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A B S T R A C T

In this article, we combined the Alternated Charting Statistic (ACS) scheme with the traditional attribute np chart
to control mean vectors of bivariate and trivariate normal processes. With the bivariate ACS scheme in use (the
trivariate scheme is similar), the two quality characteristics (X, Y) are controlled in an alternating fashion. If the
current sample point is the number of disapproved items with respect to the X discriminating limits, then the
next sample point will be the number of disapproved items with respect to the Y discriminating limits. The
strategy of using the X discriminating limits to classify the items of one sample and the Y discriminating limits to
classify the items of the next sample instead of using jointly the X and Y discriminating limits to classify the items
of all samples might be compensated with the adoption of larger samples. In other words, the proposed bivariate
(trivariate) ACS chart might work with samples as large as 2n (3n); n is the sample size of the competing
Hotelling and Max D charts. The proposed chart resembles an np chart with alternated charting statistic; because
of that, it is called the ACS mp chart. The ACS mp chart always outperforms the Max D chart and, in comparison
with the standard T2 chart and with the combined Max D− T2 chart, it has a better overall performance. With
the ACS scheme, the items are classified as approved or disapproved regarding only one of the two quality
characteristic, X or Y; with the Max D chart the complexity increases, once the items are classified into four
different categories: approved (disapproved) regarding both, the X and Y discriminating limits, or approved
(disapproved) regarding the X discriminate limits and disapproved (approved) regarding the Y discriminate
limits. The T2 chart always requires the measurement of the two quality characteristics. The additional ad-
vantage of inspecting only one quality characteristic of the sample items lies in the fact that the XY-correlation
doesn’t need to be estimated.

1. Introduction

Control charts are monitoring tools specially designed to detect
assignable causes. The X and the T2 charts are the standard tools to
control the mean and the mean vector, however, in some applications,
the expensive and time-consuming measurements might be avoided
with the use of attribute charts. The attribute charts work with the
number of nonconforming sample items; the construction of inspecting
devices such as “go/ no-go” gauges allow, with minimum effort, to
classify the sample items as conforming or nonconforming. The study of
attribute charts and the charts with attribute and variable inspecting
stages, specially designed to control the process parameters (mean,
mean vector, variance, and covariance matrix) is growing fast.

Wu and Jiao (2008) introduced the idea of monitoring the process

mean without measuring the X quality characteristic. Following the
work of Wu and Jiao (2008), Wu, Khoo, Shu, and Jiang (2009) pro-
posed a new type of np control chart to control the process mean. The
distinctive feature of their chart is the way the sample items are clas-
sified; the usual defective/non-defective classification is replaced by the
conforming/nonconforming one. A nonconforming item is not ne-
cessarily defective. Ho and Costa (2011) proposed an np chart to control
a wandering mean. The mean wanders around its target position, even
in the absence of assignable causes. After the assignable cause occur-
rence, it starts wandering around an off-target position. Ho and Quinino
(2013) used an attribute chart to control the process variability. Their
np chart offers an economic advantage over the variance chart when the
cost of classifying the sample items as approved or disapproved is ap-
proximately 25% lower, on average than the cost of measuring the
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sample items. Sampaio, Ho, and de Medeiros (2014) proposed a double
sampling scheme to control the process mean; the sample is split into
two subsamples, the first one is inspected by attribute and, depending
on the number of disapproved items in this first subsample, the items of
the second subsample are inspected by variable. The Sampaio’s chart
exhibits good performance in signaling mean shifts lower than one
standard deviation. Haridy, Wu, Lee, and Rahim (2014) considered an
attribute inspection for monitoring both, the process mean and the
process variance. Aslam, Azam, Khan, and Jun (2015) and Aslam, Khan,
Aldosari, and Jun (2016) proposed the mixed control chart, where the
sample items are classified as defective or not defective and, depending
on the number of defectives, the quality characteristic X of the sample
items are also measured. Quinino, Ho, and Trindade (2015) proposed
an attribute chart to control the process mean where each sample item
is classified as type 1, if its value is lower than the lower warning limit
(LWL), type 2 if its value is higher than the upper warning limit (UCL),
and type 3, if its value is higher than the LWL and lower than the UCL.

Ho and Quinino (2016) also considered a double sampling scheme
to control the process variability. The sample is split into two sub-
samples; the first one is inspected by attribute and, depending on the
length of items sequentially classified as approved or disapproved, the
items of the second subsample are inspected by variable and its var-
iance is used to decide the state of the process (in control or out of
control). Ho and Aparisi (2016) introduced the idea of monitoring the
process mean with the conventional np and X charts. If the disapproved
items in the sample exceed a threshold the same sample is also in-
spected by variable, and the sample mean is used to decide the state of
the process. The distribution of the sample mean depends on the
number of disapproved, because of that, the properties of their ATTR-
IVAR (attribute+ variable) chart is not simple to obtain. Aparisi and
Lee Ho (2018) proposed the M-ATTRIVAR chart to monitor the mean
vector. At each sampling point, the M-ATTRIVAR works with an attri-
bute chart or with a variable chart: if the attribute chart gives a warning
signal, the control is tightened because it is replaced by the variable
chart. On other hand, if the variable chart doesn’t confirm the warning
signal, the control is relaxed with the return of the attribute chart.
Quinino, Bessegato, and Cruz (2017) extended the work of Quinino
et al. (2015), now a go-no-go gauge classifies the sample items in five
categories. Their monitoring statistic is a function of di (i=1, 2… 5),
the number of items in each category. The performance of their control
chart enhances with the number of categories, however, the difficulty
to deal with more than five categories doesn’t justify the gain in per-
formance. Following the same trend, Aparisi, Epprecht, and Mosquera
(2018), Mosquera, Aparisi, and Epprecht (2018) and Bezerra, Ho, and
Quinino (2018) classify the sample items in three categories. The charts
proposed by Aparisi et al. (2018) and by Mosquera, Aparisi, and Ep-
precht (2018) were designed to compete with the joint −X S2 charts,
and the chart proposed by Bezerra et al. (2018) was designed to com-
pete with the S2 control chart.

