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Abstract 

The operational aircraft maintenance routing problem (OAMRP) determines the route for each individual 

aircraft while incorporating operational maintenance considerations. This problem is significant for airlines 

as it determines the routes to be flown in real life. Most studies incorporate particular operational 

maintenance requirements, like restrictions on the total number of days between two successive 

maintenance checks, while neglecting other considerations. Such neglected considerations include 

restrictions on the total cumulative flying time, restrictions on the total number of takeoffs, the workforce 

capacity and the working hours of the maintenance stations. This can result in the generation of routes that 

are not feasible for implementation in reality. In this paper, we study OAMRP, with two objectives. First, 

to propose a model that considers all operational maintenance requirements, and for this purpose, we 

formulate a mixed integer linear programming (MILP) model by modifying the connection network. The 

proposed model is solved using commercial software for small size problems. Second, to develop a solution 

algorithm that solves the model efficiently and quickly while tackling medium and large-scale problems. 

The performance of the proposed solution algorithm is assessed based on real data obtained from EgyptAir. 

The results demonstrate high quality solutions and significant savings in computational time. The 

experiments were extended for two reasons. First, to compare the performance of the proposed solution 

algorithm with existing solution methods. Second, to test the effect of incorporating the operational 

requirements on profit. The results show that the proposed algorithm outperforms existing methods, like 

compressed annealing (CA), in producing better solution quality in much shorter computational time. In 

addition, the results reveal that considering the maintenance workforce capacity improves the profitability 

of the airline. Such outcomes provide evidence that the proposed model and solution method have great 

potential for solving the actual OAMRP. 

Keywords: Air transportation, Aircraft routing problem, Airline operations, Integer programming. 

1. Introduction

In the last decade, the development of the aviation industry has shown radical economic growth. Similarly, 

passenger demand is currently blooming and showed an increase of 5.2% from 2012 to 2013 (ICAO, 2014), 

and was predicted to grow by 31% from 2012 to 2017 (IATA, 2014). Despite this pleasing situation for 

airlines, they have a great challenge in assigning more flights to their aircraft in order to cope with the 

demand growth, while meeting the operational regulations. Managing any increased number of flights while 

keeping the aircraft well maintained is a difficult operation for the airline industry. For example, in 2010, 

65000 U.S. airline flights could not take off because the aircraft did not receive proper maintenance, 

resulting in a $28.2 million penalty cost against 25 U.S. airlines (Stoller, 2010). This investigation also 
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showed the importance of maintenance since it was a cause, factor, or finding in 18 accidents, involving 43 

deaths and 60 injuries. In this regard, the aircraft maintenance routing problem (AMRP), which is the main 

focus of this study, is very significant to airlines in that it generates maintenance feasible routes for each 

aircraft flown.  

AMRP is one of the most studied problems in the aviation literature with two main focuses: tactical and 

operational. Regarding the tactical side, it aims to generate specific rotations for each aircraft in the fleet, 

while neglecting many of the operational maintenance constraints. The generated rotations are repeated by 

each aircraft in the fleet. Using a single rotation for each aircraft is not applicable due to not considering 

operational maintenance constraints. Thus, AMRP is studied with more operational focus, which aims to 

specify maintenance feasible routes for each aircraft in the fleet. A route is maintenance feasible when it 

satisfies the operational maintenance requirements, which are the restrictions on the total cumulative flying 

time, number of maintenance operations every four days, restrictions on the total number of take-offs, the 

working hours and the workforce capacity of each maintenance station.  

In this paper, we focus on the operational side of AMRP, and our aim is twofold. Firstly, to develop an 

OAMRP model that considers all the operational maintenance constraints in a single model. For this 

purpose, a new MILP is proposed for OAMRP. Secondly, to propose an effective solution algorithm that 

can solve the OAMRP while tackling medium and large-scale instances that cannot be solved using 

CPLEX. The performance of the proposed algorithm is validated with respect to exact solutions obtained 

from CPLEX for small size problems, whereas the best upper bound is used to assess the performance while 

solving medium and large-scale problems. To demonstrate the importance of the proposed algorithm over 

existing solution methods, we conduct a comparison between our proposed algorithm and one of the 

existing solution methods, called compressed annealing. In addition, the proposed OAMRP is modified so 

as to be as similar to those found in the literature. Then, a comparison is conducted between these two 

versions to capture the implications on profit after considering the maintenance workforce capacity 

constraints.   

The rest of the paper is organized as follows. Section 2 presents the literature review on AMRP and the 

contribution of this study. In section 3, we describe the OAMRP and the new MILP formulation proposed. 

The effective solution algorithm is described in section 4. Section 5 covers the comparison between our 

proposed model and the models proposed in the literature. In section 6, the computational experimental 

results for real cases are provided. Conclusions to the study are given in section 7. 

 

2. Literature review and contribution 

2.1 literature review 

In this section, we briefly present and discuss some of the existing models regarding AMRP. In the 

literature, the focus of AMRP studies can be classified as being either tactical or operational. Regarding the 

tactical side, the main aim is to generate specific rotations for each aircraft in the fleet, while neglecting 

many of the operational maintenance constraints. The operational side, on the other hand, aims to specify 

each aircraft’s route beside taking into account the operational maintenance constraints, in order to 

determine the routes to be flown in real life. There are four main operational maintenance constraints that 

should be considered while tackling the OAMRP. First, each aircraft should undergo maintenance once 

every four days. Second, the cumulative flying time between two successive maintenance operations should 

not exceed the maximum flying time allowed for each aircraft. Third, the total number of take-offs between 

two successive maintenance operations should not exceed the maximum number of take-offs allowed for 

each aircraft. The first three constraints are mandated by the Federal Aviation Administration (FAA) 

(Haouari et al., 2012). Lastly, for each maintenance station, the number of aircraft to be maintained should 

not exceed the workforce capacity of the maintenance station. Also, the working hours of each maintenance 

station should be considered. 

Focusing on the tactical side of AMRP, (Kabbani & Patty, 1992) formulated AMRP as a set-partitioning 

model to find feasible routes or lines of flight (LOF) for 3-day AMRP, while the maintenance operations 

were assumed to be carried out overnight. The use of (LOF) was expanded by (Gopalan & Talluri, 1998) 
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in order to solve the k-days AMRP. They developed a polynomial time algorithm in order to determine 

maintenance feasible routes for aircraft for 3-day AMRP. The proposed algorithm was used to solve the 

static and dynamic formulations of the problem, where the routes were assumed to be fixed or not fixed, 

respectively. The 2-day AMRP formulation of the problem was shown to be NP-Hard when the routes were 

not fixed. (Talluri, 1998) developed an effective heuristic to solve the 4-day AMRP, which was shown to 

be NP-hard even when the routes were fixed. (Clarke et al., 1997) adopted lagrangian relaxation to solve 

their proposed model that aimed at finding feasible maintenance rotations that could yield the maximum 

through value. The through value can be defined as the additional profit gained through connecting some 

specific flights. More recently, (Liang et al., 2011) developed a new rotation-tour time-space network for 

AMRP and proposed a new integer linear programming (ILP) model according to their network. The 

proposed model was solved using commercial software. The authors neglected the flight assignment to each 

individual aircraft and assumed that the maintenance was performed overnight. 

Based on the operational side of AMRP, which is called OMARP, (Sriram & Haghani, 2003) presented an 

ILP model that considered only two among the four maintenance constraints: one maintenance visit every 

four days and the workforce capacity constraints. The authors adopted Origin-Destination (OD) pairs, 

similar to LOF. It was assumed that the OD pairs were already determined, and the maintenance operations 

were performed overnight. The proposed model aimed to assign each aircraft to routes with an objective of 

minimizing both the maintenance cost and other costs incurred during the re-assignment process. An 

effective heuristic was proposed, and the model was solved in a reasonable computational time when 

compared with CPLEX. The authors also extended their model and considered the cumulative flying hours; 

however, the authors did not attempt to solve it because of its high complexity. It is worth mentioning that 

the extended model was quite simple compared to our model proposed in this paper. (Sarac et al., 2006) 

formulated OAMRP as a set-partitioning model that considered only maximum flying hours and workforce 

capacity as maintenance constraints and neglected the rest. Since the set-partitioning formulation produces 

an exponential number of feasible routes, the authors adopted column generation as a solution technique. 

