseline start time that can be robust is
τω +D −maxPossibleIntersectionω .
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Figure 6: The time interval intersected by operation π(k).

The complete algorithm for computing the robust baseline start time that combines all the discussed
ideas is shown in Algorithm 3.

3.3. Algorithm complexity of the algorithm for computing the robust baseline schedule

The complexity of Step 1 of Algorithm 3 is O(n2 · δmax) since the number of unique right-shift schedules
of π(k − 1) is bounded above by n · δmax and the computing a right-shift schedule can be done in O(n).
The complexity of Step 2 is O(|Ω|). Since Algorithm 3 is repeated for each position in the permutation (see
Algorithm 1), the complexity of computing the optimal robust schedule for the given permutation is O(n3 ·
δmax+n·|Ω|); the pseudo-polynomiality of the algorithm arises due to term δmax. Notice that if the operations
cannot violate the energy consumptions limits by themselves, i.e. ∀ω ∈ Ω,∀j ∈ J : min(pj , D) · Pj ≤ Emax

ω ,
then Step 2 is not necessary and the complexity is O(n3 · δmax).
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1 Function ComputeEarliestRobustStartTime(π, k, bs, ls)
2 bsπ(k) ← rπ(k)
3 /* Step 1: Earliest robust baseline start time relative to π(1), π(2), . . . , π(k − 1).

*/

4 if k > 1 then
5 bsπ(k) ← max(rπ(k), bsπ(k−1) + pπ(k−1))

6 t← lsπ(k−1)
7 while t ≥ min(lsπ(k−1),max(bsπ(k−1), rπ(k) − pπ(k−1))) do

8 rss ← RSS (bs, π(k − 1), t)

9 ω ←
⌊
rssπ(k−1)+pπ(k−1)−1

D

⌋
10 maxPossibleIntersection =

⌊
Emax
ω −

∑k−1
k=1 p(ω,π(k),rssπ(k))·Pπ(k)

Pπ(k)

⌋
11 if pπ(k) ≤ maxPossibleIntersection then

12 /* Small optimisation: Entire operation can be fitted into ω without

violating Emax
ω , therefore continue with metering interval ω − 1. */

13 t← τω − pπ(k−1) − 1

14 else if maxPossibleIntersection ≥ (τω +D)− (rssπ(k−1) + pπ(k−1)) then

15 /* Emax
ω is not violated. */

16 t← t− 1

17 else
18 /* Emax

ω is violated. */

19 bsπ(k) ← max(rπ(k), (τω +D)−maxPossibleIntersection)

20 break

21 /* Step 2: Earliest robust baseline start time relative to only π(k). */

22 lsπ(k) ← LS (bs)π(k)

23 ω ←
⌊
bsπ(k)

D

⌋
24 while ω ∈ Ω do

25 maxPossibleIntersection←
⌊
Emax
ω

Pπ(k)

⌋
26 maxIntersection← min(pπ(k), lenint([τω , τω +D], [bsπ(k), lsπ(k) + pπ(k)]))

27 if maxIntersection = 0 then
28 break
29 else if maxPossibleIntersection < maxIntersection then
30 bsπ(k) ← τω +D −maxPossibleIntersection

31 lsπ(k) ← LS (bs)π(k)

32 ω ← ω + 1

33 if bsπ(k) > bsmax then

34 return INFEASIBLE PERMUTATION
35 else
36 return OK

Algorithm 3: Earliest Robust Baseline Start Time of π(k) for Fixed Permutation
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4. Exact Algorithms for 1|rj , Emax
ω , δmax

j = δmax|
∑
Tj

We propose two exact algorithms for 1|rj , Emax
ω , δmax

j = δmax|∑Tj : (i) Branch-and-Bound and (ii) a
logic-based Benders decomposition algorithm. Both algorithms exploit the fact that the optimal robust
schedule for the fixed permutation can be found by Algorithm 1.

4.1. Branch-and-Bound

Since robustness of a schedule with fixed operations’ order can be solved independently by Algorithm 1,
the proposed Branch-and-Bound algorithm (BB) is very simple. The algorithm searches through the space
of partial permutations, i.e. in each node of the search tree, BB constructs the earliest robust sched-
ule for partial permutation π(1), π(2), . . . , π(k − 1) using Algorithm 1. For each remaining operation
π(k) ∈ J \ {π(1), π(2), . . . , π(k − 1)}, a new branch is created by appending operation π(k) to the end
of the current partial permutation π , i.e. the set of new branches is

{π(1), π(2), . . . , π(k − 1), π(k) | π(k) ∈ J \ {π(1), π(2), . . . , π(k − 1)}} (18)

Our BB is implemented as Depth-First Search, and the branches are prioritised according to the due dates
of J \ {π(1), π(2), . . . , π(k − 1)}.

The solution space is pruned using Chu’s lower bound [4]. The lower bound is designed for problem
1|rj |

∑
Tj and can be computed as follows. W.l.o.g. assume that the due dates of operations are sorted,

i.e. d1 ≤ d2 ≤ · · · ≤ dn. Schedule the operations according to the Shortest Remaining Processing Time
rule (i.e. the operations can be preempted); let C[k] be the completion time in the baseline schedule of k-th
completed operation. Then Chu’s lower bound on the total tardiness is

∑n
k=1 max(C[k] − dk, 0).

4.2. Logic-based Benders decomposition algorithm

Logic-based Benders decomposition (LBBD) [14] is a generalisation of the classical Benders decomposition
that is used for solving large-scale optimisation problems. In the classical Benders decomposition, the
subproblem is only a continuous linear or non-linear problem whereas in LBBD the subproblem may have
an arbitrary form. We use a specific form of the LBBD in which the cuts remove infeasible solutions (no-good
cuts).

The idea of LBBD is to decompose the original problem into two parts: (i) master problem, which is a
relaxation of the original problem and (ii) subproblem. After the master problem is solved to optimality, its
solution is checked by the subproblem whether it is feasible in the original problem or not. If yes, then the
decomposition algorithm finishes since an optimal feasible solution for the original problem has been found.
If not, a cut constraint is generated in which the infeasible solution is violated. The cut is added to the
master problem, and the whole procedure is repeated.

