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Abstract 

One of the major issues a designer of Big Data Architecture has to trade with is incorporating 

real-time predictive analytics capability using offline synergistic approaches like simulation, 

fuzzy analytic network process, and Technique for Order Preference. Further, under this setting, 

which involves re-engineering of operational units, the present study proposes a simple, yet 

practical heuristic to quickly handle the unstructured relational key-performance-indicators 

(KPIs) data of a supply chain that are obtained from the results of the simulation. Within the big 

data framework, the proposed model can be used as a decision support tool by the companies to 

evaluate their KPIs in a real-time dynamic system.  
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1. Introduction 

The development of high values of a performance measure is an important component in supply 

chain management (SCM) to ascertain the efficiency and/or effectiveness of an existing system. 

The technological evolution, such as the internet of things (IoT) has resulted in exponential 

growth of data. However, given the potential application of IoT across various industries, 

including production, the supply chain of the manufacturing sector, engineering, finance, health 

sector, the distribution of a number of interconnected devices is expected to be 24 billion by 

2020 (OˊDonovan, Leahy, Bruton, & OˊSullivan, 2015). Therefore, given the rapidly changing 

goals of the organizations with stringent time limits, there are shortages of personnel that are 

capable of making quick decisions for managing this exponential data growth. Managers are 

short of time to identify the significance of individual key performance indicators (KPIs) when 



the situation requires an immediate solution. Therefore, it is pertinent to depict the mutually 

dependent relationships among KPIs of a supply chain under the purview of stochastic 

operational parameters. Further, the priority of KPIs should be monitored in relation to 

operational units of SC processes. Thus, there is a need for the tools and frameworks that can 

simplify the process. 

Due to the infusion of big data in various sectors of industry, the application of high-level 

networking sensors is indeed on the increase and is offering leading edge in supply chain 

management (Addo-Tenkorang & Helo, 2016). The use of RFID-enabled sensors for the real-

time information in the context of production logistics control in the supply chain has been 

indicated by several researchers, including (Zhong, Lan, Xu, Dai, & Huang, 2016; Tsao, Linh, & 

Lu, 2016). The supply chain performance can be improved through reliable RFID tracing and 

tracking systems considering both the hardware and the software integration (e.g., middleware 

and ERP integration). The operational units concerning manufacturing typology to develop the 

RFID strategy include supply chain visibility to improve forecasting quality, inventory level 

monitoring to avoid stockouts, lot size tracking in production and distribution to improve 

customer service level, and others (Canetta, Salvadè, Schnegg, Müller, & Lanini, 2011). The 

company like Tesco mines their huge amount of client data to inform decisions from promotions 

to strategic segmentation of clients. Amazon came early to the frontier of data analytics based on 

predictive modeling technique called collaborative filtering. Walmart was also an early adopter 

of data-driven supply chains. They got to the supply-and-demand signal visible between retail 

stores and suppliers. The company optimizes all its supply chain decisions like inventory 

tracking, customer fulfillment using point-of-sale (POS) and radio-frequency identification 

(RFID) sensors (Sanders, 2014).  

To manage the large volume and variety of data the methods of data science in the form 

of predictive analytics have been deployed (Gunasekaran, Tiwari, Dubey, & Wamba, 2016). 

Simulation models are used for predictive analysis to generate scenarios based on historical data 

to interpret the future (Power, 2013). From the manufacturing point of view, the inappropriate 

adoption of various operational units involving (i) forecasting error due to volatile demand, (ii) 

review period under different collaborative information policies of SC like vendor managed 

inventory (VMI), collaborative forecasting, planning and replenishment (CPFR) and continuous 

replenishment (CR), (iii) lead time due to transportation of product within a supply chain under 

different scenarios (e.g. JIT, push or pull system), (iv) swing in perpetual inventory at various 

echelons due to varying customer satisfaction and thereby the service levels, result in various 

characteristics of big data, i.e., volume, velocity, variety, veracity, and value adding. Testing the 

adaptive strategies in real-world SC networks with enormous data under such a stochastic setting 

of operational units necessitate for discrete event simulation as a relevant predictive analytics 

tool, especially in the case of SC re-engineering setting (Waller & Fawcett, 2013).  

Predictive analytics through simulation modeling are expanding their scope and 

commonalities in the era of big data analytics (Miller & Buckley, 2013). Predictive analytics 

through simulation can also overcome the challenges confronted by traditional statistical analysis 

relying on p-value which may not be efficacious in an environment with large data sets (e.g., 

false correlations) (George, Haas, & Pentland, 2014). Given the complexities and uncertainties, 

coordination in SC network, which is at the core of these simulation environments, further 

appends to robust and flexible supply chains (Ketter & Srour, 2009). 

The researchers and practitioners realize that given the enormous data pool related to 

operational units of the production system, it is a challenge to analyze and filter out the right kind 



of information relevant to the improvement of KPIs. Zadeh (1979) proposed an information 

granulation theory to deal with big data naturally. It simply clusters the data to distinguish the 

relevant information in a structured way (Yao, 2005; Zadeh, 1998). The analytical network 

process (ANP) enables information granulation (Saaty, 2006) by representing the relationship of 

the given information in a networking structure (i.e., networking granulation). With the existing 

knowledge (i.e., a conceptual framework), the authors have recommended the integration of the 

ANP as a multi-criteria decision making (MCDM) method with fuzzy on the soft handling of big 

data (Portmann & Kaltenrieder, 2015). 

One of the MCDM decision-making tools to solve the problems of performance metrics’ 

trade-off by weighing the importance of different KPIs is the Analytic Hierarchy Process (AHP) 

by linking the scorecard’s KPIs to the overall mission, objective, and strategies (Huang, Sheoran, 

& Wang, 2004). However, AHP is only to determine the ‘weight’ or relative importance of 

individual KPIs; it does not specify the relationships among KPIs and their significance in 

accomplishment efforts, which is a very important factor for continuous supply chain 

performance evaluation in a dynamic environment. In order to solve this problem, Saaty (1996) 

proposed a new MCDM method, the ANP, to overcome the problem of interdependence and of 

feedback between criteria and alternatives in the real world. The ANP is the extension of the 

AHP; actually, it is the general form of AHP. Another decision-making technique is grey 

relational analysis, which has been applied to analyze the financial performance of the business. 

To decide on significant financial performance measures, Kung and Wen (2007) applied the 

weighing of the grey relational matrix. Similar to AHP approach, the grey relational analysis 

does not show accomplishment to prioritize the KPIs within a stochastic supply chain 

environment. In other words, grey relational analysis has not been considered to make decisions 

in dynamic situations. 