(Haouari et al., 2012) developed a non-linear model for OAMRP, while considering three maintenance 

constraints simultaneously. These constraints were: one visit every four days, the maximum flying hours, 

and the maximum number of take-offs. Workforce capacity constraints were also considered in their model, 

but were relaxed during the computational results. The authors linearized their model by using a 

reformulation-linearization technique that provided high quality solutions while solving the daily version 

of OAMRP. (Başdere & Bilge, 2014) developed an ILP model for OAMRP, while considering the 

maximum flying hours as a maintenance constraint. The proposed model was solved by using both branch-

and-bound (B&B) and compressed annealing (CA). The authors reported that CA outperformed B&B for 

large-scale problems and could find feasible solutions in minutes. Recently, (Eltoukhy et al., 2017a) 

developed an OAMRP model that considered only the maximum flying hours and the workforce capacity 

as maintenance constraints. More details regarding the above AMRP models are illustrated in Table 1. 

Table 1: Summary of the literature for AMRP. 

 

Author/s 

 

 

Year 

 

Planning 

horizon 

 

Network 

 

Model 

formulation 

 

Objective  

 

Solution procedure 

Computational 

study 

Data Airline 

(Kabbani & 

Patty) 

1992 3D - SP Min total cost Developed heuristic RL American 

(Clarke et 

al.) 

1997 NA TSN ATS Max through value Lagrangian relaxation 

and subgradient 
optimization 

RL U.S. 

(Talluri) 1998 4D - ET Finding feasible 

routes 
3-day algorithm and 

Polynomial time 
algorithm 

NA - 

(Gopalan & 

Talluri) 

1998 3D CN ET Finding feasible 

routes 
Polynomial time 

algorithm 

RL - 

(Sriram & 
Haghani) 

2003 W CN ILP Min maintenance 
and re-assignment 

cost 

Hybrid of random 
search and depth first 

search 

G - 
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(Sarac et 
al.) 

2006 D CN SP Min number of 
unused legal flying 

hours 

Branch and price 
approach 

RL U.S. 

(Liang et 

al.) 

2011 D TSN NF Min the connection 

cost and 
maintenance cost 

CPLEX callable 

library version 10.0. 

RL U.S. 

carrier 

(Haouari et 

al.) 

2012 D CN NLP Finding feasible 

routes 

CPLEX 12.1 RL U.S. 

(Başdere & 
Bilge) 

2014 W CN ILP Max utilization of 
Remaining flying 

time 

1st: branch-and-bound 
2nd: Compressed 

annealing heuristic 

RL - 

Planning horizon: daily (D), 3-day (3D), 4-day (4D) or weekly (W). Network: connection network (CN) or time-space network (TSN). Model 
formulation: network flow (NF), integer linear programming (ILP), Euler tour (ET), asymmetric traveling salesman (ATS), set-partitioning (SP) or 

nonlinear programming (NLP). Used data: real life (RL) or generated (G). non-available (NA). 

While many research studies focused only on AMRP, as mentioned above, other research studies focused 

on integrating AMRP with other airline scheduling phases such as the flight scheduling problem (FSP), the 

fleet assignment problem (FAP), and the crew scheduling problem (CSP). The papers by (Barnhart et al., 

1998), (Zeghal et al., 2011), (Haouari et al., 2011), and (Dong et al., 2016) aimed at integrating FAP and 

AMRP. On the other hand, the integration between AMRP and CSP appeared in the work by (Klabjan et 

al., 2002), (Cohn & Barnhart, 2003), (Mercier et al., 2005), (Weide et al., 2010), (Dunbar et al., 2014) and 

(Díaz-Ramírez et al., 2014). There were some attempts to integrate three phases. For example, FSP, AMRP, 

and CSP received attention from (Mercier & Soumis, 2007). In addition, (Sherali et al., 2013) and (Gürkan 

et al., 2016) introduced integration for FSP, FAP, and AMRP. Moreover, some scholars were interested in 

integration between FAP, AMRP, and CPP, as shown by (Salazar-González, 2014) and (Cacchiani & 

Salazar-González, 2016). For a recent survey regarding FSP, FAP and CSP, we refer interested readers to 

the recent review paper by (Eltoukhy et al., 2017b).   

The airline industry is often faced by disruptions and unexpected circumstances. This motivates researchers 

to solve AMRP while considering these disruptions, as appeared in the work by (Ben Ahmed et al., 2017), 

(Hu et al., 2015), and (Zhang et al., 2015). 

From the above work, we can see that there is no AMRP model that considers the three operational 

maintenance requirements besides the workforce capacity and the working hours of the maintenance 

stations in a single model. This paper attempts to fill this gap by considering all these issues in a single 

model and to develop an efficient solution algorithm that can handle medium and large-scale test instances. 

To our best knowledge, our proposed model is the first one that considers all the mentioned issues in a 

single model.     

2.2 Contribution 

The focus of this paper is the operational side of AMRP and the contribution of this work is as follows. 

Firstly, from the literature, we can see that the set-partitioning or the set covering based formulations are 

commonly used, in which all the possible feasible routes should be generated. However, a drawback of this 

approach is that the number of generated feasible routes grows exponentially with the number of flights, 

which results in a significant increase in the model complexity. In this paper, in contrast to the set-

partitioning approach that needs a sophisticated solution approach, we propose a formulation that uses a 

polynomial number of variables and constraints, which can easily handle real and large-scale problems. 

Secondly, it is also observed that most of the OAMRP models considered some maintenance constraints 

while neglecting the rest. To our best knowledge, the models by (Barnhart et al., 1998) and (Haouari et al., 

2012) are the only models that considered three maintenance constraints (one maintenance visit every four 

days, maximum flying hours and maximum number of take-offs). However, these studies have not 

considered the workforce capacity constraints, except the model by (Haouari et al., 2012) who considered 

these constraints, however the authors relaxed them in their computational experiments. Imagine, if, for 

instance, the model neglects the workforce capacity and schedules four aircraft for maintenance in a station 

with insufficient workforce capacity. It is highly probable that the waiting time of some of the aircraft will 

be prolonged in receiving maintenance. This waiting time can be avoided if more hands and/or resources 
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are deployed to handle the excess traffic, resulting in additional cost being incurred for not considering the 

workforce capacity. On the other hand, it is observed that most of the OAMRP models do not pay attention 

to the working hours of the maintenance stations (e.g. opening and closing time). This results in aircraft 

arriving at times outside the working times of the maintenance stations, leading to a long waiting time for 

the aircraft till the maintenance station is operational. This situation causes cancellation of subsequent 

scheduled flights and additional cost will be incurred to recover these flights. Therefore, the viability of the 

workforce capacity and the working hours of the maintenance stations necessitate their addition to the 

OAMRP. Since our polynomial formulation is scalable compared to the set-partitioning formulations, all 

the operational maintenance requirements besides the workforce capacity and the working hours of the 

maintenance stations can be considered in one model. These features strengthen the applicability of the 

proposed model in actual practice. In addition to these contributions, we propose an efficient solution 

method, which generates high quality solutions for large-scale test instances in a short computational time, 

allowing the model to handle real situations in the airline industry. 

3. The model  

Given a schedule of flight legs, our proposed OAMRP aims to generate maintenance feasible routes to be 

flown by each aircraft. The objective function of the proposed model is to maximize the total potential 

profit, which is the difference between the through value and the penalty cost. Through value is the revenue 

that comes from the through connects which attract the passengers. On the other hand, the penalty cost is 

the extra cost to the airlines in neglecting the maintenance workforce capacity. 

3.1 Modified connection network 

The connection network is one of the commonly used networks for AMRP (Gopalan & Talluri, 1998; 

Haouari et al., 2012). The nodes of the network represent the flight legs, whereas, the arcs represent the 

possible connections between those flight legs. As mentioned earlier, the proposed OAMRP model 

considers all the maintenance constraints and determines when and where each aircraft should undergo 

maintenance operations. To do so, initially, the specific number of maintenance visits for each aircraft is 

determined based on the overall number of flying hours in the schedule, the available number of aircraft, 

and the maximum flying time for each aircraft. Then, we assign that specific number of maintenance visits 

to each aircraft in the fleet. Before each maintenance operation, the operational constraints should be 

considered and monitored. In order to keep covering the flight legs and assigning maintenance operations 

simultaneously, we need to add other arc and node types. Therefore, the connection network is slightly 

modified to include two types of nodes and three types of arcs, as shown in Figure 1. Starting with the node 

set, it includes the maintenance station node set (𝑀𝑇) besides the flight leg node set (𝑁𝐹). On the other 

hand, the arc set is modified to include another two arc sets, which are the maintenance arc set (𝑀𝐴𝐼𝑁𝑇) 

and the auxiliary arc set (𝐴𝑈𝑋), besides the ordinary arc set (𝑂𝑅𝐷). In the original connection network and 

our modified network, the ordinary arc 𝑜𝑟𝑑(𝑖, 𝑗) ∈ 𝑂𝑅𝐷 is used to connect flight legs 𝑖 and 𝑗, connect flight 

legs and source node at the beginning of the route construction, and connect flight legs and sink node at the 

end of the route construction. On the other hand, in our modified network, the maintenance arc 

𝑚𝑎𝑖𝑛𝑡(𝑖, 𝑚) ∈ 𝑀𝐴𝐼𝑁𝑇 is incorporated in the network in order to connect flight leg 𝑖 and maintenance 

station 𝑚, whereas the auxiliary arc 𝑎𝑢𝑥(𝑚, 𝑗) ∈ 𝐴𝑈𝑋 is added to connect maintenance station 𝑚 and flight 

leg 𝑗. The auxiliary arc allows going back to use the ordinary arcs after finishing the maintenance 

operations. 