The idea of designing attribute charts to control the mean vector of
bivariate processes is recent. Ho and Costa (2015) classify the units of
the samples as first, second, and third class units. Their two monitoring
statistics are M=N1+N2 and W=N1+ 2N2, where N1 is the number
of sample units with a second-class classification and N2 is the number
of sample units with a third-class classification. The main conclusion is
that the synthetic charts based on M and W statistics require twice
larger samples to outperform the T2 chart. Melo, Ho and Medeiros
(2017b) proposed the Max D chart to control the mean of bivariate
processes. Their monitoring statistic is the Max D={Dx,Dy}, where
Dx= n11+ n10, and Dy= n11+ n01, with n11 being the number of
disapproved sample items with regard to both, the X and Y discriminate
limits, n10 (n01) being the number of disapproved sample items with
regard to the X (Y) discriminate limits. Melo, Ho, and Medeiros (2017a)
proposed the Max D-T2 chart to control mean vectors. The sample is
split into two subsamples; during the first stage, the Max D chart works
with the first subsample to decide if the process is in control or if the

inspection should go to the second stage. During the second stage, a T2

chart works with the second subsample to decide the state of the pro-
cess. In a recent paper, Machado, Ho and Costa (2018) investigated the
ability of the Max D chart in signaling changes in the bivariate covar-
iance matrix.

The paper is organized as follows. The ACS mp chart is introduced in
Section 2, including its properties. In Section 3, the ACS mp chart is
compared with the standard T2 chart, the Max D chart, and with the
combined Max D− T2 chart. A real illustrative example is given in
Section 4. Finally, in Section 5 we present the main conclusions.

2. The ACS mp chart

In this article, we combined the Alternated Charting Statistic (ACS)
scheme proposed by Leoni and Costa (2017) with the attribute np chart
to control mean vectors ′μ μ( ; )x y of bivariate normal processes. The
proposed bivariate ACS chart works with samples of size m≤ 2n, where
n is the sample size of the competing T2 and pure Max D charts. Ac-
cording to the ACS scheme, only one of the two quality characteristics
(X, Y) is measured in an alternating fashion. That is, if X was the chosen
quality characteristic to obtain the current sample point (given by the
number of disapproved items with regard to the X discriminate limits),
then Y will be the quality characteristic to obtain the next sample point
(given by the number of disapproved items with regard to the Y dis-
criminate limits).

As in Melo et al. (2017b), the disapproved item is not necessarily
nonconforming or defective, it is just an item with its ith quality
characteristic (i= x, y) beyond the lower and the upper discriminating
limits LD UD( ; )i i . The standardized discriminating limits are given by

= − = −SLD LD μ σ SUD UD μ σ[ ( )/ ; ( )/ ]i i i i i i0 0 , where ′μ μ( ; )x y0 0 is the in-
control mean vector, and σ σ( ; )x y are the standard deviations of the X and
Y quality characteristics. If the sample points −j={1, 3, 5,…} are,
according to the X discriminate limits, the number of disapproved
sample items, then the sample points −j={2, 4, 6,…} will also be the
number of disapproved sample items, but now with regard to the Y
discriminate limits. As the number of disapproved items from the odd
samples is associated with the xs values, and the number of disapproved
items from the even samples is associated with the ys values, the X and
Y correlation doesn’t affect the performance of the ACS mp chart.

The ACS mp chart can be used to control high-quality processes
where the occurrence of defective items is pretty low because the ACS
chart doesn’t work with defectives but with disapproved items, that
rarely are defectives. The discriminating limits are adjusted to give an
adequate in-control rate of disapproved items.

Fig. 1 illustrates the ACS mp control chart; the odd points are related
to the xs values and the even points are related to the ys values. The
control limit of the ACS chart is CL=D+0.5, that means, the ACS mp
control chart signals whenever the number of disapproved sample items
(d) exceeds D. The D value is a function of the false alarm risk, α:
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Fig. 1. The ACS mp chart.

R.C. Leoni, A.F.B. Costa Computers & Industrial Engineering 122 (2018) 273–282

274



∑= −

= < < ∼
= +

−( )α m
i p p p

SLD Z SUD Z

(1 ) , with,

Pr[ | N(0;1)]
i D

m
i m i

1
0 0 0

(1)

After the assignable cause occurrence, the in-control mean vector
= ′μ μμ ( , )x y0 0 0 changes to = ′μ μμ ( , )x y1 1 1 . The mean shift vector

= ′ = − − ′δ σ δ σ μ μ μ μδ ( , ) ( , )x x y y x x y y1 0 1 0 . The power of the ACS mp chart
depends on the quality characteristic in use to obtain the (d) value

∑= ⎛
⎝

⎞
⎠

−

= < < ∼ =

= +

−p
m
j p p p

SLD Z SUD Z δ i x y

(1 ) , with,

Pr[ | N( ;1)], ,

i
j D

m

i
j

i
m j

i

i

1
1 1 1

(2)

The speed with which the control charts signal is measured by the
Average Run Length – ARL. Expression (3) gives the ARLs of the ACS mp
chart, see Appendix for details.

=
− +

+ −
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p p
p p p p
4 ( )

2( )
x y

x y x y (3)

where pX (pY ) is the power of the ACS mp chart when the sample items
are classified according to the X (Y) discriminating limits.

The idea of working with only one quality characteristic per time, in
an alternating fashion, can also be applied to control the trivariate
mean vector ′μ μ μ( ; ; )x y z . The ARLs of the ACS mp chart for the trivariate
case is given by, see Appendix for details:
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where pX (pYor pZ) is the power of the ACS mp chart when the sample
items are classified according to the X (Y or Z) discriminating limits.

The seven steps for the implementation and use of the bivariate ACS
mp chart are:

• Step 1. Estimate the parameters of the X and Y distributions.

• Step 2. Determine the discriminating limits, UDx and UD .y

• Step 3. Determine the design parameters (m, CL).

• Step 4. Select the first sample and, by random, define the quality
characteristic to be inspected. If X is the quality characteristic go to
Step 5, otherwise go to Step 6.

• Step 5. The m sample items are classified as approved – disapproved
according to the discriminating limit UDx. Let (d) be the number of
disapproved items. If d < CL, wait for the next sampling point to
take a new sample of size m; after that, go to Step 6. Otherwise, if
d > CL, go to Step 7.

• Step 6. The m sample items are classified as approved – disapproved
according to the discriminating limit UDy. Let (d) be the number of
disapproved items. If d < CL, wait for the next sampling point to
take a new sample of size m; after that, go to Step 5. Otherwise, if
d > CL, go to Step 7.