Once the key performance indicators have been identified, another challenge is that it is 

required for the accomplishment of improvement in key KPIs. One of the methods is the 

performance optimization. The optimization philosophy assumes that there is an optimal 

performance point when maximizing or minimizing the identified KPIs. In theory, the 

performance optimization approach is commonly accepted by researchers. However, it is 

difficult to apply in practice, in terms of big data acquisition and computing of a high complexity 

due to stochastic parameters in an SC network. It is also difficult for the decision-maker to 

understand in real SCM situations. Further, optimization does not bring into account the 

relationships among KPIs. Therefore, it calls for a methodology that studies the relationships 

among KPIs related to different SCM processes. Further, the decision to adopt appropriate 

performance for SC requires a trade-off between ideal and non-ideal solutions involved so as to 

assess efficient ranking of various organizations. This calls for a very well-known technique 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) TOPSIS was first 

established by Hwang and Yoon (1981). TOPSIS is widely used to solve many complicated 

MCDM problems because of its effectiveness in solving MCDM and computational simplicity. 

When there are few criteria, TOPSIS is proven better method than AHP in addressing the rank 

reversal issue (Kocaoğlu et al. 2013). TOPSIS has the ability to identify the best alternative 

quickly (Parkan & Wu, 1997). The basic idea of TOPSIS is that the best decision should be made 

to be closest to the ideal and the farthest from the non-ideal solution. Furthermore, the 

transparent construction process of ANP and TOPSIS enables them to understand easily by 

academicians and practitioners (Wang & Chan, 2013). The present paper proposes a conceptual 

framework for analyzing the big data on operational factors of the supply chain so as to evaluate 



its KPIs in a real-time setting. The present study integrates the fuzzy ANP (FANP) and TOPSIS 

as the MCDM methods for information granulation of big data, with both predictive and 

prescriptive analytics using discrete event simulation as an output data generator tool. 

The managers in supply chain usually identify KPIs according to their objective 

requirements and practical experiences that they receive from the sphere and further examined 

by experts. However, to get a systematic performance measurement, they often turn to some 

widely recognized models, such as Balanced Scorecard (BSC) and Supply Chain Operations 

Reference (SCOR). Considering the complex supply chain characteristics, we resort to process-

oriented SCOR-model to identify the basic performance measures. In the present paper, the 

proposed measurement system focuses the level 1 metric performance attributes of the SCOR-

model (Cai, Liu, Xiao, & Liu, 2009) that includes (i) average fill rates, (ii) average order 

fulfillment lead time (cycle time), (iii) average inventory levels, and (iv) average inventory time 

(shelf life). These measurements correspond to ‘supply chain delivery reliability’, ‘supply chain 

responsiveness’, and ‘supply chain asset management’ attributes respectively. The average fill 

rates represent the percentage of orders that can be fulfilled from stock. This shows how quickly 

the company can respond to customer orders in the uncertain environment. The average fill rate 

(AFR) performance corresponds to the ‘supply chain delivery reliability’ attribute of the SCOR-

model which ascertains: the correct product, to the correct place, at the correct time, in correct 

condition, in the correct quantity, to correct customer. The average order fulfillment lead time or 

the average cycle time is the average time it takes to actually fill a customer’s purchase order. 

The measure starts when the customer’s order is received. The measure ends at the time of 

delivery to the customer. The average cycle time (ACT) corresponds to ‘supply chain 

responsiveness’ attribute of the SCOR - model which ascertains the speed with which a supply 

chain provides products to the customer. The average inventory level (AIL) performance 

represents the number of products in the store. This performance corresponds to ‘supply chain 

asset management’ attribute which ascertains the effectiveness as well as the efficiency of an 

organization in managing assets to support demand satisfaction. This includes the management 

of all assets: fixed and working capital. The average inventory time (AIT) or the shelf life 

indicates the time it takes to convert the investment in inventory into selling goods. At the 

upstream level of the supply chain, it indicates the time a raw material remains on the shelf 

before it is taken in the production. The average inventory time also corresponds to ‘supply chain 

asset management’. 

There are two complex issues managers face while realizing a well-built performance 

measurement system.  

 Due to constantly varying situations in supply chains, i.e., the dynamic nature of supply 

chains, some performance measures gets outdated and the others gain priority. 

 The companies experience difficulty in identifying the method for prioritizing the 

performance measures and adapting their continuous changing strategic objectives in the 

dynamic decision-making environment.  

As these problems have received relatively less attention in previous research, the present 

research attempts to fill these gaps at the conceptual basis of a big data architecture point of 

view.   

The rest of this paper is structured as follows. The paper begins with the literature review 

survey and the applications of MCDM models in Section 2. Section 3 elucidates the simulation-

FANP-TOPSIS based predictive big data architectural (BDA) framework of the extended SCOR 



- model of SC network. Section 4 discusses the sensitivity analysis of the model. Finally, Section 

5 concludes the paper indicating the limitations and scope for further research. 

2. Literature review 

Performance measures and measurement systems are used by many organizations to determine 

their performance (Hudson, Lean, & Smart, 2001; Mettanen, 2005). Some of the research work 

appeared for the supply chain performance evaluation involves fuzzy logic inference rules 

(Unahabhokha, Platts, & Tan, 2007; El-Baz 2011; Ganga & Carpinetti, 2011). The MCDM 

models for understanding the performance of the supply chain has widely been used, including 

(Seçme, Bayrakdaroğlu, & Kahraman, 2009; Uygun & Dede, 2016; Sari, 2017). Seçme, 

Bayrakdaroğlu, and Kahraman (2009) applied an integrated approach using fuzzy AHP and 

fuzzy TOPSIS technique for performance evaluation in the Turkish Banking Sector. Uygun and 

Dede (2016) proposed a fuzzy MCDM approach involving fuzzy DEMATEL, fuzzy ANP, and 

fuzzy TOPSIS for evaluating green supply chain management performance. Sari (2017) 

developed a framework to evaluate the green supply chain management using simulation with 

MCDM techniques involving AHP and VIKOR.  

From the big data analytics point of view, Sushil (2017) explored the manner in which 

the integrated Total Interpretive Structural Modelling (TISM) and Interpretive Ranking Process 

(IRP) can be used as the MCDM processes for flexibility in the form of unstructured datasets in 

the big data framework. Kaltenrieder, D’Onofrio, and Portmann (2015) proposed fuzzy 

analytical network process (FANP) framework as a potential MCDM process for enhancing the 

interaction between customer and marketers and thus reducing the challenge of big data. 

Hofmann (2015) operationalized big data in supply chain decisions in order to mitigate the 

bullwhip effect. Using the system dynamics, the big data levers ‘velocity’, ‘volume’ and 

‘variety’ were transferred into a simulation model. The author found that the data property 

‘velocity’ relatively bears the greatest potential to enhance performance. He, Wang, He, and Xie 

(2016) proposed an MCDM by integrating Rough Set and fuzzy TOPSIS, which the Rough Set is 

used for mining the big data of quality, and fuzzy TOPSIS is adopted to model the computational 

process of product infant failure relation weight. Li, Tao, Cheng, and Zhao (2015) have 

advocated the integration of ANP and BSC processes for decision making involving outsourcing 

that requires big data in product lifecycle management. They further pointed out that product 

manufacturing and quality monitoring generate vast data and simulation has a close relationship 

with these activities. Groves, Collins, Gini, and Ketter (2014) proposed a set of KPIs in the 

context of market analysis. They used simulation as the test bed for big data analysis of product 

life-cycle in the supply chain environment. Shao, Jain, and Shin (2014) proposed a decision 

support for the smart manufacturing system. They discussed a case to demonstrate one of the 

uses of simulation to support data analytics in machining operations application. Sun et al. 