One of the obvious question that might be asked is, “what is the interpretation of the source and sink nodes, 

and how does the connection network capture the origin airports and the destination airports”. Actually, the 

source and sink nodes are artificial or dummy nodes, and they are incorporated in the network not to 

represent any real aspect, such as the origin or the destination airports, but to help the mathematical model 

in initiating and completing the aircraft route construction (Başdere & Bilge, 2014). At the beginning, we 

formulate a constraint by using the source node to ensure route initiation for the aircraft, then, the aircraft 

move throughout the network nodes. Finally, to ensure route completion for the aircraft, we formulate 
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another constraint with the help of the sink node. To clarify how the connection network captures the origin 

airports and the destination airports, we need to mention here that there are two representations for the flight 

leg in the connection network (Liang & Chaovalitwongse, 2009). The first representation of the flight leg, 

as shown in the left-hand side of Figure 2, consists of three items; the origin airport node, the destination 

airport node, and the flight arc that connects the origin and destination nodes. Recently, to simplify this 

representation, the previous three items were replaced by a single node, which represents the flight segment 

or leg, including its origin airport, destination airport, arrival time, departure time, and flight duration 

(Başdere & Bilge, 2014). This simple representation, as shown in the right-hand side of Figure 2, motivates 

us to consider it in our connection network.  
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Figure 1: Modified connection network representation. 
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Figure 2: The two representations of the flight leg 
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3.2 The mathematical model formulation 

In this section, a multi-commodity network flow based MILP formulation for our OAMRP is presented. In 

the network, each aircraft represents a separate commodity circulated under three main decision variables. 

These decision variables are 𝑥𝑖𝑗𝑘𝑣, 𝑦𝑖𝑚𝑘𝑣, 𝑧𝑚𝑗𝑘𝑣, which represent ordinary arcs, maintenance arcs, and 

auxiliary arcs, respectively. The decision variable 𝑅𝑇𝐴𝑀𝑘𝑣 is cast to determine when the auxiliary arcs can 

be used after finishing the maintenance operation. Each maintenance station has its own workforce capacity, 

and when the number of assigned aircraft to the maintenance station exceeds its workforce capacity, the 

airline has to pay a penalty cost to let the maintenance station call in extra hands so that the excess number 

of aircraft can be served. To handle this situation, the decision variable 𝐸𝑁𝑂𝐴𝑚 is incorporated in the model 

to help in calculating the number of the aircraft that exceeds the maintenance workforce capacity, so that 

the penalty cost can be easily determined.   

Before presenting the proposed model, we specify its scope as follows: 

• The planning horizon of the proposed model is 4-day. This horizon is selected due the following 

reasons. Firstly, airlines tend to repeat flight schedules every 4 days, in order to ease the 

requirement of satisfying one maintenance visit every 4 days for the aircraft, as mandated by FAA. 

Secondly, the 4-day horizon is commonly used in the literature (Feo & Bard, 1989; Talluri, 1998). 

Thirdly, the 4-day horizon permits different flight schedules each day, whereas the daily horizon 

assumes repeating the flight schedule each day. Practically, airlines permit variations on the flight 

schedule each day to cope with the demand fluctuation of different flight legs (Eltoukhy et al., 

2017b). Therefore, the 4-day horizon is more practical than the daily horizon in handling different 

flight schedules each day, so that our proposed model can handle real flight schedules. It should 

be noted that the 4-day horizon can be considered as a cyclic schedule in one case, if the same 

flights planned in the 4 days, with different flights from one day to another, are repeated every four 

days. Lastly, extending the planning horizon beyond 4-day, such as 5 or 6 days, or even weekly 

horizons, produces routes that are susceptible to disruptions. Therefore, based on the previous 

observations, we stick with the 4-day horizon to be consistent with the existing research and 

practice.   

• The model only considers existing maintenance stations and there is no recommendation for 

constructing new stations. 

• The maintenance stations are located in the hub airports. 

• The number of workforce teams in each maintenance station is deterministic. 

• All the maintenance operations discussed in this paper are Type A maintenance checks. 

To formalize the representation of the proposed OAMRP, we first define the notations that are frequently 

used throughout this paper, before giving the detailed formulation. First, we start by listing the sets and the 

indices associated with each set as follows. 

, :i j NF   Set of flight legs. 

:k K  Set of aircraft. 

:m MT  Set of maintenance stations. 

:a A  Set of airports. 

{1,2,..., }:v V  Average number of maintenance operations that should be performed on each 

aircraft during the planning horizon. 

{ , }:o t  Dummy source and sink nodes of the network.  

Next, the parameters are defined as follows. 

:iDT  Departure time of flight leg 𝑖. 

:iAT   Arrival time of flight leg 𝑖. 
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:TRT   Turn-around time, which is consumed for getting passengers off, unloading 

the luggage, changing the gate, boarding, loading the luggage, and fueling the 

aircraft. 

:iaO   Origin binary indicator of flight leg 𝑖 such that 1iaO =  if the origin of flight 

leg 𝑖 and the airport 𝑎 are the same, and 0 otherwise.  

:iaD  Destination binary indicator of flight leg 𝑖 such that 1iaD = if the destination 

of flight leg 𝑖 and the airport 𝑎 are the same, and 0 otherwise. 

:iFT  Flight duration of flight leg 𝑖. It should be noted that 
iFT is different from 

i iAT DT−  due to the time difference between different countries as the 

departure and arrival times are given based on the local time at the location 

the event is taking place.  

:ijb  Through value of the connection between flight legs 𝑖 and 𝑗. 

max :T  Maximum flying time between two successive maintenance operations. 

max :C  Maximum number of take-offs between two successive maintenance 

operations.  

:mMP  Number of workforce teams that is available in maintenance station 𝑚. Note 

that each team can serve only one aircraft. Therefore, 
mMP  can also reflect 

the maximum number of aircraft that can visit station 𝑚 

:mOT  Opening time for maintenance station 𝑚. 

:mET  Closing time for maintenance station 𝑚. 

:maMb  Maintenance binary indicator of maintenance station 𝑚 such that 1maMb =  

if the maintenance station 𝑚 is located at airport 𝑎, and 0 otherwise. 

:MAT  Duration of a Type A maintenance check. Usually, this ranges from 7 to 9 

hours as it involves visual inspection of major systems such as landing gear, 

engines and control surfaces (Haouari et al., 2012; Başdere & Bilge, 2014). 

Based on this observation, we assume that 8MAT = hours. It should be 

pointed out that this assumption is consistent with the data collected from 

EgyptAir. 

:KT  Total number of aircraft used to cover the flight legs. 

:V  The average number of maintenance operations that should be performed on 

each aircraft, which is calculated by using the following rule; 

max/ ( )i

i NF

V FT T KT


=   

:M  a considerably large number. 

:mPC  Penalty cost paid by the airline for each aircraft assigned to maintenance 

station 𝑚, such that the aircraft assignment exceeds the maintenance 

workforce capacity of the maintenance station.  

The decision variables are: 

{0,1}:ijkvx   

 

=1 if flight legs 𝑖 and 𝑗 are covered by aircraft 𝑘 before performing 

maintenance operation number 𝑣 and 0 otherwise.  

{0,1}:imkvy   

 

=1 if aircraft 𝑘 covers flight legs 𝑖 then perform maintenance operation 

number 𝑣 at maintenance station 𝑚 and 0 otherwise.    

{0,1}:mjkvz   

 

=1 if aircraft 𝑘 covers flight legs 𝑗 after performing maintenance operation 

number 𝑣 at maintenance station 𝑚 and 0 otherwise. 
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0:kvRTAM   Time an aircraft 𝑘 completes maintenance operation number 𝑣 and is able to 

resume covering the flight legs. This decision variable is not required to be an 

integer as the time might be fractional. 

0:mENOA   Number of aircraft that exceeds the workforce capacity of maintenance station 

𝑚.  

Based on the above notations, the mathematical model of OAMRP can be written as follows: 
Model 1  

ij ijkv m m

k K i NF j NF v V m MT

Max b x ENOA PC
    

−     
 

(1) 

s.t. 