In modern implementations of LBBD, the cuts are added gradually during solving the master prob-
lem [17]. This approach is more integrated into an Mixed Integer Linear Programming (MILP) solvers and
therefore more efficient since the master problem does not need to be resolved from scratch every time a new
cut is generated; the state-of-the-art solvers such as Gurobi or CPLEX support adding cuts dynamically
using lazy constraints generation mechanism.

In our case, the master problem is essentially a MILP model of 1|rj , Emax
ω |∑Tj . The solution of the

master problem, i.e. baseline schedule bs ′, is checked in the subproblem whether it is robust or not. If bs ′

is not robust, a no-good cut is generated for the master problem.

4.2.1. Master Problem

The MILP formulation of the master problem corresponds to Constraints (20)-(24) and objective (19).
It is modelled as a time-indexed formulation, which is suitable for generating the cuts. There are two types
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of variables in the program: (i) a binary baseline start time of operation j in time t defined as bsj,t = 1 iff
j starts at t in the baseline schedule and (ii) the energy consumed in time t denoted as Etime

t .

min
∑
j∈J

bsmax∑
t=rj

bsj,t ·max(0, t+ pj − dj) (19)

s.t.

bsmax∑
t=rj

bsj,t = 1 , j ∈ J (20)

∑
j∈J

min(t,bsmax)∑
t′=max(rj ,t−pj+1)

bsj,t′ ≤ 1 , t ∈
[
min
j∈J

rj .. H − 1

]
(21)

∑
j∈J

min(t,bsmax)∑
t′=max(rj ,t−pj+1)

bsj,t′ · Pj = Etime
t , t ∈

[
min
j∈J

rj .. H − 1

]
(22)

τω+D−1∑
t=τω

Etime
t ≤ Emax

ω , ω ∈ Ω (23)

τω+D−1−δ∑
t=max(0,τω−δ)

Etime
t ≤ Emax

ω , ∀δ ∈ [1 .. δmax] ,∀ω ∈ Ω (24)

The objective (19) of the master problem is the minimisation of
∑
j∈J Tj . Constraint (20) ensures that

each operation starts in some time that is at least its release time and at most the maximum start time bsmax.
Constraint (21) enforces that each time can be occupied by at most one operation. Computation of consumed
energy in time t is in Constraint (22). Constraint (23) ensures that the energy consumption limit in each
metering interval is not violated for the baseline schedule. Finally, Constraint (24) strengthens the master
problem by taking into account a subset of scenarios in which only a single operation deviated. Although
this constraint is valid for problem 1|rj , Emax

ω , δmax
j = δmax|∑Tj , it is not exact, i.e. not every infeasible

realised schedule, in which one operation deviated, is cut out. For more details about Constraint (24),
see [20].

4.2.2. Subproblem: robustness check and cuts

When integer baseline schedule bs ′ is found by the MILP solver, it is checked if it is robust, i.e. whether
all Constraints (9) are satisfied. If the schedule is not robust, a no-good cut is generated for the master
problem such that bs ′ violates it. For checking the robustness of bs ′, a pseudo-polynomial algorithm
introduced in [20] is employed.

Now assume that schedule bs ′ is not robust. In general, our cuts have a form of∑
j∈J

∑
t∈I′j

bsj,t ≤ n− 1 (25)

where I ′j is a cutting interval of operation j for schedule bs ′, i.e. the cut enforces that at least one operation
starts outside of its cutting interval.

Simple cutting intervals that forbid one particular schedule bs ′ can be defined as ∀j ∈ J : I ′j = {bs ′j}. In
the current work, we introduce cutting intervals that exploit the knowledge of the optimal robust schedule
bs∗ obtained by Algorithm 1 for permutation π′ corresponding to schedule bs ′. Informally, the cutting
intervals are defined in such a way that the start times of the operations in the baseline schedules having
the same order as in π′ are “pushed” towards bs∗.

The type of the generated cuts depends on the return value of Algorithm 1 for permutation π′

1. INFEASIBLE PERMUTATION, ∅: this means that any baseline schedule having the same order as π′

cannot be robust. Therefore, a cut must be generated that “forbids” π′. Such cut can be formulated
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using binary precedence variables yj,j′ [15] such that yj,j′ = 1 if operation j precedes operation j′,
0 otherwise. However, to model these variables, Big M constraints are usually employed which have
poor relaxation. Alternatively, we can forbid only a subset of all schedules having the same order as
π′ with a simpler constraint described below.
Consider two operations π′(k), π′(k + 1) that are executed consecutively and let bs ′π′(k), bs ′π′(k+1) be

their baseline start times, respectively. Consider another schedule bs ′′ in which the start time of
π′(k + 1) is at least bs ′π′(k+1). Then to guarantee that π′(k) starts before π′(k + 1) in bs ′′, the start

time of π′(k) must be at most bs ′π′(k+1) + pπ′(k+1)− 1. Therefore, in any integer schedule bs such that

bsπ′(k) ∈
[
bs ′π′(k) .. min(bs ′π′(k+1) + pπ′(k+1) − 1, bsmax)

]
(26)

bsπ′(k+1) ∈
[
bs ′π′(k+1) .. bsmax

]
(27)

operation π′(k) is executed before π′(k + 1).
Such intervals can be derived for whole permutation π′. Therefore, the cutting intervals are

I ′π′(k) =


[
bs ′π′(k) .. min(bs ′π′(k+1) + pπ′(k+1) − 1, bsmax)

]
k ∈ [1 .. n− 1][

bs ′π′(k) .. bsmax
]

k = n
(28)

It is guaranteed that if all the operations start anywhere in these intervals, the order of operations is
the same as in infeasible permutation π′.

2. OK, bs∗: since bs ′ 6= bs∗ (otherwise bs ′ would be robust), there exists position k in permutation π′

such that

bs ′π′(k) = bs∗π′(k) , k ∈
[
1 .. k − 1

]
(29)

bs ′
π′(k)

6= bs∗
π′(k)

(30)

One of the following two cases occurs

(a) bs ′
π′(k)

< bs∗
π′(k)

: Consider the example in Fig. 7 illustrating this case

time

π
0(k)

π
0(k)

π
0(k + 1)

π
0(k + 1)

bs
0

bs
∗

Figure 7: Case bs′
π′(k)

< bs∗
π′(k)

.

The idea of the cut is that if in any baseline schedule bs the operations on positions 1, . . . , k are
the same as in π′, i.e.