• Step 7. Investigate the existence of assignable causes.

The steps for the implementation and use of the trivariate ACS mp
chart are pretty similar.

3. Comparing the charts performance

In this section, the average run length (ARL) is used to compare the
performance of the ACS mp chart with the performance of the standard
T2 chart and with the performance of theMax D chart proposed by Melo
et al. (2017b). When the process is in-control, the ARL measures the
rate of false alarms. A chart with a larger in-control ARL has a lower
false alarm rate than other charts. A chart with a smaller out-of-control
ARL has a better ability to detect process changes than other charts. For
a fair comparison, the three control charts were designed to have the
same in-control ARL (ARL=370), and m≤ 2n, where n is the size of
the samples when the T2 chart and the pure Max D chart are in use. The
m≤ 2n condition lies in the fact that, at each sampling point, the ACS
mp chart requires the inspection of only one quality characteristic; the
other bivariate charts always require the measurement of the two
quality characteristics.

Table 1
The ARL values for the ACS mp chart, Max D and the T2 chart with n=4.

ρ 0 0.3 0.5 0.8
UCL 11.827 2.5

3.5*
11.827 2.5

3.5*
11.827 2.5

3.5*
11.827 2.5

3.5*

SUD 1.4688
0.8714*

1.4680
0.8746*

1.4660
0.8685*

1.4533
0.8558*

δx δy SUD D m ACS mp T2 Max D T2 Max D T2 Max D T2 Max D

0.00 0.25 1.003929 3 5 150.32 202.04 155.28* 192.34 155.48* 172.07 155.64* 97.75 154.79*

0.00 0.50 1.003929 3 5 54.78 67.27 57.34 60.43 57.40 47.85 57.36 16.91 56.00
0.00 0.75 1.165320 3 6 17.98 23.32 22.41 20.24 22.42 14.98 22.36 4.51 21.65
0.00 1.00 0.761593 4 6 8.33 9.40 9.95 8.05 9.95 5.84 9.92 1.93 9.60
0.00 1.50 0.761593 3 6 2.93 2.57 3.01 2.25 3.01 1.76 3.00 1.05 2.93

0.25 0.25 1.003929 3 5 94.46 129.68 98.40* 156.96 98.97* 172.07 99.80* 191.19 102.47*

0.25 0.50 1.003929 3 5 45.16 51.83 47.39 64.09 47.76 67.27 48.20 51.83 49.03
0.25 0.75 1.003929 3 5 20.21 19.90 20.75 23.28 20.89 22.09 21.01 11.12 20.90
0.25 1.00 1.165320 3 6 7.87 8.51 9.63 9.36 9.68 8.24 9.70 3.47 9.52
0.25 1.50 1.165320 3 6 2.76 2.47 2.99 2.50 2.99 2.12 2.99 1.17 2.93

0.50 0.50 1.003929 3 5 29.79 27.71 31.29 39.80 31.77 47.85 32.35 59.66 33.96
0.50 0.75 1.003929 3 5 16.51 13.19 17.02 18.94 17.33 22.09 17.66 21.70 18.36
0.50 1.00 1.165320 3 6 7.17 6.50 8.79 8.76 8.93 9.40 9.05 6.50 9.17
0.50 1.50 1.165320 3 6 2.69 2.22 2.92 2.56 2.95 2.44 2.96 1.44 2.93

0.75 0.75 1.003929 3 5 11.51 7.74 11.79 11.91 12.13 14.98 12.48 19.90 13.36
0.75 1.00 1.165320 3 6 5.88 4.51 7.23 6.74 7.45 8.24 7.67 9.30 8.12
0.75 1.50 1.165320 3 6 2.53 1.90 2.77 2.42 2.83 2.57 2.87 1.90 2.89

1.00 1.00 1.165320 3 6 4.35 3.06 5.30 4.62 5.52 5.84 5.73 7.90 6.23
1.00 1.50 1.165320 3 6 2.26 1.61 2.51 2.12 2.61 2.44 2.68 2.40 2.79

1.50 1.50 1.165320 3 6 1.64 1.21 1.81 1.51 1.91 1.76 1.99 2.22 2.17
1.50 2.00 1.165320 3 6 1.30 1.05 1.30 1.15 1.35 1.24 1.38 1.31 1.45

2.00 2.00 1.282970 3 7 1.06 1.01 1.13 1.05 1.17 1.11 1.21 1.22 1.27
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Tables 1–3 present the bivariate ARLs of the ACS mp, the Max D and
the T2 charts. In all these tables, m is the minimum sample size the ACS
mp chart requires to outperform the Max D chart. The ARLs of the Max
D and the T2 charts are function of ρ, the correlation between X and Y
quality characteristics. In Tables 1–3, the (X, Y) variables were con-
sidered uncorrelated (ρ=0), or correlated with ρ=0.3, 0.5, or 0.7.

With the alternated charting statistic (ACS), the X observations are from
odd samples and the Y observations are from even samples or vice
versa, consequently, the number of disapproved sample items (d) is not
affected by the correlation between X and Y quality characteristics, see
Leoni and Costa (2017).

Following the assumptions adopted by Sampaio et al. (2014) and by

Table 2
The ARL values for the ACS mp chart, Max D and the T2 chart with n=5.