{ }

1ijkv imkv
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                                       i NF    
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j NF m MT

x y
 

+ =                                                               ,k K v V     (3) 
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i NF m MT

x z
 

+ =                                                                 ,k K v V     (4) 
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x z x y
   

+ = +                 , ,i NF k K v V                                                  (5) 
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y z
   

=                                        ,m MT k K                                                (6) 

(1 )i j ijkvAT TRT DT M x+ −  −                                   , , ,i NF j NF k K v V                                                    (7) 

ijkv ia ja

k K a A

x D O
 

                                                          , ,i NF j NF v V                                                  (8) 

(1 )i m imkvAT MAT ET M y+ −  −                               , , ,i NF m MT k K v V                                                    (9) 

(1 )m i imkvOT AT M y−  −                                   { }, , ,i NF o m MT k K v V                                                    (10) 
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                                                  , ,i NF m MT v V                                                  (11) 
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                                                   , ,m MT j NF v V                                                  (12) 

( )
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 +                              ,k K v V                                                (13) 
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max

{ }

ijkv

i NF o j NF

x C
 

                                                       ,k K v V                                                (15) 

max

{ }

j ijkv

i NF o j NF

FT x T
 

                                                  , 1k K v   =                                             (16) 

maxj ijkv j mjkv

i NF j NF m MT j NF

FT x FT z T
   

+                       , /{1}k K v V                                                (17) 

1imkv

i NF m MT v V

y
  

                                                               k K                                              (18) 

{ }

imkv m

i NF o k K v V
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                                                   m MT                                              (19) 

{ }

m imkv m

i NF o k K v V

ENOA y MP
  

 −                               m MT   (20) 

{0,1}ijkvx                                                                           , , ,i NF j NF k K v V         (21) 

{0,1}imkvy                                                                     , , ,i NF m MT k K v V         (22) 

{0,1}mjkvz                                                                       , , ,m MT j NF k K v V         (23) 

0kvRTAM                                                                     ,k K v V     (24) 

 0mENOA                                                                        m MT   (25) 

The objective function (1) is the maximization of the total profit, which is the through value (revenue) 

minus the total penalty cost. Note that the total penalty cost depends on two terms. Firstly, the number of 

aircraft that exceeds the maintenance workforce capacity of station m , known as 
mENOA . Secondly, the 

cost paid for each aircraft that exceeds the maintenance workforce capacity of station m  (known as 
mPC

). For
mENOA , it is determined according to constraints (20).  For 

mPC , it is assessed practically as 

follows. When the maintenance station experiences excess traffic, it tries to avoid significant delay for 

that traffic by assigning overtime for the teams serving in different shifts. In other words, when the excess 

traffic occurs during the daytime shift, the maintenance station might call in the teams that will serve 

during the overnight shift, and vice versa. It should be noted that each aircraft can be served by only one 

called team. For example, if the maintenance station has two aircraft as excess traffic, it needs to call in 

two teams. Based on this observation, the number of called teams reflects the number of aircraft that 

exceeds the maintenance workforce capacity, so the number of called teams can be expressed as 
mENOA

. These called teams should be compensated for their overtime load. For this purpose, the maintenance 

station imposes an extra cost on the airline to cover the cost of the overtime load. This extra cost is called 

the penalty cost. To assess the value of penalty cost
mPC , we need to check whether the team, which 

serves the aircraft, is called from the daytime shift to the overnight shift or vice versa. Discussion with 

experts at EgyptAir revealed that the variation of 
mPC  is usually not significant. Based on this 
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observation, for simplicity, we assume that 
mPC  is fixed. To summarize, this penalty cost reflects the 

cost paid by the airline to the maintenance station as compensation for the called workforce teams so that 

the excess aircraft traffic can receive maintenance without significant delay. Constraints (2), (3), and (4) 

describe the coverage constraints. Constraints (2) indicate that each flight leg must be covered exactly by 

one aircraft. The constraints in (3) ensure that each aircraft starts its route, whereas constraints (4) 

guarantee the route completion. 

In order to keep the circulation of the aircraft throughout the network, the balance constraints (5) and (6) 

are formulated. Constraints (5) keep the balance when aircraft covers the flight leg nodes. These 

constraints indicate that if the aircraft covers the flight leg either by using the ordinary arc or the auxiliary 

arc, then the next flight must be covered either by using the ordinary arc or the maintenance arc. Same as 

constraints (5), constraints (6) keep the balance when the aircraft visits the maintenance station. 

Constraints (6) ensure that if the aircraft covers the flight leg and visits the maintenance station by usage 

of the maintenance arc, then the aircraft must leave the maintenance station and cover the next flight by 

using the auxiliary arc.  

In order to connect two flight legs by using same aircraft via the ordinary arc, that connection should be 

feasible in terms of time and place considerations, as described by constraints (7) and (8). Constraints (7) 

indicate the time constraints such that the aircraft can cover two successive flight legs, if the arrival time 

of the first one plus the turn-around time is less than or equal to the departure time of the second one. To 

clarify constraints (7), we give a simple example. Suppose that we have three flight legs; the first flight 

arrives an airport at 
1 4AT = pm, and the others depart the same airport at 

2 2DT = pm, and 
3 7DT = pm. 

We have one aircraft that should connect these flight legs, given that the 1TRT = hour. In this case, we 

have two scenarios, connecting the first and the second flights, or connecting the first and the third flights. 

Regarding the first scenario, if we apply constraints (7), we will find that left-hand side of the inequality 

is positive, therefore, the right-hand side should be larger. This can be achieved only when 0ijkvx = , 

which makes the right-hand side equals the large number M. So, for this scenario, the connection is not 

valid as the arrival time of the first flight plus the turn-around time is larger than the departure time of the 

second flight. Regarding the second scenario, it is the opposite of the first scenario, in which the 

connection is valid. Regarding the place constraints in (8), they ensure that the aircraft can cover two 

consecutive flight legs, if the destination of the first one and the origin of the second one are the same.  

To prepare a maintenance visit for the aircraft after covering a flight leg using the maintenance arc, we 

should consider the place and time issues for the last covered flight leg and the potentially visited 

maintenance station. These considerations are summarized by constraints (9), (10), and (11). Constraints 

(9) and (10) describe the time issue by considering the working hours of the maintenance stations.  

Constraints (9) guarantee that the aircraft can visit the maintenance station, if the arrival time of the last 

covered flight leg plus the duration of Type A maintenance check, is less than or equal to the closing time 

of the maintenance station. Similarly, Constraints (10) ensure that the aircraft can visit the maintenance 

station, if the arrival time of the last covered flight leg, is larger than or equal to the opening time of the 

maintenance station. Note that the arrival time for the source node is zero. The place constraints in (11) 

ensure that the aircraft can visit the maintenance station, if the destination airport of the last covered flight 

leg and the location of maintenance station are the same. 

After finishing the maintenance operation, the aircraft should move from the maintenance station and 

cover the next flight leg by using the auxiliary arc. For this purpose, constraints (12), (13), and (14) are 

cast, which represent the time and place considerations for the maintenance station and the next flight to 

be covered. Constraints (12) constitute the place constraints such that the aircraft can cover the next flight 

leg after performing the maintenance, if the origin airport of that flight leg and the location of the 

maintenance station are the same. The time constraints in (14) guarantee that the aircraft can cover the 

next flight leg after the maintenance operation, if the departure time of the next flight leg is larger than or 

equal to the ready time of aircraft 𝑅𝑇𝐴𝑀𝑘𝑣, which is determined according to constraints (13). 
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It should be noted that the coverage and balance constraints do not force an aircraft that needs maintenance 

to undergo maintenance operations. Therefore, the operational restrictive constraints (15), (16), (17), and 

(18) are cast. Constraints (15) guarantee that the number of take-offs between maintenance operations 

does not exceed the maximum number of take-offs. Similarly, constraints (16) and (17) are the restrictive 

constraints regarding the accumulated flying times between maintenance operations. Constraints (18) are 

formulated to ensure that the number of maintenance visits by each aircraft is larger than or equal to one. 

Since the planning horizon in our study is 4-day, and constraints (18) ensure that the number of 

maintenance visits for each aircraft is larger than one, so the first operational maintenance constraint (one 

visit every four days) is satisfied. 

To prepare appropriate maintenance visits for the aircraft, it is very important to check whether the 

maintenance station has sufficient workforce capacity or not. Therefore, the workforce capacity 

constraints are cast in constraints (19), to avoid the overcapacity problem, ensuring that the number of 

maintained aircraft does not exceed the maintenance workforce capacity. To calculate the number of 

aircraft that exceeds the maintenance workforce capacity, the constraints (20) are cast. Finally, the 

constraints (21) - (25) define the domain of the decision variables.  