π(k) = π′(k), ∀k ∈
[
1 .. k

]
, (31)

then the start time of π′(k) should be pushed towards bs∗
π′(k)

since all baseline start times before

bs∗
π′(k)

are not robust for π′(k). Since the earliest robust baseline start time of π′(k) is by definition

dependent only on positions k ≤ k (see Eq. (12)), the order of the operations on positions k > k is
not important, the cut only has to guarantee that they are not executed before π′(k). Moreover,
we have to take care of the case when some operation {π′(k) | k ∈

[
k + 1 .. n

]
} starts before bs∗

π′(k)

in bs ′; to make sure that feasible schedule bs in which some operation {π′(k) | k ∈
[
k + 1 .. n

]
}
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starts before π′(k) is not cut out, bs ′
π′(k+1)

bounds from above the cutting interval of π(k) and

from below the cutting intervals of {π′(k) | k ∈
[
k + 1 .. n

]
}. Therefore, the cutting intervals are

I ′π′(k) =



[
bs ′π′(k) .. min(bs ′π′(k+1) + pπ′(k+1) − 1, bsmax)

]
k ∈

[
1 .. k − 1

]
[
bs ′π′(k) .. bs∗π′(k) − 1

]
k = k ∧ k = n[

bs ′π′(k) .. min(bs∗π′(k), bs ′
π′(k+1)

+ pπ′(k+1))− 1
]

k = k ∧ k < n[
min(bs∗

π′(k)
, bs ′

π′(k+1)
+ pπ′(k+1) − pπ′(k)) .. bsmax

]
k ∈

[
k + 1 .. n

]
(32)

(b) bs ′
π′(k)

> bs∗
π′(k)

: this case is analogous to the previous one with the difference that operation

π′(k) is being pushed to the left to bs∗
π′(k)

I ′π′(k) =



[
bs ′π′(k) .. min(bs ′π′(k+1) + pπ′(k+1) − 1, bsmax)

]
k ∈

[
1 .. k − 1

]
[
bs∗π′(k) + 1 .. bs ′π′(k)

]
k = k[

bs ′
π′(k)

− pπ′(k) + 1 .. bsmax
]

k ∈
[
k + 1 .. n

] (33)

Notice, that even though the cutting intervals may cut out robust baseline schedules in which the
operations are not starting at their earliest robust start times, they do not cut out the optimal schedule bs∗.
Therefore, the lazy constraints approach is exact.

5. Heuristic Algorithm for 1|rj , Emax
ω , δmax

j = δmax|
∑
Tj

Since exact approaches are not able to provide solutions in a reasonable time for larger instances, the
optimality is often sacrificed for efficiency in practical applications. In this section, we provide a heuristic
that exploits the fact that for a given permutation, the optimal robust schedule can be found by Algorithm 1.
Therefore, it is enough to search through the space of distinct permutations instead of a larger space of the
baseline start times.

The heuristic has two-stages: construction of the initial permutation using a greedy algorithm and a
tabu search algorithm that improves the initial permutation.

5.1. Greedy algorithm for initial permutation

The initial permutation is constructed in a greedy way using Algorithm 4. In each iteration k of
the algorithm, some operation from the set of not assigned operations notAssignedOperations is assigned
to position k in the permutation. The algorithm selects such operation j ∈ notAssignedOperations
which minimises the lower bound on the total tardiness of the operations in notAssignedOperations.
To compute the lower bound, the baseline start time of operation j relative to the current partial
permutation is found by Algorithm 3 and the remaining operations j′ ∈ notAssignedOperations \ {j}
are allocated to the maximum of their release time and the completion time of operation j (no-
tice that operations notAssignedOperations \ {j} may overlap). If any two operations achieve the
same value of the lower bound, the algorithm selects the operation which completes the earliest.
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1 Function GreedyInitialPermutation()

2 bs ← (∞,∞, . . . ,∞)
3 ls ← (∞,∞, . . . ,∞)
4 π ← ∅
5 notAssignedOperations← J
6 foreach k = 1, . . . , n do
7 Z∗ ←∞
8 bestCompletionTime←∞
9 j∗ ← 0

10 foreach j ∈ notAssignedOperations do

11 π(k)← j

12 if ComputeEarliestRobustStartTime(π, k, bs, ls) 6= INFEASIBLE PERMUTATION then
13 completionTime← bsj + pj
14 Z ← max(completionTime− dj , 0)
15 foreach j′ = notAssignedOperations \ {j} do
16 Z ← Z + max(max(completionTime, rj′) + pj′ − dj′ , 0)

17 if Z < Z∗ ∨ (Z = Z∗ ∧ completionTime ≤ bestCompletionTime) then
18 Z∗ ← Z
19 j∗ ← j
20 bestCompletionTime← completionTime

21 if Z∗ =∞ then
22 /* The partial permutation is infeasible. */

23 return ∅
24 π(k)← j∗

25 ComputeEarliestRobustStartTime(π, k, bs, ls)
26 notAssignedOperations← notAssignedOperations \ {j∗}
27 return π

Algorithm 4: Initial permutation.

5.2. Tabu Search

To improve the initial solution found by Algorithm 4, we employ a simple tabu search [8]. The tabu search
explores the space of the permutations of the operations and the tabu list contains the previously visited
permutations. The neighbourhood of some permutation is generated randomly using two moves: swapping
of two randomly selected operations and moving one randomly selected operation to another position. The
best permutation in the neighbourhood, which is not tabu, is selected as a basis for the next iteration. The
tabu search finishes after executing the predefined number of iterations.

The parameters for the tabu search were set according to the preliminary experiments as follows

Parameter Value

Number of restarts 5 (including the initial run)
Number of iterations 200
Neighbourhood size 50

Tabu list length 5

Table 4: Tabu search parameters.
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6. Experiments

The performance and efficiency of the proposed exact and heuristic algorithms were evaluated using
the following two experiments: (i) comparison of the exact and heuristic algorithms on small instances
relative to the obtained objective values and (ii) tabu search algorithm evaluation on large instances. All
experiments were executed on an Intel(R) Core(TM) i5–4460 CPU @ 3.20GHz computer with 8GB of RAM
running Fedora 23 operating system. Gurobi Optimizer 7.0 was used for solving the master problem (see
Section 4.2.1) while the rest of the algorithms were programmed in C++ and compiled with GCC 5.3.1.