(2014) explore the application of (MCDM) techniques in the area of cloud computing and big 

data, to find an efficient way of dealing with criterion relations and fuzzy knowledge based on a 

great deal of information. They combined the interpretive structure modeling (ISM) and ANP-

based techniques to model the interactive relations between evaluation criteria, and to handle 

data uncertainties. However, given the stochastic operational units of a complex SC network, the 

pairwise comparison within the clusters and among different clusters for ANP through general 

consensus or Delphi method is extremely difficult. Therefore, in the present research, we 

proposed integrating ANP with fuzzy logic to address the following issues.  



 Integration of fuzzy logic to conventional ANP, thus creating fuzzy analytical network 

process (FANP), makes it possible to structure the uncertain information in a large data pool 

(Ahmadi, Yeh, Martin, & Papageorgiou, 2014). 

 The utilization of the fuzzy logic helps the decision makers to incorporate incomplete, 

unquantifiable, and non-obtainable information and partially ignorant facts into decision 

model (Kulak, Durmusoglu, & Kahraman, 2005). Moreover, the decision maker is normally 

reluctant to assign crisp values to the comparison matrix of judgment; they prefer interval 

judgments than to express in just a single numeric value (Chan & Kumar, 2007). 

From the IoT perspective, Zhong et al. (2015) and Zhong et al. (2016) proposed RFID-

enabled real-time information in the context of the production logistics control framework. 

However, they confine the usability of RFID-enabled information system within a manufacturing 

shop floor and warehouse logistics trajectory of the flow of raw material to finished product 

receiving area. Zhong et al. (2015) specifically pointed out that although RFID-enabled real-time 

data information is widely accepted by various researchers, there is still a scarcity of application 

of such data. Zhong et al. (2016) extended the work further by integrating the cloud 

manufacturing system in an RFID-enabled system of a shop floor. Shao, Jain, and Shin (2014) 

emphasized in the way simulation tool is used for the data analytics and suggested it as an 

important issue of research. Xu et al. (2015) suggested that simulation can provide predictions 

with high reliability for the input information gathered in a vast amount of data. They further, 

pointed out that multiple runs of large-scale simulation models are easily affordable and viable 

through the present technology of cloud and grid computing systems.        

In view of above, the current paper builds upon the extant literature by filling the existing 

research gap related to conceptual big data analytics in manufacturing operations. Accordingly, 

we outline the following research objectives.  

(1) A conceptual framework is proposed in which the RFID-enabled dynamic real-time big 

data information is integrated into the cloud ERP system equipped with modules of 

inventory system of a supply chain. 

(2) A prescriptive (real-time) and predictive (simulation of historical data) analytics are 

proposed.     

(3) The present study is based on the realization of the relationship between KPIs and the 

operational units of SC processes. Specifically, the simulation is used as the output 

generator of the KPIs of supply chain operating under the stochastic operational units. 

The results of the simulation are used for the pairwise comparison within the clusters and 

among different clusters for ANP for which a simple heuristic method is proposed. The 

vagueness or any imprecision in the heuristic method is captured through fuzzy logic 

(i.e., FANP). 

(4) The ranking of organizations’ key performance capabilities is proposed using TOPSIS.   

3. A Simulation-FANP-TOPSIS based BDA framework 

In the present research, simulation is used offline (Shao, Jain, & Shin, 2014) to generate data for 

evaluating other analytics applications (FANP and TOPSIS in our case). The main purpose of 

building simulation model is to use it as a data generator of KPIs which is normally difficult to 

generate when there are inherent uncertainties that exist in the stochastic supply chain 



environment. The accuracy of these simulation results can further be enhanced by seamlessly 

coordinating the SC system and examining the operational units in a real-time environment. 

However, this entails a high level of coordination within the SC network. We assume this 

coordination, consistent with Dev, Shankar, Dey, and Gunasekaran (2014a) in which they 

consider an intelligent arrangement of high intrinsic information sharing capabilities. 

The proposed conceptual BDA framework consists of various modules as shown in 

Figure 1. Firstly, the information related to existing operational units of a supply chain are 

collected for the ERP system which is assumed to be equipped with modules of inventory related 

data. To manage the ERP system in a dynamic way, that is, in a real-time information scenario, 

RFID plays an important role. RFID provides a real-time information of the parameters related to 

production scheduling including lead time from suppliers, work-in-process inventory levels, 

setup time, workload, idle time, etc., and also gathers the data associated with the external 

environment like demand volume, demand volatility, order size, etc. (Canetta, Salvadè, Schnegg, 

Müller, & Lanini, 2011). One can refer to Zhong et al. (2016) for the technological aspects of 

gathering data from RFID-enabled cloud manufacturing system.  

The information gathered through RFID at the operational level is progressing upward 

into the ERP system through middleware (e.g. BizTalk RFID, IBM WebSphere RFID, BEA 

WebLogic RFID, SyBase RFID Anywhere). RFID middleware is used to connect the RFID 

hardware with the ERP within a company. The functions of RFID middleware include (i) 

extraction, combination, and filtration of data from the number of RFID readers across the 

organization, (ii) to direct the data collected to the appropriate enterprise IT system, and (iii) to 

trigger some events related to certain business rules. For the technological functionalities of 

integration of middleware with the RFID network at the reader interface, and with the enterprise 

IT network at the enterprise application adapter interface, one can refer to Hunt, Puglia, and 

Puglia (2007) and Zhong (2015).  

We consider the ERP as a web-based system. Web-based ERP system enables seamless, 

superior reliability, security, manageability and effective data access to the authenticated users at 

the right time from everywhere without the need of specific software clients. For the functional 

features of web-based ERP workflow engine, which could formulate an Application 

Programmers Interface (API) library, one can refer to Tarantillis, Kiranoudis, and 

Theodorakopoulos (2008). The API allows the functionalities related to supply chain 

management, thus, enabling the information to be retrieved from time to time for evaluating the 

performance of the supply chain. 



Figure 1: Conceptual BDA framework of evaluating KPIs of SC network (Source: Hunt, Puglia, 

& Puglia, 2007) 

 

However, Web Service applications are sometimes restricted due to proprietary reasons 

(Tarantillis, Kiranoudis, & Theodorakopoulos, 2008). Moreover, testing of data analytics 

application requires large sets of data. Normally, many of the manufacturing companies are not 

willing to provide access to their factories for the collection of a large set of real factory data, 

specifically related to operational units (Shao, Jain, & Shin, 2014). In such a case, validated 

simulation models of real factories can be regarded as virtual factories, which are instrumental in 

taking on the complexities and generating data for selected KPIs and in formats as they would be 

in a real factory. The virtual factory offers the advantage of comparing the output of a simulation 

model to the known input data to evaluate the quality of the analytics (Shao, Jain, & Shin, 2014). 