The main differences between model 1 and existing models in the literature are as follows: 

• Consideration of the workforce capacity of the maintenance stations, as shown by Eq. (19), and 

inclusion of the penalty cost for assigning aircraft to a maintenance station without sufficient 

workforce capacity. This workforce capacity consideration was neglected in the model of 

(Barnhart et al., 1998), and was relaxed in the computational experiments by (Haouari et al., 

2012). This would cause assigning aircraft to maintenance stations with insufficient workforce 

capacity, resulting in prolonging the waiting time for the aircraft. This can be avoided if more 

hands and/or resources are deployed to handle the excess traffic, resulting in an additional penalty 

cost. So, considering workforce capacity helps airlines to avoid that situation, which results in a 

reduction in the penalty cost. 

• Consideration of the working hours of the maintenance stations, as shown by Eqs. (9) and (10). 

This point has not received attention in the previous models (Sriram & Haghani, 2003; Sarac et 

al., 2006; Haouari et al., 2012; Başdere & Bilge, 2014). Ignoring this consideration results in a 

long waiting time for the aircraft in receiving maintenance service, as the aircraft might arrive at 

a time outside the working hours of the maintenance station. This situation can cause cancellation 

of subsequent scheduled flights and additional cost will be incurred to recover these flights. So, 

considering this point helps airlines to avoid flight cancelations, leading to a reduction in the 

operational costs. 

• Most of the models assumed, for simplicity, that the maintenance operations are only carried out 

overnight (Liang et al., 2011; Sriram & Haghani, 2003). In contrast to this assumption, in reality, 

the aircraft can receive maintenance during the working hours of the maintenance stations, which 

covers 24 hours of the day, including the daytime shift and the overnight shift. If we follow the 

assumption that maintenance operations are only carried out overnight, while neglecting the 

daytime shift, it means that the aircraft that need maintenance, when they arrive at night, they can 

receive maintenance during the overnight shift without any delay. Meanwhile, when the aircraft 

arrive at morning, they will be stuck at the airport till night before receiving maintenance 

operations. This results in a long waiting time for these aircraft, so that subsequent flights to be 

covered by the aircraft will be cancelled. To avoid this situation, we consider the working hours 

of the maintenance stations, which helps us to add the daytime shift besides the overnight shift. 

So, the aircraft that arrive in the morning can receive maintenance during the daytime shift. This 

results in avoiding a long waiting time till the overnight shift, leading to a reduction in the number 

of cancelled flights.   
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3.3 Complexity analysis 

In the literature, the complexity of the MIP models can be expressed based on the number of decisions 

variables and constraints (Liang et al., 2011; Dong et al., 2016). Using such an approach reveals that, in 

our model, the number of decision variables is 
2

( 2 1)K V NF NF MT MT  +  + + , whereas the 

generated constraints are at most 
2

( )O NF K MT V   . For more clarification about our model 

scale, we describe an example using the smallest test instance in this paper. This test instance includes 40 

flight legs, 8 aircraft, 4 maintenance stations, and each aircraft is maintained twice. To handle this test 

instance using our model, there are 
28*2*(40 2*40*4 1) 4 30740+ + + = decision variables, and the 

number of constraints is at most 
2(40 *8*4*2)O .  

Based on the previous description, the model space complexity (number of decision variables) can be 

expressed as 
2

( )O K V NF  . These decision variables help NF flight legs to be covered by K

aircraft, exactly once, and each aircraft visits maintenance station V times. This is the typical description 

of the partition problem (Sarac et al., 2006; Başdere & Bilge, 2014). Since our model includes a partition 

problem that is known as NP-complete, our model is NP-hard.  

To demonstrate the scale advantage of our model formulation, we compare the space complexity of our 

model 
2

( )O K V NF  with that of set-partitioning partitioning formulation (2 )
NF

O . From this 

comparison, we can see that our polynomial model formulation is more scalable than the set-partitioning 

formulation. This is because the number of decision variables in our model is much less than the possible 

number of feasible routes generated by set-partitioning formulation, which can reach up to a few million 

for the smallest test instance used in this paper.  

Through comparison, our polynomial model formulation has a significant advantage in terms of model 

scalability, which is very important in practical implementation. However, it does not mean that our model 

can be directly handled by using commercial optimization software like CPLEX in a reasonable 

computational time. Our preliminary results reveal that the small size test instances can be efficiently 

solved by CPLEX. However, CPLEX fails to even find a feasible solution for medium and large-scale test 

instances. Therefore, we develop an efficient algorithm to solve real and large-scale problems in a 

reasonable computational time, as described in the following section.  

4. Solution approach 

Before describing our solution method, we present the solution methods used to solve the existing 

OAMRP. In the literature, there are two main solution methodologies. Firstly, formulating the OAMRP 

model as a set-partitioning problem and applying column generation to solve the model, as shown by 

(Sarac et al., 2006). Solving our model using column generation requires formulating the model as a set-

partitioning model, in which all the possible feasible routes should be generated. Since the number of 

generated feasible routes of the set-portioning formulation grows exponentially with the number of flight 

legs, it is challenging to solve medium and large-size test instances in a reasonable computational time. 

As we mentioned earlier, our target is to solve real and large-size test cases, therefore, using column 

generation is not appropriate for adoption in our study. This is confirmed through the work by (Sarac et 

al., 2006), where the authors used column generation as a solution method, which could not solve large 

test cases and only handled a small test case with 175 flight legs. The second solution methodology is in 

formulating the OAMRP model as a multi-commodity network flow model and applying different tools 

to solve the model, as shown by (Sriram & Haghani, 2003), (Haouari et al., 2012) and (Başdere & Bilge, 

2014). Starting with the study by (Sriram & Haghani, 2003), the authors proposed two models. The first 

model was solved by designing an effective algorithm which was a combination of depth search and 

random search, but it could not handle large-scale test instances and it handled only small test cases with 

58 flight legs. Applying that algorithm to solve our model is not useful since our target is to solve real and 
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large-scale test problems that contain up to 400 flight legs. It should be noted that EgyptAir, that provided 

the data for our study, usually offers around 120 different flight legs. This number enables EgyptAir to 

operate around 400 flight legs every four days. The second model by (Sriram & Haghani, 2003) was only 

proposed but not yet solved. It is noteworthy that a second model that was not yet solved is even more 

simple compared to that one proposed in our study. It is simple because it neglects the maximum number 

of take-offs between two successive maintenance operations and the minimum number of visits within 

four days, resulting in reduction in the number of constraints and decision variables, whereas our model 

considers all the operational constraints. Moving to the work by (Haouari et al., 2012), their proposed 

model used CPLEX 12.1, which is also adopted to solve our model, but only for small size test instances. 

Lastly, (Başdere & Bilge, 2014) solved their model by using B&B for small-scale test instances, whereas 

the large-scale instances were handled by using CA. Since using B&B is time consuming and sometimes 

fails to provide feasible solutions for medium and large-scale problems, selecting B&B is not a promising 

idea. On the other hand, using CA is a good idea for solving simple models, but when the model’s variables 

and constraints increase, as in our model, it is difficult to use CA as a solution method.  

From the above list, we can see that most of the OAMRP models in the literature were relatively easier to 

be solved because these models were formulated as multi-commodity network flow models and the 

number of decision variables and constraints were relatively low, which made these models easy to solve. 

However, it is much trickier to solve our proposed model due to two points: (1) considering all the 

operational considerations add more decision variables and constraints to the model. The model is a multi-

commodity network flow model with side constraints, which is NP-hard, so the computational time is 

expected to be long as the number of decision variables and constraints increase. (2) the original structure 

of the multi-commodity network flow model can be reflected by the decision variable 𝑥𝑖𝑗𝑘𝑣 and its 

corresponding constraints, as described by Eqs. (2)- (5), (7) and (8). This original structure of multi-

commodity network flow model can be easily handled. Since our model considers all the operational 

requirements, new decision variables (𝑦𝑖𝑚𝑘𝑣, 𝑧𝑚𝑗𝑘𝑣, 𝑅𝑇𝐴𝑀𝑘𝑣, and
mENOA ) are created in the model, 

resulting in new terms being added to Eqs. (2)- (5). Meanwhile, new constraints are cast to indicate all 

operational considerations, and to force the aircraft to undertake the maintenance operation, as described 

by Eqs. (6) and (9)- (20). Actually, these decision variables and maintenance constraints seriously destroy 

the original structure of the multi-commodity network flow model and make it difficult to be solved. These 

two points are confirmed through the research work by (Sriram & Haghani, 2003). The authors tried to 

use the most popular random search method, namely, genetic algorithms as a solution method. It was 

discovered that genetic algorithms produced poor solution quality in a long computational time, especially 

for medium and large-scale test instances.  