ρ 0 0.3 0.5 0.8
UCL 11.827 3.5 11.827 3.5 11.827 3.5 11.827 3.5
SUD 1.1176 1.1169 1.1153 1.1050

δx δy SUD D m ACS mp T2 Max D T2 Max D T2 Max D T2 Max D

0.00 0.25 0.761593 4 6 138.52 178.87 139.13 168.93 139.30 148.55 139.43 78.37 138.53
0.00 0.50 0.924175 4 7 40.12 51.83 46.07 46.09 46.12 35.76 46.07 11.85 45.04
0.00 0.75 1.282970 3 7 15.55 16.59 16.94 14.29 16.94 10.45 16.90 3.17 16.42
0.00 1.00 0.924175 4 7 6.62 6.50 7.37 5.56 7.37 4.06 7.35 1.50 7.16
0.00 1.50 1.044067 4 8 2.13 1.90 2.34 1.70 2.34 1.40 2.34 1.01 2.30
0.25 0.25 0.761593 4 6 85.36 107.62 85.82 133.69 86.39 148.55 87.15 167.76 89.51
0.25 0.50 0.924175 4 7 33.42 38.99 38.31 49.16 38.64 51.83 39.01 38.99 39.72
0.25 0.75 0.924175 4 7 13.73 14.04 15.80 16.55 15.92 15.66 16.01 7.70 15.95
0.25 1.00 0.924175 4 7 6.43 5.88 7.17 6.47 7.21 5.70 7.22 2.49 7.11
0.25 1.50 1.044067 4 8 2.11 1.84 2.33 1.86 2.33 1.62 2.33 1.06 2.30
0.50 0.50 0.924175 4 7 21.43 19.90 24.79 29.31 25.22 35.76 25.72 45.45 27.08
0.50 0.75 0.924175 4 7 11.26 9.16 12.99 13.33 13.25 15.66 13.51 15.37 14.09
0.50 1.00 0.924175 4 7 5.87 4.51 6.58 6.05 6.69 6.50 6.78 4.51 6.88
0.50 1.50 1.044067 4 8 2.06 1.68 2.28 1.90 2.30 1.82 2.31 1.21 2.29
0.75 0.75 0.924175 4 7 7.74 5.35 8.91 8.26 9.19 10.45 9.48 14.04 10.19
0.75 1.00 0.924175 4 7 4.82 3.17 5.42 4.67 5.60 5.70 5.77 6.43 6.13
0.75 1.50 1.044067 4 8 1.94 1.48 2.18 1.81 2.22 1.90 2.25 1.48 2.27
1.00 1.00 0.924175 4 7 3.58 2.22 3.99 3.24 4.17 4.06 4.33 5.46 4.71
1.00 1.50 0.924175 4 7 1.96 1.30 1.99 1.62 2.06 1.82 2.11 1.79 2.20
1.00 2.00 1.044067 4 8 1.38 1.05 1.26 1.12 1.28 1.14 1.29 1.05 1.30
1.50 1.50 0.924175 4 7 1.46 1.08 1.49 1.24 1.56 1.40 1.62 1.68 1.76
1.50 2.00 1.044067 4 8 1.15 1.01 1.16 1.05 1.19 1.10 1.22 1.14 1.26
2.00 2.00 1.282970 3 7 1.06 1.00 1.06 1.01 1.08 1.03 1.10 1.09 1.15

Table 3
The ARL values for the ACS mp chart, Max D and the T2 chart with n=6.

ρ 0 0.3 0.5 0.8
UCL 11.827 3.5

4.5*
11.827 3.5

4.5*
11.827 3.5

4.5*
11.827 3.5

4.5*

SUD 1.2722
0.8665*

1.2726
0.8658*

1.2702
0.8644*

1.2612
0.8557*

δx δy SUD D m ACS mp T2 Max D T2 Max D T2 Max D T2 Max D

0.00 0.25 0.924175 4 7 127.96 159.63 126.96* 36.29 127.12* 129.68 127.22* 64.25 126.37*

0.00 0.50 0.737438 5 8 35.03 41.15 38.81* 10.64 38.85* 27.71 38.80* 8.79 37.97*

0.00 0.75 1.044067 4 8 12.60 12.41 13.71* 4.13 13.71* 7.74 13.68* 2.42 13.33*

0.00 1.00 1.044067 4 8 5.61 4.82 5.87 1.41 5.87 3.06 5.85 1.28 5.71
0.00 1.50 0.954496 5 10 1.82 1.55 1.91 1.04 1.91 1.21 1.90 1.00 1.88

0.25 0.25 0.924175 4 7 77.51 90.82 76.78* 38.88 77.33* 129.68 78.05* 148.55 80.27*

0.25 0.50 1.375327 3 8 32.54 30.38 32.45* 12.38 32.74* 41.15 33.06* 30.38 33.69*

0.25 0.75 0.424845 6 8 12.83 10.45 12.86* 4.79 12.95* 11.70 13.03* 5.70 12.99*

0.25 1.00 1.044067 4 8 5.46 4.37 5.73 1.51 5.76 4.23 5.77 1.95 5.68
0.25 1.50 0.954496 5 10 1.81 1.50 1.90 1.05 1.90 1.36 1.90 1.02 1.88

0.50 0.50 1.375327 3 8 18.93 14.98 20.71* 9.91 21.10* 27.71 21.53* 35.76 22.74*

0.50 0.75 1.375327 3 8 10.69 6.78 10.59* 4.49 10.82* 11.70 11.04* 11.47 11.53*

0.50 1.00 1.044067 4 8 5.01 3.37 5.29 1.54 5.38 4.82 5.45 3.37 5.52
0.50 1.50 1.217258 4 10 1.79 1.40 1.87 1.06 1.88 1.49 1.89 1.10 1.88

0.75 0.75 1.044067 4 8 6.65 3.98 7.23* 3.49 7.48* 7.74 7.72* 10.45 8.32*

0.75 1.00 1.044067 4 8 4.13 2.42 4.38 1.48 4.54 4.23 4.67 4.76 4.95
0.75 1.50 1.138927 4 9 1.79 1.27 1.79 1.06 1.83 1.55 1.85 1.27 1.86
0.75 2.00 1.044067 4 8 1.48 1.03 1.15 2.48 1.16 1.05 1.16 1.00 1.16

1.00 1.00 1.044067 4 8 3.07 1.76 3.23 1.36 3.38 3.06 3.52 4.06 3.82
1.00 1.50 1.138927 4 9 1.60 1.16 1.65 1.05 1.71 1.49 1.75 1.47 1.82

1.50 1.50 1.451146 3 9 1.28 1.03 1.29 1.02 1.35 1.21 1.40 1.40 1.49
1.50 2.00 1.283810 4 11 1.05 1.00 1.07 1.00 1.10 1.04 1.11 1.06 1.14

2.00 2.00 1.451146 3 9 1.02 1.00 1.02 149.71 1.03 1.01 1.04 1.03 1.07
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Melo et al. (2017a, 2017b) we also worked with only upper dis-
criminating limits. According to Tables 1–3, the ACS mp chart always
outperforms the Max D chart. For instance, in Table 1, if the magnitude
of the disturbance is (δx, δy)= (0.5, 1.0), the ACS mp chart requires, on
average, 7.17 samples of size m=6 to signal. The speed with which the
Max D chart signals this type of disturbance depends on the correlation.
If the variables are highly correlated (ρ=0.8) theMax D chart requires,
on average, 9.17 samples of size n=4 (2n > m) to signal. This number
decreases to 8.79 when the variables are uncorrelated (ρ=0). The
upper discriminating (SUD) and control limits (UCL) of Max D chart
depend on the magnitude of the shifts. For instance, in Table 1, if ρ=0
the optimum performance for (δx= 0 or 0.25, δy=0.25) is yielded
with CL=3.5 and SUD=0.871417 (these cases are marked with ∗).
The optimum performance for all other shifts is yielded with CL=2.5
and SUD=1.468796.