Shao, Jain, and Shin (2014) mentioned that advances in technologies for interfacing simulation 

models, computation, and communication have made the implementation of the virtual factory 

within reach. Further, in case of time-based performance evaluation (as in our case), simulation 

offers a much cheaper and faster approach to analyze the dynamicity of KPIs via what-if analysis 

(Xu et al., 2015).     

In the next module of the architecture, we consider an offline simulation execution to 

generate data for evaluation of other data analytics applications, that is, for FANP and TOPSIS 

in the present case. However, the resulting KPIs obtained through simulation do not present the 

relationships among each other in terms of their weights. Therefore, in the next module, we 
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propose FANP model that copes with the uncertainties and convert the unstructured data to a 

structured data in the form of weighted KPIs. Further, the weighted key performance indicators 

provide data to the TOPSIS module which prioritizes the KPIs. Consequently, the operational 

units corresponding to the prioritized KPI could be regulated based on the real-time need of the 

SC network system. This information can be sent back to the supply chain through enterprise 

application adapters as explained by (Hunt, Puglia, & Puglia, 2007). 

For the sake of completeness of the proposed BDA conceptual framework, we carried out 

the analysis of a simple extension of the SCOR-model of a supply chain at diminutive level. 

However, we believe that the proposed framework is instrumental in taking on the complexities 

involved in analyzing the big data related to the evaluation of KPIs of an SC network in a real-

time setting. Thus, the present BDA provides a conceptual response to the issue addressed.    

3.1 Simulation experiment detail 

We consider a simple extension of the SCOR-model of a supply chain that comprises of three 

suppliers that supply the raw material to the downstream manufacturer with normally distributed 

supply lead time. A single manufacturer (M) in turn assembles the finished products. The next 

echelon consists of two distributors (D1 and D2) to which finished product are sent, again with 

normally distributed lead time. Distributor D1 caters the demand of retailers R1 and R2 while 

distributor D2 caters the demand of retailers R3 and R4 respectively. Further, each of the four 

distinct retailers experience different demand patterns, which is exponentially distributed with 

differing parameters. Importantly, the retailers comprise the only echelon that experiences 

external demand; accordingly, all customer orders are placed at these retail outlets alone and 

must be satisfied at the said location only.  

3.2 FANP model development 

As discussed in Section 1.1, in the present paper, we compared four KPIs which are considered 

as the criteria of ANP: average fill rates, average cycle time, average inventory levels, and 

average inventory time resulting from the simulation model. Various alternate levels of 

operational units including forecasting error (FE), review period (RP), lead time (LT), lead time 

standard deviations (STD), order size (OS), service level (z), and aggregated demand (D) are 

considered as decision alternatives as shown in Figure 2.   
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Figure 2: ANP-based framework for overall performance capabilities of a supply chain 

 

Table 1: Levels of operational factors 

 
Factor 

No. 
Factors 

Levels 

I II III 

1. Forecasting error (FE) (%) 5 10 15 

2. Review period (RP) (days) 0.75 1.5 3.0 

3. Lead time (LT) (days) 1.5 3.0 4.5 

4. Lead time standard deviation (STD) (days) 0.6 1.2 1.8 

5. Order size (OS) (Nos.) 280 640 900 

6. Service level (z) 0.7 1.4 2.15 

7. Aggregate demand (D) (Nos./day) at four Retailers 25 50 75 

 

 

Chopra and Meindl (2010) have pointed out the multi-factors related to inventory management 

which influence supply chain performance including demand, lead time, review period and 

others. However, in the present research, we consider various decision alternative factors and 

their values consistent with Dev, Shankar, and Debnath (2014b) as shown in Table 1. The 

simulation experiments are conducted for three levels of each factor. Thus, there are total 2187 

(37) simulation experiments performed. The results of simulation experiments were obtained for 

the four KPIs. A heuristic method is used for determining the pairwise comparison in the 

judgmental matrix of ANP. The steps are described as follows. 

  

Step 1: The results obtained from simulation experiments for each KPI were divided into five 

levels; extremely low, low, medium, high and extremely high. We consider these levels on a 

scale of 0 to 100 percent. The maximum value obtained for a specific KPI is divided into five 

equal scales, i.e. 20 percent for each of the five levels. Since we are interested in the extremely 

low and low values for the KPIs; average cycle time, average inventory levels, and average 

inventory time, we consider up to 40 percent of the maximum value obtained through simulation 

results for these KPIs. Whereas for the average fill rates we are interested in high and extremely 

high values, we consider all those values obtained from simulation results which are greater than 

60 percent of the maximum value obtained for the KPI. 

  

Step 2: With two factors and three levels of values (low, medium and high), the results of eight 

combinations (ki), where i = 1, 2…8, were compared for pairwise comparison in the judgmental 

matrix. The heuristic algorithm for the KPIs average cycle time, average inventory levels, and 

average inventory time is as follows. 

 

Let x and y are the two factors for pairwise comparison in the judgmental matrix. If N is the total 

number of simulation experiments performed (=2187 in our case), then, for each combination k, 

there would be a N/k = p number of experiments (2187/8 = 273) compared for the factors x and 

y. 

 

Let Max(lki) = Maximum number of lower values for combination ki obtained from simulation 

results for the KPIs. 



 

For Max(lki), there would be N/2 number of experiments for two factors (x and y)  under 

comparison (2187/2 = 1093 in our case). 

 

Let lkix = number of low values obtained from simulation results for the combination Max(lki) of 

factor x, and 

  

lkiy = number of low values obtained from simulation results for the combination Max(lki) of the 

factor y. 

 

if (lkix>lkiy)  

aij = lkix/ lkiy, and aji = 1/aij; 

else 

if (lkiy>lkix) 

aij = lkiy/ lkix, and aji = 1/aij 

where aij is the element of the judgmental matrix. 

 

Conversely, for the KPI average fill rates, the number of high values from the simulation results 

is considered for two factors under comparison. For the numerical exhibition of the heuristic, we 

demonstrate the above steps in Appendix A with two factors (one pair) resulted from simulation 

experiments.  

 

Step 3: The uncertainties and imprecision of heuristics performed in step 2 are handled with 

linguistic value parameterized by the triangular fuzzy numbers. Fuzzy logic utilizes the linguistic 

terms to present decision maker’s preferences (Zadeh, 1965). The ratios obtained in step 2 are 

converted into the relative importance factors, which will be used to weigh the significance of 

each KPI. The maximum value of the ratio (lkix / lkiy or lkiy / lkix) obtained is 1.95 and the 

minimum value of the ratio is 1.01. Thus, the difference between maximum and minimum values 

is divided into nine intervals with respective linguistic terms shown in Table 2 (Arshinder, 

Kanda, & Deshmukh, 2007). 