Based on the above observations, we propose an efficient solution algorithm for solving model 1. We 

noticed from the model structure that it is difficult to build routes that maximize the profit and satisfy all 

the maintenance requirements simultaneously. Therefore, our algorithm, first, prepares sub-routes that 

maximize the profit, while considering the coverage, balance, time and place constraints, as shown by 

Eqs. (2) -(8). Then, second, the algorithm keeps trying to construct complete routes using the pre-

determined sub-routes, while considering all the maintenance constraints described by Eqs. (9) -(20). The 

steps of the algorithm are explained as follows: 

Step 0: Prepare a list that represents the aircraft (𝐾) and make another list to represent the flight leg 

nodes (𝑁𝐹). 

Step 1: Determine the average number of maintenance operations (𝑉) that should be performed on 

each aircraft in the fleet by using the following rule: 

max/ ( )i

i NF

V FT T KT


= 
 

(26) 

Step 2: Split the list of 𝑁𝐹 into two lists. The first list is called the star list (𝑆𝐿), and contains the 

through connects, thus this list is given high priority during the route construction. The second 

list is called the normal list (𝑁𝐿). Since NL contains the remaining flight legs, it is given low 
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priority during route construction. To do the split, for each pair of flight legs in the 𝑁𝐹 list, 

the connecting time between each pair is calculated. If the connecting time of the pair has a 

through value, then this pair is a through connect. Therefore, this pair should be stored in 𝑆𝐿 

and should be removed from 𝑁𝐹. Otherwise, store the rest of the flight legs in 𝑁𝐿. 

Step 3: Use 𝑆𝐿 to construct another list called the sub-routes list (𝑆𝑅𝐿). Each sub-route is constructed 

by connecting two pairs from 𝑆𝐿. The two pairs can be connected, especially when the ending 

flight of the first pair and the starting flight of the second pair are the same. Each constructed 

sub-route is stored in 𝑆𝑅𝐿. Of course, not all the pairs can be connected, so the remaining 

non-connected pairs should be stored in 𝑆𝑅𝐿. So, by the end of this step, we have three lists, 

𝐾, 𝑆𝑅𝐿, and 𝑁𝐿. 

Step 4: Initialize the number of iterations=1. 

Step 5: Pick the 𝑘th aircraft from the 𝐾 list. If the list is empty, then go to step 8, otherwise go to step 

6. 

Step 6: Start to construct the complete route for the 𝑘th aircraft by using backward and forward 

insertion approaches, while considering the maintenance constraints shown in Eqs. (9) -(20). 

In order to conduct the backward insertion approach, we follow the following sub-steps: 

Step a: Pick one element from 𝑆𝑅𝐿 randomly, because it contains pairs with high priority. If 

𝑆𝑅𝐿 is empty, then low priority 𝑁𝐿 is used for picking that element. This picked 

element is considered the first part of the constructed route. 

Step b: For the picked element, identify the starting flight leg, which is either the first flight 

leg if the element is picked from 𝑆𝑅𝐿, or it is the element itself if it is selected from 

𝑁𝐿. 

Step c: Search for suitable elements to be inserted backwardly to (before) the picked element. 

These elements might be either sub-routes from 𝑆𝑅𝐿 or flight legs from 𝑁𝐿. Firstly, 

we scan through 𝑆𝑅𝐿 due to its high priority. As we mentioned earlier, if 𝑆𝑅𝐿 is 

empty, we use the second option by scanning through 𝑁𝐿. The scan is conducted 

while considering constraints described by Eqs. (7) and (8). If both 𝑆𝑅𝐿 and 𝑁𝐿 are 

empty, then go to step i, otherwise go to step d. 

Step d: Identify the list of potential elements. Then, calculate the connecting time and the 

corresponding through value for each potential element. In the case of no potential 

elements, then go to step h, otherwise go to step e. 

Step e: Select the element with the highest through value. Then, check whether the 

maintenance constraints stated in Eqs. (15) -(18) are violated or not. If these 

constraints are violated, then go to step f, otherwise go to step g. 

Step f: Prepare an appropriate maintenance visit by considering the working hours and 

location constraints of the maintenance stations stated in Eqs. (9) -(11), and the 

workforce capacity constraints described by Eq. (19). After finishing the maintenance 

operation, pick suitable element from 𝑆𝑅𝐿 or 𝑁𝐿, while considering the constraints 

described by Eqs. (4) -(6) and Eqs. (12) -(14). Then, go to step b.    

Step g: Add the selected element to the route and remove that element from 𝑆𝑅𝐿 or 𝑁𝐿. 

Step h: Update the starting leg, then go to step c. 

Step i: Terminate the backward insertion approach. 

After conducting the backward insertion, we start conducting the forward insertion approach. 

First, we identify the ending flight leg for the element picked in step b. The ending flight leg 

is either the last flight leg if the element is picked from 𝑆𝑅𝐿, or it is the element itself if it is 

selected from 𝑁𝐿. Second, we follow the same steps (c)-(i) but insert the suitable elements 

forwardly to the element that is picked in step a. 

Step 7: Set the end to the route constructed for the 𝑘th aircraft, remove the aircraft 𝑘 from the 𝐾 list, 

and go to step 5. 
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Step 8: Calculate the solution of the current iteration, compare with the solution of the previous 

iteration, and save the best solution. 

Step 9: Check whether the stopping criteria is satisfied or not. If it is not satisfied, then increase the 

iteration number, update the empty lists of K, 𝑆𝑅𝐿, and 𝑁𝐿 by using the same lists produced 

by step 3, and go to step 5. If the stopping criteria is satisfied, then terminate the algorithm. 

Figure 3 presents flow chart of this solution algorithm procedure. This procedure is iterated until satisfying 

the stopping criteria, which are as follows: (1) the current solution reaches the exact solution, while 

handling small-scale test instances. (2) the current solution reaches the best upper bound, while handling 

medium and large-scale test instances. (3) the number of iterations exceeds the maximum number of 

iterations. In all test instances, the maximum number of iterations is set at 1000. 

One of the obvious questions after using the solution algorithm is how to evaluate the performance of the 

proposed solution algorithm. To make this evaluation, we propose comparing the solution obtained from 

our efficient algorithm with the optimal solution generated by CPLEX, especially for small size test 

instances. In the case of medium and large size test instances, we propose using the best upper bound (𝑈𝐵) 

obtained from CPLEX as a criterion to assess the performance of the proposed solution algorithm, since 

CPLEX fails to even produce a feasible solution within reasonable computational time. To obtain the 𝑈𝐵, 

we set the maximum CPU time for CPLEX to be 6 hours, since longer time does not provide a better 

bound.  
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Figure 3: Flowchart of the solution algorithm 
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5. Comparison between model 1 and models in the literature 

To test the implications on profitability after considering the constraints of the workforce capacity and the 

working hours of maintenance stations, a comparison between our model (model 1) and existing models 

was conducted. For this purpose, we modified model 1 to be similar to the models in the literature, such 

as the work by (Haouari et al., 2012) and (Başdere & Bilge, 2014). We call the modified model, model 2, 

which considers the same objective function and constraints as model 1, except relaxing the constraints 

of the working hours and the workforce capacity of the maintenance stations, as in Eqs. (9), (10), (13), 

and (19).  

To solve model 2, we applied the same algorithm presented in section 4 with a small modification, since 

it solves model 1 efficiently. This modification includes relaxing the constraints of the workforce capacity 

and the working hours of the maintenance stations, throughout the whole algorithm.   

6. Computational results 

In this section, we present the computational results obtained from the proposed algorithm and those 

obtained directly from solving the MILP formulation. Note that the MILP formulation is solved using 

CPLEX 12.1, which is a common commercial optimization software. Since the nature of the OAMRP is 

combinatorial and the computational time increases enormously even for medium size test instances, it is 

difficult to solve all the test problems to optimality using commercial software, such as CPLEX and 

LINDO. Therefore, we were not able to obtain exact solutions for all the test problems. This computational 

study aims to verify the effectiveness of the proposed solution algorithm while solving real and large 

OAMRP. The experiments of this study were carried out using real flight schedule data sets from 

EgyptAir.  

6.1 Test instances and experimental setup  

The test instances used in our experiments contain ten real cases acquired from EgyptAir. In particular, 

our ten cases are constructed by extracting ten flight schedules in which each schedule is covered by a 

different fleet. Detailed information about the test instances are presented in Table 2. 