The source code of the algorithms and the generated instances are publicly available at https://github.
com/CTU-IIG/RSECLP.

6.1. Fist experiment: comparison of the exact and heuristic algorithms on small instances

6.1.1. Instances

Three different sets of instances were generated randomly for various values of n ∈ {5, 10, 15}. The num-
ber of metering intervals and the length of the metering intervals was fixed to 3 ·n and 15, respectively. For
simplicity reason, the maximum energy consumption in each metering interval is the same and was fixed to
Emax = 100. In each instance set, three values α1, α2, α3 were used to control how the parameters of the in-
stances were generated: pj was sampled from discrete uniform distribution U {1, D}; exponential distribution

with mean α1 ·
∑
j∈J pj

n was used to sample the interarrival time of the operations, i.e. the difference between
the release times of two consecutive operations; for generating dj , value of dj − (rj + pj) was sampled from

U
{

0,
⌈
α2 ·

∑
j∈J pj

⌉}
; Pj was sampled from continuous uniform distribution U

(
α3·Emax

pj
, E

max

pj

)
. Notice

that to avoid generating infeasible instances, the operations itself cannot violate the energy limit.
For each triple (α1, α2, α3) ∈ {0.6, 0.9} × {0.1, 0.3} × {0.1, 0.3, 0.5}, parameters pj , Pj , rj , dj were ran-

domly sampled 10-times according to the description above. For the sampled parameters pj , Pj , rj , dj , three
instances differing only in the maximum deviation δmax ∈ {0, 3, 5} were generated. Therefore, each instance
set n ∈ {5, 10, 15} consisted of 2 · 2 · 3 · 10 · 3 = 360 instances.

6.1.2. Results

In the following text, the evaluated exact and heuristic algorithms are denoted as follows: Greedy for
the algorithm finding the initial permutation (see Section 5.1), Tabu for the tabu search (see Section 5.2),
BB for the Branch-and-Bound (see Section 4.1) and LBBD for the logic-based Benders decomposition (see
Section 4.2). The time-limit given to each algorithm for solving each instance is 20 minutes. The schedules
found by Tabu were used as an upper bound for the exact algorithms (the execution time of Tabu is not
reflected in the time-limit of the exact solvers since its running time for such small instances is negligible).

The average objective values with a standard deviation obtained by the algorithms for n = 5, n = 10 and
n = 15 are shown in Tables 5, 6 and 7, respectively. To make the tables more comprehensible, the instances
were grouped by α3 and δmax. As expected, the objective value increases with the increasing maximum
deviation, since idle times and different permutations of the operations are necessary to make the schedules
robust. The same observation applies for increasing α3·Emax

pj
, i.e. the lower bound on the power consumption

of the operations. Instances with n = 5 (see Tab. 5) are small enough that both LBBD and BB can found
optimal solutions for every instance. All instances with n = 10 (see Tab. 6) can still be solved optimally
with BB. On the other, instances with n = 15 (see Tab. 7) are hard for both LBBD and BB algorithms.
LBBD approach can solve the majority of the instances optimally if the maximum deviation is zero, which
is not true for the BB. In all cases, we see that Tabu is able to find very good solutions.

The average running times of the algorithms with a standard deviation for n = 5, n = 10 and n = 15
are shown in Tables 8, 9 and 10, respectively. The results for LBBD and BB correspond to the number of
found optimal solutions.

The conclusion of the experiment is that with increasing the maximum deviation and the lower bound
on the power consumption of the operations, the instances are harder to solve. Tab. 7 suggests that n = 15
is a tipping point for any exact algorithm based on the MILP formulation of the master problem (see
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Section 4.2.1) since it is not able to solve all the instances when the maximum deviation is zero (i.e. no cuts
are necessary to be generated).

Objective value, average ± std Proven optimality [%]

α3 δmax Greedy Tabu LBBD BB LBBD BB

0.1 0 32.0 ± 22.7 27.2 ± 19.0 27.2 ± 19.0 27.2 ± 19.0 100.0 100.0
0.1 3 36.5 ± 23.3 34.1 ± 22.6 34.1 ± 22.6 34.1 ± 22.6 100.0 100.0
0.1 5 45.1 ± 25.4 42.0 ± 24.4 42.0 ± 24.4 42.0 ± 24.4 100.0 100.0
0.3 0 37.4 ± 19.1 35.0 ± 19.0 35.0 ± 19.0 35.0 ± 19.0 100.0 100.0
0.3 3 46.8 ± 21.7 44.5 ± 19.8 44.5 ± 19.8 44.5 ± 19.8 100.0 100.0
0.3 5 55.9 ± 24.8 53.6 ± 23.0 53.6 ± 23.0 53.6 ± 23.0 100.0 100.0
0.5 0 55.8 ± 33.4 51.2 ± 29.8 51.2 ± 29.8 51.2 ± 29.8 100.0 100.0
0.5 3 70.5 ± 34.4 67.5 ± 32.6 67.5 ± 32.6 67.5 ± 32.6 100.0 100.0
0.5 5 78.8 ± 33.0 77.0 ± 32.4 77.0 ± 32.4 77.0 ± 32.4 100.0 100.0

Table 5: Aggregated objective value, n = 5

Objective value, average ± std Proven optimality [%]

α3 δmax Greedy Tabu LBBD BB LBBD BB

0.1 0 119.8 ± 69.9 101.4 ± 59.7 101.4 ± 59.7 101.4 ± 59.7 100.0 100.0
0.1 3 164.5 ± 82.7 142.7 ± 69.9 142.7 ± 69.9 142.7 ± 69.9 65.0 100.0
0.1 5 202.6 ± 89.3 173.8 ± 79.2 173.7 ± 79.1 173.7 ± 79.1 45.0 100.0
0.3 0 178.9 ± 91.9 153.2 ± 78.1 153.2 ± 78.1 153.2 ± 78.1 100.0 100.0
0.3 3 236.8 ± 95.7 212.4 ± 89.0 212.4 ± 89.0 212.3 ± 89.0 42.5 100.0
0.3 5 275.4 ± 96.7 248.8 ± 94.8 248.8 ± 94.8 248.8 ± 94.8 17.5 100.0
0.5 0 231.1 ± 106.9 190.4 ± 90.0 190.2 ± 89.6 190.2 ± 89.6 100.0 100.0
0.5 3 295.8 ± 103.8 267.7 ± 103.2 267.7 ± 103.2 267.7 ± 103.2 35.0 100.0
0.5 5 336.6 ± 105.3 310.6 ± 109.1 310.6 ± 109.1 310.6 ± 109.1 10.0 100.0