 

Table 2: Linguistic classification of pairwise comparison of KPIs and their corresponding fuzzy 

numbers and de-fuzzified crisp values 

  
Range of Ratio    

Max(nlk) / Max(nlm) 
Weight Linguistic expression 

Triangular fuzzy 

number (m, α, β) 

De-fuzzified 

Crisp numbers 

1.0000 – 1.1111 1 Equally significant (1, 1, 1) 1.00 

1.1111 – 1.2222 2 Between (1, 2, 3) 1.25 

1.2222 – 1.3333 3 Low significance (2, 3, 4) 2.25 

1.3333 – 1.4444 4 Between (3, 4, 5) 3.25 

1.4444 – 1.5555 5 More significance (4, 5, 6) 4.25 

1.5555 – 1.6666 6 Between (5, 6, 7) 5.25 

1.6666 – 1.7777 7 Slightly more significance (6, 7, 8) 6.25 

1.7777 – 1.8888 8 Between (7, 8, 9) 7.25 

1.8888 – 2.0000 9 Extremely significant (8, 9, 10) 8.25 

 

The linguistic terms were then converted into triangular fuzzy numbers. The reason for 

using a triangular fuzzy number is that it is intuitively easy for the decision-maker to use and 



calculate (Senthil, Srirangacharyulu, & Ramesh, 2014). For converting the fuzzy values in 

pairwise comparison to a de-fuzzified definitive number, we used Minkowski formula for the 

definitive number (Höhle, 1980) given as: 

 

𝑥 = 𝑚 + (𝛽 − 𝛼)/4        (1) 

 

The crisp values after de-fuzzification are shown in Table 2 for each triangular fuzzy number 

corresponding to rating levels.  

 

Step 4: The pairwise comparison using de-fuzzified values of rating level results in a judgmental 

matrix A in which every element aij(i, j = 1, 2…n) is the de-fuzzified quotient of the criteria 

using Equation (1), as shown: 

 

𝐴 = [

𝑎11𝑎12  … 𝑎1𝑛

𝑎21𝑎22  … 𝑎2𝑛

⋮        ⋮            ⋮
𝑎𝑛1𝑎𝑛2  … 𝑎𝑛𝑛

]        (2) 

where  aii = 1,  aji = 1/aij,  aij ≠ 0 

 

Further, the mathematical process is commenced to normalize and finding the relative weights of 

each matrix. The relative weights are given by the right Eigenvector (w) corresponding to the 

largest Eigenvalue, called the principal Eigenvector (λmax), as 

 

Aw= λmaxw        (3) 

 

It should be noted that the quality of the output ANP is related to the consistency of the pairwise 

comparison judgment. The Consistency Index (CI) is 

 

CI = (λmax – n)/(n-1)       (4) 

 

The consistency of the subjective input in the pairwise comparison matrix can be determined by 

calculating a Consistency Ratio (CR). In general, the CR having a value less than 0.1 implies the 

pairwise matrix is consistent. 

 

Step 5: The unweighted matrix is obtained using relations consistent to Chen, Shih, Shyur, and 

Wu (2012). The stable weights are obtained by multiplying the weighted super-matrix by itself 

until the weights in the super-matrix have converged and stabilized. The concept is similar to the 

Markov chain process (Saaty, 2005). 

3.2.1 ANP Computation 

In the current study, the relative significance of KPIs criteria with the interaction of supply chain 

operational units is calculated by the ANP algorithm. The eigenvalues and consequently the 

value of principal eigenvector λmax were calculated using MATLAB. For the sake of brevity, as 

shown in Table 3, we report a sample matrix of weights of operational units corresponding to the 

criteria average inventory time. Table 3 shows the de-fuzzified crisp values using Equation (1) 

and the weights of each operational unit factor for the KPI average inventory time.  



The triangular fuzzy number corresponding to each de-fuzzified value of Table 3 are 

shown in Table 2. However, in the reverse cell, e.g., in the first column’s second row of Table 3, 

the value is computed as reverse of second column first row’s value as:  

 

(2, 3, 4) = (1/4, 1/3, 1/2) = (0.250, 0.333, 0.500) 

 

Using Equation (1), we obtain the de-fuzzified value of reverse cell as 0.2917(0.250 + (0.500-

0.333)/4). 

  

Table 3: Weights of operational units for criteria average inventory time 

 
De-fuzzified value matrix 

Average 

Inventory 

time 

FE RP LT STD OS z D Weights 

FE 1.0000 2.2500 3.2500 1.0000 0.2917 1.0000 0.1512 0.0904 

RP 0.2917 1.0000 1.0000 0.4583 0.1792 0.2917 0.1035 0.0372 

LT 0.2208 1.0000 1.0000 0.2208 0.1512 0.2917 0.1035 0.0328 

STD 1.0000 2.2500 3.2500 1.0000 0.2917 1.0000 0.1512 0.0904 

OS 2.2500 4.2500 5.2500 2.2500 1.0000 1.2500 0.1035 0.1570 

z 1.0000 2.2500 2.2500 1.0000 0.4583 1.0000 0.1512 0.0867 

D 5.2500 8.2500 8.2500 5.2500 8.2500 5.2500 1.0000 0.5056 

λmax = 7.0252; consistency index = 0.0042; consistency ratio = 0.0031 (< 0.1) 

 

The consistency ratio values of all the factors were found less than 10%. As shown in 

Table 3, the consistency ratio turned out to be 0.31%, which is less than 10%. This implies that 

the ratios obtained through above heuristic method are consistent. The weights of all the factors 

are then integrated into the super-matrix and obtained the steady state condition of the weights as 

shown in Table 4. We used Mathematica 9.0 software to obtain the converged and stabilized 

condition of the weights. The convergence was achieved after 33 iterations. Table 4 shows that 

the KPI ‘average fill rates’ followed by ‘average cycle time’ are the most significant factors that 

are responsible for achieving the goal – Supply Chain Performance Capability.  

Table 4: ANP steady state Super-matrix 

 

 
FE RP LT STD OS z D AIT AIL AFR ACT 

FE 0 0 0 0 0 0 0 0.1496 0.1496 0.1496 0.1496 

RP 0 0 0 0 0 0 0 0.0603 0.0603 0.0603 0.0603 

LT 0 0 0 0 0 0 0 0.1369 0.1369 0.1369 0.1369 

STD 0 0 0 0 0 0 0 0.1281 0.1281 0.1281 0.1281 

OS 0 0 0 0 0 0 0 0.1704 0.1704 0.1704 0.1704 

z 0 0 0 0 0 0 0 0.0981 0.0981 0.0981 0.0981 

D 0 0 0 0 0 0 0 0.2573 0.2573 0.2573 0.2573 

AIT 0.1214 0.1214 0.1214 0.1214 0.1214 0.1214 0.1214 0 0 0 0 

AIL 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0.2610 0 0 0 0 

AFR 0.3130 0.3130 0.3130 0.3130 0.3130 0.3130 0.3130 0 0 0 0 

ACT 0.3053 0.3053 0.3053 0.3053 0.3053 0.3053 0.3053 0 0 0 0 

 

From the above results, we can compute the crisp value representing the overall score of 

the extent of the performance capability of a firm as: 



 

EPC = ωAIT*AIT + ωAIL*AIL + ωAFR*AFR + ωACT*ACT  (5) 

 

EPC is the final score for the extent of the performance capability of a firm, whereas, AIT, AIL, 

AFR and ACT represent the scores for KPIs average inventory time, average inventory levels, 

average fill rates and average cycle time respectively. The performance capabilities are 

calculated by multiplying the rating value to the weight of the factor as shown in Table 5. In 

Table 5, we hypothetically assigned the ratings to nine experiments that act as the organizations 

O1 through O9. The ratings are assigned for all the four KPIs using the scale from 1 (extremely 

low) to 9 (extremely high). The ratings are based on the ‘significance’ of a specific KPI in 

obtaining the overall peformance of an organization. The notions of the varying behavior of KPIs 

may be due to change in operational units resulting from external and internal uncertainties. 