For all test instances, EgyptAir stated that the turn-around time 𝑇𝑅𝑇 is 45 minutes, the maximum flying 

time  𝑇𝑚𝑎𝑥 is 40 hours, and the time required for the maintenance operation is 8 hours. Also, it is assumed 

by EgyptAir that the through value occurs if the connecting time between two consecutive flight legs, 

covered by the same aircraft, is between 45 minutes and 1.5 hour. In this study, all the through values are 

provided by EgyptAir. Also, the penalty cost is assumed to be 500 for each aircraft. 

Before conducting our experiments, it should be noted that, to assess the average performance of the 

proposed algorithm, the runs of the proposed algorithm should be replicated several times. For this 

purpose, for all test cases, our algorithm runs are replicated thirty times, as any additional replications do 

not bring better results. All the test cases were carried out on an Intel i7 2.50 GHz laptop with 8 GB of 

RAM memory running on the Windows 10 operating system. All algorithms in this study were coded in 

MATLAB R2014a.   

Table 2: Characteristics of all test cases. 

Test cases Number of flight legs Fleet size Maximum number of  

take-offs 

Number of airports Maintenance 

Stations 

Case 1 40 8   10 4 4 

Case 2 48 7 7 5 4 

Case 3 64 8 7 7 4 

Case 4 96 14 10 13 6 

Case 5 120 13 10 8 6 

Case 6 160 11 15 10 6 

Case 7 200 15 15 8 9 

Case 8 240 26 15 19 9 

Case 9 296 30 15 26 9 

Case 10 400 42 15 28 18 
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6.2 Performance characteristics while solving small size test instances 

Table 3 shows the comparison of the results obtained from CPLEX and the proposed solution algorithm 

replications, while solving the first eight cases presented in Table 2. The first two columns of the Table 

represent the results of CPLEX, which are the exact or optimal solution (𝑍∗) and the computational time 

𝐶𝑃𝑈(𝑠). The remaining columns of the Table summarize the results of the proposed algorithm. The 𝑍𝑏𝑒𝑠𝑡 

column reports the best solution of the proposed algorithm replication, whereas the �̅� and 𝜎𝑧 columns 

represent the average and standard deviation summaries of the replication results. The 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   column 

records the average computational time. It should be noted that 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is not the average time to find the 

best solution, as the best solution is reported after finishing the thirty replications. The computational time 

of the proposed algorithm is obtained from the MATLAB’s internal calculation function. In order to assess 

the performance of the proposed algorithm, we use the optimality gap (%Difference) as a performance 

indicator. %Difference is computed by (𝑍∗ − �̅�)/ 𝑍∗.  

Table 3: performance characteristics of CPLEX and proposed algorithm while solving small size cases 

Test 

cases 

CPLEX Proposed algorithm %Difference 

𝑍∗ 𝐶𝑃𝑈(𝑠) 𝑍𝑏𝑒𝑠𝑡  �̅� 𝜎𝑧 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Case 1 16,667 1.44 16,667 16,667 0 0.28 0 

Case 2 2,333 3.08 2,333 2,333 0 0.30 0 

Case 3 5,333 18.19 5,333 5,333 0 0.25 0 

Case 4 10,000 53.06 10,000 10,000 0 0.26 0 

Case 5 15,000 243.80 15,000 14,909 62.27 0.84 0.61 

Case 6 22,000 372.05 22,000 21,852 95.92 1.56 0.67 

Case 7 42,667 633.88 42,667 42,542 139.70 1.61 0.29 

Case 8 34,083 9130.19 34,083 33,899 183.45 2.64 0.54 

 

By looking at the results in Table 3, we can see that 𝑍𝑏𝑒𝑠𝑡 and �̅� of the proposed algorithm are equal to 

the 𝑍∗for the first four cases. As the number of the flights and aircraft increase, 𝑍𝑏𝑒𝑠𝑡 still equals 𝑍∗, but  

�̅� deviates from 𝑍∗ by at most 0.67%, as shown in the last four cases. By looking at the standard deviation, 

we note that there is no solution variability for the first four cases, but this variability slightly increases 

for the rest of cases. This confirms the stability and reliability of the proposed algorithm. 

The computational time for both approaches in Table 3 reveals that the proposed algorithm is much faster 

than CPLEX since it produces the solution within, at most, 3 seconds while CPLEX needs up to 2.5 hours 

to solve the same problem, as shown in case 8. Figure 4 shows a comparison of the computational time 

for all eight cases while using the two approaches. 

 
Figure 4: Comparison of the computational time while using CPLEX and proposed algorithm 
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So, it is clear from the results discussed in this section that, for small sized test instances, the proposed 

algorithm outperforms CPLEX in terms of computational time, showing significant time saving. 

Regarding the solution quality, the proposed algorithm produces high quality solutions since the average 

solution deviates from the optimal solution by at most 0.67% and the best solution always equals the 

optimal solution. 

Solving test cases with sizes of up to 240 flights and 26 aircraft, is not large-scale enough to discuss the 

efficiency of the proposed algorithm; however, with the small size test instances, we are able to compare 

the performance with the exact methods as shown in this section. In the medium and large size test 

instances, CPLEX fails to even produce a feasible solution due to the size of problem, so computing the 

optimality gap becomes immeasurable. Therefore, comparing the proposed algorithm with CPLEX in 

large-scale instances is not meaningful as the comparison always favors the proposed algorithm. On the 

other hand, testing the proposed algorithm in large size test instances is necessary to show its applicability 

to handle real life problems. For this purpose, we perform computational experiments using medium and 

large size test instances in section 6.3. To evaluate the performance of the proposed algorithm while 

solving the medium and large cases, we propose using the gap (%GAP), which is the difference between 

the best upper bound (𝑈𝐵) obtained from CPLEX and the average solution obtained from the proposed 

algorithm.  

6.3 Performance characteristics while solving medium and large size test instances 

In this section, the proposed algorithm is tested on larger instances to assess its applicability and scalability 

to solve real life problems. The experiments in this section are carried out by using cases 9 and 10. It 

should be noted that CPLEX was run for 6 hours to obtain the 𝑈𝐵. The summary of the proposed algorithm 

results can be seen in Table 4, including the same statistics as in Table 3.  

We can see from Table 4 that the performance of the proposed algorithm still produces high quality 

solutions in a reasonable computational time. Starting with the solution quality, it is noted that 𝑍𝑏𝑒𝑠𝑡 

reaches 𝑈𝐵 in all cases, whereas �̅� deviates from 𝑈𝐵 with a %GAP of around 0.66%. It is worthy of note 

that the %GAP produced in all cases is less than 0.7%. Regarding the computational time, clearly the 

proposed algorithm is very fast. For the largest test case, which is case 10, it is solved in few seconds. 

These experiments show that the proposed algorithm can be used efficiently to solve real life problems, 

as it handles large size test instances and provides profitable solutions in a very short computational time. 

By looking at the standard deviation, it indicates low solution variability, which confirms the stability and 

reliability of the proposed algorithm even when solving large size test instances. 

Table 4: performance characteristics of the proposed algorithm while solving medium and large size cases 

Test cases 𝑼𝑩 Proposed algorithm %GAP 

𝑍𝑏𝑒𝑠𝑡  �̅� 𝜎𝑧 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Case 9 60,333 60,333 59,997 325.77 2.57 0.55 

Case 10 72,583 72,583 72,097 448.00 9.22 0.66 

 

6.4 Performance analysis 

In the previous sub-sections, we present the performance of the proposed algorithm while solving real life 

test instances. Presenting the performance of the proposed algorithm is insufficient to demonstrate its 

advantage over the existing solution methods in the literature. For this purpose, we conducted experiments 

to compare the performance of the proposed algorithm with another two existing solution methods, called 

CPLEX and compressed annealing (CA) that appeared in the work by (Haouari et al., 2012) and (Başdere 

& Bilge, 2014), respectively. CA is selected for this comparison because it showed a good performance 

in solving large-scale test instances, as reported by (Başdere & Bilge, 2014). So, it provides a good test 

for our proposed algorithm.  

As described in section 3, our model 1 has more features than existing models in the literature. So, 

allowing model 1 to be solved by the above mentioned three methods will favour our proposed algorithm, 
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as our algorithm is tailored to solve model 1. Therefore, for fair comparison, we use model 2 to be solved 

by the three methods because model 2 captures the same features as the existing models in the literature. 

For our proposed algorithm, it was modified in order to solve model 2, as stated in section 5. For the CA, 

we used the same procedures and parameter settings proposed by (Başdere & Bilge, 2014). The 

experiments in this section are carried out by using all cases presented in Table 2. The summary of results 

obtained from the three methods can be seen in Table 6, including the same statistics as in previous 

sections. 