The Max D chart was proposed by Melo et al. (2017b), however,
they only presented the bivariate ARLs. In order to compare our tri-
variate ACS mp chart with the Max D chart, we extended their results to
the trivariate case. When the trivariate Max D chart is in use, the

monitoring statistic is the Max D={Dx,Dy,Dz}, where
Dx= n111+ n101+ n110+ n100, Dy= n111+ n011+ n110+ n010, and
Dz = n111+ n011+ n101+ n001, being nijk the number of sample items
classified as approved with regard to the X, Y, and disapproved with
regard Z discriminating limits. For instance, n101 is the number of
sample items classified as disapproved with regard to the X and Z dis-
criminating limits and approved with regard to the Y discriminating
limit.

Table 4 presents the ARLs for the trivariate ACS mp, T2, and Max D
charts with n=4. In Table 4, m is the minimum sample size the tri-
variate ACS mp chart requires to outperform theMax D chart. It is worth
to stress that the m values in Table 4 are pretty lower than the max-
imum m=12 (=3n). The m≤ 3n condition lies in the fact that, at each
sampling point, the ACS mp chart requires the inspection of only one
quality characteristic; the other trivariate charts always require the
measurement of the three quality characteristics.

The combined attribute-variable control chart, namely Max D-T2,
works with two samples, the first sample of size n1 is used with the Max
D chart and the second sample of size n2 is used with the T2 chart. If the

Table 4
The ARL values for the trivariate ACS mp, T2, and Max D charts with n= 4.

ρxy 0.0 0.5 0.7 0.3 0.3 0.3

ρxz 0.0 0.5 0.7 0.5 0.3 0.7
ρyz 0.0 0.5 0.7 0.7 0.7 0.7

SUD 1.5396 1.5352 1.5255 1.5328 1.5339 1.5294
UCL 14.1541 2.5 14.1541 2.5 14.1541 2.5 14.1541 2.5 14.1541 2.5 14.1541 2.5

δx δy δz SUD D=4
m

ACS mp T2 Max D T2 Max D T2 Max D T2 Max D T2 Max D T2 Max D

0 0 0.5 0.76160 6 66.1 85.8 73.6 53.8 73.6 28.7 72.5 28.1 73.7 36.7 73.6 12.0 73.6
0 0 0.75 0.76160 6 26.3 30.8 28.5 16.4 28.4 7.6 27.8 7.4 28.4 10.1 28.4 3.0 28.2
0 0 1 0.92417 7 9.6 12.3 12.3 6.1 12.2 2.9 11.9 2.8 12.2 3.8 12.2 1.4 12.1
0 0 1.5 0.92417 7 3.4 3.1 3.4 1.7 3.4 1.2 3.4 1.2 3.4 1.3 3.4 1.0 3.4

0 0.5 0.5 0.76160 6 36.5 36.6 41.0 36.6 42.2 22.4 42.9 55.0 42.0 63.1 41.2 37.5 43.4
0 0.5 0.75 0.76160 6 20.0 17.4 21.9 16.4 22.6 9.2 22.9 19.6 22.5 26.8 22.1 8.8 23.2
0 0.5 1 0.76160 6 10.6 8.4 10.9 7.1 11.2 3.8 11.2 6.6 11.1 9.6 11.0 2.7 11.3
0 0.5 1.5 0.92417 7 3.2 2.6 3.4 2.0 3.4 1.3 3.3 1.6 3.4 2.0 3.4 1.1 3.4

0 0.75 0.75 0.76160 6 13.9 10.1 15.1 10.1 15.8 5.7 16.3 16.8 15.7 20.2 15.3 10.4 16.5
0 0.75 1 0.76160 6 8.7 5.7 9.0 5.5 9.5 3.1 9.7 7.5 9.4 10.3 9.1 3.6 9.8
0 0.75 1.5 0.92417 7 3.0 2.2 3.2 2.0 3.3 1.3 3.3 1.8 3.3 2.5 3.2 1.1 3.3

0 1 1 0.76160 6 6.4 3.8 6.5 3.8 7.0 2.3 7.2 6.3 6.9 7.7 6.7 3.9 7.3
0 1 1.5 0.92417 7 2.7 1.8 2.9 1.7 3.1 1.3 3.1 2.0 3.0 2.7 3.0 1.2 3.1
0 1.5 1.5 0.92417 7 2.0 1.3 2.0 1.3 2.2 1.1 2.3 1.8 2.2 2.1 2.1 1.3 2.3

0.5 0.5 0.5 0.76160 6 25.3 19.8 28.6 53.8 30.2 67.1 31.6 51.4 30.4 47.7 30.1 51.0 30.9
0.5 0.5 0.75 0.76160 6 16.2 11.1 17.9 28.5 19.0 30.7 19.8 29.2 19.3 24.7 19.0 30.5 19.7
0.5 0.5 1 0.76160 6 9.5 6.1 9.9 12.3 10.4 10.3 10.6 10.8 10.5 9.8 10.4 8.4 10.7
0.5 0.5 1.5 0.92417 7 3.1 2.3 3.3 2.9 3.3 2.0 3.3 2.1 3.4 2.2 3.3 1.4 3.4

0.5 0.75 0.75 0.76160 6 11.9 7.1 13.1 19.8 14.1 22.4 14.9 22.6 14.2 21.0 13.8 23.7 14.7
0.5 0.75 1 0.76160 6 7.9 4.4 8.3 10.6 8.9 10.2 9.3 12.2 9.0 11.4 8.8 10.8 9.3
0.5 0.75 1.5 0.92417 7 3.0 2.0 3.1 2.9 3.3 2.2 3.3 2.6 3.3 2.7 3.2 1.7 3.3