 

Table 5: Values of KPIs capabilities 

 

 
AIT AIL AFR ACT 

 
 

Organization 

No. 
0.1214 0.2610 0.3130 0.3053 

Final 

weights 

Normalized 

weight 

O1 1 2 1 1 1.2617 0.2853 

O2 2 1 1 2 1.4274 0.3228 

O3 3 5 4 2 3.5318 0.7987 

O4 1 2 3 1 1.8877 0.4269 

O5 1 2 2 1 1.5747 0.3561 

O6 1 2 1 2 1.5670 0.3543 

O7 5 4 3 6 4.4218 1.0000 

O8 2 2 4 2 2.6274 0.5941 

O9 3 1 4 3 2.7931 0.6316 

 

However, the above exercise does not consider the joint effect of ideal and non-ideal solutions 

among various alternatives of KPIs priorities available. As discussed in Section 1.1, the company 

is forced to prioritize different KPIs at different time instants according to the required situations. 

This calls for another exercise in which joint effect of ideal and non-ideal solutions of KPIs is 

determined. Therefore, to study the effect of a change in KPI priority, we further used TOPSIS.  

3.3 The TOPSIS decision model 

TOPSIS, known as one of the most classical MCDM methods, is based on the concept, that the 

selected alternative should have the shortest distance from the positive ideal solution and on the 

other side the farthest distance of the negative ideal solution, proposed by Hwang and Yoon 

(1981). It is the most classical method of solving MCDM problems. In the TOPSIS process, we 

consider two ideal solutions: (i) low-is-better (L) (i.e. selecting the least value in ideal solution 

matrix for the respective KPI) and (ii) more-is-better (M) (i.e. selecting the maximum value from 

the ideal solution matrix for the respective KPI). The base settings of four KPIs considered for 

the ideal solution are: AIT = L; AIL = L; AFR = M; and ACT = L.     

 Table 6 shows the resulting positive and negative ideal solutions (A* and A′) as well as the 

relative separations (Si
* and Si

′) and closeness values to the ideal solution i.e., Ci
* for the nine 

organizations. The values of Ci
* were then normalized. We find that for the combined effect of 

all the KPIs at the base setting, organization 4 is at the frontier capabilities (Normalized value of 



Ci* = 1.0) and acts as the benchmark organization. Since the relative closeness scores of all the 

nine organizations are between the minimum values of 0.2609 to a maximum value of 0.8275, 

these can be plotted by taking the normalized Ci* values on the universe of discourse from 0 to 1 

as shown in Figure 3. The universe of discourse can be divided into three linguistic terms as 

‘low’, ‘medium’, and ‘high’ KPI capability (Arshinder, Kanda, and Deshmukh, 2007).   

 

Table 6: Results of TOPSIS analysis 

 

 
AIT AIL AFR ACT 

 
A* 0.0164 0.0329 0.1465 0.0381 

 
A′ 0.0818 0.1644 0.0366 0.2290 

 
Organization 

No. 
Si

* Si
′
 Ci* Normalized Rank 

O1 0.1147 0.2246 0.6619 0.7998 5 

O2 0.1175 0.2074 0.6384 0.7714 6 

O3 0.1408 0.1909 0.5755 0.6955 8 

O4 0.0492 0.2362 0.8275 1.0000 1 

O5 0.0803 0.2275 0.7391 0.8932 3 

O6 0.1209 0.1932 0.6151 0.7433 7 

O7 0.2275 0.0803 0.2609 0.3152 9 

O8 0.0530 0.2180 0.8045 0.9722 2 

O9 0.0831 0.2087 0.7153 0.8644 4 

 

 

Table 7 shows the linguistic terms and their degree of membership. From Table 7, we find that 

most of the organizations are either assigned with high (H) or extremely high (EH) KPI 

capability, of course with varying membership degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Linguistic terms of the extent of the KPI capability of organizations using TOPSIS 
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Table 7: Linguistic terms and their degree of membership for relative closeness to ideal solution 

in TOPSIS 

 
Organization 

No. 

Normalized 

Ci* Value 
Linguistic term Membership degree 

O1 0.7998 H 0.002 

O2 0.7714 H 0.286 

O3 0.6955 H 0.955 

O4 1.0000 EH 1.000 

O5 0.8932 EH 0.932 

O6 0.7433 H 0.567 

O7 0.3152 L 0.848 

O8 0.9722 EH 0.278 

O9 0.8644 EH 0.356 

4. Sensitivity analysis 

The current study proposed an integration of simulation, FANP, and TOPSIS as the predictive 

analytics in the environment of big data analysis for evaluating an organization’s KPI capability. 

The decision maker might like to perform sensitivity analysis to reveal the effect on the 

evaluation process and ranking of organizations by changing the ideal solution of the decision 

attributes, i.e. the criteria factors; AIT, AIL, AFR, and ACT through TOPSIS process. The 

requirement of carrying out the sensitivity analysis can be explained from an example of a 

mobile phone industry. 

   The industry that produces mobile phones faces unique difficulties from the inventory 

management perspective. Due to the short lifespan of mobile phones, with the introduction of a 

new phone after every less than two years (Treblin, 2013), there is a sharp decline in the values 

of mobile phones that are kept in inventory for long periods of time (i.e. the cost of obscelence). 

Further, it is difficult to foresee how far a given mobile phone model would be accepted. Apple, 

for example, experienced shortages of the first version of their iPhone. Such situation forces to 

build an inventory stock to meet the projected peak demand, which could be expensive and risky. 

The change in the structure of demand during the product lifecycle (introduction, growth, 

maturity, and decline) causes difficulty in predicting how long each stage will last. Further, 

uncertainty in demand during lifecycle causes variability in lead time which ultimately affects 

the cycle time performance. Thus, above situations call for the reconfiguration of operational 

units as per the suitability of each KPI considered from time to time.        

  In view of above, we performed the sensitivity analysis by keeping the rating values 

constant and changing the ideal solution for all the four KPIs in the TOPSIS process. Thus, we 

performed 16 (24) experiments of possible combinations to analyze the effect of (L) and (M) for 

evaluating four KPI capabilities of various organizations. Table A.3 of Appendix shows that the 

results are expressed to be sensitive, i.e, the organization with the frontier capabilities changes 

with the change in the ideal solution, which subsequently depend on the rating of respective KPI. 