Table 6: Aggregated objective value, n = 10

Objective value, average ± std Proven optimality [%]

α3 δmax Greedy Tabu LBBD BB LBBD BB

0.1 0 284.1 ± 163.3 223.3 ± 141.8 221.9 ± 140.7 222.7 ± 141.3 97.5 32.5
0.1 3 401.5 ± 170.2 332.4 ± 160.1 332.4 ± 160.1 330.8 ± 160.7 12.5 17.5
0.1 5 490.4 ± 197.0 392.6 ± 182.6 392.6 ± 182.6 392.1 ± 182.2 10.0 12.5
0.3 0 437.4 ± 176.9 337.9 ± 146.4 337.6 ± 146.0 337.9 ± 146.4 82.5 10.0
0.3 3 550.6 ± 176.1 493.0 ± 169.1 493.0 ± 169.1 492.8 ± 169.0 2.5 5.0
0.3 5 652.2 ± 189.4 583.1 ± 185.6 583.1 ± 185.6 582.8 ± 185.6 2.5 2.5
0.5 0 541.0 ± 214.7 445.8 ± 181.7 445.1 ± 181.1 445.7 ± 181.6 77.5 12.5
0.5 3 715.3 ± 227.9 631.2 ± 196.5 631.2 ± 196.5 630.3 ± 196.5 0.0 0.0
0.5 5 804.5 ± 225.7 748.9 ± 230.4 748.9 ± 230.4 747.4 ± 232.3 0.0 0.0

Table 7: Aggregated objective value, n = 15
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Time [s], average ± std

α3 δmax Greedy Tabu LBBD BB

0.1 0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.0 ± 0.0
0.1 3 0.0 ± 0.0 0.1 ± 0.0 0.3 ± 0.3 0.0 ± 0.0
0.1 5 0.0 ± 0.0 0.1 ± 0.0 0.7 ± 0.9 0.0 ± 0.0
0.3 0 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.1 0.0 ± 0.0
0.3 3 0.0 ± 0.0 0.1 ± 0.0 0.5 ± 0.8 0.0 ± 0.0
0.3 5 0.0 ± 0.0 0.1 ± 0.0 1.1 ± 1.5 0.0 ± 0.0
0.5 0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.4 0.0 ± 0.0
0.5 3 0.0 ± 0.0 0.1 ± 0.0 1.0 ± 1.3 0.0 ± 0.0
0.5 5 0.0 ± 0.0 0.1 ± 0.0 2.0 ± 2.2 0.0 ± 0.0

Table 8: Aggregated running time, n = 5

Time [s], average ± std

α3 δmax Greedy Tabu LBBD BB

0.1 0 0.0 ± 0.0 0.1 ± 0.0 4.2 ± 7.2 1.0 ± 1.1
0.1 3 0.0 ± 0.0 0.1 ± 0.0 483.1 ± 536.0 1.3 ± 1.2
0.1 5 0.0 ± 0.0 0.2 ± 0.0 781.2 ± 502.6 1.6 ± 1.3
0.3 0 0.0 ± 0.0 0.1 ± 0.0 28.0 ± 65.9 1.6 ± 1.2
0.3 3 0.0 ± 0.0 0.1 ± 0.0 759.5 ± 525.0 2.0 ± 1.3
0.3 5 0.0 ± 0.0 0.2 ± 0.0 1036.6 ± 370.4 2.4 ± 1.4
0.5 0 0.0 ± 0.0 0.1 ± 0.0 18.8 ± 30.3 2.0 ± 1.7
0.5 3 0.0 ± 0.0 0.1 ± 0.0 961.7 ± 395.3 2.6 ± 1.8
0.5 5 0.0 ± 0.0 0.2 ± 0.0 1141.9 ± 208.5 3.0 ± 1.8

Table 9: Aggregated running time, n = 10

Time [s], average ± std

α3 δmax Greedy Tabu LBBD BB

0.1 0 0.0 ± 0.0 0.1 ± 0.0 137.8 ± 230.6 896.8 ± 479.5
0.1 3 0.0 ± 0.0 0.3 ± 0.1 1056.3 ± 379.3 1062.5 ± 361.3
0.1 5 0.0 ± 0.0 0.4 ± 0.1 1080.8 ± 354.8 1081.4 ± 320.2
0.3 0 0.0 ± 0.0 0.1 ± 0.0 423.0 ± 423.6 1103.6 ± 311.3
0.3 3 0.0 ± 0.0 0.2 ± 0.0 1169.1 ± 186.9 1153.8 ± 210.3
0.3 5 0.0 ± 0.0 0.3 ± 0.1 1174.4 ± 153.8 1170.6 ± 183.7
0.5 0 0.0 ± 0.0 0.1 ± 0.0 460.9 ± 442.3 1136.0 ± 192.3
0.5 3 0.0 ± 0.0 0.2 ± 0.0 1199.0 ± 0.0 1200.0 ± 0.0
0.5 5 0.0 ± 0.0 0.3 ± 0.1 1199.0 ± 0.0 1200.0 ± 0.0

Table 10: Aggregated running time, n = 15

6.2. Second experiment: evaluation of the tabu search on large instances

6.2.1. Instances

The instances were generated in a similar manner as in Section 6.1 with the exception that the number
of the operations was fixed to 100.
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6.2.2. Results

We compared a simple Earliest Due Date First (EDF) ordering rule with Tabu. For this experiment,
the stopping condition of Tabu was modified: instead of running for the pre-specified number of iterations,
Tabu is stopped if the objective was not improved in the last 50 iterations; the rest of the parameters are
the same as in Table 4.

The average objective values with a standard deviation obtained by the algorithms are shown in Table 11
and the average running times of the algorithms with a standard deviation are shown in Table 12. We can
see that Tabu is able to find significantly better solutions than the EDF rule within one minute. On average,
over all instances, solutions found by Greedy and Tabu algorithms are 26.5% and 40.2% better than EDF,
respectively. Tabu improves the initial solution found by Greedy algorithm by 18.6%.