0.5 1 1 0.76160 6 6.0 3.1 6.1 7.1 6.7 6.7 7.1 9.3 6.7 9.0 6.5 9.1 7.1
0.5 1 1.5 0.92417 7 2.6 1.7 2.8 2.6 3.0 2.1 3.1 2.9 3.0 3.1 3.0 2.0 3.1
0.5 1.5 1.5 0.92417 7 1.9 1.3 2.0 1.7 2.2 1.5 2.3 2.4 2.2 2.4 2.1 2.1 2.3

0.75 0.75 0.75 0.76160 6 9.5 5.0 10.4 16.4 11.4 21.9 12.2 15.5 11.5 14.0 11.3 15.3 11.8
0.75 0.75 1 0.76160 6 6.8 3.4 7.1 10.1 7.9 12.2 8.4 10.6 8.0 8.7 7.9 12.0 8.3
0.75 0.75 1.5 0.92417 7 2.8 1.7 3.0 3.1 3.2 2.6 3.2 2.8 3.2 2.5 3.2 2.2 3.2

0.75 1 1 0.76160 6 5.4 2.5 5.5 7.4 6.2 9.2 6.6 8.0 6.2 7.3 6.0 8.6 6.5
0.75 1 1.5 0.92417 7 2.5 1.5 2.7 2.9 3.0 2.7 3.1 3.1 3.0 2.9 2.9 2.7 3.1
0.75 1.5 1.5 0.92417 7 1.9 1.2 2.0 2.0 2.2 1.9 2.3 2.4 2.2 2.4 2.1 2.4 2.3

1 1 1 0.76160 6 4.5 2.0 4.5 6.1 5.2 8.4 5.6 5.8 5.2 5.2 5.1 5.7 5.4
1 1 1.5 0.92417 7 2.3 1.4 2.5 2.9 2.8 3.1 2.9 2.9 2.9 2.5 2.8 3.1 2.9
1 1.5 1.5 0.92417 7 1.8 1.1 1.9 2.0 2.1 2.3 2.3 2.3 2.1 2.1 2.1 2.4 2.2

1.5 1.5 1.5 0.92417 7 1.5 1.1 1.6 1.7 1.8 2.2 2.0 1.7 1.8 1.6 1.8 1.7 1.9
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state of the process (in-control or out-of-control) is decided with the
Max D chart, the second sample of size n2 is not inspected, conse-
quently, the average sample size (ASS) is given by n1+ p2 ∗ n2, where
p2 is the in-control probability of requiring the T2 chart to decide the
state of the process.

Table 5 compares the ARLs of the bivariate ACS mp chart with the
ARLs of the bivariate Max D-T2 chart. For a fairer comparison, we de-
veloped the bivariate ACS mp chart with two-stage sampling (ACS-TSS
mp chart). During the first stage, a sample of size (m1) is taken from the
process and the (m1) sample items are classified as approved – dis-
approved according to the discriminating limit UDx (or UDy), if the
current classification is with regard to the X (or with regard to the Y)
dimension. If the number of disapproved items, found among the (m1)
sample items, doesn’t exceed the threshold D1, the two-stage sampling
doesn’t go to its second stage and the process is considered to be in
control. Otherwise, the two-stage sampling goes to its second stage,
where a new sample of size (m2) is taken from the process and the (m2)
sample items are classified as approved – disapproved according to the
same discriminating limit that was used during the first stage. If the
number of disapproved items, found among the (m2) sample items,
exceeds the threshold D2, the ACS mp chart with two-stage sampling
signals an out-of-control condition. Otherwise, the process is considered
to be in control. With the two-stage sampling in use, the average
number of classified items per sampling (ANC) is given by
ANC=m1+ p × m2, where (p) is the in-control probability of going to
the second sampling stage to decide the state of the process.

When the bivariate ACS mp chart with two-stage sampling is com-
pared with the bivariate Max D-T2 chart, the constraint ⩽ ×ANC ASS2
should be observed. The ⩽ ×ANC ASS2 condition lies in the fact that
the bivariate ACS-TSS mp chart requires the measurement of only one
quality characteristic of the sample items, whereas the bivariate Max D-

T2 chart always requires the measurement of the two quality char-
acteristics of the sample items. According to Table 5, the bivariate ACS-
TSS mp chart always outperforms the bivariate Max D-T2 chart, except
for the cases in bold, where the variables are highly correlated
(ρ=0.8).

The combined Max D-T2 chart was proposed by Melo et al. (2017a),
however, they only presented the bivariate ARLs. In order to compare
our trivariate ACS-TSS mp chart with the Max D-T2 chart, we extended
their results to the trivariate case.

Table 6 presents the ARLs of the trivariate ACS mp chart with two-
stage sampling and the Max D-T2 chart. The ARLs of the Max D-T2 chart
depends on the values of ρXY, ρXZ, and ρYZ, respectively the correlations
between variables (X, Y), (X, Z), and (Y, Z). In Table 6, the variables
were considered uncorrelated or correlated with ρXY, ρXZ and ρYZ as-
suming the values 0.3, 0.5, or 0.7. When the trivariate ACS mp chart
with two-stage sampling is compared with the trivariate Max D-T2

chart, the constraint ⩽ ×ANC ASS3 should be observed. The
⩽ ×ANC ASS3 condition lies in the fact that the trivariate ACS-TSS mp

chart requires the measurement of only one quality characteristic of the
sample items, whereas the trivariateMax D-T2 chart always requires the
measurement of the three quality characteristics of the sample items.
According to Table 6, the trivariate ACS-TSS mp chart outperforms the
trivariate Max D-T2 chart, except for less than 10% of the cases (bold
ARLs), most of them are in the first block of ARLs, where only one
variable is affected by the assignable cause and at least one pair of
variables are highly correlated (ρ=0.7).

4. An illustrative example

In this section, we explain the use of the proposed ACS mp chart.
The two quality characteristics (X, Y) are, respectively, the bigger and
the smaller diameters of a solid circular bar, see Fig. 2. The (X, Y)
variables follow a bivariate normal distribution with the mean vector

′ = μ μμ ( ; )x y0 0 =(56mm; 42mm), and the covariance matrix
= ∈X Y σ i j x yCOV( , ) [ , , { , }]i j, , with =σ 1.2113xx

2, =σ 1.3155yy
2 and

=σ 0.8764xy . The discriminating limits are set to be UDx =46.994285
and UDy =32.629553, that is, their standardized values are equal to
0.9242= [46.9943–56.0000]/1.2113= [32.6296–42.0000]/1.2113.
The three design parameters (SUD, m, CL) of the ACS mp chart are re-
spectively 0.9242, 7, and 4.5, see Table 3.