For example, in spite of high rating values of O7 for all the KPIs, we find that O7 outperforms 

only for those combinations in which (M) is the ideal solution for ACT performance. This is due 

to the high rating value of O7 corresponding to ACT (=6). Further, it is observed that for some 

combinations, in spite that the ideal solution of ACT is (M), the frontier capabilities of O7 is 

offset by the ideal solution (L) of other KPIs (i.e. LLLM, LLMM, LMLM, and MLMM). 

However, as seen in Table A.3, the values of Ci* for LLLM, LLMM, LMLM, and MLMM are 



quite close to the frontier value (=1). Thus, under the fuzzy linguistic term these are considered 

for extremely high (EH) with varying degree of membership.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison between organizations O1 and O7 through fuzzy plots for various ideal 

solution combinations of the four KPIs using TOPSIS 

 

Figure 4 illustrates a sample of comparison between O1 and O7 in which the impact of 

various ideal solution combinations of KPIs can be visualized. On the basis of this visual 

comparisonn, the decision maker can quickly suggest adopting the appropriate values of 

operational units for those organizations which are lagging behind the benchmark organization 

for a specific ideal solution combination. For example, in Figure 4, it is observed that for the 

combination LMLM, both the organizations O1 and O7 operate at EH capabilities. However, 

since the degree of membership of O1 is higher than O7, it is advisable to adopt the operational 

units under which O1 is operating. 

 Towards the end, we find that the results obtained through sensitivity analysis suggest 

that, given the suitability of KPIs (L or M) from time to time during the life cycle of a product, 

the regulation of levels of value of operational units is required for a specific organization to be 

at the frontier for performance capabilities.           

 

5. Conclusions 
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The present paper proposes a “Big Data Architecture” (BDA) conceptual framework that 

provides an effective approach managing supply chain KPIs under the dynamic environment. It 

elucidates the performance measure relational problem due to change in business situations by 

building real-time KPIs evaluation criteria that a company can consider to continuously monitor 

their performance capabilities. In view of this, the present study proposes an approach to 

visualize an arrangement of RFID-enabled and cloud ERP system for Big Data of operational 

units concerning the inventory system of a supply chain. In the process, RFID technology 

provides real-time information on various parameters related to inventory levels, setup time, idle 

time, etc., from which the service level of the resources could be estimated. 

The present study also responds to the problem that likely happens due to the 

unwillingness of providing enormous real-time data related to operational units by many 

companies. In such a case the present research suggests offline predictive applications. This is 

along the lines of the concept of developing a virtual factory that integrates simulation models 

for different operational levels supporting data analytics. The ideas of virtual factory integrated 

with simulation models are also widely being discussed in the principal capabilities of the 

contemporary paradigm of Industry 4.0 characteristics (Hermann, Pentek, & Otto, 2016) from 

manufacturing perspectives.  

 In view of above, the present study proposes a merger of three approaches; discrete event 

simulation, fuzzy-ANP (FANP), and TOPSIS under the premise of big data analytics 

environment. The framework and methodology can help companies finding significant KPIs 

across the entire supply chain in a systematic real-time manner. The conceptual framework and 

methodologies offer some important contributions to solve interrelated KPI evaluation problem 

and provide appreciable insights from the big data analytics perspective. 

First, this paper attempts to construct a bridge between discrete event simulation and big 

data analytics to provide decision support for evaluating real-time supply chain KPIs. The role of 

discrete event simulation includes (i) as a data analytics to perform predictive analysis for big 

data, (ii) supporting other data analytics offline applications to generate data for supply chain 

KPIs’ analysis. Within the context of the simulation, to cope with the complexity and 

uncertainties of SC network, the paper also proposed the implementation of high intrinsic 

information coordination so as to obtain a high degree of accuracy in the results. Although, we 

have presented a much smaller SC network in the BDA conceptual framework, however, the 

discrete event simulation provides a generic platform which is instrumental in taking on the 

complexities of multi-echelon interface interactions under SC uncertainties (Dev, Shankar, Dey, 

& Gunasekaran, 2014a). Thus, the present SC model can provide a conceptual response to the 

issue addressed and can be used as a facsimile of any real life industrial SC setup. The simulation 

of a wider distribution network of the firm can be used as a future work.   
Secondly, a significant contribution of the present research highlights the way big data 

for the pairwise comparison within the clusters and among different clusters for ANP is 

determined through a simple heuristic method from the output data of the simulation. This 

provides leverage to the decision maker for evaluating the KPI and quickly regulating the 

alternate values of operational units of the supply chain in the dynamic real-time environment. 

This becomes important when the decision maker has to deal with the enormous data or in the 

case of big data analytics. However, the vagueness of the heuristic method used is taken care of 

by FANP model. For each KPI, the experiments that act as the organizations were performed 

with hypothetical ratings through TOPSIS. From the sensitivity analysis we show that under 

different circumstances of the ideal solution combination for KPIs, the proposed architecture can 



support the managers to make decisions by adopting the values of appropriate operational units 

so as to maintain the performance capabilities as close as possible to the frontier organization at 

different time periods during the life cycle of a product.           

 Finally, the present paper extends the studies focusing operational units and techniques 

on evaluating the KPIs in a real-time setting by presenting the role of predictive analytics in Big 

Data Architecture. The proposed conceptual BDA framework could be extrapolated aiming at 

the superior architectural models through technological advancement of techniques for big data 

analytics and could be considered as the future endeavors. Moreover, the proposed architecture 

can be improvised for the analysis of the contemporary strategies like sustainable supply chain 

management, green supply chain management, and the circular economy based supply chain 

structures from the big data analytics perspectives, which can be regarded as a future work.  
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Appendix A 

 

For the demonstration of heuristic, we exhibit the simulation results for seven factors, each with 

two levels that result in 128 (27) experiments. For the sake of brevity, we show only a few results 

from the population of 128 results. 

Table A.1: Simulation results for average inventory levels for seven factors with two levels of 

value. 

 

S.No. FE RP LT STD OS z D Average inventory levels 

1 15% 0.75 1.5 0.6 280 0.7 25 229 L 

2 15% 3.0 1.5 0.6 280 2.15 25 251 L 

3 5% 0.75 4.5 1.8 280 2.15 25 232 L 

4 15% 3.0 1.5 0.6 900 2.15 75 438 

5 15% 3.0 4.5 1.8 900 0.7 75 570 

6 15% 0.75 4.5 1.8 900 0.7 75 523 

7 5% 3.0 4.5 1.8 280 0.7 25 188 L 

8 5% 0.75 4.5 1.8 280 0.7 25 178 L 

9 5% 3.0 1.5 0.6 900 2.15 75 349 
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128 5% 0.75 4.5 1.8 900 0.7 75 327 

 

Step 1: As shown in Table A.1, in this step, we select low values (L) of “average inventory 

levels”, that is, the values up to 40 percent of the maximum value obtained for the performance 

average inventory level through simulation experiments. 