Objective value, average ± std

α3 δmax EDF Greedy Tabu

0.1 0 20101.8 ± 5958.5 12854.1 ± 4866.3 8898.8 ± 4639.8
0.1 3 32171.8 ± 6047.1 19130.7 ± 4704.1 15966.2 ± 4792.4
0.1 5 39465.8 ± 6345.3 25117.9 ± 5198.9 19330.0 ± 4874.8
0.3 0 22810.2 ± 6448.9 17310.3 ± 5870.9 12195.6 ± 5746.0
0.3 3 35228.0 ± 7264.9 23290.3 ± 5583.9 20129.2 ± 5949.5
0.3 5 41343.4 ± 6993.2 29707.7 ± 5998.8 24152.6 ± 5894.9
0.5 0 29926.3 ± 6233.8 25845.9 ± 6109.9 19967.6 ± 5976.9
0.5 3 41215.0 ± 6057.4 33252.8 ± 5604.8 29037.8 ± 6223.5
0.5 5 45246.8 ± 6183.4 39422.1 ± 6058.4 34274.7 ± 6862.9

Table 11: Aggregated objective value, n = 100

Time [s], average ± std

α3 δmax EDF Greedy Tabu

0.1 0 0.0 ± 0.0 0.0 ± 0.0 3.0 ± 0.4
0.1 3 0.0 ± 0.0 0.0 ± 0.0 11.8 ± 3.9
0.1 5 0.0 ± 0.0 0.0 ± 0.0 28.9 ± 12.3
0.3 0 0.0 ± 0.0 0.0 ± 0.0 3.0 ± 0.4
0.3 3 0.0 ± 0.0 0.0 ± 0.0 11.2 ± 3.4
0.3 5 0.0 ± 0.0 0.0 ± 0.0 26.0 ± 8.1
0.5 0 0.0 ± 0.0 0.0 ± 0.0 3.0 ± 0.4
0.5 3 0.0 ± 0.0 0.0 ± 0.0 9.8 ± 2.5
0.5 5 0.0 ± 0.0 0.0 ± 0.0 16.2 ± 5.8

Table 12: Aggregated running time, n = 100

7. Conclusion

In this work, we tackled the scheduling problem of satisfying the energy consumption limits by the
manufacturing or production companies with high energy demand under production uncertainties. The
problem with uncertainty often occurs in reality since the carried-out schedule is usually different from the
proposed baseline schedule.

Our main contribution is an algorithm that finds the optimal robust baseline schedule for the fixed
permutation of the operations. This algorithm can be used either as: (i) a method for making the existing
baseline schedule robust or (ii) operator incorporated in a scheduling algorithm that seeks the optimal
permutation.
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We employed the algorithm in two exact (logic-based Benders decomposition and Branch-and-Bound) al-
gorithms and one heuristic algorithm (tabu search). The exact algorithms were evaluated on small instances.
The Branch-and-Bound algorithm is less sensitive to increase of the maximum deviation δmax, whereas the
logic-based Benders decomposition approach is viable if the number of cutting constraints needed to generate
robust schedules is low (which is typical if the energy limits are not very tight and the maximum deviation
is small). In the experiments, we showed that with increasing the maximum deviation and the lower bound
on the power consumption of the operations the instances are harder to solve.

To assess the scalability of our approach, the tabu search heuristic was evaluated on large instances with
100 operations. On average, the instances were solved within 1 minute w.r.t. to the stopping criteria (the
search stops if the objective value is not improved in the last 50 iterations). On average, the tabu search
improved the objective by 40.2% over the Earliest Due Date First ordering rule.
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[15] O. Koné, C. Artigues, P. Lopez, M. Mongeau, Event-based MILP models for resource-constrained project scheduling

problems, Computers & Operations Research 38 (1) (2011) 3–13, project Management and Scheduling.
[16] O. Lambrechts, E. Demeulemeester, W. Herroelen, Proactive and reactive strategies for resource-constrained project

scheduling with uncertain resource availabilities, Journal of Scheduling 11 (2) (2007) 121–136.
[17] S. Lin, G. J. Lim, J. F. Bard, Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam angles,

European Journal of Operational Research 251 (3) (2016) 715–726.
[18] S. A. Mansouri, E. Aktas, U. Besikci, Green scheduling of a two-machine flowshop: Trade-off between makespan and

energy consumption, European Journal of Operational Research 248 (3) (2016) 772–788.
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Appendix A. Proofs

Lemma 1. Let bs(1), bs(2) be two baseline schedules with the same permutation π such that for some position

k ∈ [1 .. n] holds ∀k ∈
[
1 .. k

]
: bs

(1)
π(k) ≤ bs

(2)
π(k). Then ∀k ∈

[
1 .. k

]
: LS (bs(1))π(k) ≤ LS (bs(2))π(k).

Proof. Proof by induction on k

1. basis, k = 1: LS (bs(1))π(1) = bs
(1)
π(1) + δmax ≤ bs

(2)
π(1) + δmax = LS (bs(2))π(1)

2. induction step, 1 < k ≤ k:

LS (bs(1))π(k) = max(bs
(1)
π(k),LS (bs(1))π(k−1) + pπ(k−1)) + δmax (A.1)

≤ max(bs
(2)
π(k),LS (bs(2))π(k−1) + pπ(k−1)) + δmax (A.2)

= LS (bs(2))π(k) (A.3)

Lemma 2. Let bs be a baseline schedule and π be the corresponding permutation. Let RSS (bs, k, t) be a

right-shift schedule for some k ∈ [1 .. n] and t ∈
[
bsπ(k) ..LS (bs)π(k)

]
. Then there exist scenario δ ∈ ∆ such

that ∀k ∈
[
1 .. k

]
: RS (bs, δ)π(k) = RSS (bs, k, t)π(k).