At each sampling point, a sample of seven bars is collected and only
one quality characteristic is measured. In Fig. 3 and Table 7, the first
sample was inspected with regard to the X quality characteristic; only
one item of the sample was disapproved. Following the ACS scheme, the
second sample was inspected with regard to the Y quality characteristic;
again, only one item was disapproved. According to the distribution of
the samples points, we conclude that the assignable cause increased μx
without affecting μy. It is worth to mention that the ACS mp chart easily
identifies the quality characteristic affected by the assignable cause;
moreover, the covariance =σ 0.8764xy was unnecessarily estimated; we
cannot say the same when the process is monitored by the T2 chart or
by the Max D chart.

5. Conclusions and extensions

In this article, we combined the alternated charting statistic scheme
with the attribute np chart to control bivariate and trivariate mean
vectors. According to this bivariate proposed scheme, the X observa-
tions are from the odd samples and the Y observations are from the even
samples or vice versa. As the X and Y observations are not from the
same samples, the dependence between the two quality characteristics

Table 5
The ARL values for the bivariate ACS-TSS mp and Max D-T2 charts.

ρ 0.0 0.3 0.5 0.8
ANC=4 ASS=2
m1= 2; m2= 12
D1= 0; D2= 3

n1= 1
n2= 4

SUD 1.3578 1.105 1.060 1.013 0.903
CL 0.5
UCL 9.0626 9.0544 9.0566 9.0574

δx δy ACS-TSS mp Max D- T2

0.00 0.00 370.0 370.0 370.0 370.0 370.0
0.00 0.25 104.6 189.4 183.3 168.1 105.8
0.00 0.50 27.7 63.2 58.5 48.4 20.5
0.00 0.75 9.6 22.0 19.8 15.5 5.9
0.00 1.00 4.5 8.9 8.0 6.2 2.7
0.00 1.50 2.1 2.5 2.3 2.1 1.4
0.25 0.25 61.1 113.6 135.0 146.9 162.3
0.25 0.50 23.4 45.5 55.4 58.4 47.7
0.25 0.75 9.0 17.7 20.6 20.0 11.5
0.25 1.00 4.4 7.8 8.6 7.8 4.0
0.25 1.50 2.1 2.4 2.5 2.2 1.5

0.50 0.50 14.6 24.0 33.3 39.4 48.4
0.50 0.75 7.4 11.6 16.0 18.5 18.6
0.50 1.00 4.0 5.9 7.6 8.2 6.2
0.50 1.50 2.0 2.1 2.4 2.4 1.7
0.75 0.75 5.1 6.9 10.0 12.3 15.9
0.75 1.00 3.3 4.1 5.8 6.9 7.8
0.75 1.50 1.8 1.9 2.3 2.4 2.0
1.00 1.00 2.5 2.9 4.0 4.9 6.4
1.00 1.50 1.6 1.6 2.0 2.2 2.2
1.50 1.50 1.3 1.2 1.5 1.3 2.0
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does not affect the performance of the ACS chart. The idea was also
extended to monitor the trivariate mean vectors. This feature is an
advantage of the ACS mp chart, once the design of the competingMax D
and T2 charts requires an accurate estimation of the X and Y correlation.
Moreover, the ACS mp chart outperforms the Max D chart, even with
fewer observations per sample.

The ACS mp chart is operationally simpler than the competing Max
D and T2 charts thanks to the fact that this chart works with only one
quality characteristic per time. Additionally, dealing with only one

quality characteristic per time also reduces the risk of misclassifications
and the risk of miscalculations during the determination of the sample
points. In summary, the ACS chart is an excellent chart to control bi-
variate and trivariate mean vectors.

When nonconforming items are rarely produced, Zhang, Xie, and
Jin (2012) suggested the monitoring of the cumulative number of
conforming samples (CCC) until a non-conforming one is encountered.
A nonconforming sample is the one with at least one nonconforming
item. Recent studies dealing with the control of high-quality processes
include the work of Lee and Khoo (2015); Ali, Pievatolo and Göb
(2016); Joekes, Smrekar and Righetti (2016); Morais (2017) and
Golbafian, Fallahnezhad and Zare Mehrjerdi (2017). The CCC chart
with alternated charting statistic seems to be an interesting way to
control high-quality bivariate (or trivariate) processes. The strategy of
alternating the charting statistic increases the complexity of the CCC
distribution, in special with the presence of the assignable cause.

Table 6
The ARL values for the trivariate ACS-TSS mp and Max D-T2 charts.

ρxy 0.0 0.5 0.7 0.3 0.3 0.3

ρxz 0.0 0.5 0.7 0.5 0.3 0.7
ρyz 0.0 0.5 0.7 0.7 0.7 0.7

ANC=6
m1= 4; m2= 11
D1= 0; D2= 2

ASS=2
n1= 1
n2= 3

SUD 1.650822 1.143 0.97 0.863 0.962 0.99 0.923
CL 0.5
UCL 11.799 11.805 11.796 11.797 11.796 11.796
δx δy δz ACS-TSS mp Max D – T2