Table 5: Performance characteristics of CPLEX, CA, and proposed algorithm when solving model 2. 

Test 
Cases 

CPLEX Compressed Annealing (CA) The proposed Algorithm 

𝑍∗ 𝐶𝑃𝑈(𝑠) 𝑍𝑏𝑒𝑠𝑡 �̅� 𝜎𝑧 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑍𝑏𝑒𝑠𝑡 �̅� 𝜎𝑧 𝐶𝑃𝑈(𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐼𝑀𝑃𝐶𝐴(%) 

Case 1 16,157 0.96 16,157 16,157 0 0.87 16,157 16,157 0 0.22 0 

Case 2 2,258 2.85 2,258 2,258 0 1.93 2,258 2,258 0 0.28 0 

Case 3 5,151 16.23 5,151 5,151 0 12.28 5,151 5,151 0 0.23 0 

Case 4 9,655 50.08 9,655 9,655 0 31.49 9,655 9,655 0 0.23 0 

Case 5 14,533 220.95 14,225 14,150 411.79 70.23 14,533 14,348 54.30 0.79 1.37 

Case 6 21,337 333.07 21,141 20,796 224.48 220.47 21,337 20,950 92.87 1.44 0.73 

Case 7 40,995 590.78 39,315 39,220 283.64 350.48 40,995 40,751 123.58 1.57 3.75 

Case 8 32,508 8598.32 31,283 31,099 430.69 780.09 32,508 32,441 160.28 2.50 4.13 

Case 9 -- -- 56,210 55,320 582.34 1528.23 57,452 57,321 289.74 2.33 3.49 

Case 10 -- -- 67,021 65,789 865.12 1768.37 69,158 68,853 440.52 8.78 4.45 

Note:  𝐼𝑀𝑃𝐶𝐴(%) = (�̅�𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − �̅�𝐶𝐴)/�̅�𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 

Regarding the comparison between the proposed algorithm and CPLEX, the results are almost same as 

the results reported in section 6.2. On the other hand, for the comparison between the proposed algorithm 

and CA, the proposed algorithm outperforms CA in terms of solution quality and computational time. 

Regarding the solution quality, both methods bring the same �̅� for small test instances, as in the first four 

cases. As the number of flight legs and aircraft increase, �̅� of the proposed algorithm outperforms �̅� of 

CA by about 1.37%, as in case 5, and this ratio increases gradually up to 4.45% in case 10. With respect 

to the computational time, the outperformance of the proposed algorithm over CA is not noticeable for 

the first five cases, but, for the rest of the test cases, the proposed algorithm is faster than CA. This is 

clearly shown in case 10 since the proposed algorithm produces the solution within, at most, 10 seconds 

while CA needs up to 30 minutes.  

The rationale behind the outperformance of the proposed algorithm over CA lies in the following points: 

• Solution quality: CA starts with an initial solution obtained from a simplified version of OAMR, 

which ignores the objective function and all the operational maintenance constraints. This results 

in the generation of infeasible routes with poor solution quality. In contrast to CA, the proposed 

algorithm starts with so-called sub-routes, as described in steps 2 and 3 of section 5. These sub-

routes include all the through connects that are the source of profit maximization, so that the profit 

of the generated sub-routes is already maximized, leading to a good solution quality.  

• Computational time: CA continues its procedures by concentrating on two tasks simultaneously; 

maximizing the profit and satisfying the operational maintenance constraints. This is very 

difficult, especially for large-scale test instances, because you can find a profitable route, but this 

route does not satisfy the operational maintenance constraints, and vice versa. This leads to the 

generation of a solution with poor quality in a long computational time. On the other hand, the 

proposed algorithm proceeds by focusing only on one task, which is connecting the generated 

sub-routes in such a way that the operational maintenance constraints are satisfied. This shortens 

the computational time significantly, and the profit of the obtained routes is already maximized.     

• Search mechanism: CA looks for a neighbourhood solution by using a swapping technique that 

considers only the connection feasibility (time and place issues). This technique is not efficient 

for two reasons. Firstly, it easily breaks the through connects, resulting in a profit minimization 

of the generated solution. Secondly, cutting two strings of the aircraft routes and swapping their 

tails can easily generate maintenance infeasible routes. Our proposed algorithm avoids the first 
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drawback by building sub-routes of through connects and makes them fixed, so it is rare to break 

the through connects and minimize the profit. Also, our proposed algorithm avoids the second 

drawback by using the forward and backward insertion approaches, as described in steps 6 of 

section 5. The advantage of these approaches is that they look for appropriate flights or sub-routes 

and insert them into the complete route, while considering the maintenance constraints. So, it is 

rare to violate the operational maintenance constraints. 

Therefore, it is clear from this section, that the proposed algorithm improves the results obtained by 

the existing solution methods. This echoes the importance of the proposed algorithm to be 

implemented in reality.   

6.5 Comparison between model 1 and model 2 

In this section, we report the results obtained from solving model 1 and model 2 while using the proposed 

algorithm. The aim of this section is to show the implication on profitability after considering the 

maintenance workforce capacity constraints. The statistics used in this section are �̅�1and �̅�2 that represent 

the average solution obtained from model 1 and model 2, respectively. Also, the improvement ratio 

(%𝐼𝑀𝑃) is used to show the effect of considering the workforce capacity constraints. Table 7 summarizes 

the results obtained while solving model 1 and model 2.  

Table 7: The average solutions obtained from model1 and model2. 

Test 

cases 

Model 1 Model 2 %𝑰𝑴𝑷
= (�̅�𝟏 − �̅�𝟐)/ �̅�𝟏 �̅�1 �̅�2 

Case 1 16,667 16,157 3.06 

Case 2 2,333 2,258 3.23 

Case 3 5,333 5,151 3.41 

Case 4 10,000 9,655 3.45 

Case 5 14,909 14,348 3.76 

Case 6 21,852 20,950 4.13 

Case 7 42,542 40,751 4.21 

Case 8 33,899 32,441 4.30 

Case 9 59,997 57,321 4.46 

Case 10 72,097 68,853 4.50 

In a close look at the results in Table 7, we can see that in all cases, model 1 provides better solutions than 

those obtained using model 2. This point is also interpreted by the %IMP that starts from 3.06% in case 1 

and increases up to 4.50% in case 10. The main reason behind this improvement is because of considering 

the workforce capacity, which helps planners avoid scheduling more aircraft to maintenance stations with 

insufficient workforce capacity. So, having no reason to ask for extra capacity, this invariably reduces the 

penalty cost. This situation results in reducing the total cost which in turns increases the profitability.   

7. Conclusions  

In this paper, we present a new MILP model for OAMRP while considering all the operational 

maintenance constraints along with an effective solution algorithm. In addition, the proposed model is 

modified to test the effect of considering the maintenance workforce capacity constraints on profitability. 

In terms of solution methods, first, we solve the model using commercial software (e.g. CPLEX) that can 

produce exact solutions for only small size test instances, with a long computational time. In order to 

avoid the long computational time, we propose an effective algorithm that can find high quality solutions 

quickly, for small and large test instances as well. In the small-scale test instances, the proposed algorithm 

produces best solutions that equal the exact solutions, whereas the average solutions deviate from 

optimality by at most 0.67%. Regarding the computational time, the proposed algorithm improves the 

computational time significantly, since it can find the solution within 3 seconds while CPLEX needs up 

to 2.5 hours to solve the problem. On the other hand, in the large-scale test instances, where CPLEX fails 

to even produce a feasible solution, the proposed algorithm can find the best solutions that equal the upper 
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bound, whereas the average solutions deviate from the upper bound by at most 0.66%. With respect to the 

computational time, it shows a very fast performance as the solution is found for the largest case in few 

seconds. 

The experiments in this study are extended for two reasons. Firstly, to compare the performance of the 

proposed solution algorithm with existing solution methods. The results show that the proposed algorithm 

outperforms the existing methods like compressed annealing (CA), in terms of solution quality and 

computational time. Secondly, to test the effect of considering the maintenance workforce capacity. The 

results show that these constraints increase the profitability by 4.50% for the largest case. 

There are number of future directions that can be proposed. The OAMRP in this paper is solved while the 

planning horizon is only 4 days. It will be interesting to solve a weekly version of OAMRP, where the 

number of flights and aircraft increase significantly. Also, designing an efficient solution methodology to 

solve the weekly version would be another research direction. In addition, the proposed OAMRP is 

deterministic, so proposing a stochastic model for OAMRP would be a very fruitful idea. Robustness is a 

pro-active way to design a flexible plan that can better withstand uncertain events. The airline industry is 

most likely faced by disruptions and unforeseen circumstances, so it would be a promising idea to develop 

robust models so as to provide appropriate solutions in such circumstances.  
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