Proof. Let rss = RSS (bs, k, t) and rs = RS (bs, δ). First we prove that
∀k ∈

[
1 .. k

]
: rssπ(k) ∈

[
bsπ(k) ..LS (bs)π(k)

]
. The property holds trivially from the definition for

k = k. To prove the property for k < k assume by contradiction that k < k is the largest position such that
rssπ(k) 6∈

[
bsπ(k) ..LS (bs)π(k)

]
. Since rssπ(k) ≤ LS (bs)π(k) holds from the definition of the right-shift start

time, it must rssπ(k) < bsπ(k) ≤ LS (bs)π(k) and therefore.

rssπ(k) = min(LS (bs)π(k), rssπ(k+1) − pπ(k)) = rssπ(k+1) − pπ(k) (A.4)

However, this leads to contradiction

rssπ(k+1) − pπ(k) = rssπ(k) < bsπ(k) ≤ bsπ(k+1) − pπ(k) ≤ rssπ(k+1) − pπ(k) (A.5)

Now we prove that if δ is defined as

δπ(k) =

{
rssπ(1) − bsπ(1) k = 1

rssπ(k) −max(bsπ(k), rssπ(k−1) + pπ(k−1)) k ∈
[
2 .. k

] (A.6)

then for each position k ∈
[
1 .. k

]
holds that δπ(k) ∈ [0 .. δmax] and rsπ(k) = rssπ(k). Proof by induction on k

1. basis, k = 1:

• δπ(1) ∈ [0 .. δmax]:

δπ(1) = rssπ(1) − bsπ(1) ≥ 0 (A.7)

δπ(1) = rssπ(1) − bsπ(1) ≤ LS (bs)π(1) − bsπ(1) = bsπ(1) + δmax − bsπ(1) = δmax (A.8)

• rsπ(1) = rssπ(1): rsπ(1) = bsπ(1) + δπ(1) = bsπ(1) + rssπ(1) − bsπ(1) = rssπ(1)

2. induction step, 1 < k ≤ k:

• δπ(k) ≥ 0: consider cases

(a) bsπ(k) ≥ rssπ(k−1) + pπ(k−1):

δπ(k) = rssπ(k) −max(bsπ(k), rssπ(k−1) + pπ(k−1)) = rssπ(k) − bsπ(k) ≥ 0 (A.9)
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(b) bsπ(k) < rssπ(k−1) + pπ(k−1):

δπ(k) = rssπ(k) −max(bsπ(k), rssπ(k−1) + pπ(k−1)) (A.10)

= (rssπ(k) − pπ(k−1))− rssπ(k−1) (A.11)

≥ min(LS (bs)π(k−1), rssπ(k) − pπ(k−1))− rssπ(k−1) (A.12)

= rssπ(k−1) − rssπ(k−1) (A.13)

= 0 (A.14)

• δπ(k) ≤ δmax: consider cases

(a) rssπ(k−1) = LS (bs)π(k−1): since

LS (bs)π(k) = max(bsπ(k),LS (bs)π(k−1) + pπ(k−1)) + δmax (A.15)

= max(bsπ(k), rssπ(k−1) + pπ(k−1)) + δmax (A.16)

therefore

δπ(k) = rssπ(k) −max(bsπ(k), rssπ(k−1) + pπ(k−1)) = rssπ(k) − LS (bs)π(k) + δmax ≤ δmax

(A.17)
(b) rssπ(k−1) = rssπ(k) − pπ(k−1):

δπ(k) = rssπ(k)−max(bsπ(k), rssπ(k−1)+pπ(k−1)) = rssπ(k)−max(bsπ(k), rssπ(k)) ≤ 0 ≤ δmax

(A.18)

• rsπ(k) = rssπ(k):

rsπ(k) = max(bsπ(k), rsπ(k−1) + pπ(k−1)) + δπ(k) (A.19)

= max(bsπ(k), rssπ(k−1) + pπ(k−1)) + δπ(k) (A.20)

= max(bsπ(k), rssπ(k−1) + pπ(k−1)) + rssπ(k) −max(bsπ(k), rssπ(k−1) + pπ(k−1)) (A.21)

= rssπ(k) (A.22)

Lemma 3. Let bs(1), bs(2) be two baseline schedules with the same permutation π such that for some position
k ∈ [1 .. n]

bs
(1)

π(k)
= bs

(2)

π(k)
(A.23)

bs
(1)

π(k)
≤ bs

(2)

π(k)
, k ∈

[
1 .. k − 1

]
(A.24)

Then for every t ∈
[
bsπ(k) ..LS (bs(1))π(k)

]
and every δ ∈ ∆ such that t = RS (bs(1), δ)π(k) it holds that

RS (bs(1), δ)π(k) = RSS (bs(2), k, t)π(k) (A.25)

RS (bs(1), δ)π(k) ≤ RSS (bs(2), k, t)π(k) , k ∈
[
1 .. k − 1

]
(A.26)

Proof. Proof by induction on k

1. basis, k = k: holds from the assumptions.

2. induction step, 1 ≤ k < k: consider two cases

(a) LS (bs(2))π(k) > RSS (bs(2), k, t)π(k+1) − pπ(k): then

RS (bs(1), δ)π(k) ≤ RS (bs(1), δ)π(k+1)−pπ(k) ≤ RSS (bs(2), k, t)π(k+1)−pπ(k) = RSS (bs(2), k, t)π(k)
(A.27)
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(b) LS (bs(2))π(k) ≤ RSS (bs(2), k, t)π(k+1) − pπ(k): then from Lemma 1

RS (bs(1), δ)π(k) ≤ LS (bs(1))π(k) ≤ LS (bs(2))π(k) = RSS (bs(2), k, t)π(k) (A.28)

Lemma 4. Let s(1), s(2) be two schedules (not necessarily baseline, realised, etc.) with the same permutation
π such that for some position k ∈ [1 .. n]

s
(1)

π(k)
= s

(2)

π(k)
(A.29)

s
(1)
π(k) ≤ s

(2)
π(k) , k ∈

[
1 .. k − 1

]
(A.30)

Let ω ∈ Ω be arbitrary metering interval such that p(ω, π(k), s
(1)

π(k)
) > 0. Then

k∑
k=1

p(ω, π(k), s
(1)
π(k)) · Pπ(k) ≤

k∑
k=1

p(ω, π(k), s
(2)
π(k)) · Pπ(k) (A.31)

Proof. The Lemma obviously holds for metering intervals such that τω ≥ s
(1)

π(k)
, therefore assume that

τω < s
(1)

π(k)
< τω +D. We prove the Lemma by showing

∀k ∈
[
1 .. k

]
: p(ω, π(k), s

(1)
π(k)) ≤ p(ω, π(k), s

(2)
π(k)) (A.32)