0 0 0.5 43.9 104.1 74.9 46.2 46.5 56.4 24.0
0 0 0.75 15.0 41.8 25.9 13.7 13.9 17.7 6.6
0 0 1 6.5 17.7 10.1 5.2 5.3 6.8 2.8
0 0 1.5 2.6 4.5 2.7 1.7 1.7 2.0 1.4
0 0.5 0.5 23.5 45.8 47.9 33.0 67.0 74.4 50.0
0 0.5 0.75 11.7 23.2 23.2 14.6 27.6 35.1 14.6
0 0.5 1 5.9 11.7 10.6 6.3 10.3 14.0 4.9
0 0.5 1.5 2.5 3.7 3.0 1.9 2.4 3.0 1.5
0 0.75 0.75 7.9 13.8 14.6 9.2 22.7 26.3 15.4
0 0.75 1 4.8 8.0 8.2 5.1 10.9 14.1 5.8
0 0.75 1.5 2.4 3.0 2.8 1.9 2.7 3.6 1.6
0 1 1 3.6 5.2 5.5 3.6 8.9 10.5 5.8
0 1 1.5 2.1 2.4 2.4 1.7 2.9 3.7 1.7
0 1.5 1.5 1.6 1.6 1.7 1.4 2.4 2.7 1.8
0.5 0.5 0.5 16.2 24.9 57.8 69.7 55.9 52.4 55.9
0.5 0.5 0.75 9.6 14.6 33.0 35.7 34.0 29.5 35.7
0.5 0.5 1 5.3 8.3 15.7 13.8 14.4 13.1 11.9
0.5 0.5 1.5 2.4 3.1 3.9 2.8 3.0 3.1 2.4
0.5 0.75 0.75 6.9 9.5 23.5 26.4 26.2 24.6 27.4
0.5 0.75 1 4.5 6.0 13.3 13.1 15.2 14.2 13.9
0.5 0.75 1.5 2.3 2.6 3.9 3.0 3.6 3.7 2.5
0.5 1 1 3.4 4.2 9.1 8.9 11.6 11.2 11.4
0.5 1 1.5 2.0 2.2 3.5 2.9 3.9 4.1 2.8
0.5 1.5 1.5 1.6 1.5 2.3 1.9 3.0 3.1 2.7
0.75 0.75 0.75 5.5 6.7 19.3 24.9 18.4 16.9 18.3
0.75 0.75 1 3.9 4.6 12.3 14.7 12.9 10.9 14.5
0.75 0.75 1.5 2.2 2.3 4.1 3.6 3.7 3.4 3.1
0.75 1 1 3.0 3.4 9.2 11.2 9.9 9.1 10.5
0.75 1 1.5 1.9 1.9 3.8 3.6 4.0 3.7 3.6
0.75 1.5 1.5 1.5 1.5 2.5 2.4 3.1 3.0 3.0
1 1 1 2.5 2.7 7.6 10.1 7.2 6.6 7.2
1 1 1.5 1.8 1.8 3.6 4.0 3.7 3.2 4.0
1 1.5 1.5 1.4 1.4 2.5 2.9 2.8 2.7 3.0
1.5 1.5 1.5 1.2 1.2 2.1 2.7 2.0 1.9 2.0

Y X 

Fig. 2. A solid circular bar.
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Fig. 3. The ACS mp chart of the illustrative example.

Table 7
The ACS mp chart of the illustrative example with a step number column.

Sampling
point

(X, Y) Step Sample items Number of
disapproved items (d)

1 2 3 4 5 6 7

1 X 5 0a 0 1 0 0 0 0 1
2 Y 6 0 0 0 1 0 0 0 1
3 X 5 0 0 0 0 0 0 0 0
4 Y 6 0 0 0 1 0 0 0 1
5 X 5 0 1 0 0 0 0 0 1
6 Y 6 0 0 0 0 0 0 0 0
7 X 5 1 0 0 0 0 0 0 1
8 Y 6 0 0 1 0 0 0 0 1
9 X 5 0 0 1 0 1 1 0 3
10 Y 6 0 0 0 0 1 0 0 1
11 X 5 0 1 1 1 0 0 0 3
12 Y 6 1 0 0 1 0 0 0 2
13 X 5 1 1 1 1 0 0 0 4
14 Y 6 0 0 0 0 0 0 0 0
15 X 5 0 0 0 1 1 0 1 3
16 Y 6 0 0 0 0 0 0 1 1
17 X 5 0 0 1 1 1 0 0 3
18 Y 6 0 0 0 0 0 0 0 0
19 X 5 0 1 1 1 1 0 0 4
20 Y 6 0 0 0 0 1 1 0 2
21 X 5 0 1 1 1 0 0 0 3
22 Y 6 1 0 0 0 0 0 0 1
23 X 5 1 1 0 1 0 0 0 3
24 Y 6 0 0 0 0 0 0 0 0
25 X 5 0 1 0 1 1 1 0 4
26 Y 6 1 0 0 0 0 0 0 1
27 X 5 1 1 1 0 0 1 0 4
28 Y 6 0 0 0 0 0 0 0 0
29 X 7 1 1 1 0 1 1 0 5

a 0 (1) means an approved (disapproved) item.
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Appendix A. The ARL of the ACS mp chart

The ARL of the ACS mp chart depends on the charting statistic in use just after the assignable cause occurrence. The charting statistic is the
number of disapproved sample items according to the X (Y) discriminate limits. If the charting statistic in use, just after the assignable cause
occurrence, is the number of disapproved sample items with regard to the X dimension (dx), then its power of signaling with the first sample is pX ,
with the second sample is q pX Y , with the third one is q q pX Y X , etc. Reminding that = −q p1X X and = −q p1Y Y . This way, when dx is the charting
statistic in use, just after the assignable cause occurrence, the ARL expression, defined as ARLX is:
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Proof of Eq. (A1).
The = +ARL Σ ΣX x y, where Σx (Σy) is the probability to obtain a signal with the monitoring statistic dx (dy).
It follows that:
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Similarly, when dy is the charting statistic in use, just after the assignable cause occurrence, the ARL expression, defined as ARLY is:

=
+ +
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Y X Y X Y
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The ARL of the bivariate ACS mp chart is given by the average of the (ARLX , ARLY ):

= + =
− +

+ −
ARL ARL ARL p p

p p p p2
4 ( )

2( )
X Y X Y

X Y X Y (A3)

Extending to the trivariate case:

∑= − + − − + − − =
+ − + − −

−
−

+ −
−=

∞
−ARL a b c q i p i p p i p p p

p p p p p p
q

p p p
q

( , , ) [(3 2) (3 1)(1 ) 3 (1 )(1 ) ]
3[ (1 ) (1 )(1 ) ]

(1 )
2 (1 )

1a
i

i
a a b a b c

a a b a b c a a b

1

1
2 (A4)

Expression (A4), with = − − −q p p p(1 )(1 )(1 )X Y Z , is the general expression of the ARLX , ARLY , and ARLZ , that is, =ARL ARL X Y Z( , , )X X ,
=ARL ARL Y Z X( , , )Y Y and =ARL ARL Z X Y( , , )Z Z . The ARL of the trivariate ACS mp chart is given by the average of the (ARLX , ARLY , ARLZ):

= + + =
− + + + + +

+ + − − − +
ARL ARL ARL ARL p p p p p p p p p

p p p p p p p p p p p p3
9 3( ) ( )
3( )

X Y Z x y z x y x z y z

x y z x y x z y z x y z (A5)
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