 

Step 2: For each pair of the factors with two levels (low and high), there would be four possible 

combinations shown in Table A.2. For the demonstration, we exhibit only the pairwise 

comparison of FE and RP. For each combination shown in Table A.2, there would be 32 

(=128/4) results that are compared for the best combination that provides a maximum number of 

low (L) values of average inventory levels. For instance, say, we obtain a maximum 12 

(Max(lki)) numbers of results which are at low values of average inventory levels. Thus, we get a 

maximum number of low average inventory level values when FE and RP operate at low-level 

values, that is, at 5% and 0.75 respectively.  

 

Table A.2: Four combinations for pairwise comparison of two factors (FE and RP) 

S.No. L-L L-H H-L H-H 

1 232 L 188 L 229 L 244 L 

2 178 L 316 251 L 440 

3 350 164 L 260 L 246 L 

4 167 L 265 L 438 408 
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540 

Total no. of low values 12 11 6 7 

Now, for each factor FE and RP, there would be 64 (=128/2) experiments with low (L) values. 

For instance, in Table A.1, we find say 21 (lkix) number of low values of average inventory 

levels among 64 low-level values of FE (=5%) and say 17 (lkiy) number of low values of average 

inventory levels among 64 low-level values of RP (=0.75). Thus, there is a dominance of the 

factor FE equal to 1.23 (=21/17) times that of RP. Accordingly, the weight corresponding to the 

value 1.23 (i.e., equal to 3.0) is inserted in the ANP matrix and consequently the de-fuzzified 

value (=2.25) in the FANP matrix. 

 

 

Table A.3: Normalized Ci*, fuzzy terms, and degree of membership values for various 

combinations of ideal solution of KPIs for various organizations in TOPSIS process  

 

Ideal Solution 

Combinations 

O1 O2 O3 

Ci* Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 

LLML 0.7998 H 0.002 0.7714 H 0.286 0.6955 H 0.955 

LLLL 1.0000 EH 1.000 0.9684 EH 0.316 0.5300 M 0.700 

LLLM 0.8643 EH 0.643 1.0000 EH 1.000 0.3414 L 0.586 

LLMM 0.6380 H 0.380 0.7464 H 0.536 0.5892 M 0.108 

LMLM 0.8974 EH 0.974 0.8974 EH 0.974 0.6276 H 0.276 

LMLL 1.0000 EH 1.000 0.8584 EH 0.584 0.7092 H 0.908 

LMMM 0.5535 M 0.465 0.5046 M 0.046 0.8598 EH 0.598 

LMML 0.8073 EH 0.073 0.7032 H 0.968 0.9382 EH 0.618 

MLLM 0.6972 H 0.972 0.8848 EH 0.848 0.3520 L 0.480 

MLLL 0.9580 EH 0.420 1.0000 EH 1.000 0.6237 H 0.237 



MLMM 0.4934 M 0.934 0.6654 H 0.654 0.6159 H 0.159 

MLML 0.8108 EH 0.108 0.8155 EH 0.155 0.7673 H 0.327 

MMLM 0.3908 L 0.092 0.4835 M 0.835 0.4438 M 0.438 

MMLL 1.0000 EH 1.000 0.9644 EH 0.356 0.9138 EH 0.862 

MMMM 0.0693 EL 0.693 0.2024 L 0.024 0.6437 H 0.437 

MMML 0.7090 H 0.910 0.6447 H 0.447 1.0000 EH 1.000 

Ideal Solution 

Combinations 

O4 O5 O6 

Ci* Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 

LLML 1.0000 EH 1.000 0.8932 EH 0.932 0.7433 H 0.567 

LLLL 0.8628 EH 0.628 0.9492 EH 0.508 0.9254 EH 0.746 

LLLM 0.7635 H 0.365 0.8152 EH 0.152 0.9585 EH 0.415 

LLMM 0.7513 H 0.487 0.6893 H 0.893 0.6945 H 0.945 

LMLM 0.7864 H 0.136 0.8421 EH 0.421 1.0000 EH 1.000 

LMLL 0.8776 EH 0.776 0.9565 EH 0.435 0.9243 EH 0.757 

LMMM 0.7300 H 0.700 0.6265 H 0.265 0.6123 H 0.123 

LMML 1.0000 EH 1.000 0.8991 EH 0.991 0.7465 H 0.535 

MLLM 0.5751 M 0.249 0.6338 H 0.338 0.7641 H 0.359 

MLLL 0.8747 EH 0.747 0.9274 EH 0.726 0.8990 EH 0.990 

MLMM 0.6317 H 0.317 0.5492 M 0.508 0.5416 M 0.584 

MLML 0.9630 EH 0.370 0.8878 EH 0.878 0.7465 H 0.535 

MMLM 0.1680 EL 0.320 0.2902 L 0.902 0.4398 M 0.398 

MMLL 0.9240 EH 0.760 0.9701 EH 0.299 0.9182 EH 0.818 

MMMM 0.3709 L 0.291 0.2138 L 0.138 0.1689 EL 0.311 

MMML 0.8428 EH 0.428 0.7759 H 0.241 0.6286 H 0.286 

Ideal Solution 

Combinations 

O7 O8 O9 

Ci* Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 
Ci* 

Linguistic 

term 

Membership 

degree 

LLML 0.3152 L 0.848 0.9722 EH 0.278 0.8644 EH 0.365 

LLLL 0.1920 EL 0.080 0.7196 H 0.804 0.6703 H 0.703 

LLLM 0.8637 EH 0.637 0.7458 H 0.542 0.8945 EH 0.945 

LLMM 0.8249 EH 0.249 0.8647 EH 0.647 1.0000 EH 1.000 

LMLM 0.9778 EH 0.222 0.6966 H 0.966 0.6652 H 0.652 

LMLL 0.2231 L 0.231 0.7122 H 0.878 0.5516 M 0.484 

LMMM 1.0000 EH 1.000 0.8686 EH 0.686 0.9044 EH 0.956 

LMML 0.3415 L 0.585 0.9504 EH 0.496 0.7528 H 0.472 

MLLM 1.0000 EH 1.000 0.6283 H 0.283 0.8624 EH 0.624 

MLLL 0.3957 L 0.043 0.7815 H 0.185 0.7683 H 0.317 

MLMM 0.9607 EH 0.393 0.8070 EH 0.070 1.0000 EH 1.000 

MLML 0.4654 M 0.654 1.0000 EH 1.000 0.9736 EH 0.264 

MMLM 1.0000 EH 1.000 0.2594 L 0.594 0.4776 M 0.776 

MMLL 0.5236 M 0.764 0.8230 EH 0.230 0.7101 H 0.899 

MMMM 1.0000 EH 1.000 0.5694 M 0.306 0.6760 H 0.760 

MMML 0.5123 M 0.877 0.8803 EH 0.803 0.7925 H 0.075 

 