The inequality obviously holds for k = k, therefore assume k < k. Since s
(1)
π(k) + pπ(k) ≤ s

(1)

π(k)
and

s
(2)
π(k) + pπ(k) ≤ s

(1)

π(k)
, it holds that

p(ω, π(k), s
(1)
π(k)) = max(0, s

(1)
π(k) + pπ(k) −max(τω , s

(1)
π(k))) (A.33)

p(ω, π(k), s
(2)
π(k)) = max(0, s

(2)
π(k) + pπ(k) −max(τω , s

(2)
π(k))) (A.34)

Now consider function f(x) = x+ pπ(k) −max(τω , x). It is easy to see that f(x) is non-decreasing in x and

since from assumption we know that s
(1)
π(k) ≤ s

(2)
π(k), it holds that

p(ω, π(k), s
(1)
π(k)) = max(0, f(s

(1)
π(k))) ≤ max(0, f(s

(2)
π(k))) = p(ω, π(k), s

(2)
π(k)) (A.35)

Theorem 1. Let bs be some baseline schedule with corresponding permutation π. Let k ∈ [1 .. n], rs be
some realised schedule of operations π(1), π(2), . . . , π(k) and rss = RSS (bs, k, rsπ(k)). Then

∀ω ∈ Ω : p(ω, π(k), rsπ(k)) > 0 =⇒
k∑
k=1

p(ω, π(k), rsπ(k)) · Pk ≤
k∑
k=1

p(ω, π(k), rssπ(k)) · Pk (A.36)

Proof. From Lemma 3 it holds that

rsπ(k) = rssπ(k) (A.37)

rsπ(k) ≤ rssπ(k) , k ∈
[
1 .. k − 1

]
(A.38)

By applying Lemma 4 on s(1) = rs and s(2) = rss, the Theorem is proven.
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Theorem 2. Let bs be a baseline schedule with corresponding permutation π. If every operation starts at
its earliest robust time in bs then bs is robust and optimal for permutation π.

Proof.

1. Robustness: The robustness of bs is follows from the definition of the robust baseline start time, see
Eq. 12.

2. Optimality : To illustrate the proof, we will use the following figure with different schedules

!τ! τ! +D

bs

π(k)

time

π(k)

bs
∗

π(k)

bs
0

rs
0

π(k)

rss
∗

π(k)

Figure A.8: Example illustration of the schedules.

Let bs∗ be the optimal schedule for permutation π . We need to show that ∀k ∈
[
1 .. k

]
: bsπ(k) ≤ bs∗π(k).

Assume by contradiction that k is the first position in π such that

bsπ(k) > bs∗
π(k)

(A.39)

bsπ(k) ≤ bs∗π(k) , k ∈
[
1 .. k − 1

]
(A.40)

Construct schedule bs ′ such that

bs ′
π(k)

= bs∗
π(k)

(A.41)

bs ′π(k) = bsπ(k) , k ∈
[
1 .. k − 1

]
(A.42)

i.e. bs ′ is the same as bs with exception of operation π(k) that starts at time bs∗
π(k)

. Since bs ′
π(k)

is

not the earliest robust time in bs, there exist some realised schedule rs ′ of bs ′ such that

Emax
ω <

k∑
k=1

p(ω, π(k), rs ′π(k)) · Pπ(k) (A.43)

in some metering interval ω ∈ Ω. Since operations π(1), . . . , π(k−1) start at their earliest robust time in
both schedules bs and bs ′, metering interval ω must have non-zero intersection with π(k) in rs ′. Con-
struct right-shift schedule rss∗ = RSS (bs∗, k, rs ′

π(k)
); the construction is possible since from Lemma 1

it holds that rs ′
π(k)
∈
[
bs∗
π(k)

..LS (bs∗)π(k)

]
. By applying Lemma 3 for bs(1) = bs ′, bs(2) = bs∗ and

Lemma 4 for s(1) = rs ′, s(2) = rss∗ we conclude that

Emax
ω <

k∑
k=1

p(ω, π(k), rs ′π(k)) · Pπ(k) ≤
k∑
k=1

p(ω, π(k), rss∗π(k)) · Pπ(k) (A.44)

which is a contradiction.
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Lemma 5. Let bs be a baseline schedule with the corresponding permutation π. Assume that the baseline
start times of operations π(1), π(2), . . . , π(k − 1) are robust for some k ∈ [1 .. n]. Moreover, assume that
there exists some realised schedule rs of bs such that for some metering interval ω ∈ Ω

Emax
ω <

k∑
k=1

p(ω, π(k), rsπ(k)) · Pπ(k) (A.45)

holds and p(ω, π(k − 1), rsπ(k−1)) > 0. Then all baseline start times
[
bsπ(k−1) + pπ(k−1) .. rsπ(k)

]
of π(k)

are not robust.

Proof. To illustrate the proof, we will use the following figure with different schedules

!τ! τ! +D

rs

π(k)

bs

π(k − 1)

π(k − 1) π(k)

bs
0

π(k − 1) π(k)

time

rs
0

π(k − 1) π(k)

Figure A.9: Example illustration of the schedules.

Assume by contradiction that there is baseline schedule bs ′ such that

bs ′
π(k)
∈
[
bsπ(k−1) + pπ(k−1) .. rsπ(k)

]
(A.46)

bs ′π(k) = bsπ(k) , k ∈
[
1 .. k − 1

]
(A.47)

and bs ′
π(k)

is robust. Construct schedule rs ′ of bs ′ such that

rs ′
π(k)

= max(bs ′
π(k)

, rs ′
π(k−1) + pπ(k−1)) (A.48)

rs ′π(k) = rsπ(k) , k ∈
[
1 .. k − 1

]
(A.49)

It is easy to see that rs ′ is a realised schedule in which the deviation of π(k) is 0.
Since rsπ(k) ≥ rs ′

π(k)
≥ rs ′

π(k−1) + pπ(k−1), it holds that

p(ω, π(k), rsπ(k)) · Pπ(k) ≤ p(ω, π(k), rs ′
π(k)

) · Pπ(k); the argument is analogous to the one shown in

proof of Lemma 4. But this leads to contradiction

Emax
ω <

k∑
k=1

p(ω, π(k), rsπ(k)) · Pπ(k) ≤
k∑
k=1

p(ω, π(k), rs ′π(k)) · Pπ(k) (A.50)
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